
A Layered Formal Methods Approach to
Answering Queue-related Queries

Divya Raghunathan, Maria Apostolaki, Aarti Gupta

netsyn.princeton.edu

Princeton University

… imagine you are working at a cloud provider

An angry client accuses the cloud of violating a latency SLO

The cloud is only liable, iff the queue length on a port used by the
client’s traffic exceeded a threshold, high enough to cause a violation

…need queue length at ms granularity

The cloud is only liable, iff the queue length on a port used by the
client’s traffic exceeded a threshold, high enough to cause a violation

…need queue length at ms granularity
…have packet counts at min granularity

The cloud is only liable, iff the queue length on a port used by the
client’s traffic exceeded a threshold, high enough to cause a violation

Can one still prove that the latency SLO was not violated,
using only packet counts?

Can one answer queue-related queries,
using only packet counts?

Can one answer queue-related queries,
using only packet counts?

Hint: There is a connection between packet counts and queue lengths

Input ports Output portsOutput queues

I1

I2

I3

I4

O1

O2

O3

O4

Q1

Q3

Q5
Q6

Q7
Q8

Q4

Q2

denotes packet flow

2 per output port

The network operator has access to per-port input, output and dropped
packet counts but needs to reason about queue lengths

1 time step = 1 packet arrival / transmission

Input ports Output portsOutput queues

I1

I2

I3

I4

O1

O2

O3

O4

Q1

Q3

Q5
Q6

Q7
Q8

Q4

Q2

denotes packet flow

10
10

3
3

Input
counts
(# s)

1 time step = 1 packet arrival / transmission

2 per output port

The network operator has access to per-port input, output and dropped
packet counts but needs to reason about queue lengths

20 time steps

Input ports Output portsOutput queues

I1

I2

I3

I4

O1

O2

O3

O4

Q1

Q3

Q5
Q6

Q7
Q8

Q4

Q2

denotes packet flow

10
10

3
3

Input
counts
(# s)

3
0

16
20

Output
counts

Dropped
counts

(# s) (# s)

0
0
0
2

max queue size = 10
1 time step = 1 packet arrival / transmission

2 per output port

The network operator has access to per-port input, output and dropped
packet counts but needs to reason about queue lengths

20 time steps 20 time steps

Input ports Output portsOutput queues

I1

I2

I3

I4

O1

O2

O3

O4

Q1

Q3

Q5
Q6

Q7
Q8

Q4

Q2

denotes packet flow

10
10

3
3

Input
counts
(# s)

3
0

16
20

Output
counts

Dropped
counts

(# s) (# s)

0
0
0
2

max queue size = 10
1 time step = 1 packet arrival / transmission

2 per output port

Can queue size of port be 7? O2 ≥

The network operator has access to per-port input, output and dropped
packet counts but needs to reason about queue lengths

Input ports Output portsOutput queues

I1

I2

I3

I4

O1

O2

O3

O4

Q1

Q3

Q5
Q6

Q7
Q8

Q4

Q2

denotes packet flow

10
10

3
3

Input
counts
(# s)

3
0

16
20

Output
counts

Dropped
counts

(# s) (# s)

0
0
0
2

max queue size = 10
1 time step = 1 packet arrival / transmission

2 per output port

Can queue size of port be 7? O2 ≥

The network operator needs to find a sequence of packet arrivals,
that satisfy the packet counts and lead to such a queue length

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8
Packet color denotes input port

: I1 : I2 : I3 : I4

O1

O2

O3

O4

8 167 …
Input

counts
(# s)

Output
counts
(# s)

Dropped
counts
(# s)

MeasurementsPacket Trace

10
10

3

3

Input
counts
(# s)

3
0

16

20

Output
counts
(# s)

Dropped
counts
(# s)
0
0

0

2

The network operator needs to find a Packet Trace,
that satisfy the packet counts and lead to a queue length of 7 pkts

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

10
10

3

3

Input
counts
(# s)

Output
counts
(# s)

Dropped
counts
(# s)

MeasurementsPacket Trace

The network operator needs to find a Packet Trace,
that satisfy the packet counts and lead to a queue length of 7 pkts

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

10
10

3

3

Input
counts
(# s)

3
0

16

20

Output
counts
(# s)

Dropped
counts
(# s)

MeasurementsPacket Trace

The operator can start with input counts and generate a packet trace
that will satisfy those and the query (O2> 7 pkts)

…

…

8
6

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

10
10

3

3

Input
counts
(# s)

3
0

16

20

Output
counts
(# s)

Dropped
counts
(# s)

MeasurementsPacket Trace

Initial size
(# s)

10

10

0

0

The packet trace is consistent with input, output counts and the query

…

…

8
6

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

10
10

3

3

Input
counts
(# s)

3
0

16

20

Output
counts
(# s)

Dropped
counts
(# s)
0
0

0

2

MeasurementsPacket Trace

Initial size
(# s)

10

10

0

0

The packet trace is consistent with input, output counts and the query
but not with drop counts

…

…

8
6

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

10
10

3

3

Input
counts
(# s)

3
0

16

20

Output
counts
(# s)

Dropped
counts
(# s)
0
0

0

2

MeasurementsPacket Trace

Initial size
(# s)

10

10

0

0

The packet trace is consistent with input, output counts and the query
but not with drop counts, let’s start over

…

…

8
6

There are distinct packet traces that one can generate from the input counts…
proving impossibility requires checking all of them

≈ 1016

There are distinct packet traces that one can generate from the input counts…
proving impossibility requires checking all of them

≈ 1016

Mo

Q

Mi

QuASI answers queue-related queries
using per-port incoming, outgoing and dropped packet counts

Mo

Q

Mi

Set of packet traces
consistent with input counts

QuASI answers queue-related queries
using per-port incoming, outgoing and dropped packet counts

Mo

Q

Mi

Set of packet traces
consistent with input counts

Set of packet traces consistent
with output and dropped counts

QuASI answers queue-related queries
using per-port incoming, outgoing and dropped packet counts

Mo

Q

Mi

Set of packet traces
consistent with input counts

Set of packet traces consistent
with output and dropped counts

Set of packet traces consistent with query

QuASI answers queue-related queries
using per-port incoming, outgoing and dropped packet counts

Mo

Q

Mi

Set of packet traces
consistent with input counts

Set of packet traces consistent
with output and dropped counts

Set of packet traces consistent with query

QuASI checks if there is a packet trace in the intersection of those sets

QuASI answers queue-related queries
using per-port incoming, outgoing and dropped packet counts

Instead of looking at each packet trace,
QuaSi relies on an enqueue abstraction

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …

Packet trace

…

…

8
6

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …
Time steps

1 6… 18 20…16… …
1

3

5

7

2

4

6

8En
q
ue

ue
-r

at
e

A

b
st

ra
ct

io
n

Abstract packet trace

…

…

4

1
1

1

Blank entries are 0

1

4 2

Packet trace

QuaSi reasons about abstract packet traces:
number of packets that were enqueued per queue and time step

…

…

8
6 O

ut
pu

t
Q

ue
ue

s O1

O2

O3

O4

The enqueue abstraction is lossless for the queries we support

Time steps

1 6… 18 19 20…

O
ut

pu
t

Q
ue

ue
s

1

3

5

7

2

4

6

8 …

Packet color denotes input port
: I1 : I2 : I3 : I4

…

8

O1

O2

O3

O4
6

8 167 …
Time steps

1 6… 18 …16… …
1

3

5

7

2

4

6

8En
q
ue

ue
-r

at
e

A

b
st

ra
ct

io
n

Abstract packet trace

…

…

4

1
1

1

Blank entries are 0

1

4

Packet trace

…

…

8
6 O

ut
pu

t
Q

ue
ue

s O1

O2

O3

O4

20

2

Query

Per-port packet
counts

Overapproximate
analysis

Exact
analysis

Yes

No

Yes

QuASI is inspired by abstraction refinement

Query

Per-port packet
counts

Overapproximate
analysis

Exact
analysis

Yes

No

Yes

QuASI is inspired by abstraction refinement

Query

Per-port packet
counts

Overapproximate
analysis

Exact
analysis

Yes

No

Yes

QuASI is inspired by abstraction refinement

Query

Per-port packet
counts

Overapproximate
analysis

Exact
analysis

Yes

No

Yes

QuASI is inspired by abstraction refinement

Exact analysis
Over-approximate analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

Yes

No

Yes

QuASI is inspired by abstraction refinement

Exact analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

Rj, representative
abstract traces

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Over-approximate QuASI step 1: The cover-set generator finds necessary
conditions for consistency with output counts Mo and the Query Q

Each component is conjunction of expressions over enqueue rateFi
C

∑
q∈O2

cenq(q, T) ≥ 10 ∧ ∑
q∈O3

cenq(q, T) ≥ 6 ∧ ∑
q∈O4

cenq(q, T) ≥ 12
Fk

C

∑
q∈O2

cenq(q, T) ≥ 10 ∧ ∑
q∈O3

cenq(q, T) ≥ 6 ∧ ∑
q∈O4

cenq(q, T) ≥ 12
F1

C

Over-approximate QuASI step 1: Cover-set is a disjunction of components,
each being a conjunction of expressions over enqueue rate

Exact analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

Rj, representative
abstract traces

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Over-approximate QuASI step 2: MUC generates a representative abstract
trace for each cover-set component

Exact analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

Rj, representative
abstract traces

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

See paper for proof

Over-approximate QuASI step 2: If the representative trace is not
consistent with input counts, then no trace in the cover-set component is

∑
q∈O2

cenq(q, T) ≥ 10 ∧ ∑
q∈O3

cenq(q, T) ≥ 6 ∧ ∑
q∈O4

cenq(q, T) ≥ 12

F1
Ccover-set component

representative abstract trace R1

Over-approximate QuASI step 2: The representative abstract trace is the
most uniform allocation subject to the constraints in the component

Exact analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

1. David Gale, Classic Papers in Combinatorics 1956
2. H. J. Ryser, Canadian Journal of Mathematics 1957

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

Over-approximate QuASI step 3: QuASI checks consistency of each
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Over-approximate QuASI step 3: QuASI checks consistency of each
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Is the R1 representative trace consistent
with the input counts?

Is the R1 representative trace consistent
with the input counts?

Over-approximate QuASI step 3: QuASI checks consistency of each
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Is there a (0,1)-matrix with row sums eq. input packet
counts and column sums eq. total number of packets
sent /time steps?

Exact analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

1. David Gale, Classic Papers in Combinatorics 1956
2. H. J. Ryser, Canadian Journal of Mathematics 1957

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

Over-approximate QuASI step 3: QuASI checks consistency of each
representative abstract trace with Mi using the Gale-Ryser theorem1,2

Exact analysis
Over-approximate analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q
No

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

If Gale-Ryser theorem says none of the representative traces is consistent
with the input counts Mi, QuASI concludes— we are done!

Exact analysis
Over-approximate analysis

SMT solver

S′ ∧ Mo ∧ Mi ∧ Q

Yes

No

Yes

M
at

ri
x-

b
as

ed
 C

on
si

st
en

cy

C
he

ck
er

 (
M

C
C

)

M
os

t-
un

if
or

m
 A

b
st

ra
ct

 T
ra

ce

C
on

st
ru

ct
or

 (
M

U
C

)

Rj, representative
abstract traces

 C
ov

er
-s

et
 G

en
er

at
or

 (
C

SG
)

Mo

Q
C

Mo ∩ Q ⊆ C

Mo

Q
C

Mi

Check consistency
of each Rj with Mi

Else, QuASI uses an SMT solver to model the exact conditions for
consistency with Mi, Mo, and Q

We evaluate QuASI in multiple queue-related queries

BurstOccurrence: Could a burst of rate R and duration D occur?

QlenK: Could the queue length at port Oi be at least K?

MaxQlen: What is the maximum queue length at port I?

MaxBuff: What is the maximum buffer occupancy during the interval?

Is QuASI useful? Is QuASI better
than SOTA? Is QuASI scalable?

QuASI evaluation

Is QuASI useful? Is QuASI better
than SOTA? Is QuASI scalable?

QuASI evaluation

50

QuASI-approx finds bounds up to 58% tighter than the heuristic baseline
within 1 second

QuASI - approx

Heuristic

QuASI - exact

Is QuASI useful? Is QuASI better
than SOTA? Is QuASI scalable?

QuASI evaluation

QuASI computes the maximum queue length X faster than FPerf [1]106

[1] Arashloo et al. NSDI 2023

QuASI - approx

Heuristic

QuASI - exact

Is QuASI useful? Is QuASI better
than SOTA? Is QuASI scalable?

QuASI evaluation

QUASI takes almost constant time for QlenK
and scales quadratically with interval size for BurstOccurrence.

QlenK Burst Occurrence

300M steps! 60K steps!

QuASI

QuASI

Heuristic
Heuristic

❖ QuASI answers queue-related (e.g., Burst occurrence) queries using
coarse-grained per-port packet counts

❖ QuASI uses the enqueue rate abstraction which is
lossless for the queries it supports

❖ QuASI is six orders of magnitude faster than SOTA
while giving non-trivial answers

A Layered Formal Methods Approach to Answering Queue-related Queries

netsyn.princeton.edu

A Layered Formal Methods Approach to
Answering Queue-related Queries

Divya Raghunathan, Maria Apostolaki, Aarti Gupta

