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Storage Disaggregation

e Storage disaggregation has been widely deployed
* |Independent scaling of compute/storage

Cost efficiency
High resource utilization
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Storage Hardware Substrate — Server JBOF

e Server JBOFs enclose X86 processors and 8-24 NVMe drives
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Storage Hardware Substrate — Server JBOF

e Server JBOFs enclose X86 processors and 8-24 NVMe drives
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Storage Hardware Substrate — SmartNIC JBOF

 SmartNIC JBOFs: a low-power and high-performance storage appliance
 SmartNICs and PCle switch
* 4-8 NVMe drives

* Domain-specific accelerators
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Storage Hardware Substrate — SmartNIC JBOF

 SmartNIC JBOFs: a low-power and high-performance storage appliance
 SmartNICs and PCle switch

 4-8 NVMe drives
* Domain-specific accelerators
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EBOF: An Emerging Storage Appliance

* Pack an Ethernet switch with NVMe drives into one SoC
* Hardware-assisted remote |/O processing pipeline
* Example model: Fungible/Microsoft FS1600
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EBOF Hardware Architecture
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EBOF Hardware Architecture
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Benefits

* Increase |I/O scalability

* Improve overall resource utilization and reduce resource stranding

* Achieve higher energy/cost-efficiency
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/O Processing in EBOF
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/O Processing in EBOF
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/O Processing in EBOF
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Outline

* EBOF characterization
* Our approach: shadow view
* Flint: elastic block storage over EBOFs

* Conclusion
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EBOF Characterization — Experimental Setup

 Hardware testbed
* Fungible/Microsoft FS1600
e Dell R7525 server + Mellanox/Nvidia 100GbE CX6 NIC

* Software system
e NVMe over TCP and Linux kernel 5.15

* Application
* Block-1/0 based micro-benchmark
* Metrics: latency and throughput



EBOF Issue #1: Location Oblivious Placement

* An EBOF volume can’t leverage the massive |/O bandwidth
* Data volume is statically mapped to a single SSD upon creation
* Volume placement is randomly chosen when there are multiple candidates

B 1-vol B 4-vol B 16-vol
= 2-vol B 8-vol

* Experiment results:
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EBOF Issue #1: Location Oblivious Placement

* An EBOF volume can’t leverage the massive |/O bandwidth
* Data volume is statically mapped to a single SSD upon creation
* Volume placement is randomly chosen when there are multiple candidates

Takeaway: We need flexible and location-aware data placement to unleash EBOF’s
bandwidth capacity.




EBOF Issue #2: Size-dependent Bandwidth Allocation

* An EBOF allocates bandwidth share of a volume proportional to its size:

EBOF Read / Write IOPS
EBOF Capacity

* Volume Size

QoS Upper Bound =
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EBOF Issue #2: Size-dependent Bandwidth Allocation

e An EBOF allocates bandwidth share of a volume based on its size:

EBOF Read / Write IOPS

QoS Upper Bound = EBOF Capacity * Volume Size

Takeaway: Bandwidth reservation should be decoupled from capacity allocation, and
needs to be controlled in an on-demand manner.
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EBOF Issue #3: Heavy |/O Interference

 An EBOF volume is tenant and device condition unaware
* Existing EBOF volumes employ rate limiter to enforce performance isolation
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EBOF Issue #3: Heavy |/O Interference

 An EBOF volume is tenant and device condition unaware
* Existing EBOF volumes employ rate limiter to enforce performance isolation

Takeaway: Mitigating 1/O interference requires an EBOF to monitor its end-to-end
bandwidth availability at the runtime.
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Root Cause

* Problem of existing EBOFs
* Location oblivious placement
* Size-dependent bandwidth allocation
* Heavy I/O interference

An EBOF system applies the smart-sender dumb-receiver design philosophy
and provides backward-compatible volume-oriented storage functionalities.
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e EBOF characterization

* Flint: elastic block storage over EBOFs
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Our approach: a distributed software-based EBOF telemetry system
called Shadow View

* Continuously monitors the EBOF running condition
* Exposes EBOF internal status to assist efficient I/O processing



Shadow View: Overview

* Observation:
* High-speed data center networks make fast data synchronization possible

e Capabilities:
* Hardware model based running snapshots
* Three performance monitor domains across the |/O data path



EBOF Hardware Model

e Upper half: network switch, consisting of N bi-directional NetPipes
* Bottom half: storage 1/0O switch, consisting of M bi-directional IOPipes
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Shadow View Construction

* View agent

* Updates local shadow view

* Forwards I/O statistics vectors

* View controller

* Update the central shadow view

View Agent

update local view

—

EBOF

NVMe-oF Submission

NVMe-oF Completion

I/O Statistics Vector

View Controller

update central view
/ p

I/O Statistics ACK

\ 4

26



Shadow View Synchronization

* Shadow view is collaboratively built by view agent and view controller
* Use a monotonically increasing counter to represent view recency

* Synchronization modes
* Push mode
e Pull mode

* Clients fetch view copies from the controller to obtain the latest EBOF condition



Outline

 EBOF characterization
* Our approach: shadow view
* Flint: elastic block storage over EBOFs

* Conclusion
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Flint: Elastic Block Storage over EBOFs

* Using shadow view, we build Flint, an elastic block storage system over EBOFs
e Goals: High throughput, high utilization, and efficient multi-tenancy
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Flint Architecture: Storage Client

e Storage clients co-located with a view agent:
* Create/delete/update eVols

e Submit read/write I/Os via a local scheduler
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Flint Architecture: Central Arbiter

* An arbiter cooperates with a view controller:

* Places data extents on EBOF and handles management requests
* Partitions available bandwidth among clients
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Flint Elastic Volume (eVol)

* An eVol consists of fixed-sized extents across multiple SSDs

* Weighted-score placement function

* Lazy allocation

Extent mapping table: <eVol logical address, SSD physical address>

Extent 1

Extent 2

Extent 3

Extent 4

Extent 5

Extent n

| MegaVol |

| MegaVol |

[ MegaVol |

[ MegaVol |

Extent Mapping Table
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Elastic Volume Performance

e An eVol outperforms a vanilla EBOF volume by 14.5/13.6x regarding read/write

* An eVol consistently achieves higher bandwidth than a LVM volume
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Client Side 1/O Scheduling

e Submit read/write I/Os in a Push-In First-Out (PIFO) manner
* Goal: mitigate head-of-line blocking
* Rank calculation captures I/O and SSD states from shadow view
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Arbiter Side Bandwidth Auction

* Partition SSD available bandwidth among active clients
* Adopt an RTS/CTS-based request and grant scheme
* Employ Deficit-Round-Robin like algorithm
* Allocate an I/O bandwidth slice in a batched manner
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Flint Mitigates I/O interference

* Two types of co-located |I/O streams
e A victim stream issues 4KB I/Os with a small QD

* Background streams sending different types of |/Os with a large QD

* Flint reduces 2.6x and 1.7x p99 latency for reads and writes
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Flint Achieves Better Multi-tenancy

* Two types of co-located competing /O streams over eVols

* Flint achieves nearly equal bandwidth share
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Conclusion

 An EBOF is an emerging disaggregated storage hardware substrate

* An EBOF applies the smart-sender dumb-receiver design philosophy
* Lacks efficient resource allocation, I/O scheduling, and traffic orchestration

* Key Idea: a distributed software-based EBOF telemetry system (Shadow View)

* Flint: an elastic block storage for EBOFs over shadow view
* Elastic volume, PIFO scheduler, and bandwidth auction



