

Ladder: A Convergence-based Structured DAG Blockchain for High Throughput and Low Latency

Dengcheng Hu¹, Jianrong Wang¹, Xiulong Liu*¹, Hao Xu¹, Xujing Wu², Muhammad Shahzad³, Guyue Liu⁴, Keqiu Li¹

> ¹Tianjin University ²JD.com ³North Carolina State University ⁴Peking University

Directed Acyclic Graph (DAG) offers a scalable alternative to chain-style ledgers by enabling concurrent block generation through parallelized topology

Chain-structure

DAG-structure

Broader DAG structures enhance scalability through parallel block generation but introduce key challenges

Broader DAG structures enhance scalability through parallel block generation but introduce key challenges

	•
NSC	1'95

Solutions Sorting Methods	Confirmation	Balance	Performance			
	Methods	Logic	Attack Resistance	TPS	Latency	
GHOST		Reference-count Global Ordering	No	200	<60min	
Inclusive		ocal Sorting	No	350	<1min	
Spectre	Independent Local Sorting with Global		-	-	<1min	
Phantom			No	40	<1min	
Conflux	Confirmation		Global Ordering	Global Ordering	No	2823
OHIE		Hierarchical Global Ordering	Yes	2513	<10min	
Ladder		iven Ordering & mation	Yes	4506	<1min	

Lacking control over parallel chain topology, leading to performance limitations and vulnerability to balance attacks. Employing a dual-chain architecture where one chain structurally constrains the other through convergent referencing.

□ *How to use the one-chain to effectively converge generated frok blocks of another chain?*

□ *How to ensure system security by preventing adversaries from becoming convergence nodes?*

Ladder assumes a δ -synchronous network and that the adversary contributes less than 30% of the total computational power

NSCI '25

Ladder generates DAG in the upper-chain while the lower-chain drives convergence and narrows the DAG structure

Nodes in Ladder utilize Proof-of-Work (PoW) for upper-chain block generation while simultaneously regulating the production of lower-chain blocks

NSCI '25

HCP dynamically weights block subtree difficulty (rather than sub-block count) to select the standard upper-chain blocks

HCP thwarts liveness and balance attacks by requiring prohibitive computational power to override established subtree weights

Ladder forms a committee of recent standard upper-chain block producers to generate Super Blocks resolving lower-chain anomalies

NSCI '25

Committee employs deterministic BFT consensus to ensure the finality of lower-chain

Two upper-chain fork types may occur

NSCI '25

Delayed upper-chain block in round r, referenced by lower-chain block in round r + 1

Two lower-chain fork types may occur

resolved by BFT to generate a super block

Two parallel Ladders may arise, reconciled through the Hardest Chain Principle

NSCI 25

BFT Committee Size

The BFT committee may introduce security risk: Adversaries exceeding 1/3 when generating the Super Block

Committee Size	120	180	240	300
Byzantine nodes exceeding 1/3 probability	4.9×10 ⁻³	1.8×10-4	6×10-6	1.96×10 ⁻⁷
Rounds to reach a cumulative probability of 99%	9.2×10 ²	2.6×10 ⁴	7.7×10 ⁵	2.4×10 ⁷

We implement a prototype of Ladder using 80 nodes and compare performance with GHOST, Inclusive, Phantom, and Conflux

Server	Network Delay	Node Number	PoW Difficulty
Intel(R) Core(TM) i5-4590 CPU@3.30 GHz and 8 GB of RAM	80-120ms	80	18

Evaluation

NSdi'25

We use three key variables – transaction number per block, node number, and difficulty level – with Throughput and Latency as performance metrics

We use three key variables – transaction number per block, node number, and difficulty level – with Throughput and Latency as performance metrics

Ladder can achieve a 59.6% increase in throughput and a 20.9% reduction in latency.

We make the security analysis from two perspectives:

Resistance Against Common Attacks:

Sybil Attack

Denial of Service (DoS) Attack

Double-Spending Attack

D Eclipse Attack

Security and Availability:

Theorem 1: Any block in the lower-chain of Ladder is a valid block with a high probability.

ISI

Theorem 2: Ladder satisfies common prefix, finality, and liveness properties.

Thanks!

Contact Information: hdc@tju.edu.cn