AsTree: An Audio Subscription Architecture Enabling Massive-Scale Multi-Party Conferencing (Operational System Track)

Tong MengWenfeng LiChao YuanChangqing YanLe ZhangPresenter:Tong Meng

To Start

Say multi-party conferencing is important ... (Don't take more than 10 seconds) 15

- 80+ billion monthly call minutes
- 3000+ nodes worldwide
- < 400ms e2e latency in over 99.5% cases

 1000 active participants per room, and more for large-scale webinars

Roadmap

- Background
 - > Multi-Party Conference Based on Selective Forwarding Units (SFUs)
- Motivation
 - > Scalability Issues of Audio Conferencing
- Design
 - AsTree Architecture
 - AsTree Cascading Topology
 - > Audio Selection
- Performance

SFU-Based Multi-Party Conferencing

- SFU selectively forwards media streams between participants without decoding them (*e.g.*, Simulcast for video)
 - Server-side cost effectiveness

- Multiple SFUs cascaded to connect distributed participants
 - Low client-side first-hop latency

Signaling Storm

- O(N) signaling messages per participant
- Combined to O (N²) signaling messages per room

Signaling Storm

- O(N) signaling messages per participant
- Combined to O (N²) signaling messages per room
- Cannot be aggregated as in video (due to tighter latency requirements)

Indefinite Overheads

- "Subscribe to all" for audio, while video limited by user interface
- Linear memory and bandwidth overheads on client-side
- Combined to $O(N^2)$ server-side egress bandwidth per room

Mesh Cascading

 Each room leads to an overlay mesh between involved SFU media servers, regardless of video subscription relationship

Mesh Cascading

- Each room leads to an overlay mesh between involved SFU media servers, regardless of video subscription relationship
- High complexity to maintain and update

Restricted server capacity due to signaling storm and massive audio subscription

Critical information comes from only a small number of audio streams, by a few loudest speakers

AsTree Architecture

- Geographical regions in user and media plane
- Participants connected to nearby SFU media servers

AsTree Architecture

- Geographical regions in user and media plane
- Participants connected to nearby SFU media servers
- AsTree topology calculated at control plane

AsTree Architecture

- Geographical regions in user and media plane
- Participants connected to nearby SFU media servers
- AsTree topology calculated at control plane
- SFUs cascaded into a tree topology (only for audio subscription)

AsTree Cascading Tree: Two Hierarchies

Intra-Region

• All SFUs cascaded to a region delegate

Intra-region cascading

Inter-region cascading

Region delegate

Master delegate

AsTree Cascading Tree: Two Hierarchies

Intra-Region

 All SFUs cascaded to a region delegate

 All region delegates cascaded to a master delegate

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

 Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Intra-Region Delegate

• First-comer elected

Master Delegate

• Minimized longest cascading path RTT

Inter-region cascading

Region delegate

Master delegate

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

Jul ByteDance字节跳动

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left
AsTree Cascading Tree: Destruction

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

INI ByteDance字节跳动

AsTree Cascading Tree: Destruction

No Delegate Re-Election

 Remove an SFU only when all participants in the subtree rooted at it have left

In ByteDance字节跳动

- Can be formulated into a spanning tree problem
- We adopt the objective of minimizing longest cascading path RTT

INI ByteDance字节跳动

- Can be formulated into a spanning tree problem
- We adopt the objective of minimizing longest cascading path RTT

hell ByteDance字节跳动

- Can be formulated into a spanning tree problem
- We adopt the objective of minimizing longest cascading path RTT

- Can be formulated into a spanning tree problem
- We adopt the objective of minimizing longest cascading path RTT

- Can be formulated into a spanning tree problem
- We adopt the objective of minimizing longest cascading path RTT
- Optimal topology not guaranteed during incremental construction

teDance字节跳动

Select-Before-Forward Audio Selection

Select

- Select streams from cascaded SFUs and connected participants
- Audio level carried in RTP header extension, averaged per stream

Forward

• Do not forward an audio stream to where it is received

Select-Before-Forward Audio Selection

Select

Forward

• Select streams from cascaded SFUs and connected participants

- Stream 3 (-30 dB)
- Do not forward an audio stream to where it is received

<u>Please refer to our paper for dominant speaker identification algorithm details, such as how to avoid</u> <u>frequent changes in the selected set of active speakers</u>

More Details in Paper

• Implementation

- > Participant aggregation to lower cascading complexity
- > Decoupled video and audio subscription
 - Relies on client-side jitter buffer for audio-to-video synchronization
- Proactive subscription
 - □ SDN answer update triggered by SFU notifies identity of newly selected speaker
- Fault tolerance
 - > Routing connectivity managed by SDN controller
 - > Connection and cascading re-establishment in case of faulty SFUs

Evaluation

- Controlled experiments in test environment
 - > Actual media servers in real-world clusters
 - > Isolated from production environment
 - > Virtual clients running Linux SDK
- Results Highlights
 - > Consumes 80%-90% less CPU and memory on server side with 100+ clients per room
 - > Increases server capacity (*i.e.*, participants per room per server) by at least 8x
 - > Lowers audio/video rebuffering ratios by orders of magnitude with 100+ clients per room

Deployment

h ByteDance字节跳动

h ByteDance字节跳动

- Astree to scale audio subscription in multi-party conferencing
 - > Two-hierarchy cascading tree, based on geographical regions
 - > Select dominant speakers based on per-stream audio levels

- Open Questions
 - > More sophisticated optimization objective for AsTree construction
 - > Maintain topology optimality, e.g., with dynamic cascading deformation

h ByteDance字节跳动

THANKS

ByteDance字节跳动