
22nd USENIX Symposium on Networked Systems Design and Implementation (NSDI’ 25) | April 29, 2025

Linsong Guo, Danial Zuberi, Tal Garfinkel, Amy Ousterhout

The Benefits and Limitations
of User Interrupts
for Preemptive Userspace Scheduling

Datacenters Need μs-Scale Tail Latencies

High fan-out services[1] Data-dependent services

User request

Sub-tasks

[1] Jeffrey Dean, Luiz André Barroso, The tail at scale.

Service Time Varies

Short-running task
(a few μs)

Long-running task
(hundreds of μs, or even ms)

Problem: Head-of-Line Blocking

CPUScheduler runqueue

Miss μs-scale latency target!

Example: transactional tasks and analytical tasks in databases.

Solution #1: Overprovisioning Wastes CPUs

Solution #1: Overprovisioning Wastes CPUs

Solution #2: Preemption

CPUScheduler runqueue

Fine-grained

Solution #2: Preemption

CPUScheduler runqueue

Fine-grained

Limitations of User-Space Preemption

if (shared_var == true) {

Yield();

}

The compiler instruments “poll and yield”

code throughout user programs (e.g., at

loop back-edges or function calls).

One timer core updates the shared_var.

Mechanism #1:
Compiler Instrumentation

Examples: Go, wasmtime, Concord (SOSP’ 23)

Mechanism #2:
Signals

One timer core sends signals to

preempt running threads.

Receiving signals is expensive

because this involves kernel space.

Examples: Go

New Opportunity: User Interrupts

A hardware technique that sends and receives interrupts in user space.

Available in Intel’s CPUs since 2023.

Lower receiving overhead than signals (~0.4 μs vs. 2.4 μs).

1 Microbenchmark study — basic overhead of preemption mechanisms

2

3

Developed two preemptive user-space runtimes:

Application study — overall performance of preemption mechanisms

Contributions

Can user interrupts help achieve fine-grained preemption??

Aspen-KB (kernel-bypass runtime)

Aspen-Go (extended Go runtime)

Experiment Setup: Preempt benchmark program with three preemption mechanisms:

(1) Signals

(2) User interrupts

(3) Compiler instrumentation (implemented with Concord[1]).

Benchmark Suites: Splash-2, Phoenix, and Parsec.

Metric: Runtime slowdown relative to non-preemptive execution.

Microbenchmark Study

[1] Rishabh Iyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling , SOSP, 2023.

1

Signals vs. User Interrupts

One representative benchmark program: histogram

6× lower
User interrupts have

significantly lower

overhead than signals.

Finer-grained preemption

User Interrupts vs. Compiler Instrumentation

Larger quantum
(> 10 μs)

User Interrupts …

No polling — overhead paid only
when preemption actually occurs.

Compiler Instrumentation:
CPU cycles wasted on each poll,

even without preemption. Compiler Instrumentation . .

Polling becomes efficient as
preemption is more likely to
occur with smaller quantum.

Smaller quantum
(< 10 μs)

One representative benchmark program: histogram

Finer-grained preemption

Compiler Instrumentation: Variable Across Programs

25.8%

Configuration Challenges
Where to instrument? At loops? Unroll loops? At function calls? Different program inputs?

Example: Programs with tight loops may incur unpredictably high overhead.

Tradeoffs Between Preemption Mechanisms

User InterruptsSignals

High Overhead
with μs-scale quantum.

Compiler
Instrumentation

Lower overhead
with smaller quantum;

Unpredictably high overhead
in some programs;

Challenging to configure.

Lower overhead
with larger quantum;

Consistent overhead;

No configure required.

Built two preemptive user-level schedulers with user interrupts:

• Aspen-KB is built on a kernel-bypass runtime, Caladan[1].

• Aspen-Go extends the popular Go runtime.

Preemptive User-level Schedulers

[1] Joshua Fried et al., Caladan: Mitigating Interference at Microsecond Timescales, USENIX NSDI, 2020.

2

Common design: A dedicated timer core handles timing and preempts app cores.

NIC

App core 1 App core 2 App core 3Timer core

Runqueues

User-level thread

Aspen-KB Design

Policy #1: Preempt only when necessary.

Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

Periodic
check

Periodic
check Runqueues

NIC

App core 1 App core 2 App core 3Timer core

Existing schedulers: Preempt app cores periodically → high preemption cost.

Aspen-KB Design

Policy #1: Preempt only when necessary.

Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

Periodic
check

Periodic
check Runqueues

NIC

App core 1 App core 2 App core 3Timer core

Existing schedulers: Preempt app cores periodically → high preemption cost.

User
Interrupt

Aspen-KB Design

Policy #1: Preempt only when necessary.

Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

Periodic
check

Periodic
check Runqueues

NIC

App core 1 App core 2 App core 3Timer core

Existing schedulers: Preempt app cores periodically → high preemption cost.

Avoid over 70% of
preemption events!User

Interrupt

Aspen-KB Design

Policy #2: Two-queue scheduling policy.

Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues

NIC

App core 1 App core 2 App core 3Timer core

Aspen-KB Design

New Runqueues

Policy #2: Two-queue scheduling policy.

Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues

NIC

App core 1 App core 2 App core 3Timer core

Aspen-KB Design

New Runqueues

Aspen-KB Design

Policy #3: Match polling and preemption frequencies.

App cores poll network stack at every preemption.

NIC

App core 1 App core 2 App core 3

New Runqueues

Preempted Runqueues

Timer core

Existing schedulers: Infrequent packet polling → new packets blocked in network stack.

Aspen-KB Design

Policy #3: Match polling and preemption frequencies.

App cores poll network stack at every preemption.

NIC

App core 1 App core 2 App core 3

New Runqueues

Preempted Runqueues

Timer core

Existing schedulers: Infrequent packet polling → new packets blocked in network stack.

Match network polling and
preemption frequencies.

Aspen-KB

Go:
Only poll when scheduler runqueue is empty.

Aspen-Go
(Makes minimal changes in Go)

Aspen-Go:
Offloads frequent polling to a timer core

that polls every 100 µs.

Aspen-Go is weaker than Aspen-KB at preventing head-of-line blocking.

Limitations of Aspen-Go

Preempt only when necessary

Aspen-KB Aspen-Go

Complicated scheduler logic with

context-switch overhead of 1.3–3.0 µs

Low context-switch overhead of

0.2–0.9 µs

Preempt periodically

Aspen-Go has a high preemption cost.

Limitations of Aspen-Go

• 1 server + 1 client

• Client: runs load generator

• Server: runs applications on Aspen to compare different preemption mechanisms:

(1) Signals

(2) User interrupts

(3) Compiler Instrumentation (implemented with Concord[1])

Application Performance Evaluation

[1] Rishabh Iyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling , SOSP, 2023.

3

Conclusion: Aspen-KB with user interrupts can reduce head-of-line blocking in μs-scale workloads.

short task:
30% higher throughput

Workload: decay (5 μs), ad (7 μs), rmv (28 μs), ppo (75 μs), kmeans (250 μs); 20% each

Aspen-KB — DataFrames

long task:
sacrificed throughput

More careful configuration

Workload: 99% GET task (5 μs) and 1% SCAN task (800 μs)

Aspen-Go — BadgerDB

Conclusion: Aspen-Go provides limited performance gains with minimal changes to Go.

Conclusion

Yes, user interrupts can help.

But when a system is not fully optimized for fine-grained preemption,

user interrupts provide limited benefits.

Can user interrupts help achieve fine-grained preemption?

	Slide 1: The Benefits and Limitations of User Interrupts for Preemptive Userspace Scheduling
	Slide 2: Datacenters Need μs-Scale Tail Latencies
	Slide 3: Service Time Varies
	Slide 4: Problem: Head-of-Line Blocking
	Slide 5: Solution #1: Overprovisioning Wastes CPUs
	Slide 6: Solution #1: Overprovisioning Wastes CPUs
	Slide 7: Solution #2: Preemption
	Slide 8: Solution #2: Preemption
	Slide 9: Limitations of User-Space Preemption
	Slide 10: New Opportunity: User Interrupts
	Slide 11: Contributions
	Slide 12: Microbenchmark Study
	Slide 13: Signals vs. User Interrupts
	Slide 14: User Interrupts vs. Compiler Instrumentation
	Slide 15: Compiler Instrumentation: Variable Across Programs
	Slide 16: Tradeoffs Between Preemption Mechanisms
	Slide 17: Preemptive User-level Schedulers
	Slide 18: Aspen-KB Design
	Slide 19: Aspen-KB Design
	Slide 20: Aspen-KB Design
	Slide 21: Aspen-KB Design
	Slide 22: Aspen-KB Design
	Slide 23: Aspen-KB Design
	Slide 24: Aspen-KB Design
	Slide 25: Aspen-KB Design
	Slide 26: Limitations of Aspen-Go
	Slide 27
	Slide 28: Application Performance Evaluation
	Slide 29
	Slide 30
	Slide 31: Conclusion

