Everything Matters in Programmable Packet Scheduling

Albert Gran Alcoz Balazs Vass

Pooria Namyar Behnaz Arzani

Gabor Rétvari Laurent Vanbever

NSDI '25

ETH:zurich == Microsoft

Packet scheduling defines which packet
to send next and when

Buffer

Researchers have proposed dozens of scheduling algorithms

Minimize flow completion times

Prioritize packets from short flows SRPT, PIAS

Enforce fairness

Send one packet from each class at a time RR, WFQ

Minimize tail latency

Prioritize packets with high slack time FIFO+, LSTF

How can we deploy all scheduling algorithms?

Implement each of them on hardware

ASICs lack sufficient resources

How can we deploy all scheduling algorithms?

Implement each of them on hardware

ASICs lack sufficient resources

Invent a universal packet scheduler

No silver bullet in packet scheduling

How can we deploy all scheduling algorithms?

Implement each of them on hardware

ASICs lack sufficient resources

Invent a universal packet scheduler

No silver bullet in packet scheduling

Design an abstraction to represent all schedulers

How can we deploy all scheduling algorithms?

Implement each of them on hardware

ASICs lack sufficient resources

Invent a universal packet scheduler

No silver bullet in packet scheduling

Programmable scheduling

Push-In First-Out (PIFO) queues enable
programmable scheduling

Programmable scheduler

f = flow(p) 12 514 (4|31

p.rank = f.size

\ j PIFO queue /

Rank computation /

programmable

PIFO queues are characterized by
two key behaviors

Admission Scheduling
Enqueue packets with lowest ranks Forward packets in rank order
2 514 14|31

PIFO queue /

How to implement PIFO queues on hardware?

How to implement PIFO queues on hardware?

High accuracy

~200M $

Multiple years

How to implement PIFO queues on hardware?

New ASIC Programmable
switches

High accuracy
~200M $ ~T10K $

Multiple years Available today

How to implement PIFO queues on hardware?

New ASIC

High accuracy

~200M $

Multiple years

Programmable
switches

Enough accuracy

~10K $

Available today

SP-PIFO approximates PIFO’s scheduling using
strict-priority queues

NSDI'20

SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues

Albert Gran Alcoz Alexander Dietmiiller Laurent Vanbever
ETH Ziirich ETH Ziirich ETH Ziirich
Abstract Incoming packets sequence
Push-In First-Out (PIFO) queues are hardware primitives ',_>

L - - - - =

which enable programmable packet scheduling by providing

) already enqueued
the abstraction of a priority queue at line rate. However, imple-

menting them at scale is not easy: just hardware designs (not i y

implementations) exist, which support only about 1k flows. |5|4|4.| 3Ja[i] [5][4]l4]21[x]
In this paper, we introduce SP-PIFO, a programmable PIFO queue (theoretical)

packet scheduler which closely approximates the behavior strategy A

of PIFO queues using strict-priority queues—at line rate, at 2]+ [1-3] —P{2[1]3
scale, and on existing devices. The key insight behind SP- 4s) TT [>

PIFO is to dynamically adapt the mapping between packet ST

ranks and available strict-priority queues to minimize the a-[i% yzB1

scheduling errors with respect to an ideal PIFO. We present
a mathematical formulation of the problem and derive an 3-5] | [s]4]4]3] optimal output
adaptation technique which closely approximates the optimal SP-PIFO (approximation)

queue mapping without any traffic knowledge.
We ful]y imp]ement SP-PIFO in P4 and evaluate it on real Figure 1: SP-PIFO approximates the behavior of PIFO queues

————————— e~ o~ 1T 1 4 1 1Y 41 I

e

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues

ldeal case One rank per queue

5

PIFO queue

LAY
LY
Iy

1

N |
'l
v,
-
o,
|
L

1}

T
L
|‘,

<

Strict-priority

gueues

SP-PIFO approximates PIFO’s scheduling using

strict-priority queues

In practice
Multiple ranks per queue

5

PIFO queue

_ 4154

_/
lnversion

Strict-priority
queues

SP-PIFO approximates PIFO’s scheduling using
strict-priority queues and a dynamic mapping strategy

Programmable scheduler

p.rank = f.size

_ J - |5(4|4

- 1
= flow(p) N 3|2 — >ﬁ

Rank computation Mapping Strict-priority
programmable strategy gqueues

SP-PIFO approximates PIFO’s scheduling, but not admission

Input sequence

21|25 4]] 212|111 >

N

Low-priority
packets dropped

Input sequence
2 —| 2|1 -
21125 4] 1
~_— 5FH12|4 "
High-priority SP-PIFO Low-priority
packets dropped packets enqueued

AIFO approximates PIFO’s admission on
a single FIFO queue

SIGCOMM’21

Programmable Packet Scheduling with a Single Queue

Zhuolong Yu
Johns Hopkins University

Xiao Sun
Stony Brook University

Zhenhua Liu
Stony Brook University

ABSTRACT

Programmable packet scheduling enables scheduling algorithms to
be programmed into the data plane without changing the hardware.
Existing proposals either have no hardware implementations for
switch ASICs or require multiple strict-priority queues.

We present Admission-In First-Out (AIFO) queues, a new solu-
tion for programmable packet scheduling that uses only a single
first-in first-out queue. AIFO is motivated by the confluence of
two recent trends: shallow buffers in switches and fast-converging
congestion control in end hosts, that together leads to a simple
observation: the decisive factor in a flow’s completion time (FCT)
in modern datacenter networks is often which packets are enqueued
or dropped, not the ordering they leave the switch. The core idea of
AIFO is to maintain a sliding window to track the ranks of recent
packets and compute the relative rank of an arriving packet in the
window for admission control. Theoretically, we prove that AIFO
provides bounded performance to Push-In First-Out (PIFO). Empir-
ically, we fully implement AIFO and evaluate AIFO with a range
of real workloads, demonstrating AIFO closely approximates PIFO.
Importantly, unlike PIFO, AIFO can run at line rate on existing

Chuheng Hu
Johns Hopkins University

Vladimir Braverman
Johns Hopkins University

Jingfeng Wu
Johns Hopkins University

Mosharaf Chowdhury
University of Michigan

Xin Jin
Peking University

1 INTRODUCTION

Packet scheduling is a central research topic in computer network-
ing. Over the past several decades, a great many packet scheduling
algorithms have been designed to provide different properties and
optimize diverse objectives [6, 11, 23, 40, 41]. Unfortunately, most
of these algorithms, despite many novel ideas among them, never
have found their way to impact the real world. This is largely due to
the high cost to design and deploy switch ASICs to implement them,
since packet scheduling algorithms must run in the data plane at
line rate in order to process every single packet.

Programmable packet scheduling is a holy grail for packet sched-
uling as it enables scheduling algorithms to be programmed into a
switch without changing the hardware design. With programmable
packet scheduling, one is able to develop or simply download a
packet scheduling algorithm that best matches the operational goals
of the network. This enables network operators to highly customize
packet scheduling algorithms based on their needs. Particularly,
it simplifies the testing and deployment of new scheduling algo-
rithms, and it enables algorithms that are targeted at small niche
markets and thus cannot justify the high cost of developing new

AIFO approximates PIFO’s admission on
a single FIFO queue

Programmable scheduler

4 noo
p.rank = f.size v]
_ W, 41| 5
Rank computation Admission FIFO
programmable strategy Queue

AIFO approximates PIFO’s admission, but not scheduling

Input sequence

211215 4]]1 21211
N———

PIFO _
Priority

Input sequence

211125 4]] r<3 21121

N

Low-priority
AIFO packets first

Existing works only approximate one PIFO behavior

Admission Scheduling

Enqueue packets with lowest ranks Forward packets in rank order
AIFO (SIGCOMM ’21) SP-PIFO (NSDI ’20)

HCSFQ (NSDI ’21) PCQ (NSDI ’20)

AQ (SIGCOMM ’23) GearBox (NSDI ’22)

QCluster WWW ’22)
Spring (INFOCOM ’22)

Existing works only approximate one PIFO behavior

Admission Scheduling

Enqueue packets with lowest ranks Forward packets in rank order

“Everything matters”

Can we approximate both PIFO behaviors

on existing programmable switches?

Introducing...

PACKS

A programmable scheduler
approximating both PIFO behaviors

PACKS combines an admission- and a queue mapping-strategy

Input sequence

21|25 4]] 212|111

PIFO

Input sequence

2111 (12(I5]4]]1 r<3

Objective

PACKS combines an admission- and a queue mapping-strategy

Input sequence

2

1

2

? >
r </
7 .
Admission Control Queue Mapping

drop like PIFO sort like PIFO

PACKS combines an admission- and a queue mapping-strategy

Input sequence

2111125114] 1 r<?

Admission Control
drop like PIFO

PACKS combines an admission- and a queue mapping-strategy

Input sequence

2

1

2

6 packets

Buffer availability
4 packets

PACKS combines an admission- and a queue mapping-strategy

Input sequence

2

1

2

Rank distribution (W)

1

1

2 |;

r<~/

Buffer availability
B = 4 packets

PACKS combines an admission- and a queue mapping-strategy

Input sequence

2

1

2

5114]| 1 r<3

Rank distribution (W)

1

1

2 |;

Buffer availability

r drop —

B = 4 packets
3

PACKS combines an admission- and a queue mapping-strategy

Input sequence
? >
211 1(2][5]4]]1 r<3
; ? — :
Rank distribution (W) Buffer availability
: B = 4 packets
1 (]2 | Tarop = 3
] 2 4|5 maximize r,,,,
: B
p - . ., W. til -1) < —
E S quantile(r,,,, — 1) Wi

PACKS combines an admission- and a queue mapping-strategy

Input sequence
?
2111 ([2(|5]4]] r<3 .
{?

Queue Mapping
sort like PIFO

PACKS combines an admission- and a queue mapping-strategy

Input sequence
? -
2111 ([2(|5]4]] r<3 .
{? >

Rank distribution (W) Queue Availability
; B1 = 2 packets
][] 2| B2 = 2 packets
1]]2] 4|15

PACKS combines an admission- and a queue mapping-strategy

Input sequence
? -
2111 ([2(|5]4]] r<3 .
{? >

Rank distribution (W) Queue Availability
; B1 = 2 packets
][] 2| B2 = 2 packets
1]]2] 4|15

Input sequence

PACKS combines an admission- and a queue mapping-strategy

2

1

2

r<3

Rank distribution (W)

1]]2]
1|[2[|4
B1 B2 Dropped

maximize g, .
l
Zj=1 Bj

s.t., W.quantile(q)) <
| W]

How to translate the algorithm to the online case?

How to monitor the rank distribution?

How to adapt to buffer dynamism?

How to account for workload shifts?

How to translate the algorithm to the online case?

How to monitor the rank distribution?

Use a sliding window of latest ranks

How to adapt to buffer dynamism?

How to account for workload shifts?

How to translate the algorithm to the online case?

How to monitor the rank distribution?

Use a sliding window of latest ranks

How to adapt to buffer dynamism? | Z;zl(Bj— bj)
W . quantile(r) < 3

Measure per-packet queue occupancy

How to account for workload shifts? Per-packet

gueue occupancy

How to translate the algorithm to the online case?

How to monitor the rank distribution?

Use a sliding window of latest ranks

How to adapt to buffer dynamism?

Measure per-packet queue occupancy

How to account for workload shifts?

Allow a certain amount of bursts

W .quantile(r) < a-

Y., (B, — bj)

B

Burst

allowance

PACKS

Sliding window

tracking
— |1]]2
1((2 4115
Quantile

W .quantile(r) < a-

Buffer occupancy
monitoring

Y. (B—bj)

lll

Queue occupancy

PACKS

Sliding window

Admission and queue mapping

tracking
— |1]]2
1((2 4115
Quantile

Scan top-down

Enqueue if:

W .quantile(r) < a-

Buffer occupancy
monitoring

., (B —bj)

B

lll

Queue occupancy

We evaluated PACKS on hardware and simulations

Packet-level simulation (NetBench)
Performance in approximating PIFO
Sensitivity to configuration parameters

Practicality under pFabric and FQ scenarios

Hardware evaluation (Intel Tofino2)

Bandwidth allocation across priorities

Heuristic analysis (MetaOpt)

Adversarial workload analysis

PACKS reduces packet drops by up to 60%
compared to SP-PIFO

80k

60k

40k

20k

0

Number of drops

0

||

||

||

|||

25

50

Rank values

/5

100

PIFO

PACKS

SP-PIFO

AIFO

FIFO

PACKS reduces inversions by up to 7x and 15x
compared to SP-PIFO and AIFO

120k

90k

60k

30k

Number of inversions

0 25

50

Rank values

_ - -
- - - . -
IIIIIIIIIIIIIIIII Bt e e e e e e e e O O N B | L A O e S O e [} \ LI U O A I A

--—---,---,---\l‘

/5

100

PIFO

PACKS

SP-PIFO

AIFO

FIFO

PACKS reduces mean FCTs by up to 33% and 2.6x

compared to SP-PIFO and AIFO

Flow Completion Time (ms)

40

Load (%)

* .

PIFO

PACKS

~ SP-PIFO

~ AIFO

FIFO

Everything Matters in Programmable Packet Scheduling

PACKS approximates PIFO’s admission and scheduling behaviors

PACKS adapts to traffic workloads in real time

PACKS outperforms existing approaches

github.com/nsg-ethz/packs

http://github.com/nsg-ethz/packs

