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Storage Disaggregation

Network Switch

Compute Pool

Storage Pool

• Storage disaggregation has been widely deployed 
• Independent scaling of compute/storage
• Cost efficiency
• High resource utilization
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Storage Hardware Substrate – Server JBOF

• Server JBOFs enclose X86 processors and 8-24 NVMe drives
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Storage Hardware Substrate – Server JBOF
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Storage Hardware Substrate – SmartNIC JBOF

• SmartNIC JBOFs: a low-power and high-performance storage appliance
• SmartNICs and PCIe switch
• 4-8 NVMe drives
• Domain-specific accelerators
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Storage Hardware Substrate – SmartNIC JBOF

• SmartNIC JBOFs: a low-power and high-performance storage appliance
• SmartNICs and PCIe switch
• 4-8 NVMe drives
• Domain-specific accelerators
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EBOF: An Emerging Storage Appliance

• Pack an Ethernet switch with NVMe drives into one SoC
• Hardware-assisted remote I/O processing pipeline
• Example model: Fungible/Microsoft FS1600
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EBOF Hardware Architecture
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EBOF Hardware Architecture
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Benefits
• Increase I/O scalability

• Improve overall resource utilization and reduce resource stranding

• Achieve higher energy/cost-efficiency



I/O Processing in EBOF
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I/O Processing in EBOF
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Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion
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EBOF Characterization – Experimental Setup

14

• Hardware testbed
• Fungible/Microsoft FS1600
• Dell R7525 server + Mellanox/Nvidia 100GbE CX6 NIC

• Software system
• NVMe over TCP and Linux kernel 5.15

• Application
• Block-I/O based micro-benchmark
• Metrics: latency and throughput



EBOF Issue #1: Location Oblivious Placement

• An EBOF volume can’t leverage the massive I/O bandwidth
• Data volume is statically mapped to a single SSD upon creation
• Volume placement is randomly chosen when there are multiple candidates

• Experiment results: 
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EBOF Issue #1: Location Oblivious Placement

• An EBOF volume can’t leverage the massive I/O bandwidth
• Data volume is statically mapped to a single SSD upon creation
• Volume placement is randomly chosen when there are multiple candidates

* Experiment results: figure 2a
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Takeaway: We need flexible and location-aware data placement to unleash EBOF’s 
bandwidth capacity.



EBOF Issue #2: Size-dependent Bandwidth Allocation

• An EBOF allocates bandwidth share of a volume proportional to its size:

• Experiment results:
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𝑄𝑜𝑆	𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 =
𝐸𝐵𝑂𝐹	𝑅𝑒𝑎𝑑	/	𝑊𝑟𝑖𝑡𝑒	𝐼𝑂𝑃𝑆

𝐸𝐵𝑂𝐹	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒	𝑆𝑖𝑧𝑒



EBOF Issue #2: Size-dependent Bandwidth Allocation

• An EBOF allocates bandwidth share of a volume based on its size:
 

• Experiment results:
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Takeaway: Bandwidth reservation should be decoupled from capacity allocation, and 
needs to be controlled in an on-demand manner.

𝑄𝑜𝑆	𝑈𝑝𝑝𝑒𝑟	𝐵𝑜𝑢𝑛𝑑 =
𝐸𝐵𝑂𝐹	𝑅𝑒𝑎𝑑	/	𝑊𝑟𝑖𝑡𝑒	𝐼𝑂𝑃𝑆

𝐸𝐵𝑂𝐹	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒	𝑆𝑖𝑧𝑒



EBOF Issue #3: Heavy I/O Interference

• An EBOF volume is tenant and device condition unaware
• Existing EBOF volumes employ rate limiter to enforce performance isolation

• Experiment results:
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EBOF Issue #3: Heavy I/O Interference

• An EBOF volume is tenant and device condition unaware
• Existing EBOF volumes employ rate limiter to enforce performance isolation

* Experiment results:
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Takeaway: Mitigating I/O interference requires an EBOF to monitor its end-to-end 
bandwidth availability at the runtime.



Root Cause

• Problem of existing EBOFs
• Location oblivious placement
• Size-dependent bandwidth allocation 
• Heavy I/O interference
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An EBOF system applies the smart-sender dumb-receiver design philosophy 
and provides backward-compatible volume-oriented storage functionalities.



Outline

• EBOF characterization
• Our approach: shadow view
• Flint: elastic block storage over EBOFs
• Conclusion
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Our approach: a distributed software-based EBOF telemetry system 
called Shadow View

• Continuously monitors the EBOF running condition
• Exposes EBOF internal status to assist efficient I/O processing



Shadow View: Overview

• Observation:
• High-speed data center networks make fast data synchronization possible

• Capabilities: 
• Hardware model based running snapshots
• Three performance monitor domains across the I/O data path
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EBOF Hardware Model

• Upper half: network switch, consisting of N bi-directional NetPipes
• Bottom half: storage I/O switch, consisting of M bi-directional IOPipes 

Ethernet Port1 Ethernet Portn
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Network Switch

NVMe1 NVMem

Storage I/O Switch

I/O  Port1 I/O  Portn

Perf Domain 1: Port Statistics
• Transmit bandwidth
• Size distribution

Perf Domain 2: Pipe Statistics
• Processing throughput

Perf Domain 3: SSD Statistics
• Read/write avail bandwidth
• I/O queueing delay
• Write cost

NetPipe

IOPipe



Shadow View Construction

• View agent
• Updates local shadow view
• Forwards I/O statistics vectors

• View controller
• Update the central shadow view

View Agent View ControllerEBOF

NVMe-oF Submission

NVMe-oF Completion

I/O Statistics Vector

I/O Statistics ACK

update local view

update central view
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Shadow View Synchronization

• Shadow view is collaboratively built by view agent and view controller
• Use a monotonically increasing counter to represent view recency

• Synchronization modes
• Push mode
• Pull mode

• Clients fetch view copies from the controller to obtain the latest EBOF condition
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Flint: Elastic Block Storage over EBOFs

• Using shadow view, we build Flint, an elastic block storage system over EBOFs
• Goals: High throughput, high utilization, and efficient multi-tenancy
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Flint Architecture: Storage Client
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• Storage clients co-located with a view agent:
• Create/delete/update eVols
• Submit read/write I/Os via a local scheduler
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Flint Architecture: Central Arbiter
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• An arbiter cooperates with a view controller:
• Places data extents on EBOF and handles management requests
• Partitions available bandwidth among clients

client



Flint Elastic Volume (eVol)

• An eVol consists of fixed-sized extents across multiple SSDs
• Weighted-score placement function
• Lazy allocation

• Extent mapping table: <eVol logical address, SSD physical address>
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Elastic Volume Performance
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• An eVol outperforms a vanilla EBOF volume by 14.5/13.6x regarding read/write
• An eVol consistently achieves higher bandwidth than a LVM volume



Client Side I/O Scheduling

• Submit read/write I/Os in a Push-In First-Out (PIFO) manner
• Goal: mitigate head-of-line blocking
• Rank calculation captures I/O and SSD states from shadow view
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Arbiter Side Bandwidth Auction

• Partition SSD available bandwidth among active clients
• Adopt an RTS/CTS-based request and grant scheme
• Employ Deficit-Round-Robin like algorithm
• Allocate an I/O bandwidth slice in a batched manner
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Flint Mitigates I/O interference
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• Two types of co-located I/O streams
• A victim stream issues 4KB I/Os with a small QD
• Background streams sending different types of I/Os with a large QD

• Flint reduces 2.6x and 1.7x p99 latency for reads and writes



Flint Achieves Better Multi-tenancy
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• Two types of co-located competing I/O streams over eVols

• Flint achieves nearly equal bandwidth share

S1=4KB read vs. 128KB read

S2=128KB read vs. 128KB write

S3=4KB 70% read vs. 4KB 70% write
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Conclusion

• An EBOF is an emerging disaggregated storage hardware substrate
• An EBOF applies the smart-sender dumb-receiver design philosophy
• Lacks efficient resource allocation, I/O scheduling, and traffic orchestration

• Key Idea: a distributed software-based EBOF telemetry system (Shadow View)
• Flint: an elastic block storage for EBOFs over shadow view
• Elastic volume, PIFO scheduler, and bandwidth auction
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