Shoal++ High Throughput DAG BFT Can Be Fast and Robust!

BALAJI ARUN APTOS LABS ZEKUN LI APTOS LABS

FLORIAN SURI-PAYER CORNELL UNIVERSITY

SOURAV DAS

ALEXANDER SPIEGELMAN APTOS LABS

Shoal++

Partially Synchronous BFT

• N = 3f+1

Certified DAG based for scalable throughput

4.5 message delays end-to-end latency

Compared to 10.5 message delays in existing state-of-the-art

Robust under minor network glitches

- Compared to Uncertified DAG approaches
- Minimal latency degradation under message drops

Background

Narwhal: Certified DAG [Eurosys'21]

Round 2

Round 1

Decoupling data dissemination from total ordering is the key for performance

Round 3

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Eurosys 2022. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus

Round 4

Total Order with DAG

Motivation: Reducing Latency

Shoal++: Near-optimal Latency

10.5 message delays (md) \Rightarrow 4.5 message delays (md)

	Bullshark [CCS'22]	Shoal [FC'24]	Shoal++ (This Work)
Queuing Latency	1.5 md	1.5 md	0.5 md
Anchoring Latency	4.5 md	3 md	0 md
Anchor Commit Latency	6 md	6 md	4 md
	12 md	10.5 md	4.5 md

Queuing Latency

Queuing Latency

Anchoring Latency

Anchor Commit Latency

Queuing Latency on Certified DAGs

Queuing Delay: 1.5 md

Queuing Latency

Anchoring Latency

Anchor Commit Latency

Shoal++: More DAGs

3 DAGs each offset by 1 md

Queuing: 1.5 md \Rightarrow 0.5 md

Total order: round robin order

Queuing Latency

Anchoring Latency

Ensuring Total Order between DAGs

Queuing Latency

Anchoring Latency

Anchor Commit Latency

Revisiting Bullshark Order Rule

Revisiting Bullshark Order Rules

Total Order between DAGs

Anchoring Latency

Anchor Commit Latency

Queuing Latency

Anchoring Latency

Anchor Commit Latency

Existing Direct Commit Rule

Local view of replica 1

New Fast Direct Commit Rule

Recap

10.5 message delays (md) \Rightarrow 4.5 message delays (md)

	Bullshark [CCS'22]	Shoal [FC'24]	Shoal++ (This Work)
Queuing Latency	1.5 md	1.5 md	0.5 md
Anchoring Latency	4.5 md	3 md	0 md
Anchor Commit Latency	6 md	6 md	4 md
	12 md	10.5 md	4.5 md

Evaluation

Geo-distributed Deployment

- 100 Replicas spread evenly
- 10 Regions in GCP
- Round trip latency 25ms to 317ms

Protocols Under Test

- Rotating leader-based: Jolteon*
- Certified DAGs: Bullshark, Shoal
- Uncertified DAG: Mysticeti [NDSS'25]

Data

- 310 bytes per transaction
- Up to 500 transactions per DAG node

Evaluation Failure-free Performance

1.8x TPS vs other Certified DAGs 45% better latency than Shoal Sub-second latency up to 100,000 TPS

Evaluation Queuing Latency Optimization

All Certified DAG protocols benefit from 3 DAGs approach

Evaluation Network Glitch drops 0.05% messages

Drop 1% messages at 5% nodes Uncertified DAGs diminish in performance

High Throughput

• Peak of 140,000 TPS

Low sub-second Latency

- 775 ms at 1000 TPS
- 980 ms at 104,000 TPS

Robustness under network glitches

- 30% latency increase for Shoal++
 - VS.
- 10x latency increase for uncertified DAG protocols

