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Distributed Key-Value Stores

* Fundamental building blocks for modern online services

» Simple and fast data access
« Requires low tail latency and high throughput
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How to Handle Load Imbalance?

» Skewed item popularity causes load imbalance between servers
« Servers with hot items are overloaded
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In-Network Caching

 Leverages programmable switches as a front load-balance cache
 NetCache@SOSP'1/7, DistCache@FAST'19, FarReach@ATC'23

« Small cache, big effect: caching O(N log N) hottest items is enough
« N: # of servers/partitions, not # of items nor requests [B. Fan et al., SoCC"11]"
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“Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kaminsky, "Small Cache, Big Effect: Provable Load Balancing for Randomly Partitioned Cluster Services," in Proc. o
of ACM SoCC, 2011.




Limitation: Too Small Cacheable Item Size

* NetCache supports items up to 16-B keys and 128-B values

» Key-value items are small, but this is far from production workloads
* NetCache cannot cache even a single item for 42 of 54 Twitter workloads*
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*Juncheng YAng, Yao Yue, and Rashmi Vinayak, "A large scale analysis of hundreds of in-memory cache clusters at Twitter," 6
in Proc. of USENIX OSDI, 2020. (Dataset is publicly available in a Github repository)



How to Enable Variable-Length In-Network Caching?



Memory Access in the Switch Data Plane

* The switch data plane consists of m Match-Action (M-A) stages
« Each M-A stage has a static memory and a few ALUs
» Packets go through a chain of M-A stages
* The switch can handle k bytes per stage
I Memory (TCAM/SRAM)
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Why Is Value Size Limited?

« The value is fragmented over n < m stages and each stage can handle k bytes
* The switch appends the value fragments to the packet within n X k constraint
* E.g., ifn =8 and k = 16, the switch can cache values up to 128 bytes
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Why Is Key Size Limited?

* The cache lookup table is implemented using a M-A table

* M-A table has the maximum width for the match key

* The item key is the match key of the lookup table
Limited

table cache_lookup{ ( A )
key = {

pkt.key: exact; Match Action
} (pkt.key) | (cache_hit)

actions = { A Idx=0, ..
cache_hit;
cache_miss; B ldx=1, ...
} C ldx=2, ...
size = 65536; ~
default action = cache _miss; D ldx=3, ...




It is hard to realize variable-length in-network caching,
if we stick to the concept of caching data in the switch memory

Why? n X k is determined at the time of manufacturing

Then, where should we cache data instead of switch memory?



OrbitCache: Recirculation-based Caching

* Idea: Keeps cached items circulating using packet recirculation

 Recirculation makes the packet visit the switch data plane again
* The switch has an internal loopback port for recirculation

* No fragments, no size limits, but data is in the switch data plane
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Comparison with NetCache Architecture

NetCache: Requests read cached data

OrbitCache: Cached data reads stored requests
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Trade-Off iIn Cache Size

* The time to read a stored request is impacted by other In-
flight cache packets

* Only a small number of items can be cached
« Recall that we need only O(N log N) hottest items for load balancing

Recirculation port
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Technical Challenges

1. How to maintain multiple requests in the switch memory?

2. How to make a cache packet serve multiple requests once
fetched?

3. How to ensure cache coherence?

4. How to update cache entries?



Technical Challenges
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Handling Requests With Cache Hit

* The switch drops the request after inserting it into the queue
» Requests will be handled by circulating cache packets soon

From client

= —

0 Cache hit

Cache Lookup table

e Push reqg. metadata

O )

Cache
Lookup

-

riIIIA\

N\ CJ

Request table

€ Drop the packet

O B =X



Request Table: In-Sw

itch Circular Queue

» Supports per-key request queue with small memory footprints

* The table consists of a few reg

Ister arrays

* Request metadata, queue length, and the front/tail pointers
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Enqueue for Request Packets
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Dequeue for Cache Packets
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Handling Cache Packets when Requests Exists

« Packet replication makes the cache packet serve more requests

e Pop request metadata
] Update packet with metadata
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Replicating Cache Packets for Further Serving

* Implemented with multicast functionality

« Each multicast group ID specifis a pair of ports
« The recirculation port and the client-directed port
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Supporting Variable-Length Keys

« 128-bit keyhash for cache lookup table
h(A) 0
h(B) 1
h(C) 2

« How to resolve hash collisions?

Keyhash Cacheldx

« Detecting hash collisions at the client by comparing the maintained key and the

retrieved key

* The client gets the correct value from the storage server
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Implementation

« Switch data plane
* Intel Tofino switch ASIC
* Written in P4,

* Clients and servers
* Open-loop multi-threaded applications in C
* NVIDIA VMA for kernel-bypass packet processing



Evaluation

* Testbed
* 6.5Tbps Intel Tofino switch

* 8 nodes with Nvidia ConnectX-5 100G NIC

* 4 nodes are clients
* 4 nodes emulate multiple storage servers with per-core partitioning

 Workload
o 32 servers with 10M items
* 128 cached items

« 16-B keys, 82% 64-B values and 18% 1024-B values by considering the
Cluster018 workload of Twitter

« Compared Schemes
 NoCache
 NetCache
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OrbitCache can balance highly skewed workloads
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Performance with Diverse Workloads
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OrbitCache shows the best performance for all the workloads



Scalability

Still good balancing
efficiency with 64 servers
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Latency vs. Throughput
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OrbitCache achieves the best throughput
while provding comparable latency



Impact of Cache Size
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OrbitCache has a trade-off in the cache size but
supports enough cache size to balance server loads



Conclusion

* OrbitCache efficiently uses packet recirculation to balance
distributed key-value stores

« Avoids hardware limitations by recirculating cache data in the form
of cache packets

» Experimental results demonstrate the efficiency of
OrbitCache for highly skewed workloads

» We provide insights that built-in switch features have great
potential to make even existing in-network computing
mechanisms more effective



Thank you!

Questions?

gykim@sungshin.ac.kr
https://nslab.sungshin.ac.kr



