UC San Diego

The Benefits and Limitations
of User Interrupts
for Preemptive Userspace Scheduling

Linsong Guo, Danial Zuberi, Tal Garfinkel, Amy Ousterhout

22nd USENIX Symposium on Networked Systems Design and Implementation (NSDI’ 25) | April 29,2025

UC San Diego

Datacenters Need ps-Scale Tail Latencies

Q
O

% S
S~ -
T

Sub-tasks oo E|j

High fan-out services!!! Data-dependent services

[1] Jeffrey Dean, Luiz André Barroso, The tail at scale.

_

UC San Diego

Service Time Varies

]

Short-running task Long-running task

(a few ps) (hundreds of us, or even ms)

UC San Diego

Problem: Head-of-Line Blocking

Miss ps-scale latency target!

||][

Scheduler runqueue CPU

Example: transactional tasks and analytical tasks in databases.

_

UC San Diego

Solution #1: Overprovisioning Wastes CPUs

||][

UC San Diego

Solution #1: Overprovisioning Wastes CPUs

]

o

UC San Diego

Solution #2: Fine-grained Preemption

||][b

Scheduler runqueue CPU

_

UC San Diego

Solution #2: Fine-grained Preemption

Lo o

Scheduler runqueue CPU

_

Limitations of User-Space Preemption

Mechanism #1:

Compiler Instrumentation

The compiler instruments “poll and yield”
code throughout user programs (e.g., at
loop back-edges or function calls).
One timer core updates the shared_var.
if (shared var == true) {

Yield()
}

Examples: Go, wasmtime, Concord (SOSP’ 23)

_

)

J

UC San Diego

Mechanism #2:
Signals

One timer core sends signals to
preempt running threads.

Receiving signals is expensive
because this involves kernel space.

Examples: Go

_

UC San Diego

New Opportunity: User Interrupts

A hardware technique that sends and receives interrupts in user space.

Available in Intel’s CPUs since 2023.

Lower receiving overhead than signals (~0.4 ps vs. 2.4 us).

UC San Diego

Contributions

? Can user interrupts help achieve fine-grained preemption?

1 Microbenchmark study — basic overhead of preemption mechanisms

2 Developed two preemptive user-space runtimes:

Aspen-KB (kernel-bypass runtime)
Aspen-Go (extended Go runtime)

3 Application study — overall performance of preemption mechanisms

_

UC San Diego

@ Microbenchmark Study

Experiment Setup: Preempt benchmark program with three preemption mechanisms:
(1) Signals
(2) User interrupts
(3) Compiler instrumentation (implemented with Concord(t]).

Benchmark Suites: Splash-2, Phoenix, and Parsec.

Metric: Runtime slowdown relative to non-preemptive execution.

[1] Rishabh lyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling, SOSP, 2023.

UC San Diego

Signals vs. User Interrupts

One representative benchmark program: histogram

Signals —&— User Interrupts Compiler Instrumentation
histogram (phoenix)
(0]
6% lower
c o/, |
g 20% User interrupts have
©
significantly lower
8 10% 4o 8 e
n v _~ overhead than signals.
0% 4 F—=5 EM

200 100 50 20 10 5
Preemption quantum (us)

L ——
Finer-grained preemption

_

UC San Diego

User Interrupts vs. Compiler Instrumentation

One representative benchmark program: histogram

Signals —&— User Interrupts Compiler Instrumentation
histogram (phoenix)
(N\ (o] 4 N\
Larger quantum
(> 10 ps) g 20% - Smaller quantum
Compiler Instrumentation: S (<10 ps)
CPU cycles wasted on each poll, E 10% - A] .
even without preemption. n DIE’?H’@/E‘ Compiler Instrumentation @
User Interrupts @ 0% 1 F—= = Polling b'eco.mes eff|c.|ent as
_ _ . 1 T preemption is more likely to
No polling — oyerhead paid only 200 100 50 20 10 5 occur with smaller quantum.
\ when preemption actually occurs.) Preemption quantum (us) \ J

L ——
Finer-grained preemption

_

UC San Diego

Compiler Instrumentation: Variable Across Programs

Example: Programs with tight loops may incur unpredictably high overhead.

Signals —=— User Interrupts Compiler Instrumentation
matrix_multiply (phoenix)
30% _ ply (p
A

S 20%
O
E 25.8%
B 10% === 170
wn AD‘E—E/E/H]

0% - B—= = - B

200 100 50 20 10 5
Preemption quantum (us)

Configuration Challenges
Where to instrument? At loops? Unroll loops? At function calls? Different program inputs?

_

UC San Diego

Tradeoffs Between Preemption Mechanisms

Compiler

Signals :
Instrumentation

User Interrupts

Lower overhead Lower overhead
with smaller quantum; with larger quantum;
High Overhead Unpredictably high overhead Consistent overhead;

with ps-scale quantum. .
in some programs;

Challenging to configure. No configure required.

_

UC San Diego

@ Preemptive User-level Schedulers

Built two preemptive user-level schedulers with user interrupts:
* Aspen-KB is built on a kernel-bypass runtime, Caladan!1.

* Aspen-Go extends the popular Go runtime.

[1] Joshua Fried et al., Caladan: Mitigating Interference at Microsecond Timescales, USENIX NSDI, 2020.

Aspen-KB Design UCSanDiego

Common design: A dedicated timer core handles timing and preempts app cores.

User-level thread

\DDD B Runqueues

X) O]

Timer core App core 1 App core 2 App core 3

0 [

_ NIC

Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

DDD mE Runqueves

X) O]

Ti mer‘ ore App core 1 App core 2 App core 3

000 OO

_ NIC

Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

DDD oo Funquees

A

Yy
,ﬁ
X:] O])

Ti mer‘ ore App core 1 App core 2 App core 3

000 OO

_ NIC

Aspen-KB Design UCSanDiego

Existing schedulers: Preempt app cores periodically = high preemption cost.

Policy #1: Preempt only when necessary.
Preempt only when NIC receive queue or scheduler runqueue has waiting tasks.

[:]DD O] Runqueues
@
A4 .
oy Avoid over 70% of
X :] D [:] preemption events!
nterrupt

Ti mer‘ ore App core 1 App core 2 App core 3

OO0 OO

_ NIC

Aspen-KB Design UCSanDiego

Policy #2: Two-queue scheduling policy.
Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues

DDD DDD New Runqueues

X = O]

Timer core App core 1 App core 2 App core 3

0 [

_ NIC

Aspen-KB Design UCSanDiego

Policy #2: Two-queue scheduling policy.
Prioritizes tasks from the new queue over the preempted queue.

Preempted Runqueues

DDD DDD New Runqueues

X e O]

Timer core App core 1 App core 2 App core 3

0 [

_ NIC

Aspen-KB Design UCSanDiego

Existing schedulers: Infrequent packet polling = new packets blocked in network stack.

Policy #3: Match polling and preemption frequencies.
App cores poll network stack at every preemption.

Preempted Runqueues

DDD DDD New Runqueues

X e O]

Timer core D App core 1 App core 2 App core 3

og 00

_ NIC

Aspen-KB Design UCSanDiego

Existing schedulers: Infrequent packet polling = new packets blocked in network stack.

Policy #3: Match polling and preemption frequencies.
App cores poll network stack at every preemption.

Preempted Runqueues
/DDD DDD New Runqueues
]

X © 0] -
Timer core [(App corel App core 2 App core 3

IO (|

_ NIC

Limitations of Aspen-Go UCSan Diego

Aspen-Go
Aspen-KB (Makes minimal changes in Go)
Go:
Match network polling and Only poll when scheduler runqueue is empty.
Aspen-Go:

preemption frequencies.) _
Offloads frequent polling to a timer core

that polls every 100 ps.

Aspen-Go is weaker than Aspen-KB at preventing head-of-line blocking.

_

Limitations of Aspen-Go UCSan Diego

Aspen-KB Aspen-Go
Preempt only when necessary Preempt periodically
Low context-switch overhead of Complicated scheduler logic with
0.2-0.9 ps context-switch overhead of 1.3-3.0 ps

Aspen-Go has a high preemption cost.

_

UC San Diego

® Application Performance Evaluation

* 1server + 1client

* Client: runs load generator

» Server: runs applications on Aspen to compare different preemption mechanisms:
(1) Signals
(2) User interrupts

(3) Compiler Instrumentation (implemented with Concord(])

[1] Rishabh lyer et al., Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling, SOSP, 2023.

Aspen-KB — DataFrames

UC San Diego

Workload: decay (5 us), ad (7 us), rmv (28 ps), ppo (75 ps), kmeans (250 ps); 20% each

<
!
!
!

Non-preemptive Signals

CONCORD CONCORD fine-tuned
—.—-.. User Interrupts _short task:
—_ €—>» 30% higher throughput
) 100 : 1000 I
= decay (short : o (lon
~ 804 y () i| 00 ppo (long)
- 4
o 601 kY 600 -
= ‘//
S 40 fz” 400 1
g\: 20 1 el 200 1
g 0 T T T 0 T

0 20 40 60 0 20

Load (KRPS)

40 60

Load (KRPS)

long task:
sacrificed throughput

Conclusion: Aspen-KB with user interrupts can reduce head-of-line blocking in ps-scale workloads.

_

UC San Diego

Aspen-Go — BadgerDB

Workload: 99% GET task (5 ps) and 1% SCAN task (800 ps)

unmodified Go
== == Aspen-Go User Interrupts

[
o
o
o

’a -
= BadgerDB GET II
> 750 A /
O
c
2 500 -
)
X 250 A
o
o
m 0 T T
0 100 200 300

Load (KRPS)

Conclusion: Aspen-Go provides limited performance gains with minimal changes to Go.

_

UC San Diego

Conclusion

Can user interrupts help achieve fine-grained preemption?
Yes, user interrupts can help.

But when a system is not fully optimized for fine-grained preemption,

user interrupts provide limited benefits.

_

	Slide 1: The Benefits and Limitations of User Interrupts for Preemptive Userspace Scheduling
	Slide 2: Datacenters Need μs-Scale Tail Latencies
	Slide 3: Service Time Varies
	Slide 4: Problem: Head-of-Line Blocking
	Slide 5: Solution #1: Overprovisioning Wastes CPUs
	Slide 6: Solution #1: Overprovisioning Wastes CPUs
	Slide 7: Solution #2: Preemption
	Slide 8: Solution #2: Preemption
	Slide 9: Limitations of User-Space Preemption
	Slide 10: New Opportunity: User Interrupts
	Slide 11: Contributions
	Slide 12: Microbenchmark Study
	Slide 13: Signals vs. User Interrupts
	Slide 14: User Interrupts vs. Compiler Instrumentation
	Slide 15: Compiler Instrumentation: Variable Across Programs
	Slide 16: Tradeoffs Between Preemption Mechanisms
	Slide 17: Preemptive User-level Schedulers
	Slide 18: Aspen-KB Design
	Slide 19: Aspen-KB Design
	Slide 20: Aspen-KB Design
	Slide 21: Aspen-KB Design
	Slide 22: Aspen-KB Design
	Slide 23: Aspen-KB Design
	Slide 24: Aspen-KB Design
	Slide 25: Aspen-KB Design
	Slide 26: Limitations of Aspen-Go
	Slide 27
	Slide 28: Application Performance Evaluation
	Slide 29
	Slide 30
	Slide 31: Conclusion

