CATO: End-to-End Optimization of ML-Based Traffic Analysis Pipelines

Gerry Wan, Shinan Liu, Francesco Bronzino, Nick Feamster, Zakir Durumeric

Increasing popularity of ML for network traffic analysis

- Models learn effectively from large volumes of network data
- Complex, evolving traffic patterns
- Encryption undermines traditional rule-based heuristics

Increasing popularity of ML for network traffic analysis

- Models learn effectively from large volumes of network data
- Complex, evolving traffic patterns
- Encryption undermines traditional rule-based heuristics

IOT SENTINE	L: Autom	ated Device-7	Гуре
Identification for	Security	Enforcement	in IoT

New Direction	s in	Automated	Traffic	Analysis
----------------------	------	-----------	---------	----------

Jordan Holland	Paul Schmitt
Princeton University	Princeton University
Princeton, New Jersey, USA	Princeton, New Jersey, USA
jordanah@princeton.edu	pschmitt@cs.princeton.edu

Inferring Streaming Video Quality from Encrypted Traffic: Practical Models and Deployment Experience

FRANCESCO BRONZINO^{*†}, Inria, France and Nokia Bell Labs, France PAUL SCHMITT^{*}, Princeton University, USA SARA AYOUBI, Inria, France GUILHERME MARTINS, University of Chicago, USA RENATA TEIXEIRA, Inria, France NICK FEAMSTER, University of Chicago, USA GGFAST: Automating Generation of Flexible Network Traffic Classifiers

Real-time Video Quality of Experience Monitoring for HTTPS and QUIC

FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification

TrafficLLM: Enhancing Large Language Models for Network Traffic Analysis with Generic Traffic Representation

Tianyu Cui⁰, Xinjie Lin⁰, Sijia Li, Miao Chen, Qilei Yin, Qi Li, Senior Member, IEEE, and Ke Xu, Fellow, IEEE

Practical deployment: more than just accuracy

• Systems costs of serving is just as important as predictive performance

Predictive Performance

- Accuracy
- F1 score
- RMSE
- etc.

Systems Costs

- Throughput
- Latency
- Memory usage
- etc.

Serving efficiency is especially critical for traffic analysis

- Network traffic analysis is a **real-time** task
- Balancing systems costs are essential for the validity of ML-based predictions

Not keeping up with traffic \rightarrow stale results Not keeping up with traffic \rightarrow packet drop \rightarrow **invalid results**

Model inference is only one component of the end-to-end pipeline

Model inference is only one component of the end-to-end pipeline

- Filtering
- Header parsing
- Waiting for flow context
- Statistical feature computation

- **Traffic representation** (features and flow context length) strongly impacts both systems costs and predictive performance
- More packets and richer features don't always guarantee better results
- Relationship is **nonlinear** and **non-obvious**

$\textbf{Tradeoff} \rightarrow \textbf{Search space}$

Problem summary

- ML-based traffic analysis must balance system costs and predictive performance
- Traffic representation choices have a large and non-obvious impact
- Multiple objectives and a huge search space makes end-to-end optimization challenging

• Goal: automatically construct traffic analysis pipelines that jointly minimize end-to-end systems costs while maximizing predictive performance

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: Guides optimizer towards Pareto-optimal solutions and validates in-network performance of traffic analysis pipelines

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: Guides optimizer towards Pareto-optimal solutions and validates in-network performance of traffic analysis pipelines

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: Guides optimizer towards Pareto-optimal solutions and validates in-network performance of traffic analysis pipelines

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: **Guides** optimizer towards Pareto-optimal solutions and **validates** in-network performance of traffic analysis pipelines

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: **Guides** optimizer towards Pareto-optimal solutions and **validates** in-network performance of traffic analysis pipelines

- <u>Optimizer</u>: BO-guided **search** for Pareto-optimal traffic representations
- <u>Profiler</u>: Guides optimizer towards Pareto-optimal solutions and validates in-network performance of traffic analysis pipelines

Direct end-to-end measurement with the profiler

Estimating end-to-end systems costs is difficult \rightarrow Measure directly

- Train the model, construct the pipeline, deploy, and measure.
- Expensive, but:
 - Helps the Optimizer make better decisions
 - Validates each traffic analysis pipeline

Multi-objective Bayesian Optimization

- Measuring systems costs and predictive performance is **expensive**
- **Sample-efficient** compared to other search methods

BO works well for expensive-to-evaluate, black box objectives

CATO can achieve lower costs while increasing predictive performance

CATO can achieve much lower costs for similar predictive performance

Selected results

- E2E latency: 2.6–19x reduction vs. using first 10 packets
- Classification throughput: 1.6–3.7x speedup vs. using first 10 packets
- Convergence rate: 14.9–16.9x speedup over simulated annealing and random search

Summary

- End-to-end pipeline efficiency is critical for ML-based traffic analysis
- Traffic representation choices have an outsized impact on both predictive performance and systems costs

• **CATO**:

- Jointly optimizes across **both** predictive performance and systems costs
- Uses **multi-objective BO** with **direct end-to-end measurement** to construct and validate readily deployable traffic analysis pipelines