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Datacenters Need ps-Scale Tail Latencies
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High fan-out services!!! Data-dependent services

[1] Jeffrey Dean, Luiz André Barroso, The tail at scale.
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Service Time Varies
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Short-running task Long-running task

(a few ps) (hundreds of us, or even ms)
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Problem: Head-of-Line Blocking

Miss ps-scale latency target!
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Example: transactional tasks and analytical tasks in databases.
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Solution #1: Overprovisioning Wastes CPUs
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Solution #1: Overprovisioning Wastes CPUs
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Solution #2: Fine-grained Preemption
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Solution #2: Fine-grained Preemption
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Limitations of User-Space Preemption

Mechanism #1:

Compiler Instrumentation

The compiler instruments “poll and yield”
code throughout user programs (e.g., at
loop back-edges or function calls).
One timer core updates the shared_var.
if (shared var == true) {

Yield()
}

Examples: Go, wasmtime, Concord (SOSP’ 23)
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Mechanism #2:
Signals

One timer core sends signals to
preempt running threads.

Receiving signals is expensive
because this involves kernel space.

Examples: Go
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New Opportunity: User Interrupts

A hardware technique that sends and receives interrupts in user space.

Available in Intel’s CPUs since 2023.

Lower receiving overhead than signals (~0.4 ps vs. 2.4 us).
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Contributions

? Can user interrupts help achieve fine-grained preemption?

1 Microbenchmark study — basic overhead of preemption mechanisms

2 Developed two preemptive user-space runtimes:

Aspen-KB (kernel-bypass runtime)
Aspen-Go (extended Go runtime)

3 Application study — overall performance of preemption mechanisms
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@ Microbenchmark Study

Experiment Setup: Preempt benchmark program with three preemption mechanisms:
(1) Signals
(2) User interrupts
(3) Compiler instrumentation (implemented with Concord(t]).

Benchmark Suites: Splash-2, Phoenix, and Parsec.

Metric: Runtime slowdown relative to non-preemptive execution.

[1] Rishabh lyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling, SOSP, 2023.
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Signals vs. User Interrupts

One representative benchmark program: histogram

Signals —&— User Interrupts Compiler Instrumentation
histogram (phoenix)
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Finer-grained preemption
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User Interrupts vs. Compiler Instrumentation

One representative benchmark program: histogram

Signals —&— User Interrupts Compiler Instrumentation
histogram (phoenix)
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Compiler Instrumentation: Variable Across Programs

Example: Programs with tight loops may incur unpredictably high overhead.

Signals —=— User Interrupts Compiler Instrumentation
matrix_multiply (phoenix)
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Configuration Challenges
Where to instrument? At loops? Unroll loops? At function calls? Different program inputs?
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Tradeoffs Between Preemption Mechanisms

Compiler

Signals :
Instrumentation

User Interrupts

Lower overhead Lower overhead
with smaller quantum; with larger quantum;
High Overhead Unpredictably high overhead Consistent overhead;

with ps-scale quantum. .
in some programs;

Challenging to configure. No configure required.
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@ Preemptive User-level Schedulers

Built two preemptive user-level schedulers with user interrupts:
* Aspen-KB is built on a kernel-bypass runtime, Caladan!1.

* Aspen-Go extends the popular Go runtime.

[1] Joshua Fried et al., Caladan: Mitigating Interference at Microsecond Timescales, USENIX NSDI, 2020.



Aspen-KB Design UCSanDiego

Common design: A dedicated timer core handles timing and preempts app cores.

User-level thread
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Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.
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Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.
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Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.
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Policy #2: Two-queue scheduling policy.
Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues
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Aspen-KB Design UCSanDiego

Policy #2: Two-queue scheduling policy.
Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues
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Aspen-KB Design UCSanDiego

Existing schedulers: Infrequent packet polling = new packets blocked in network stack.

Policy #3: Match polling and preemption frequencies.
App cores poll network stack at every preemption.

Preempted Runqueues
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Aspen-KB Design UCSanDiego

Existing schedulers: Infrequent packet polling = new packets blocked in network stack.

Policy #3: Match polling and preemption frequencies.
App cores poll network stack at every preemption.

Preempted Runqueues
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Limitations of Aspen-Go UCSan Diego

Aspen-Go
Aspen-KB (Makes minimal changes in Go)
Go:
Match network polling and Only poll when scheduler runqueue is empty.
Aspen-Go:

preemption frequencies. ) _
Offloads frequent polling to a timer core

that polls every 100 ps.

Aspen-Go is weaker than Aspen-KB at preventing head-of-line blocking.
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Limitations of Aspen-Go UCSan Diego

Aspen-KB Aspen-Go
Preempt only when necessary Preempt periodically
Low context-switch overhead of Complicated scheduler logic with
0.2-0.9 ps context-switch overhead of 1.3-3.0 ps

Aspen-Go has a high preemption cost.
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® Application Performance Evaluation

* 1server + 1client

* Client: runs load generator

» Server: runs applications on Aspen to compare different preemption mechanisms:
(1) Signals
(2) User interrupts

(3) Compiler Instrumentation (implemented with Concord(])

[1] Rishabh lyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling, SOSP, 2023.



Aspen-KB — DataFrames
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Workload: decay (5 us), ad (7 us), rmv (28 ps), ppo (75 ps), kmeans (250 ps); 20% each
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Conclusion: Aspen-KB with user interrupts can reduce head-of-line blocking in ps-scale workloads.
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Aspen-Go — BadgerDB

Workload: 99% GET task (5 ps) and 1% SCAN task (800 ps)

unmodified Go
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Conclusion: Aspen-Go provides limited performance gains with minimal changes to Go.
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Conclusion

Can user interrupts help achieve fine-grained preemption?
Yes, user interrupts can help.

But when a system is not fully optimized for fine-grained preemption,

user interrupts provide limited benefits.
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