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Increasing popularity of ML for network traffic analysis

e Models learn effectively from large volumes of network data
e Complex, evolving traffic patterns
e Encryption undermines traditional rule-based heuristics
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Practical deployment: more than just accuracy

e Systems costs of serving is just as important as predictive performance

Predictive Performance Systems Costs
° ?;;Curacy e Throughput

° RI\/ISSCISre e Latency

° t e Memory usage
¢ ¢l e eftc.



Serving efficiency is especially critical for traffic analysis

e Network traffic analysis is a real-time task
e Balancing systems costs are essential for the validity of ML-based
predictions

Not keeping up with traﬁi@tale results

Not keeping up with traffic — packet drop — invalid results



Model inference is only one component of the end-to-end pipeline
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Model inference is only one component of the end-to-end pipeline
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e Filtering
e Header parsing
e  Waiting for flow context
e  Statistical feature computation



Systems costs vs. predictive performance: not always a tradeoff

e Traffic representation (features and flow context length) strongly impacts
both systems costs and predictive performance

e More packets and richer features don’t always guarantee better results
e Relationship is nonlinear and non-obvious

Tradeoff — Search space
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Systems costs vs. predictive performance: not always a tradeoff
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Problem summary

e ML-based traffic analysis must balance system costs and predictive

performance
e Traffic representation choices have a large and non-obvious impact
e Multiple objectives and a huge search space makes end-to-end optimization

challenging
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CATO: Cost-Aware Traffic analysis Optimization

e (Goal: automatically construct traffic analysis pipelines that jointly minimize end-to-end
systems costs while maximizing predictive performance
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CATO: Cost-Aware Traffic analysis Optimization
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e Optimizer: BO-guided search for Pareto-optimal traffic representations
e Profiler: Guides optimizer towards Pareto-optimal solutions and validates
in-network performance of traffic analysis pipelines
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Direct end-to-end measurement with the profiler

Estimating end-to-end systems costs is difficult — Measure directly

e Train the model, construct the pipeline, deploy, and measure.

e EXxpensive, but:
o Helps the Optimizer make better decisions
o Validates each traffic analysis pipeline
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Multi-objective Bayesian Optimization

e Measuring systems costs and predictive performance is expensive
e Sample-efficient compared to other search methods

BO works well for expensive-to-evaluate, black box objectives
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How CATO builds the Pareto front
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CATO can achieve lower costs while increasing predictive performance
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CATO can achieve much lower costs for similar predictive performance
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Selected results

e EZ2E latency: 2.6—19x reduction vs. using first 10 packets

e Classification throughput: 1.6—-3.7x speedup vs. using first 10 packets
e Convergence rate: 14.9-16.9x speedup over simulated annealing and

random search
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Summary

e End-to-end pipeline efficiency is critical for ML-based traffic analysis
e Traffic representation choices have an outsized impact on both
predictive performance and systems costs

e CATO:
o Jointly optimizes across both predictive performance and systems costs
o Uses multi-objective BO with direct end-to-end measurement to construct
and validate readily deployable traffic analysis pipelines
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