Pushing the Limits of In-Network
Caching for Key-Value Stores

Gyuyeong Kim

USENIX NSDI 2025

T Aot

4 SUNGSHIN WOMEN'S UNIVERSITY

Distributed Key-Value Stores

* Fundamental building blocks for modern online services

» Simple and fast data access
« Requires low tail latency and high throughput

Key Value
Key1 Valuei
Key2 Value2
 Data is partitioned over multiple servers Key3 |Value3

. e e

{A,B,C} {D,E,F} {G,H,I}

Iltem Popurarity is Highly Skewed

SuperRockStar Gyuyeong Kim

VS.

QY
11,292,992 likes 2 likes

N

How to Handle Load Imbalance?

» Skewed item popularity causes load imbalance between servers
« Servers with hot items are overloaded

Load B I L
.88 ¥Fe

In-Network Caching

 Leverages programmable switches as a front load-balance cache
 NetCache@SOSP'1/7, DistCache@FAST'19, FarReach@ATC'23

« Small cache, big effect: caching O(N log N) hottest items is enough
« N: # of servers/partitions, not # of items nor requests [B. Fan et al., SoCC"11]"

I Get(A

Cache SWItch “—— Get(B)

/
Load . /

ol - - -

“Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky, "Small Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services," in Proc. o
of ACM SoCC, 2011.

Limitation: Too Small Cacheable Item Size

* NetCache supports items up to 16-B keys and 128-B values

» Key-value items are small, but this is far from production workloads
* NetCache cannot cache even a single item for 42 of 54 Twitter workloads*

10s of bytes 100s of bytes

A \
[| [\
Real-world workloads Value
NetCache Key Value

\ }
|

16 bytes 128 bytes

*Juncheng YAng, Yao Yue, and Rashmi Vinayak, "A large scale analysis of hundreds of in-memory cache clusters at Twitter," 6
in Proc. of USENIX OSDI, 2020. (Dataset is publicly available in a Github repository)

How to Enable Variable-Length In-Network Caching?

Memory Access in the Switch Data Plane

* The switch data plane consists of m Match-Action (M-A) stages
« Each M-A stage has a static memory and a few ALUs
» Packets go through a chain of M-A stages
* The switch can handle k bytes per stage
I Memory (TCAM/SRAM)

> ALU m
Pr——

— [D (B | s —

— N = D EEDE —

— > [B = > —

— > D | EE D | s —

— D D D EmovY .

Parser M-AStage M-AStage M-AStage M-A Stage Deparser

Why Is Value Size Limited?

« The value is fragmented over n < m stages and each stage can handle k bytes
* The switch appends the value fragments to the packet within n X k constraint
* E.g., ifn =8 and k = 16, the switch can cache values up to 128 bytes

Switch Data Plane

||_I_|_I—>
Key

I I
JE]
From client | | i | i
| Key V V| | |
| EEm
A S vy
i 16-B i 32-B i 48-B i i 128-B To client
Stage O | Stage1! Stage2 ;| Stage3 | | Stage 8 5

Cache lookup

Why Is Key Size Limited?

* The cache lookup table is implemented using a M-A table

* M-A table has the maximum width for the match key

* The item key is the match key of the lookup table
Limited

table cache_lookup{ (A)
key = {

pkt.key: exact; Match Action
} (pkt.key) | (cache_hit)

actions = { A Idx=0, ..
cache_hit;
cache_miss; B ldx=1, ...
} C ldx=2, ...
size = 65536; ~
default action = cache _miss; D ldx=3, ...

It is hard to realize variable-length in-network caching,
if we stick to the concept of caching data in the switch memory

Why? n X k is determined at the time of manufacturing

Then, where should we cache data instead of switch memory?

OrbitCache: Recirculation-based Caching

* Idea: Keeps cached items circulating using packet recirculation

 Recirculation makes the packet visit the switch data plane again
* The switch has an internal loopback port for recirculation

* No fragments, no size limits, but data is in the switch data plane

© ~rrived %’B/

K Val]
Switch Data Plane

= _/
e Recirculated

-~

Comparison with NetCache Architecture

NetCache: Requests read cached data

OrbitCache: Cached data reads stored requests

I

From client

OrbitCache [GTREIEN =

From switch

Request Request

Request

Switch Memory

Key Value

Key Value

=P T0 client

=P T0O client

13

Trade-Off iIn Cache Size

* The time to read a stored request is impacted by other In-
flight cache packets

* Only a small number of items can be cached
« Recall that we need only O(N log N) hottest items for load balancing

Recirculation port

S Cache S Stored
lookup Requests

14

Technical Challenges

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?

Technical Challenges

/

[1. How to maintain multiple requests in the switch memory?

\

2. How to make a cache packet serve multiple requests once
fetched?

N e

l

16

Handling Requests With Cache Hit

* The switch drops the request after inserting it into the queue
» Requests will be handled by circulating cache packets soon

From client

= —

0 Cache hit

Cache Lookup table

e Push reqg. metadata

O)

Cache
Lookup

-

riIIIA\

N\ CJ

Request table

€ Drop the packet

O B =X

Request Table: In-Sw

itch Circular Queue

» Supports per-key request queue with small memory footprints

* The table consists of a few reg

Ister arrays

* Request metadata, queue length, and the front/tail pointers

Stage 1 —> Stage 2 —> Stage 3
g g
Front[0]
Rear Ptr.
Cacheldx=0 - Rear[0] Rear[1]
Request > 30—
o 34 IR T] sefore
L Ll P [| After
—> 1 3,9 Front Ptr. (=L — \'U
| T Font:
Cache Packet Rrw IP__Seq Port ront[1]
Cacheldx=1 _
Offset

18

Enqueue for Request Packets

Stage 3
Front[1
Stage O Stage 1 Stage 2 Front[0] L
Cache hit Inc. queue length Inc. rear pointer
(wrap-around) Rear[0] Rear[1]
Rear P L'
ear Ptr.
R i Queue Len. RN
eques I)O (—
- —> 0 1 2 Regld
€qldX pData Inserted

1

0
1

Metadata Metadata
Cacheldx=0 Cacheldx=0
Reqldx=0 Reqldx=0
Offset=0 Offset=0

IP Seq Port
Front Ptr.

1
0

Metadata
Cacheldx=0
Reqldx=0
Offset=0

Reqgldx=Cacheldx*MaxQLen+Offset
MaxQlen = 4 19

Dequeue for Cache Packets

Stage 3
Stage O Stage 1 Stage 2 Front[0]
Cache hit Dec. queue length Inc. rear pointer
(wrap-around) Rear[0] Front[1] Rear[1]
Cacheldx=1 l' l'
Rear Ptr.
Cache ErSRmom, > 2 o]1(2]3
Packet 0 0 =
o) 0 4 1 2 Reqldx
N 1 —_ 1 2 . Data Removed
Front Ptr.
0 1
> 1 —
Metadata Metadata Metadata
Cacheldx=1 Cacheldx=1 Cacheldx=1 Reqldx=Cacheldx*MaxQLen+Offset
Reqldx=0 Reqldx=0 Reqldx=5

Offset=0 Offset=0 Offset=1 MaxQlen = 4 20

Handling Cache Packets when Requests Exists

« Packet replication makes the cache packet serve more requests

e Pop request metadata
] Update packet with metadata

0 Cache hit ———

T - e Replicate the packet
GELWAEIICE = | Cache > T B
F : Lookup
rom switch C

Key=A Value

Original goes to the client

N J N
Cache Lookup table Request table

Clone is recirculated

Key=A Value

21

Replicating Cache Packets for Further Serving

* Implemented with multicast functionality

« Each multicast group ID specifis a pair of ports
« The recirculation port and the client-directed port

Stage 1~3 Stage 4 Stage 5

ient MGID Group ID Port # Recirc.

—> | 10.0.1.102 1 48,68 Port
10.0.1.103 —> 2 —> 52,68 i

3 188,68

Client

Req[dxzo pkt.dstAddrle.O.l.lOZ meta.MGID=2 Port

Clone pkt in PRE o 52

-
Ll

22

Supporting Variable-Length Keys

« 128-bit keyhash for cache lookup table
h(A) 0
h(B) 1
h(C) 2

« How to resolve hash collisions?

Keyhash Cacheldx

« Detecting hash collisions at the client by comparing the maintained key and the

retrieved key

* The client gets the correct value from the storage server

pkt.seq = 1
[pkt.key = AAAA } From Cache Packet

Reqll(.lested Correction Request
ey CRN-RE -
(Q Cache logic CRNZREQ

BBBB 1
» | Bypassed | ——>
B

—> DDDD |
4 3

ceee R-REP tch Read Reply

Client Switc (R-REP)

Hash Collision Resolution Mechanism

Existing Protocols m OrbitCache Protocol
KEY VALUE
Payl

Type Request ‘ 5 ‘ Item
Cached? Key

Sequence #

OrbitCache Packet Format

Server

23

Implementation

« Switch data plane
* Intel Tofino switch ASIC
* Written in P4,

* Clients and servers
* Open-loop multi-threaded applications in C
* NVIDIA VMA for kernel-bypass packet processing

Evaluation

* Testbed
* 6.5Tbps Intel Tofino switch

* 8 nodes with Nvidia ConnectX-5 100G NIC

* 4 nodes are clients
* 4 nodes emulate multiple storage servers with per-core partitioning

 Workload
o 32 servers with 10M items
* 128 cached items

« 16-B keys, 82% 64-B values and 18% 1024-B values by considering the
Cluster018 workload of Twitter

« Compared Schemes
 NoCache
 NetCache

A o

Throughput (MRPS)
w

o

N
T

—
T

Throughput with Different Skewness

NoCache (uniform)

. Il NoCache I:IOrb?tCache (serlvers) 188 [
e 2 ST
i & 150 oCache (zipf-0.99
X 100 -
E 58 0
% 150 - NetCache (zipf-0.99)
= 100 -
1 St N T
S OrbitCache (zipf-0.99)
100 ([
Uniform Zipf-0.9 Zipf-0.95 Zipf-0.99 1 HHHHHHHHHHHHHHHHHHHHHHHHHWWW

Key access distributions Storage servers (sorted)

OrbitCache can balance highly skewed workloads

26

Performance with Diverse Workloads

&)

I \oCache Il NetCache [OrbitCache

Throughput (MRPS)

A(23/95/95) B(10/92/43) C(2/24/24) D(0/12/12) D(Trace)
Workload(Write % / Small % / Cacheable %)

OrbitCache shows the best performance for all the workloads

Scalability

Still good balancing
efficiency with 64 servers

5 T — . \

% .l -8-NoCache 2 O-QN\‘\‘\;

% -#-NetCache 2 8? _ _

—3+ “# OrbitCache = 86 !

- St

ot 04!

= ©0.3"

o1} I © 0.2\\t

- © 0.1+ -
4 8 16 32 64 4 8 16 32 64

Number of stroage servers Number of storage servers

Scalable throughput while maintaining
reasonable balancing efficiency

28

Latency vs. Throughput

20 | | | |
—®-NoCache B0+
» 15+ ®NetCache 2
3 OrbitCache =
>0 S 40
S =
LRSS = === 1 220
/ S—S0—wE—=
0 | | ' | 0 | | | '
0 1 p 3 4 5 0 1 2 3 4
~1us latency overhead Throughput (MRPS) Throughput (MRPS)

to serve requests

Median 99th percentile

OrbitCache achieves the best throughput
while provding comparable latency

Impact of Cache Size

Q. | -@-Total (servers + switch) Tipping paint 9>40 *
s 6 -=Servers * &
- Switch L 30 Too many cache packets
D4+ : .
o =00 make a bottleneck in the
S o recirculation port
S 2 = I
E - o \
=0 O pe—e—e—e—0—9 -
NY X D0 XD 0D AN N @ 0 X 0 0 UV ™
N Q) ©)\Q/ QSO (0\ \Qq/ Q/ N (bQ/ ©)\Q/ QSO <3\ ;\QQ/
Cache size (log scale) Cache size (log scale)
Saturated throughput ‘Overflow request ratio

OrbitCache has a trade-off in the cache size but
supports enough cache size to balance server loads

Conclusion

* OrbitCache efficiently uses packet recirculation to balance
distributed key-value stores

« Avoids hardware limitations by recirculating cache data in the form
of cache packets

» Experimental results demonstrate the efficiency of
OrbitCache for highly skewed workloads

» We provide insights that built-in switch features have great
potential to make even existing in-network computing
mechanisms more effective

Thank you!

Questions?

gykim@sungshin.ac.kr
https://nslab.sungshin.ac.kr

