cPiL UCSanDiego IMPERIAL

SIRD
A Sender-Informed, Receiver-Driven
Datacenter Transport

Konstantinos Prasopoulos, Ryan Kosta*, Edouard Bugnion, Marios Kogias*

EPFL, *UCSD, tImperial College London

NSDI 2025 — Philadelphia, PA



Datacenter Congestion Control

“Safe to send packet to server X?”

Throughput

Queuing

* Throughput-intensive - eg. Disaggregated Storage

* Use the bandwidth

* Latency-sensitive - eg. Memcached
* Limit network queueing
e 10x from queuing & >100x from loss.

Datacenter Environment
e 800Gbps links
* Switch buffers not keeping up -> 1.6ms to fill SN5600

[ Affects application performance & environment evolves ]




Where congestion happe

"

Queues
form in
servers

Servers

Flow collisions &
oversubscription

Most
Common
&
Most
Severe

Sender Receiver
(outcast) (incast)




15+ years of research on DC CC

Sender Driven (SD) - Reactive  Receiver Driven (RD) - Proactive
(DCTCP, HPCC, Swift...) (pHost, NDP, Homa, dcPIM...)

Data Data
S Rl 5= "R

Feedback (Delay, ECN): “Sent Too Much” Credit: “I allow you to Send”

« Richer signal (INT) => switch dependency | ° Often require switch support (priorities)

+ Naturally handle congestion everywhere *+ Ideal for incast — Can avoid congestion

_ . o,
- Slow to converge => more queuing Crediting based on receiver’s view alone

leads to low throughput or high queuing

[ Sacrifice one of (throughput, queuing, generality, op. complexity)




Objective

A congestion control protocol that:

* Deals with incast via RD admission control

* Addresses congestion everywhere

* Achieves high utilization with minimal queuing
* Minimizes dependence on switch features



SIRD contribution

Agg Agg Congestion on Single-Owner Links:

Manage Proactively
=> RD credit admission

Congestion on Shared Links:
Manage Reactively

Feedback from Senders & Core

=> Credit allocation f(congestion)

S R

[ Approach enables precise credit allocation }
=> High throughput with minimal queuing :




Let’s build SIRD: Receiver Congestion

S

N

©



SIRD: Handling Receiver Congestion %&

has limited
amount of
credit:

[ '
1 x BDP
(Bandwidth-Delay Product)




SIRD: Handling Receiver Congestion

Receiver
has limited
amount of

credit:

B

1 x BDP
(Bandwidth-Delay Product)

« Can deal with incast without queueing ‘

« B caps the total number of packets in the network

9



Let’s build SIRD: Sender Congestion

. [ ) ‘
ToR ToR

B

S



Challenge with Sender Congestion

| 1xBDP




Challenge with Sender Congestion

12x

1 x BDP




L_J

Challenge with Sender Congestion
“Want Send”

080

1 x BDP

pd
BE—"
>))
n m v/
0 ke
”.ﬂ o

[

Problem: Receivers don’t know how much credit to allocate to
Congested Sender (S1) -> over-allocate = throughput loss

|




i)

Approaches for handling congested senders _ [

Credit per Receiver (B) In flight up to
1 x BDP
1xsop | ) EEDEEEDEND
(No overcommitment)
* Controlled 1 x BDP
Overcommitment N x BDP ‘ _
(Homa) +(N-1) x BDP

« >> 1xBDP(", . ) Qqueued
Is it necessary to overcommit

& face high queueing?

14




L J

Reduce Credit Accumulation _ £

No need for overcommitment if credit is not stuck at senders

* SIRD reactively limits credit accumulation
* If accum_credit > threshold, sender “informs” receivers
* Receivers reduce allocation 12x

15



L

SIRD: Handling Sender Congestion

ol Ie
Max Credit to S1

0.35xBDP
CS N\ 0.35xBDP
4 | 0.35xBDP

0.35xBDP

SThr—H—

Reactively adjust to bottleneck availability
=» Can get more throughput with less credit




_J

Benefits of Sender-Informed RD _ {.

6 7xBDP
) Homa /\ "10x less )
=
= ,] *SIRD :
c . queuing |
~ 1xBDP \
Cg 7 - (No Overcommitment) <10% Of
Better g / \ | ~ buffer |
* ™
0 | | I = | tl I 2xBDP
60 65 70 75 80 85
Max Goodput (Gbps)
=) Better

Simulated 100Gbps 144-host . .
cluster running the websearch ~ NOte: SIRD benefits from modest overcommitment

workload at maximurm load Some credit accumulates by design (SThr>0)

(worst case). 5



Let’s build SIRD: Core Congestion

e




SIRD: Handling Core Congestion

Core links are also shared links

* Extend control loop
* Core congestion feedback: ECN

* Receiver adapts credit allocation
f(sender and core feedback)

* MaxCreditSender, = min(sender,, core)




SIRD Design Recap

e Each receiver operates with modest amount of credit (B = 1.5 x BDP)
* Each sender gets up to 1 x BDP of that

e Adjust max credit per-sender f(CSN, ECN)
* => High throughput with minimal credit
e => minimal queuing

In-depth design questions:
 How to reduce message latency



Reducing Message Latency

1. Small messages (<BDP) sent outright
(configurable)

2. Small message latency caused by network queuing
* SIRD causes minimal queuing

e => Less need for switch priorities to bypass queues
e => Reduces operational complexity

* SIRD can use priorities if available (optional)

<@

21



Evaluation

Simulation & 100Gbps testbed

Questions answered

* How does SIRD compare overall to baselines?



Simulation Evaluation Setup

* 144 x 100Gbps hosts over 9 ToRs and 4 Spines.

* 3 Workloads
(Google Search, Hadoop, WebSearch)

* x3 Traffic matrices
(leaf-bottleneck, core-bottleneck, incast)

* 2 switch priority lanes for SIRD



Normalized Comparison

Better Max GOOdet Max Que@u|ng

1.0—9 o, ) ’20031—_' ‘ +

‘ &

e S 0 10x
0 oS 100 A -
Match @ "\A.
0.0 T T T T T T 0-_.I. Q? ? | ” 4
DCTCP  Swift ~xPass Homa dcPIM  SIRD DCTCP(3)Swift(6) xPass(1) Homa dcPiM  siRD Better

P99 Slowdown @50%

L ® O @ 1
Lol - Second Best
O
O (see paper)
5 ] . O /\
s ® o &
o aed
DCTCP(1) Swift xPass(3) Homa dcPIM  SIRD

Better

24



summary

* Single-owner links: Manage Proactively

* Shared links: Manage Reactively (coordinate receivers)
e => Handles congestion everywhere

* Enables: high throughput with little credit
e => |ittle in-network queueing N
* =>low network Iaftency for short messages D £ D“ S
* SIRD implementation: github.com/epfl-dcsl/SIRD-Caladan-Impl
* SIRD simulator: github.com/epfl-dcsl/SIRD-Simulator

Thank you!

25



