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● NVMe/TCP Session: a bidirectional communication channel established between two sides



Read/Write I/O over NVMe/TCP

10

initiator

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target:  receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target



Read/Write I/O over NVMe/TCP

11

initiator

read I/O submit request (CapsuleCmd)

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target:  receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target



Read/Write I/O over NVMe/TCP

12

initiator

I/O data (C2HData)

…

+1

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target:  receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

read I/O submit request (CapsuleCmd)

I/O data (C2HData)



Read/Write I/O over NVMe/TCP

13

initiator

…

read I/O completion response (CapsuleResp) 

+1

Data Read Example

Compute Node Storage Node

● Initiator: send NVMe commands to remote storage

● Target:  receive NVMe commands, and reading/writing to the NVMe drive

● NVMe/TCP Session: a bidirectional communication channel established between two sides

target

I/O data (C2HData)

read I/O submit request (CapsuleCmd)

I/O data (C2HData)



14

Goal: Understanding and profiling NVMe/TCP
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1. NVMe/TCP interacts with several kernel subsystems

Challenge #1: Complicated Execution Path
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2. Diverse I/O profiles, e.g., block size distribution, read/write mix ratio

3. Parallel I/O execution path, e.g., multi-queue, multi-connection
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● Solution: manually profile from different layers and synthesize the results

● As an example,

● Application-provided microbenchmarks , e.g., RocksDB’s db_bench

● System/language tools, e.g., gprof, JProfiler, cProfiler

● Low-level infrastructure utilities, e.g., Perf , iperf3, qperf
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Limitations: tremendous manual efforts and inadequacy

● Solution: manually profile from different layers and synthesize the results
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ntprof: an NVMe/TCP Profiler

35

● ntprof is a profiling utility that dissects NVMe/TCP execution characteristics

● Break down software processing overhead over I/O path

● Analyze how NVMe/TCP interacts with underlying storage subsystems

● Locate application bottlenecks when running atop NVMe/TCP disaggregated storage

● Design goals

● Informative, profiling rich, lightweight
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Key idea: model the NVMe/TCP as a network 
and apply network monitoring techniques
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● View a stage as a software switch



Adding Tracepoints
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● Collect and query statistics in each software switch
● Tracepoint: an instrumentational point exposing a hook to a customized function
● Examples:

● _queue_rq: when a block I/O enters the NVMe/TCP layer
● _try_send_cmd_pdu: when a PDU is copied to the TCP socket buffer

Stage 1
blk_mq

Stage 2
NVMe/TCP 
Transport

Stage 3
TCP/IP 
NStack

initiator
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target

NVMe/PCIeNVMe/TCP 
Transport

TCP/IP 
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Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

app1

app2

N
e
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rk

Stage 9

_queue_rq _try_send_cmd_pdu
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● TPP[SIGCOMM’14]: a proactive network monitoring system 

● Issue special I/O requests to collect runtime statistics
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● TPP[SIGCOMM’14]: a proactive network monitoring system 

● Issue special I/O requests to collect runtime statistics



● MapReduce-like processing

● grouper/aggregator functions

Profiling Results Analyzer
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● Workload specification, e.g., type, size

● Profiler specification, e.g., sample frequency

● Execution specification, e.g., application setup

● Report specification, e.g., analyzing statistics

Define the profiling specification Step 1
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Define the profiling specification Step 1

Configure ntprofStep 2 ● Register the tracepoints

● Transform the profiling specification to predicates
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Define the profiling specification Step 1

Configure ntprofStep 2

Run ApplicationStep 3 ● For example, a database system
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Define the profiling specification Step 1

Configure ntprofStep 2

Run ApplicationStep 3

Collect profiling resultsStep 4

read, size=4K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …

read, size=64K

timestamp tracepoint
…. …
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Define the profiling specification Step 1

● Latency breakdown

● I/O latency distribution

● Queueing occupancy

Configure ntprofStep 2

Run ApplicationStep 3

Collect profiling resultsStep 4

Generate profiling reportsStep 5
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Experimental Methodology
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● Hardware testbed – sm110p in CloudLab
● 2x Intel Xeon Silver 4314CPU, 128GB DDR4

● 100 GbE NVIDIA/Mellanox CX6 + 4 NVMe SSDs

● Software setup
● Ubuntu 20.04 with kernel v5.15.143

● Synthetic (fio) and real-world application  (Apache IoTDB, F2FS) 

● Implementation details
● Kernel modification, e.g, adding tracepoints in nvme-tcp kernel module

● A new kernel module, a user space utility (about 7K LOCs)



Use Case: Latency Breakdown 
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● Use ntprof to break down the latency of 4KB random read over NVMe/TCP
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● Use ntprof to break down the latency of 4KB random read over NVMe/TCP
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● Use ntprof to break down the latency of 4KB random read over NVMe/TCP
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● Use ntprof to break down the latency of 4KB random read over NVMe/TCP

Bandwidth(MB/s)
achieved / max = 300 / 12,000 

126.9

14.3
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● Software bottleneck localization

● Hardware bottleneck localization

● Interference analysis of concurrent I/O streams

● Real world application diagnostics

● …
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Summary
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● NVMe/TCP: emerging disaggregated storage protocol but lacking a profiling tool

● Existing solutions are tedious and inadequate

● ntprof: model the NVMe/TCP as network

● View stages as software switches

● Use tracepoints for statistics collection

● Apply map-reduce processing for analyzing results

● ntprof enables different  I/O profiling tasks

● Latency breakdown

● Software/Hardware bottleneck localization

● Interference analysis

● GitHub: https://github.com/netlab-wisconsin/nvme-tcp

● Project website: https://ntprof.cs.wisc.edu/

https://github.com/netlab-wisconsin/nvme-tcp
https://ntprof.cs.wisc.edu/
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