
Understanding and Profiling NVMe-over-TCP
Using ntprof

Yuyuan Kang, Ming Liu

University of Wisconsin - Madison

1

Disaggregated storage is widely deployed

2

● Storage disaggregation is a system infrastructure that separates compute from storage

Network

Compute Node Storage Node

Disaggregated storage is widely deployed

3

Compute Node Storage Node

SSD SSD SSD SSD

SSD SSD SSD SSD

SSD SSD SSD SSD

Network

● Storage disaggregation is a system infrastructure that separates compute from storage

NVMe/TCP enables fast storage disaggregation

4

Compute Node Storage Node

SSD SSD SSD SSD

SSD SSD SSD SSD

SSD SSD SSD SSD

Network

• iSCSI (Internet Small Computer System Interface)
• Fibre Channel
• NVMe-over-Fabric

● Remote protocol is essential to enable storage disaggregation

Remote storage protocol

• iSCSI (Internet Small Computer System Interface)
• Fibre Channel
• NVMe-over-Fabric

NVMe/TCP enables fast storage disaggregation

5

Compute Node Storage Node

SSD SSD SSD SSD

SSD SSD SSD SSD

SSD SSD SSD SSD

Network

● Remote protocol is essential to enable storage disaggregation

Remote storage protocol

• iSCSI (Internet Small Computer System Interface)
• Fibre Channel
• NVMe-over-Fabric NVMe-over-TCP (NVMe/TCP)

● NVMe/TCP: carries NVMe commands to remote NVMe subsystems via TCP/IP

NVMe/TCP Primer

6

● NVMe/TCP: carries NVMe commands to remote NVMe subsystems via TCP/IP

● Transfer Unit: Protocol Data Unit (PDU)

● I/O command

● Data payload

● Control status

● 5 Types of PDU

● CapsuleCmd

● CapsuleResp

● C2HData

● H2CData

● R2T

NVMe/TCP Primer

7

Ethernet Header IP Header TCP Header PDU

● NVMe/TCP: carries NVMe commands to remote NVMe subsystems via TCP/IP

● Transfer Unit: Protocol Data Unit (PDU)

● I/O command

● Data payload

● Control status

● 5 Types of PDU

● CapsuleCmd

● CapsuleResp

● C2HData

● H2CData

● R2T

NVMe/TCP Primer

8

Ethernet Header IP Header TCP Header PDU

Common Header PDU Specific Header Header Digest Data

An example: C2H Data PDU

Read/Write I/O over NVMe/TCP

9

initiator

Data Read Example

Compute Node

● Initiator: send NVMe commands to remote storage

● Target: receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

Read/Write I/O over NVMe/TCP

10

initiator

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target: receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

Read/Write I/O over NVMe/TCP

11

initiator

read I/O submit request (CapsuleCmd)

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target: receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

Read/Write I/O over NVMe/TCP

12

initiator

I/O data (C2HData)

…

+1

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target: receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

read I/O submit request (CapsuleCmd)

I/O data (C2HData)

Read/Write I/O over NVMe/TCP

13

initiator

…

read I/O completion response (CapsuleResp)

+1

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target: receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

I/O data (C2HData)

read I/O submit request (CapsuleCmd)

I/O data (C2HData)

14

Goal: Understanding and profiling NVMe/TCP

Outline

15

1 Challenges

2 Existing Solutions

3 ntprof Design and Implementation

4 Evaluation

5 Summary

1. NVMe/TCP interacts with several kernel subsystems

Challenge #1: Complicated Execution Path

16

5.15.143

Challenge #1: Complicated Execution Path

17

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq
Block Layer 5.15.143

18

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

Block Layer

NVMe/TCP Layer

5.15.143

Challenge #1: Complicated Execution Path

Challenge #1: Complicated Execution Path

19

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

Block Layer

NVMe/TCP Layer

5.15.143

Challenge #1: Complicated Execution Path

20

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

Block Layer

NVMe/TCP Layer

TCP/IP NStack

5.15.143

Challenge #1: Complicated Execution Path

21

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session NVMe/TCP session

Block Layer

NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

network

5.15.143

Challenge #1: Complicated Execution Path

22

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

nvmet-tcp
protocol
handler

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

network

5.15.143

Challenge #1: Complicated Execution Path

23

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

block_mq

nvmet-tcp
protocol
handler

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

Block Layer

network

5.15.143

Challenge #1: Complicated Execution Path

24

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session NVMe SSD

block_mq

nvmet-tcp
protocol
handler

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

NVMe/PCIe
Layer

Physical Device

Block Layer

network

5.15.143

nvme-pci
subsystem

Challenge #1: Complicated Execution Path

25

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

nvme-pci
subsystem

NVMe SSD

block_mq

nvmet-tcp
protocol
handler

cmd
buffer

send
queue

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

NVMe/PCIe
Layer

Physical Device

Block Layer

network

5.15.143

Other Challenges

26

1. NVMe/TCP interacts with several kernel subsystems

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

nvme-pci
subsystem

NVMe SSD

block_mq

nvmet-tcp
protocol
handler

cmd
buffer

send
queue

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

NVMe/PCIe
Layer

Physical Device

Block Layer

network

5.15.143

2. Diverse I/O profiles, e.g., block size distribution, read/write mix ratio

3. Parallel I/O execution path, e.g., multi-queue, multi-connection

Outline

27

1 Challenges

2 Existing Solutions

3 ntprof Design and Implementation

4 Evaluation

5 Summary

Existing Solutions

28

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

Existing Solutions

29

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

Why is RocksDB running

slow?

Existing Solutions

30

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

db_bench

Why is RocksDB running

slow?

end to end latency

Existing Solutions

31

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

db_bench Perf

Why is RocksDB running

slow?

end to end latency CPU utilization
lock contention

Existing Solutions

32

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

db_bench Perf qperf

Why is RocksDB running

slow?

end to end latency CPU utilization
lock contention

network latency

Existing Solutions

33

Limitations: tremendous manual efforts and inadequacy

● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf

Outline

34

1 Challenges

2 Existing Solutions

3 ntprof Design and Implementation

4 Evaluation

5 Summary

ntprof: an NVMe/TCP Profiler

35

● ntprof is a profiling utility that dissects NVMe/TCP execution characteristics

● Break down software processing overhead over I/O path

● Analyze how NVMe/TCP interacts with underlying storage subsystems

● Locate application bottlenecks when running atop NVMe/TCP disaggregated storage

● Design goals

● Informative, profiling rich, lightweight

36

Key idea: model the NVMe/TCP as a network
and apply network monitoring techniques

Model NVMe/TCP as a Network

37

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

nvme-pci
subsystem

NVMe SSD

block_mq

nvmet-tcp
protocol
handler

cmd
buffer

send
queue

NVMe/TCP session

Block Layer

NVMe/TCP Layer NVMe/TCP Layer

TCP/IP NStack TCP/IP NStack

NVMe/PCIe
Layer

Physical Device

Block Layer

● View a stage as a software switch

network

Model NVMe/TCP as a Network

38

initiator target
application

block_mq

nvme-tcp
protocol
handler

request
buffer

send
queue

NVMe/TCP session

nvme-pci
subsystem

NVMe SSD

block_mq

nvmet-tcp
protocol
handler

cmd
buffer

send
queue

NVMe/TCP session

● View a stage as a software switch

Modeling Stages

39

● View a stage as a software switch

Adding Tracepoints

40

● Collect and query statistics in each software switch
● Tracepoint: an instrumentational point exposing a hook to a customized function
● Examples:

● _queue_rq: when a block I/O enters the NVMe/TCP layer
● _try_send_cmd_pdu: when a PDU is copied to the TCP socket buffer

Stage 1
blk_mq

Stage 2
NVMe/TCP
Transport

Stage 3
TCP/IP
NStack

initiator

blk_mq

target

NVMe/PCIeNVMe/TCP
Transport

TCP/IP
NStack

SSD

Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

app1

app2

N
e

tw
o

rk

Stage 9

_queue_rq _try_send_cmd_pdu

Collecting Tracepoints

41

● TPP[SIGCOMM’14]: a proactive network monitoring system

● Issue special I/O requests to collect runtime statistics

Collecting Tracepoints

42

● TPP[SIGCOMM’14]: a proactive network monitoring system

● Issue special I/O requests to collect runtime statistics

Collecting Tracepoints

43

● TPP[SIGCOMM’14]: a proactive network monitoring system

● Issue special I/O requests to collect runtime statistics

Collecting Tracepoints

44

● TPP[SIGCOMM’14]: a proactive network monitoring system

● Issue special I/O requests to collect runtime statistics

● MapReduce-like processing

● grouper/aggregator functions

Profiling Results Analyzer

45

read, size=4K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=4K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=4K

timestamp tracepoint
…. …

read, size=4K

timestamp tracepoint
…. …

map

reduce

reduce

results of 64K read

results of 4K read

group by size

ntprof Workflow

46

● Workload specification, e.g., type, size

● Profiler specification, e.g., sample frequency

● Execution specification, e.g., application setup

● Report specification, e.g., analyzing statistics

Define the profiling specification Step 1

ntprof Workflow

47

Define the profiling specification Step 1

Configure ntprofStep 2 ● Register the tracepoints

● Transform the profiling specification to predicates

ntprof Workflow

48

Define the profiling specification Step 1

Configure ntprofStep 2

Run ApplicationStep 3 ● For example, a database system

ntprof Workflow

49

Define the profiling specification Step 1

Configure ntprofStep 2

Run ApplicationStep 3

Collect profiling resultsStep 4

read, size=4K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=4K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

ntprof Workflow

50

Define the profiling specification Step 1

● Latency breakdown

● I/O latency distribution

● Queueing occupancy

Configure ntprofStep 2

Run ApplicationStep 3

Collect profiling resultsStep 4

Generate profiling reportsStep 5

Outline

51

1 Challenges

2 Existing Solutions

3 ntprof Design and Implementation

4 Evaluation

5 Summary

Experimental Methodology

52

● Hardware testbed – sm110p in CloudLab
● 2x Intel Xeon Silver 4314CPU, 128GB DDR4

● 100 GbE NVIDIA/Mellanox CX6 + 4 NVMe SSDs

● Software setup
● Ubuntu 20.04 with kernel v5.15.143

● Synthetic (fio) and real-world application (Apache IoTDB, F2FS)

● Implementation details
● Kernel modification, e.g, adding tracepoints in nvme-tcp kernel module

● A new kernel module, a user space utility (about 7K LOCs)

Use Case: Latency Breakdown

53

● Use ntprof to break down the latency of 4KB random read over NVMe/TCP

Use Case: Latency Breakdown

54

● Use ntprof to break down the latency of 4KB random read over NVMe/TCP

65.2

82.6

Use Case: Latency Breakdown

55

● Use ntprof to break down the latency of 4KB random read over NVMe/TCP

126.9

14.3

Use Case: Latency Breakdown

56

● Use ntprof to break down the latency of 4KB random read over NVMe/TCP

Bandwidth(MB/s)
achieved / max = 300 / 12,000

126.9

14.3

Other Use Cases

57

● Software bottleneck localization

● Hardware bottleneck localization

● Interference analysis of concurrent I/O streams

● Real world application diagnostics

● …

Outline

58

1 Challenges

2 Existing Solutions

3 ntprof Design and Implementation

4 Evaluation

5 Summary

Summary

59

● NVMe/TCP: emerging disaggregated storage protocol but lacking a profiling tool

● Existing solutions are tedious and inadequate

● ntprof: model the NVMe/TCP as network

● View stages as software switches

● Use tracepoints for statistics collection

● Apply map-reduce processing for analyzing results

● ntprof enables different I/O profiling tasks

● Latency breakdown

● Software/Hardware bottleneck localization

● Interference analysis

● GitHub: https://github.com/netlab-wisconsin/nvme-tcp

● Project website: https://ntprof.cs.wisc.edu/

https://github.com/netlab-wisconsin/nvme-tcp
https://ntprof.cs.wisc.edu/

	Slide 1: Understanding and Profiling NVMe-over-TCP Using ntprof
	Slide 2: Disaggregated storage is widely deployed
	Slide 3: Disaggregated storage is widely deployed
	Slide 4: NVMe/TCP enables fast storage disaggregation
	Slide 5: NVMe/TCP enables fast storage disaggregation
	Slide 6: NVMe/TCP Primer
	Slide 7: NVMe/TCP Primer
	Slide 8: NVMe/TCP Primer
	Slide 9: Read/Write I/O over NVMe/TCP
	Slide 10: Read/Write I/O over NVMe/TCP
	Slide 11: Read/Write I/O over NVMe/TCP
	Slide 12: Read/Write I/O over NVMe/TCP
	Slide 13: Read/Write I/O over NVMe/TCP
	Slide 14
	Slide 15: Outline
	Slide 16: Challenge #1: Complicated Execution Path
	Slide 17: Challenge #1: Complicated Execution Path
	Slide 18: Challenge #1: Complicated Execution Path
	Slide 19: Challenge #1: Complicated Execution Path
	Slide 20: Challenge #1: Complicated Execution Path
	Slide 21: Challenge #1: Complicated Execution Path
	Slide 22: Challenge #1: Complicated Execution Path
	Slide 23: Challenge #1: Complicated Execution Path
	Slide 24: Challenge #1: Complicated Execution Path
	Slide 25: Challenge #1: Complicated Execution Path
	Slide 26: Other Challenges
	Slide 27: Outline
	Slide 28: Existing Solutions
	Slide 29: Existing Solutions
	Slide 30: Existing Solutions
	Slide 31: Existing Solutions
	Slide 32: Existing Solutions
	Slide 33: Existing Solutions
	Slide 34: Outline
	Slide 35: ntprof: an NVMe/TCP Profiler
	Slide 36
	Slide 37: Model NVMe/TCP as a Network
	Slide 38: Model NVMe/TCP as a Network
	Slide 39: Modeling Stages
	Slide 40: Adding Tracepoints
	Slide 41: Collecting Tracepoints
	Slide 42: Collecting Tracepoints
	Slide 43: Collecting Tracepoints
	Slide 44: Collecting Tracepoints
	Slide 45: Profiling Results Analyzer
	Slide 46: ntprof Workflow
	Slide 47: ntprof Workflow
	Slide 48: ntprof Workflow
	Slide 49: ntprof Workflow
	Slide 50: ntprof Workflow
	Slide 51: Outline
	Slide 52: Experimental Methodology
	Slide 53: Use Case: Latency Breakdown
	Slide 54: Use Case: Latency Breakdown
	Slide 55: Use Case: Latency Breakdown
	Slide 56: Use Case: Latency Breakdown
	Slide 57: Other Use Cases
	Slide 58: Outline
	Slide 59: Summary

