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Frequent Faults in LLM Training

• Frequent faults: Large tasks and long durations incur more faults 

• A fault can cause a large-scale task halt: CUDA error, NVLink error, …

Fault frequency of tasks with different machine scale sizes

An average of two faults a 

day for a scale of 1000 

machines in early 2024
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• Multiple metrics go wrong sequentially under one failure

• PCIe in one machine downgraded from 6.4Gbps to 4Gbps      slow receiving

• NIC buffer overflow: NIC buffer filled up after the PCIe speed degraded

• PFC surge: inter-host bottleneck caused a surge in PFC Tx to the transmitter

• Switch buffer overflow: ECN and CNP both increased

• Throughput drop: machine NIC throughput dropped significantly

• GPU underutilization: reduced data led to declined GPU tensor core usage

An Example of PCIe Downgrading 
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• Root cause: PCIe downgrading

• Multiple abnormal metrics: 

PFC, ECN, and CNP rates, 

traffic, …
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• Multiple groups involved: Log investigation, offline testing, …

• The PCIe failure example: Thousands of GPUs slow down for 40 minutes with 
significant cost wastes

Long Time and High Costs for Fault Detection
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Manual diagnosis takes more 

than half an hour, during which 

lots of GPUs are wasted
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Current Approach and Limitations

• Trigger of a diagnosis is not timely

• Only alerted once the task has stopped

• Log content is incomplete or redundant

• Limited knowledge to decide which logs are 
useful

• Diagnosis process is time-consuming

• Time to send tickets across groups

• Each group need time to fully check logs

Training group CUDA & NCCL logs

check

Network group Network counters

check

Infrastructure group Hardware & OS logs

check

Mutual log checking & Offline testing

We need automatic and precise 

faulty machine detection 

with the logs across teams
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Real-world Fault Review and Statistics

• Hardware faults make up the majority (55.8%)

• Each metric indicates different types of faults with varying probabilities
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Challenges 1&2: Correlating Faults&Metrics

• Diverse faults: Any component may fail at any time

• No one-to-one correlation

• One fault may lead to many abnormal metrics

• One abnormal metric may be caused by different faults
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Challenges 3&4: Hard to Define Anomaly 

• Task-dependent anomaly

• E.g., GPU temperature of 70 Celsius is abnormal for 1350MHz GPU Clock

• But normal for 1800MHz GPU Clock

• Different PFC thresholds for different scale of tasks

• Noises in time-series metrics

• Jitters, inaccurate sensors, faulty data collection, and network interruptions

• Short-term noises may be misleading in fault detection
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Insight 1: Machine-level Similarity

• Machine learning is highly parallelized across machines

• Faulty machine exhibits dissimilar patterns in monitoring metrics during 
parallel training

– addressing challenges 1 & 2

PFC tx packet rate before and after a fault occurs
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Insight 2: Machine-level Continuity

• Machine learning is repetitive across iterations

• Abnormal metrics typically persist for some time

– addressing challenge 4

PFC tx packet rate before 
and after a fault occurs
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Insight 3: Separated Models

• Separated models for each metric to differentiate (ab)normal behaviors

– addressing challenge 2 & 3

PFC metric time-series PFC model

train

CPU metric time-series CPU model

train

GPU metric time-series GPU model

train

Monitoring metrics exhibit an 

"or" correlation
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Overview

The abnormality of 

monitoring metrics is 

task-dependent

Task-dependent 

anomaly

Task A Task B

Noises exist in time-

series monitoring data

Noises

Denoising for 

accurate detection 

Monitoring metrics 

exhibit an "or" 

correlation

One-to-many 

correlation

Individual models 

for each monitoring 

metric

Diverse 

fault types

Diverse faults occur at 

any component in a 

machine

Comprehensive 

monitoring
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Minder

• Per-machine time series of metrics as input, deep learning and comparison 
to identify faulty machines

• Two key steps:

• VAE-based per-metric models                      denoising and compression

• Similarity & continuity-based check             automatic and precise detection 
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VAE based Per-metric Models

• Unsupervised LSTM-based Variational Autoencoder (VAE):

• Unsupervised: hard to label task-dependent faults

• VAE: enhance the accuracy and robustness of anomaly detection w/o labels
• Learn vector distribution

• Remove noises by reconstructing into new dimensions

• Compress a high-dimensional features into a smaller dimension space

• LSTM as encoder and decoder for time series data
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VAE structure
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Similarity & Continuity-based Check 

• Similarity check

• Z-score for each metric j: Computes the machine i differing from the overall 
behavior across machines with a threshold

• Continuity check

• Detected in consecutive time windows

• Decision tree to order metrics based on their Z-scores

• Repeat the detection with each model until a faulty machine is detected 

Detected?

yes
no

Detected?

no
yes

PFC model CPU model GPU model 15



Deployment and Evaluation

• Implemented as an always-on backend service in ByteDance 

• Running tasks with a cluster of 1000+ machines

• Reducing the detection time by 99% in our dataset

• Precise comparison with a baseline

• Mahalanobis Distance (MD): variable correlations, feature PCA, …

• Minder outperforms MD by using VAE for denoising and extracting data 
patterns for a better distance calculation.
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Deployment and Evaluation

• Accuracy for various fault types

• > 90% precision for many failure types

• CPU and GPU related errors are easy to detect

• PFC, CPU, and GPU models are enough for most faults
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Deployment and Evaluation

• Comparison with different metric selections

• More metrics introduce mutual interference

• Fewer metrics undermine outlier detection capacity

• Accuracy with/without continuity

• More false alarms without continuity
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Multiple Concurrent Faulty Machines

• Two key factors

• Faulty machine scale ratio: more faulty machines impact more groups; 
faster propagation across machines 

• Granularity of monitoring data: the dissimilar pattern being overlooked 
due to coarse-grained monitoring

Multiple Abnormal 

NICs
Normal NICs

One Step of Reduce-Scatter One Step of Reduce-Scatter

Millisecond-level NIC throughput PCIe downgrading injection on two NICs 19



Experience

• Integration with other monitoring tools 

• Other monitoring tools used along: DCGM, EUD, RDMA traffic alerts, 
switch monitoring, R-Pingmesh[SIGCOMM’24], ...

• Minder’s generality

• Flexible in data granularity: second-level, millisecond-level, ...

• Flexible in the metric spectrum: out-of-band hardware counters, AOC 
counters, …

• Minder’s robustness of other faults 

• As long as the monitoring data presents discernible dissimilarities

• Not all failed tasks have the right label 

• Temporary performance fluctuations and jitters
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Conclusion

• Frequent failures in large-scale distributed training

• Faulty machine detection is critical for saving labor and resource costs

• An automatic system to tackle faulty machine detection

• Machine-level similarity and continuity 

• Unsupervised per-metric models

• Fast and accurate detection in production environments

• Minder reduces the detection time by 99% with a precision of 0.904 and F1-
score of 0.893 on average
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Thank you for listening!

➢ Check our paper: Minder: Faulty Machine Detection for Large-scale 

Distributed Model Training
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