
SIRD
A Sender-Informed, Receiver-Driven

Datacenter Transport
Konstantinos Prasopoulos, Ryan Kosta*, Edouard Bugnion, Marios Kogias†

EPFL, *UCSD, †Imperial College London

NSDI 2025 – Philadelphia, PA

Datacenter Congestion Control

2
Affects application performance & environment evolves

Datacenter Environment
• 800Gbps links
• Switch buffers not keeping up -> 1.6ms to fill SN5600

“Safe to send packet to server X?”
• Throughput-intensive - eg. Disaggregated Storage

• Use the bandwidth

• Latency-sensitive - eg. Memcached
• Limit network queueing
• 10x from queuing & >100x from loss.

3

Where congestion happens

S

ToR

Agg

R

ToR

Agg

Sender
(outcast)

Core

Receiver
(incast)

Most
Common

&
Most

Severe

Flow collisions &
oversubscription

Queues
form in
servers

Servers

4

15+ years of research on DC CC

(DCTCP, HPCC, Swift…)

Sender Driven (SD) - Reactive Receiver Driven (RD) - Proactive
(pHost, NDP, Homa, dcPIM…)

• Richer signal (INT) => switch dependency

+ Naturally handle congestion everywhere

- Slow to converge => more queuing

• Often require switch support (priorities)

+ Ideal for incast – Can avoid congestion

- Crediting based on receiver’s view alone
leads to low throughput or high queuing

Sacrifice one of (throughput, queuing, generality, op. complexity)

S R
Data

Feedback (Delay, ECN): “Sent Too Much”

S R
Data

Credit: “I allow you to Send”

Objective

A congestion control protocol that:
• Deals with incast via RD admission control
• Addresses congestion everywhere
• Achieves high utilization with minimal queuing
• Minimizes dependence on switch features

5

SIRD contribution

6

S

ToR

Agg

R

ToR

Agg

Congestion on Shared Links:
Manage Reactively

Feedback from Senders & Core
=> Credit allocation f(congestion)

Congestion on Single-Owner Links:
Manage Proactively
=> RD credit admission

Approach enables precise credit allocation
=> High throughput with minimal queuing

Let’s build SIRD: Receiver Congestion

7

?

S

ToR

Agg

R

ToR

Agg

??

Receiver
has limited
amount of

credit:
BR

S2

S1 Switch

SIRD: Handling Receiver Congestion

8

1 x BDP
(Bandwidth-Delay Product)

Receiver
has limited
amount of

credit:
BR

S2

S1 Switch

SIRD: Handling Receiver Congestion

9

• Can deal with incast without queueing
• B caps the total number of packets in the network

1 x BDP
(Bandwidth-Delay Product)

Let’s build SIRD: Sender Congestion

10

?

S

ToR

Agg

R

ToR

Agg

?

Challenge with Sender Congestion

11

S1
R
R

R
R

Switch 1 x BDP

Challenge with Sender Congestion

12

S1
R
R

R
R

Switch

12x

1 x BDP

Challenge with Sender Congestion

13

Problem: Receivers don’t know how much credit to allocate to
Congested Sender (S1) -> over-allocate = throughput loss

S1

S2

R
R

R
R

Switch
“Want Send”

12x

1 x BDP

• Explicit Matching
(dcPIM)

• Hop-by-hop credit
management
(ExpressPass)

• Controlled
Overcommitment
(Homa)

• >> 1xBDP

Approaches for handling congested senders

14

In flight up toCredit per Receiver (B)

Is it necessary to overcommit
& face high queueing?

1 x BDP

1 x BDP

+(N-1) x BDP
queued

1 x BDP

N x BDP

(No overcommitment)

Reduce Credit Accumulation

No need for overcommitment if credit is not stuck at senders

• SIRD reactively limits credit accumulation
• If accum_credit > threshold, sender “informs” receivers
• Receivers reduce allocation

15

SIRD: Handling Sender Congestion

16

Reactively adjust to bottleneck availability
 Can get more throughput with less credit

S1
R
R

R
R

Switch

CSN

SThr

Max Credit to S1

0.35xBDP

0.35xBDP

0.35xBDP

0.35xBDP

AIMD

Benefits of Sender-Informed RD

17

Simulated 100Gbps 144-host
cluster running the Websearch
workload at maximum load
(worst case).

1xBDP
(No Overcommitment)

7xBDP

2xBDP

10x less
queuing

Better

Better

Homa
SIRD

Note: SIRD benefits from modest overcommitment
Some credit accumulates by design (SThr>0)

<10% of
buffer

Let’s build SIRD: Core Congestion

18

?

S

ToR

Agg

R

ToR

Agg

SIRD: Handling Core Congestion

Core links are also shared links
• Extend control loop

• Core congestion feedback: ECN
• Receiver adapts credit allocation

f(sender and core feedback)
• MaxCreditSenderi = min(senderi, core)

19

ECN

SIRD Design Recap
• Each receiver operates with modest amount of credit (B = 1.5 x BDP)
• Each sender gets up to 1 x BDP of that
• Adjust max credit per-sender f(CSN, ECN)

• => High throughput with minimal credit
• => minimal queuing

20

In-depth design questions:
• How to reduce message latency
• How much to overcommit
• How to configure Sender threshold (SThr)
• How to start message transmission
• How to use switch priorities if available

1. Small messages (<BDP) sent outright
(configurable)

2. Small message latency caused by network queuing
• SIRD causes minimal queuing
• => Less need for switch priorities to bypass queues
• => Reduces operational complexity
• SIRD can use priorities if available (optional)

21

Reducing Message Latency

Evaluation

Simulation & 100Gbps testbed

Questions answered
• How does SIRD compare overall to baselines?
• What is the contribution of sender feedback to performance?
• What is the throughput-queuing curve as a function of load?
• How does SIRD compare in terms of message latency?
• How sensitive is SIRD to a) priorities b) unscheduled transmissions?
• How well does sender feedback work in a real stack?

22

Simulation Evaluation Setup

• 144 x 100Gbps hosts over 9 ToRs and 4 Spines.
• 3 Workloads

(Google Search, Hadoop, WebSearch)
• x3 Traffic matrices

(leaf-bottleneck, core-bottleneck, incast)
• 2 switch priority lanes for SIRD

23

24

Normalized Comparison
Max Goodput Max Queuing

P99 Slowdown @50%

Better

Better

Better

Second Best
(see paper)

10x
Match

Summary

• Single-owner links: Manage Proactively
• Shared links: Manage Reactively (coordinate receivers)

• => Handles congestion everywhere

• Enables: high throughput with little credit
• => little in-network queueing
• => low network latency for short messages

• SIRD implementation: github.com/epfl-dcsl/SIRD-Caladan-Impl
• SIRD simulator: github.com/epfl-dcsl/SIRD-Simulator

25

Thank you!

