
Building an Elastic Block Storage over EBOFs
Using Shadow Views

Sheng Jiang, Ming Liu+

Carnegie Mellon University, University of Wisconsin – Madison+

1

Storage Disaggregation

Network Switch

Compute Pool

Storage Pool

• Storage disaggregation has been widely deployed
• Independent scaling of compute/storage
• Cost efficiency
• High resource utilization

2

Storage Hardware Substrate – Server JBOF

• Server JBOFs enclose X86 processors and 8-24 NVMe drives

3

Storage Hardware Substrate – Server JBOF

• Server JBOFs enclose X86 processors and 8-24 NVMe drives

x86 CPU
(socket 1)

x86 CPU
(socket 0)DRAM

NVMe

Server JBOF Box

NVMe

4

DRAM

Storage Hardware Substrate – SmartNIC JBOF

• SmartNIC JBOFs: a low-power and high-performance storage appliance
• SmartNICs and PCIe switch
• 4-8 NVMe drives
• Domain-specific accelerators

5

Storage Hardware Substrate – SmartNIC JBOF

• SmartNIC JBOFs: a low-power and high-performance storage appliance
• SmartNICs and PCIe switch
• 4-8 NVMe drives
• Domain-specific accelerators

ARM CPU

NIC

PCIe RC

DRAM

PCIe Switch

SmartNIC JBOF Box

Accelerator NVMe NVMe NVMe

SmartNIC

6

EBOF: An Emerging Storage Appliance

• Pack an Ethernet switch with NVMe drives into one SoC
• Hardware-assisted remote I/O processing pipeline
• Example model: Fungible/Microsoft FS1600

7

EBOF Hardware Architecture

Onboard
Ethernet
Switch

NVMe-oF
Cores

I/O Accelerators

ASIC I/O Processing Pipeline

I/O Orchestration

NVMe1

NVMe-oF
Cores Comp EC

I/O Accelerators

ASIC I/O Processing Pipeline

Traffic
Manager cq

sq

Port1

8

Port2
NVMe2

NVMe12

Port3

Port4

Port5

Port12

N
V

M
e 1NVMe13

NVMe14

NVMe24

I/O Orchestration

Traffic
ManagerComp EC cq

sq

EBOF Hardware Architecture

Onboard
Ethernet
Switch

NVMe-oF
Cores

I/O Accelerators

ASIC I/O Processing Pipeline

I/O Orchestration

NVMe1

NVMe-oF
Cores Comp EC

I/O Accelerators

ASIC I/O Processing Pipeline

Traffic
Manager cq

sq

Port1

9

Port2
NVMe2

NVMe12

Port3

Port4

Port5

Port12

N
V

M
e 1NVMe13

NVMe14

NVMe24

I/O Orchestration

Traffic
ManagerComp EC cq

sq

Benefits
• Increase I/O scalability

• Improve overall resource utilization and reduce resource stranding

• Achieve higher energy/cost-efficiency

I/O Processing in EBOF

10

Onboard
Ethernet
Switch

NVMe-oF
Cores

I/O Accelerators

ASIC I/O Processing Pipeline

I/O Orchestration

NVMe1

NVMe-oF
Cores Comp EC

I/O Accelerators

ASIC I/O Processing Pipeline

Traffic
Manager cq

sq

Port1

Port2
NVMe2

NVMe12

Port3

Port4

Port5

Port12

N
V

M
e 1NVMe13

NVMe14

NVMe24

I/O Orchestration

Traffic
ManagerComp EC cq

sq

Stage 1: NVMe-oF
protocol processing

I/O Processing in EBOF

11

Onboard
Ethernet
Switch

NVMe-oF
Cores

I/O Accelerators

ASIC I/O Processing Pipeline

I/O Orchestration

NVMe1

NVMe-oF
Cores Comp EC

I/O Accelerators

ASIC I/O Processing Pipeline

Traffic
Manager cq

sq

Port1

Port2
NVMe2

NVMe12

Port3

Port4

Port5

Port12

N
V

M
e 1NVMe13

NVMe14

NVMe24

I/O Orchestration

Traffic
ManagerComp EC cq

sq

Stage 1: NVMe-oF
protocol processing

Stage 2: Per-I/O
acceleration

I/O Processing in EBOF

12

Onboard
Ethernet
Switch

NVMe-oF
Cores

I/O Accelerators

ASIC I/O Processing Pipeline

I/O Orchestration

NVMe1

NVMe-oF
Cores Comp EC

I/O Accelerators

ASIC I/O Processing Pipeline

Traffic
Manager cq

sq

Port1

Port2
NVMe2

NVMe12

Port3

Port4

Port5

Port12

N
V

M
e 1NVMe13

NVMe14

NVMe24

I/O Orchestration

Traffic
ManagerComp EC cq

sq

Stage 1: NVMe-oF
protocol processing

Stage 2: Per-I/O
acceleration

Stage 3: I/O
orchestration

Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion

13

EBOF Characterization – Experimental Setup

14

• Hardware testbed
• Fungible/Microsoft FS1600
• Dell R7525 server + Mellanox/Nvidia 100GbE CX6 NIC

• Software system
• NVMe over TCP and Linux kernel 5.15

• Application
• Block-I/O based micro-benchmark
• Metrics: latency and throughput

EBOF Issue #1: Location Oblivious Placement

• An EBOF volume can’t leverage the massive I/O bandwidth
• Data volume is statically mapped to a single SSD upon creation
• Volume placement is randomly chosen when there are multiple candidates

• Experiment results:

15

EBOF Issue #1: Location Oblivious Placement

• An EBOF volume can’t leverage the massive I/O bandwidth
• Data volume is statically mapped to a single SSD upon creation
• Volume placement is randomly chosen when there are multiple candidates

* Experiment results: figure 2a

16

Takeaway: We need flexible and location-aware data placement to unleash EBOF’s
bandwidth capacity.

EBOF Issue #2: Size-dependent Bandwidth Allocation

• An EBOF allocates bandwidth share of a volume proportional to its size:

• Experiment results:

17

𝑄𝑜𝑆	𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 =
𝐸𝐵𝑂𝐹	𝑅𝑒𝑎𝑑	/	𝑊𝑟𝑖𝑡𝑒	𝐼𝑂𝑃𝑆

𝐸𝐵𝑂𝐹	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒	𝑆𝑖𝑧𝑒

EBOF Issue #2: Size-dependent Bandwidth Allocation

• An EBOF allocates bandwidth share of a volume based on its size:

• Experiment results:

18

Takeaway: Bandwidth reservation should be decoupled from capacity allocation, and
needs to be controlled in an on-demand manner.

𝑄𝑜𝑆	𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 =
𝐸𝐵𝑂𝐹	𝑅𝑒𝑎𝑑	/	𝑊𝑟𝑖𝑡𝑒	𝐼𝑂𝑃𝑆

𝐸𝐵𝑂𝐹	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒	𝑆𝑖𝑧𝑒

EBOF Issue #3: Heavy I/O Interference

• An EBOF volume is tenant and device condition unaware
• Existing EBOF volumes employ rate limiter to enforce performance isolation

• Experiment results:

19

↓ 90%

EBOF Issue #3: Heavy I/O Interference

• An EBOF volume is tenant and device condition unaware
• Existing EBOF volumes employ rate limiter to enforce performance isolation

* Experiment results:

20

Takeaway: Mitigating I/O interference requires an EBOF to monitor its end-to-end
bandwidth availability at the runtime.

Root Cause

• Problem of existing EBOFs
• Location oblivious placement
• Size-dependent bandwidth allocation
• Heavy I/O interference

21

An EBOF system applies the smart-sender dumb-receiver design philosophy
and provides backward-compatible volume-oriented storage functionalities.

Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion

22

23

Our approach: a distributed software-based EBOF telemetry system
called Shadow View

• Continuously monitors the EBOF running condition
• Exposes EBOF internal status to assist efficient I/O processing

Shadow View: Overview

• Observation:
• High-speed data center networks make fast data synchronization possible

• Capabilities:
• Hardware model based running snapshots
• Three performance monitor domains across the I/O data path

24

EBOF Hardware Model

• Upper half: network switch, consisting of N bi-directional NetPipes
• Bottom half: storage I/O switch, consisting of M bi-directional IOPipes

Ethernet Port1 Ethernet Portn

25

Network Switch

NVMe1 NVMem

Storage I/O Switch

I/O Port1 I/O Portn

Perf Domain 1: Port Statistics
• Transmit bandwidth
• Size distribution

Perf Domain 2: Pipe Statistics
• Processing throughput

Perf Domain 3: SSD Statistics
• Read/write avail bandwidth
• I/O queueing delay
• Write cost

NetPipe

IOPipe

Shadow View Construction

• View agent
• Updates local shadow view
• Forwards I/O statistics vectors

• View controller
• Update the central shadow view

View Agent View ControllerEBOF

NVMe-oF Submission

NVMe-oF Completion

I/O Statistics Vector

I/O Statistics ACK

update local view

update central view

26

Shadow View Synchronization

• Shadow view is collaboratively built by view agent and view controller
• Use a monotonically increasing counter to represent view recency

• Synchronization modes
• Push mode
• Pull mode

• Clients fetch view copies from the controller to obtain the latest EBOF condition

27

Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion

28

Flint: Elastic Block Storage over EBOFs

• Using shadow view, we build Flint, an elastic block storage system over EBOFs
• Goals: High throughput, high utilization, and efficient multi-tenancy

29

EBOF

Shadow View

View Agent View Controller

eVol1

Local Scheduler

Storage Client
Extent
Table

Volume
Manager

client

SSD

Bandwidth
Auction

Central Arbiter

eVoln client

Flint Architecture: Storage Client

30

• Storage clients co-located with a view agent:
• Create/delete/update eVols
• Submit read/write I/Os via a local scheduler

EBOF

Shadow View

View Agent View Controller

eVol1

Local Scheduler

Storage Client
Extent
Table

Volume
Manager

client

SSD

Bandwidth
Auction

Central Arbiter

eVoln client

Flint Architecture: Central Arbiter

31

EBOF

Shadow View

View Agent View Controller

eVol1

Local Scheduler

Storage Client
Extent
Table

Volume
Manager

client

SSD

Bandwidth
Auction

Central Arbiter

eVoln

• An arbiter cooperates with a view controller:
• Places data extents on EBOF and handles management requests
• Partitions available bandwidth among clients

client

Flint Elastic Volume (eVol)

• An eVol consists of fixed-sized extents across multiple SSDs
• Weighted-score placement function
• Lazy allocation

• Extent mapping table: <eVol logical address, SSD physical address>

32

NVMe

MegaVol

Extent 1
Extent Mapping Table

Extent 2 Extent 3 Extent 4 Extent 5 Extent n

NVMe

MegaVol

NVMe

MegaVol

NVMe

MegaVol

Elastic Volume Performance

33

• An eVol outperforms a vanilla EBOF volume by 14.5/13.6x regarding read/write
• An eVol consistently achieves higher bandwidth than a LVM volume

Client Side I/O Scheduling

• Submit read/write I/Os in a Push-In First-Out (PIFO) manner
• Goal: mitigate head-of-line blocking
• Rank calculation captures I/O and SSD states from shadow view

34

PIFO IO Scheduler

Arbiter

EBOF

bw_auction RPC
NVMe-oF

IO Executors

IO Reads/Writes

Arbiter Side Bandwidth Auction

• Partition SSD available bandwidth among active clients
• Adopt an RTS/CTS-based request and grant scheme
• Employ Deficit-Round-Robin like algorithm
• Allocate an I/O bandwidth slice in a batched manner

35

PIFO IO Scheduler

Arbiter

EBOF

bw_auction RPC
NVMe-oF

IO Executors

IO Reads/Writes

Flint Mitigates I/O interference

36

• Two types of co-located I/O streams
• A victim stream issues 4KB I/Os with a small QD
• Background streams sending different types of I/Os with a large QD

• Flint reduces 2.6x and 1.7x p99 latency for reads and writes

Flint Achieves Better Multi-tenancy

37

• Two types of co-located competing I/O streams over eVols

• Flint achieves nearly equal bandwidth share

S1=4KB read vs. 128KB read

S2=128KB read vs. 128KB write

S3=4KB 70% read vs. 4KB 70% write

Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion

38

Conclusion

• An EBOF is an emerging disaggregated storage hardware substrate
• An EBOF applies the smart-sender dumb-receiver design philosophy
• Lacks efficient resource allocation, I/O scheduling, and traffic orchestration

• Key Idea: a distributed software-based EBOF telemetry system (Shadow View)
• Flint: an elastic block storage for EBOFs over shadow view
• Elastic volume, PIFO scheduler, and bandwidth auction

39

