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… imagine you are working at a cloud provider 



An angry client accuses the cloud of violating a latency SLO 



The cloud is only liable, iff the queue length on a port used by the 
client’s traffic exceeded a threshold, high enough to cause a violation



…need queue length at ms granularity  

The cloud is only liable, iff the queue length on a port used by the 
client’s traffic exceeded a threshold, high enough to cause a violation



…need queue length at ms granularity  
…have packet counts at min granularity 

The cloud is only liable, iff the queue length on a port used by the 
client’s traffic exceeded a threshold, high enough to cause a violation



Can one still prove that the latency SLO was not violated,  
using only packet counts?



Can one answer queue-related queries,  
using only packet counts?



Can one answer queue-related queries,  
using only packet counts?

Hint: There is a connection between packet counts and queue lengths
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1 time step = 1 packet arrival / transmission
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1 time step = 1 packet arrival / transmission

2 per output port

Can queue size of port  be  7? O2 ≥

The network operator has access to per-port input, output and dropped 
packet counts but needs to reason about queue lengths                       



Input ports Output portsOutput queues
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max queue size = 10
1 time step = 1 packet arrival / transmission

2 per output port

Can queue size of port  be  7? O2 ≥

The network operator needs to find a sequence of packet arrivals, 
that satisfy the packet counts and lead to such a queue length
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The network operator needs to find a Packet Trace, 
that satisfy the packet counts and lead to a queue length of 7 pkts
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The network operator needs to find a Packet Trace, 
that satisfy the packet counts and lead to a queue length of 7 pkts
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The operator can start with input counts and generate a packet trace 
that will satisfy those and the query (O2> 7 pkts)
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There are  distinct packet traces that one can generate from the input counts… 
proving impossibility requires checking all of them

≈ 1016



There are  distinct packet traces that one can generate from the input counts… 
proving impossibility requires checking all of them

≈ 1016
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Set of packet traces consistent  
with output and dropped counts

Set of packet traces consistent with query

QuASI checks if there is a packet trace in the intersection of those sets

QuASI answers queue-related queries  
using per-port incoming, outgoing and dropped packet counts 



Instead of looking at each packet trace,  
QuaSi relies on an enqueue abstraction
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The enqueue abstraction is lossless for the queries we support 

Time steps

1 6… 18 19 20…

O
ut

pu
t 

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …
Time steps

1 6… 18 …16… …
1

3

5

7

2

4

6

8En
q
ue

ue
-r

at
e 

 
A

b
st

ra
ct

io
n

Abstract packet trace

…

…

4

1
1

1

Blank entries are 0

1

4

Packet trace

…

…

8
6 O

ut
pu

t 
Q

ue
ue

s O1

O2

O3

O4

20

2



Query

Per-port packet 
counts

Overapproximate 
analysis 

Exact 
analysis 

Yes

No

Yes

QuASI is inspired by abstraction refinement 



Query

Per-port packet 
counts

Overapproximate 
analysis 

Exact 
analysis 

Yes

No

Yes

QuASI is inspired by abstraction refinement 



Query

Per-port packet 
counts

Overapproximate 
analysis 

Exact 
analysis 

Yes

No

Yes

QuASI is inspired by abstraction refinement 



Query

Per-port packet 
counts

Overapproximate 
analysis 

Exact 
analysis 

Yes

No

Yes

QuASI is inspired by abstraction refinement 



Exact analysis 
Over-approximate analysis 

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy
 

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce
  

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative 
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

 

Mo

Q
C

Mo ∩ Q ⊆ C

 

Mo

Q
C

 

Mi

Check consistency 
of each Rj with Mi 

Yes

No

Yes

QuASI is inspired by abstraction refinement 



Exact analysis 

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy
 

C
he

ck
er

 (
M

C
C

)

Rj, representative 
abstract traces

Mo ∩ Q ⊆ C

 

Mo

Q
C

 

Mi

Check consistency 
of each Rj with Mi 

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce
  

C
on

st
ru

ct
or

 (
M

U
C

)

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

 

Mo

Q
C

Over-approximate QuASI step 1: The cover-set generator finds necessary 
conditions for consistency with output counts Mo and the Query Q



Each component  is conjunction of expressions over enqueue rateFi
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Over-approximate QuASI step 1: Cover-set is a disjunction of components, 
each being a conjunction of expressions over enqueue rate
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Over-approximate QuASI step 2: MUC generates a representative abstract 
trace for each cover-set component
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See paper for proof

Over-approximate QuASI step 2: If the representative trace is not  
consistent with input counts, then no trace in the cover-set component is
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Over-approximate QuASI step 2: The representative abstract trace is the  
most uniform allocation subject to the constraints in the component 
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Over-approximate QuASI step 3: QuASI checks consistency of each 
representative abstract trace with Mi using the Gale-Ryser theorem1,2



Over-approximate QuASI step 3: QuASI checks consistency of each 
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Is the R1 representative trace consistent  
with the input counts? 



Is the R1 representative trace consistent  
with the input counts? 

Over-approximate QuASI step 3: QuASI checks consistency of each 
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Is there a (0,1)-matrix with row sums eq. input packet 
counts and column sums eq. total number of packets 
sent /time steps?
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Over-approximate QuASI step 3: QuASI checks consistency of each 
representative abstract trace with Mi using the Gale-Ryser theorem1,2
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Check consistency 
of each Rj with Mi 

If  Gale-Ryser theorem says none of the representative traces is consistent 
with the input counts Mi, QuASI concludes— we are done!
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Else, QuASI uses an SMT solver to model the exact conditions for 
consistency with Mi, Mo, and Q



We evaluate QuASI in multiple queue-related queries  

BurstOccurrence: Could a burst of rate R and duration D occur?

QlenK: Could the queue length at port Oi be at least K?

MaxQlen: What is the maximum queue length at port I?

MaxBuff: What is the maximum buffer occupancy during the interval?
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50

QuASI-approx finds bounds up to 58% tighter than the heuristic baseline 
within 1 second 

QuASI - approx

Heuristic

QuASI - exact



Is QuASI useful? Is QuASI better  
than SOTA? Is QuASI scalable?

QuASI evaluation  



QuASI computes the maximum queue length X faster than FPerf [1]106

[1] Arashloo et al. NSDI 2023

QuASI - approx

Heuristic

QuASI - exact



Is QuASI useful? Is QuASI better  
than SOTA? Is QuASI scalable?

QuASI evaluation  



QUASI takes almost constant time for QlenK  
and scales quadratically with interval size for BurstOccurrence.

QlenK Burst Occurrence 

300M steps! 60K steps!

QuASI

QuASI

Heuristic
Heuristic



❖ QuASI answers queue-related (e.g., Burst occurrence) queries using 
coarse-grained per-port packet counts    

❖ QuASI uses the enqueue rate abstraction which is  
lossless for the queries it supports 

❖ QuASI is six orders of magnitude faster than SOTA 
while giving non-trivial answers 

A Layered Formal Methods Approach to Answering Queue-related Queries

netsyn.princeton.edu
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