Building an Elastic Block Storage over EBOFs
Using Shadow Views

Sheng Jiang, Ming Liu*
Carnegie Mellon University, University of Wisconsin — Madison*
Carnegie
Mellon

University =~ WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON

Storage Disaggregation

e Storage disaggregation has been widely deployed
* |Independent scaling of compute/storage

Cost efficiency
High resource utilization

(0-

(0-

Compute Pool

(0

Network Switch

Storage Pool

Storage Hardware Substrate — Server JBOF

e Server JBOFs enclose X86 processors and 8-24 NVMe drives

o
.......

....
e

Storage Hardware Substrate — Server JBOF

e Server JBOFs enclose X86 processors and 8-24 NVMe drives

/ Server JBOF Box \

x86 CPU x86 CPU
DRAM (socket 0) (socket 1) DRAM

D D
SO S G

Storage Hardware Substrate — SmartNIC JBOF

 SmartNIC JBOFs: a low-power and high-performance storage appliance
 SmartNICs and PCle switch
* 4-8 NVMe drives

* Domain-specific accelerators

A BROADCOM’

—_
—
‘o——
om—
—
—
—_—

[—
!

Storage Hardware Substrate — SmartNIC JBOF

 SmartNIC JBOFs: a low-power and high-performance storage appliance
 SmartNICs and PCle switch

 4-8 NVMe drives
* Domain-specific accelerators

/ SmartNIC JBOF Box \

SmartNIC
= PCle RC < > PCle Switch
ARM CPU
DRAM
NIC Accelerator ----

EBOF: An Emerging Storage Appliance

* Pack an Ethernet switch with NVMe drives into one SoC
* Hardware-assisted remote |/O processing pipeline
* Example model: Fungible/Microsoft FS1600

L
B OO L - T
A SlwmlmlmglB]Bje =y

EBOF Hardware Architecture

Port
. ASIC I/O Processing Pipeline ‘_’
Port, |/O Accelerators |/O Orchestration
NVMe-oF | — [Trafic |||[sacm] | |
Port, Cores [| Comp EC |77 Manager cq—T
Porty | Ethernet
Switch
Ports ASIC I/O Processing Pipeline ‘ '
i |/O Accelerators I/O Orchestration
' NVMe-oF > : :
> Traffic SqQ[IIT1
_____ € -=- _—————
Port,, Cores < Comp EC Manager H cq IO

EBOF Hardware Architecture

(1;?;:$__

S

Benefits

* Increase |I/O scalability

* Improve overall resource utilization and reduce resource stranding

* Achieve higher energy/cost-efficiency

LPort12

I

1 VIVIC Ul

Cores

\ 4

C———-

Comp

EC

Traffic
Manager

Sq[111
¢q 1111

/O Processing in EBOF

Port,)))
ASIC I/O Processing Pipeline R
Portz Stage 1. NVMe'OF — |/O Acce|erat0rs |/O Orchestration ’m
: protocol processing [. > .
P .|| Traffic SQLII| | | = =
Port,] COTES Comp EC Manager cq T
Porty | Ethernet
Switch
Ports ASIC I/O Processing Pipeline ‘ '
i { |/O Accelerators I/O Orchestration
' NVMe-oF > : :
>] Traffic sqar 11!l | |00 7 oo
Port, | Cores 1| Comp || EC || manager H carTm
[

10

/O Processing in EBOF

Port,)))
ASIC 1/O Processing Pipeline Ea
Port, D Stage 1: NVMe-oF E{> Stage 2: Per-1/0 I/O Orchestration ’m
protocol processing [acceleration ‘
Traffic Sq [110
Port;] COTES <" Comp EC Manager aqrtml | |~
Port, | Ethernet
Switch
Ports ASIC I/O Processing Pipeline ‘ '
i { |/O Accelerators I/O Orchestration
' NVMe-oF > : :
>] Traffic sqar 11!l | |00 7 oo
Port, | Cores 1| Comp || EC || manager H carTm
[

11

/O Processing in EBOF

Port
. ASIC I/O Processing Pipeline
Port, : Stage 1: NVMe-oF E{) Stage 2: Per-1/0O Stage 3: 1/0
protocol processing [acceleration '%T p orchestration
ra
Port;] COTES <= Comp EC Manager I_ cq
énboard |
Port, | Ethernet
Switch
Ports ASIC I/O Processing Pipeline
i |/O Accelerators I/O Orchestration
I NVMe-oF > <__,_ Traffic sq :D]I
Port,, | Cores <---1| Comp EC Manager cq I

12

Outline

* EBOF characterization
* Our approach: shadow view
* Flint: elastic block storage over EBOFs

* Conclusion

13

EBOF Characterization — Experimental Setup

 Hardware testbed
* Fungible/Microsoft FS1600
e Dell R7525 server + Mellanox/Nvidia 100GbE CX6 NIC

* Software system
e NVMe over TCP and Linux kernel 5.15

* Application
* Block-1/0 based micro-benchmark
* Metrics: latency and throughput

EBOF Issue #1: Location Oblivious Placement

* An EBOF volume can’t leverage the massive |/O bandwidth
* Data volume is statically mapped to a single SSD upon creation
* Volume placement is randomly chosen when there are multiple candidates

B 1-vol B 4-vol B 16-vol
= 2-vol B 8-vol

* Experiment results:

(o]
o
o
o

Bandwidth (GB/s

N
o
o
o

o
l

128KB-RRD 2MB-SRD 2MB-SWR

15

EBOF Issue #1: Location Oblivious Placement

* An EBOF volume can’t leverage the massive |/O bandwidth
* Data volume is statically mapped to a single SSD upon creation
* Volume placement is randomly chosen when there are multiple candidates

Takeaway: We need flexible and location-aware data placement to unleash EBOF’s
bandwidth capacity.

EBOF Issue #2: Size-dependent Bandwidth Allocation

* An EBOF allocates bandwidth share of a volume proportional to its size:

EBOF Read / Write IOPS
EBOF Capacity

* Volume Size

QoS Upper Bound =

: liz)
* Experiment results: —— iggg
——
o —e— 800G
10004 T 16006
- 'S
4 " &
>
@) i Q
5 &
-
©
-
3}
100 -
. ¢
200 400 600 800 1000 1200 1400 1600 1800 ;

Bandwidth (MB/s)

EBOF Issue #2: Size-dependent Bandwidth Allocation

e An EBOF allocates bandwidth share of a volume based on its size:

EBOF Read / Write IOPS

QoS Upper Bound = EBOF Capacity * Volume Size

Takeaway: Bandwidth reservation should be decoupled from capacity allocation, and
needs to be controlled in an on-demand manner.

I

B
100 -

. ¢
200 400 600 800 1000 1200 1400 1600 1860
Bandwidth (MB/s)

EBOF Issue #3: Heavy |/O Interference

 An EBOF volume is tenant and device condition unaware
* Existing EBOF volumes employ rate limiter to enforce performance isolation

2000
:) g~ 256K-RD 256K-WR 7
* Experiment results: o0
s 1500 7 !
= Re II
S 10001 V 90%// /m
RS L o
; /, 7’
e =
'g 500 - e B
© g r,:_H—E"’E/
m O_L_M—FF-JLT-I--E"E‘E]_?_L"-—U

0 20 40 60 80 100

Read Ratio (%)

EBOF Issue #3: Heavy |/O Interference

 An EBOF volume is tenant and device condition unaware
* Existing EBOF volumes employ rate limiter to enforce performance isolation

Takeaway: Mitigating 1/O interference requires an EBOF to monitor its end-to-end
bandwidth availability at the runtime.

11
Ef
-~
+%
rl—H—E—
= J-Tr--Ei--Ei-—E'I"E'""':"-E‘-—U
O' = T T

0 20 40 60 80 100

Read Ratio (%)

Root Cause

* Problem of existing EBOFs
* Location oblivious placement
* Size-dependent bandwidth allocation
* Heavy I/O interference

An EBOF system applies the smart-sender dumb-receiver design philosophy
and provides backward-compatible volume-oriented storage functionalities.

Outline

e EBOF characterization

* Flint: elastic block storage over EBOFs

* Conclusion

Our approach: a distributed software-based EBOF telemetry system
called Shadow View

* Continuously monitors the EBOF running condition
* Exposes EBOF internal status to assist efficient I/O processing

Shadow View: Overview

* Observation:
* High-speed data center networks make fast data synchronization possible

e Capabilities:
* Hardware model based running snapshots
* Three performance monitor domains across the |/O data path

EBOF Hardware Model

e Upper half: network switch, consisting of N bi-directional NetPipes
* Bottom half: storage 1/0O switch, consisting of M bi-directional IOPipes

Ethernet Port; Ethernet Port,, (Perf Domain 1: Port Statistics
[1 [1 - Transmit bandwidth
Network Switch « Size distribution
NetPipe
Perf Domain 2: Pipe Statistics
|/O| Port, /0 |Port, * Processing throughput
Storage 1/0 Switch
[) [) [) / \
IOPipe Perf Domain 3: SSD Statistics

Read/write avail bandwidth

* |/O queueing delay
/ * Write cost

NVMe NVMe
1 m \ /

25

Shadow View Construction

* View agent

* Updates local shadow view

* Forwards I/O statistics vectors

* View controller

* Update the central shadow view

View Agent

update local view

—

EBOF

NVMe-oF Submission

NVMe-oF Completion

I/O Statistics Vector

View Controller

update central view
/ p

I/O Statistics ACK

\ 4

26

Shadow View Synchronization

* Shadow view is collaboratively built by view agent and view controller
* Use a monotonically increasing counter to represent view recency

* Synchronization modes
* Push mode
e Pull mode

* Clients fetch view copies from the controller to obtain the latest EBOF condition

Outline

 EBOF characterization
* Our approach: shadow view
* Flint: elastic block storage over EBOFs

* Conclusion

28

Flint: Elastic Block Storage over EBOFs

* Using shadow view, we build Flint, an elastic block storage system over EBOFs
e Goals: High throughput, high utilization, and efficient multi-tenancy

/ Storage Client \ / Central Arbiter \
| schedul Extent Volume Bandwidth
Local Scheduler Table Manager Auction
= ™ SSD
—— —— | B A [55D]
_eVoly |- _eVol, | -] | client | client |

_ [View Agent J - \ | View Controller | /

H t

Shadow View]

EBOF

Flint Architecture: Storage Client

e Storage clients co-located with a view agent:
* Create/delete/update eVols

e Submit read/write I/Os via a local scheduler

Local Scheduler

- o
Storage Client

Central Arbiter

~

Volume
Manager

B

Bandwidth
Auction

| client | client |

_ | View Agent

N O
Extent
Table
-
=
NG

| View Controller |

/

H

t

Shadow View

EBOF

30

Flint Architecture: Central Arbiter

* An arbiter cooperates with a view controller:

* Places data extents on EBOF and handles management requests
* Partitions available bandwidth among clients

/

Storage Client

_

Local Scheduler

CentralVArbiter

~

Volume
Manager

B

Bandwidth
Auction

| client | client |

| View Agent

N O
Extent
Table
-
=
NG

| View Controller |

/

H

t

Shadow View

EBOF

31

Flint Elastic Volume (eVol)

* An eVol consists of fixed-sized extents across multiple SSDs

* Weighted-score placement function

* Lazy allocation

Extent mapping table: <eVol logical address, SSD physical address>

Extent 1

Extent 2

Extent 3

Extent 4

Extent 5

Extent n

| MegaVol |

| MegaVol |

[MegaVol |

[MegaVol |

Extent Mapping Table

32

Elastic Volume Performance

e An eVol outperforms a vanilla EBOF volume by 14.5/13.6x regarding read/write

* An eVol consistently achieves higher bandwidth than a LVM volume

Bandwidth (MB/s)

10000 A

8000 -

6000 -

4000 A

2000 A

1-vol

2-vol

128KB-RAND-READ

4-vol

B 8-vol HE Vol

2MB-SEQ-WRITE

33

Client Side 1/O Scheduling

e Submit read/write I/Os in a Push-In First-Out (PIFO) manner
* Goal: mitigate head-of-line blocking
* Rank calculation captures I/O and SSD states from shadow view

IO Reads/Writes

|O Executors

5 5 H

PIFO IO Scheduler

bw_auction RPC

Arbiter NVMe-oF

EBOF

Arbiter Side Bandwidth Auction

* Partition SSD available bandwidth among active clients
* Adopt an RTS/CTS-based request and grant scheme
* Employ Deficit-Round-Robin like algorithm
* Allocate an I/O bandwidth slice in a batched manner

IO Reads/Writes

IO Executors

s 5 H

PIFO IO Scheduler

bw_auction RPC

Arbiter

NVMe-oF

EBOF

Flint Mitigates I/O interference

* Two types of co-located |I/O streams
e A victim stream issues 4KB I/Os with a small QD

* Background streams sending different types of |/Os with a large QD

* Flint reduces 2.6x and 1.7x p99 latency for reads and writes

16000

| mmm w-Flint

B w/o-Flint

P50 P99 P999
4KB READ vs. 128KB READ

Latency (us)

1200

1000 1

800 1

600 -

400 1

200 1

0_

B w/o-Flint
. w-Flint

P50 P99 P999
4KB READ vs. 4KB WRITE

36

Flint Achieves Better Multi-tenancy

* Two types of co-located competing /O streams over eVols

* Flint achieves nearly equal bandwidth share

3

N

Bandwidth Ratio
=

S1

B w/o-Flint
s w-Flint

S2 S3
Workload Scenario

S1=4KB read vs. 128KB read
S2=128KB read vs. 128KB write
S3=4KB 70% read vs. 4KB 70% write

37

Outline

* EBOF characterization
* Our approach: shadow view
* Flint: elastic block storage over EBOFs

Conclusion

 An EBOF is an emerging disaggregated storage hardware substrate

* An EBOF applies the smart-sender dumb-receiver design philosophy
* Lacks efficient resource allocation, I/O scheduling, and traffic orchestration

* Key Idea: a distributed software-based EBOF telemetry system (Shadow View)

* Flint: an elastic block storage for EBOFs over shadow view
* Elastic volume, PIFO scheduler, and bandwidth auction

