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Increasing popularity of ML for network traffic analysis

● Models learn effectively from large volumes of network data
● Complex, evolving traffic patterns
● Encryption undermines traditional rule-based heuristics
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Practical deployment: more than just accuracy

● Systems costs of serving is just as important as predictive performance 

Systems CostsPredictive Performance

● Throughput
● Latency
● Memory usage
● etc.

● Accuracy
● F1 score
● RMSE
● etc.
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Serving efficiency is especially critical for traffic analysis

● Network traffic analysis is a real-time task
● Balancing systems costs are essential for the validity of ML-based 

predictions

Not keeping up with traffic → stale results

Not keeping up with traffic → packet drop → invalid results
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Model inference is only one component of the end-to-end pipeline

Model Inference

6



Model inference is only one component of the end-to-end pipeline

Packet Capture Feature Extraction Model Inference
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● Filtering
● Header parsing
● Waiting for flow context
● Statistical feature computation



Systems costs vs. predictive performance: not always a tradeoff

● Traffic representation (features and flow context length) strongly impacts 
both systems costs and predictive performance

● More packets and richer features don’t always guarantee better results
● Relationship is nonlinear and non-obvious
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Problem summary

● ML-based traffic analysis must balance system costs and predictive 
performance

● Traffic representation choices have a large and non-obvious impact
● Multiple objectives and a huge search space makes end-to-end optimization 

challenging 
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CATO: Cost-Aware Traffic analysis Optimization

● Goal: automatically construct traffic analysis pipelines that jointly minimize end-to-end 
systems costs while maximizing predictive performance
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CATO: Cost-Aware Traffic analysis Optimization
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● Optimizer: BO-guided search for Pareto-optimal traffic representations
● Profiler: Guides optimizer towards Pareto-optimal solutions and validates 

in-network performance of traffic analysis pipelines
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Direct end-to-end measurement with the profiler

● Train the model, construct the pipeline, deploy, and measure.

● Expensive, but:
○ Helps the Optimizer make better decisions
○ Validates each traffic analysis pipeline
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Estimating end-to-end systems costs is difficult → Measure directly



Multi-objective Bayesian Optimization

● Measuring systems costs and predictive performance is expensive
● Sample-efficient compared to other search methods
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BO works well for expensive-to-evaluate, black box objectives



How CATO builds the Pareto front
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CATO can achieve lower costs while increasing predictive performance
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CATO can achieve much lower costs for similar predictive performance
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Selected results

● E2E latency: 2.6–19x reduction vs. using first 10 packets
● Classification throughput: 1.6–3.7x speedup vs. using first 10 packets
● Convergence rate: 14.9–16.9x speedup over simulated annealing and 

random search
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Summary

● End-to-end pipeline efficiency is critical for ML-based traffic analysis
● Traffic representation choices have an outsized impact on both 

predictive performance and systems costs

● CATO:
○ Jointly optimizes across both predictive performance and systems costs
○ Uses multi-objective BO with direct end-to-end measurement to construct 

and validate readily deployable traffic analysis pipelines
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