
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

When P4 Meets Run-to-completion Architecture
Hao Zheng, State Key Laboratory for Novel Software Technology, Nanjing University,

China; Xin Yan, Huawei, China; Wenbo Li, Jiaqi Zheng, and Xiaoliang Wang, State
Key Laboratory for Novel Software Technology, Nanjing University, China; Qingqing

Zhao, Luyou He, Xiaofei Lai, Feng Gao, and Fuguang Huang, Huawei, China;
Wanchun Dou, Guihai Chen, and Chen Tian, State Key Laboratory

for Novel Software Technology, Nanjing University, China

https://www.usenix.org/conference/nsdi25/presentation/zheng-hao

When P4 Meets Run-to-completion Architecture

Hao Zheng†, Xin Yan△, Wenbo Li†, Jiaqi Zheng†, Xiaoliang Wang†, Qingqing Zhao△,
Luyou He△, Xiaofei Lai△, Feng Gao△, Fuguang Huang△, Wanchun Dou†, Guihai Chen†, Chen Tian†

† State Key Laboratory for Novel Software Technology, Nanjing University, China
△ Huawei, China

Abstract
P4 programmable data planes have significantly accelerated
the evolution of various network technologies. Although the
P4 language has gained wide acceptance, its further develop-
ment encounters two obstacles: limited programmability and
the cessation of the next-generation Tofino chip. As a hard-
ware manufacturer, we try to address the above dilemmas by
opening the P4 programmability of our run-to-completion
(RTC) chips. At present, there is no publicly available expe-
rience in this field. We introduce P4RTC, a comprehensive
consolidation of our experiences applying the P4 language to
RTC architecture. P4RTC introduces a new P4 architecture
model and a set of beneficial extern constructs to fully lever-
age the RTC architecture’s programmability. Besides, we
share the insights we have gained from designing and imple-
menting compilers. We also provide a performance model to
facilitate profiling P4RTC’s performance on user-customized
P4 code. We prototype P4RTC on an RTC chip with 1.2
Tbps bandwidth. Case-oriented evaluation demonstrates that
P4RTC can enhance P4 programmability and reduce the bur-
dens of RTC development. The performance model can pro-
vide substantial insights into optimizing P4RTC programs.

1 Introduction
P4 programmable data planes have significantly accelerated
the evolution of various network technologies, such as in-
network computing [1, 2], congestion control [3, 4], load
balancing [5], and network measurement [6–8]. As a domain-
specific language (DSL) for data-plane programming, P4 has
earned widespread recognition in academia and industry for
its excellent abstraction. It makes network packet processing
more accessible and easier to program. Empirical evidence
demonstrates that P4 has become the de facto standard for
data plane programmability [9, 10].

Although the P4 language has gained wide acceptance,
its further development currently encounters two obstacles.
Firstly, its programmability is limited, making implement-
ing many practical designs and algorithms challenging. Cur-
rently, P4 is inherently tied to pipeline architectures (e.g.,

RMT [11]), in which hardware constraints make many al-
gorithms and designs have to make compromises on accu-
racy or performance [6, 7, 12, 13]. For instance, updating the
minimum counter among multiple counters cannot be im-
plemented directly in pipeline architectures since the stage
where the minimum counter is located cannot be reaccessed
unless recirculation. Secondly, Intel has announced that they
will stop developing the next generation of the Tofino se-
ries [14], which currently stands as one of the most popular
P4 programmable ASICs. To conclude, the P4 community ur-
gently needs a successor hardware platform with Tbps-level
throughput and more flexible programmability.

As a hardware manufacturer, we try to overcome the above
dilemmas by opening the P4 programmability of our run-to-
completion (RTC) chips. RTC is another packet processing
architecture significantly different from the pipeline archi-
tecture, allowing different packets to have independent pro-
cessing times. Packets can achieve line-rate forwarding when
simple processing is sufficient, while others can be processed
below line rate to enable more complex logic. Adapting the
P4 language to the RTC architecture carries significant impli-
cations for the evolution of the P4 programmable data plane.
On the one hand, P4 developers can use RTC devices to im-
plement the functionalities that are difficult to implement
in the pipeline architecture. In particular, RTC devices can
perform any number of memory read/write operations. Thus,
the ‘updating the minimum counter’ function can easily be
implemented. On the other hand, P4 can facilitate the rapid
development of the RTC-based data plane. P4 can effectively
abstract away the underlying hardware details. Moreover, the
recent advancements in the P4 programmable data plane can
be easily applied to RTC devices with minimal effort, such
as in-network computing [1, 2, 15–17], verification [18–21],
packet scheduling [22–24], and formal foundations [25].

At present, there is no publicly available experience in
adapting P4 to high-speed RTC devices. Existing extensions
to the P4 language [26, 27] focus on reducing the complex-
ity of developing functions and improving resource utiliza-
tion. They cannot overcome the programmability limitations

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1487

of P4 inherent in pipeline architectures. Some efforts (e.g.,
P4Tc [28], P4-DPDK [29], T4P4S [30]) have successfully
adapted P4 for CPU platforms. However, they haven’t yet
extended or optimized P4 for specialized RTC packet pro-
cessors capable of Tbps throughput. Existing high-level
programming languages for high-speed RTC devices are pre-
dominantly C-like languages [31]. Their API interfaces are
specialized around their hardware and closed to the public
community, making it challenging for researchers to under-
stand the underlying architecture and detailed usage.

We propose P4RTC, a comprehensive summary of our ex-
perience in applying the P4 language to the RTC architecture.
Our contributions can be summarized as follows:

Firstly, we present a new P416 architecture model, which
bridges the P4 language and RTC architecture, providing a
unified RTC programming abstraction. Based on the architec-
tural model, we introduce a series of novel extern constructs
to exploit the flexibility of RTC devices. We show the sim-
ilarities and differences between P4RTC programming and
traditional P4 programming and show how P4RTC can be
used to develop functions that are challenging to realize in
the pipeline architecture. We also discuss how parallel safety
issues are appropriately handled in the P4 code.

Secondly, we share our insights while designing compil-
ers, including table deployments and microcode generation.
When deploying P4 tables, we must balance the read/write
load among memory banks to improve performance. We
develop an integer programming (ILP) model and leverage
Profile-Guided Optimization (PGO) [32] strategies to im-
prove the performance of the memory system. When generat-
ing microcode, we first transform P4 intermediate represen-
tation (IR) to microcode IR rather than directly to microcode
instructions. This approach greatly enhances the correctness
and efficiency of the generated microcode and makes it easier
for the compiler to adapt to different microcode versions.

Thirdly, we provide a performance model to facilitate pro-
filing the performance of P4RTC programs. Due to the re-
source sharing of the RTC architecture, bottlenecks can occur
when many packets simultaneously access the same channel
or hardware components. P4 programs no longer have de-
terministic throughput and delay as they are in the pipeline
architecture. The performance model can provide various
performance metrics (e.g., pps, latency) to help users identify
the bottlenecks of their P4 code under specific traffic patterns.

We prototype P4RTC in Huawei NetEngine 8000 F1A-C
routers with 1.2 Tbps bandwidth. The adaptation to higher-
throughput RTC chips is ongoing. We conduct several prac-
tical use cases. The first case is accurate per-flow monitor-
ing. With the help of P4RTC, the chip can monitor up to
50M concurrent flows at near line rate, and reduce the band-
width overhead by 86% to 90% compared with an existing
Tofino-based solution [33]. The second case demonstrates
that P4RTC reduces users’ burdens on developing RTC de-
vices. In five projects we examined, P4RTC can reduce lines

2024-9-18 1

�1

Stage 0 Stage 1 Stage M

...

Parser

SRAM HBM

Deparser

Di
sp

at
ch

er

Mem Mem Mem

Manycore

Parse HBM Op.

Parse Deparse

Parse SRAM Op. Hdr Op. Deparse

Hdr Op.

...

��

��

��

microcode instructions Re
or

de
r

(a) Pipeline Architecture

2024-9-18 1

�1

Stage 0 Stage 1 Stage M

...

Parser

SRAM HBM

Deparser

Di
sp

at
ch

er

Mem Mem Mem

Manycore

Parse HBM Op.

Parse Deparse

Parse SRAM Op. Hdr Op. Deparse

Hdr Op.

...

��

��

��

microcode instructions Re
or

de
r

(b) RTC Architecture

Figure 1: Difference between pipeline and RTC architectures.

of code (LOC) by 4.6x to 7.7x compared to microcode pro-
gramming. This efficiency is comparable to another special-
ized high-level language developed for the chip. Additionally,
using P4RTC, researchers can reproduce the functionalities
of existing advances by modifying only 4.3% to 13.0% of the
code. In the last case, we show how the performance model
guides us in optimizing P4 programs.

This work does not raise any ethical issues.

2 Background and Motivation

2.1 Architecture Flavors of Dataplane
Packet processing is typically divided into a data plane and
a control plane. The data plane, also known as the fast path,
is responsible for the processing and forwarding of packets,
whereas the control plane handles management logic (e.g.,
adding routing entries). Developers utilize various hardware
platforms, such as CPUs, FPGAs, and ASICs, to implement
the data plane for fast packet processing. However, despite
significant differences among the hardware platforms, the
architecture for the data plane can be fundamentally catego-
rized into pipeline and run-to-completion (RTC) [34].

As shown in Figure 1a, packets orderly pass through sev-
eral stages in the pipeline architecture. A packet executes part
of the processing logic at each stage and then moves to the
next stage. Multiple packets can be processed simultaneously
in different stages to achieve the ‘pipelined’ processing. This
compact processing is highly efficient when handling high-
speed packet arrivals [34]. However, it also introduces some
limitations. Firstly, the physical pipeline length is limited in
ASICs, which restricts its ability to handle complex logic.
Secondly, to ensure the pipeline’s efficiency and maximize
throughput, resources such as memory are distributed in each
stage and cannot be shared between different stages [12].

In the RTC architecture, many cores can independently
parse, process, and forward packets. When a packet arrives,
a dispatcher assigns the packet to an idle core, and then the

1488 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Comparison of pipeline and RTC ASICs
Feature Pipeline ASIC RTC ASIC

Throughput (Serial) High (Parallel) Moderate
Latency O(100) ns O(100) ns - ?

Memory Capacity 10’s MB 10’s - 1000’s MB
Logic Length Limited Unlimited

packet completes the entire processing on that core. This
design allows different packets to have independent process-
ing time, which overcomes the limitations introduced by the
pipeline architecture. In particular, packets can perform un-
limited read and write operations to a shared memory to
implement complex algorithms at the expense of increasing
processing time. As for the forwarding performance, RTC
devices adopt a manycore architecture to improve the overall
throughput to the Tbps level [31]. However, this can lead to
memory conflicts and packet disorders.

Table 1 provides an overview of the distinct features of
the two architectures. The pipeline architecture typically
achieves high throughput under serial processing, while the
RTC architecture needs to increase the number of forwarding
cores (i.e., parallelism) to improve throughput. Regarding
latency, the pipeline architecture generally exhibits deter-
ministic low latency in forwarding, whereas RTC devices’
latency depends on the specific processing logic of the pack-
ets. As for memory capacity, RTC supports large-capacity
memory such as high-bandwidth memory (HBM). Finally,
both architectures have the potential for programmability.

2.2 Dataplane Programmability and P4
Reconfigurable Match-action Table (RMT [11]) is a famous
programmable switch architecture. It is a typical pipeline ar-
chitecture consisting of several reconfigurable match-action
units (MAU). Developers program the data-plane logic by
reconfiguring the structure of tables within the MAUs, in-
cluding the match-phase key and the action-phase instruc-
tions. However, as mentioned earlier, its programmability is
constrained, including the limited number of MAU stages,
limited capacity and isolated memory. As another crucial
packet processing architecture, some RTC devices [31] are
also programmable by reloading microcode into chips. Re-
garding programmability, RTC devices offer more flexibility
because they remove the constraints imposed by physical
stages (i.e., fixed lengths and isolated memory). This signifi-
cantly bridges the gap left by the pipeline architecture.

For chip users, configuring the pipeline hardware or de-
veloping microcode can be laborious. P4 is a high-level lan-
guage for data-plane programming, which was initially pro-
posed in 2014 [35]. The P4 data plane consists of a series of
programmable blocks, mainly including parser, ingress,
egress, and deparser. These programmable blocks com-
pose a logical pipeline named a top-level package or pipeline
package. As an instance, the main object in Figure 2 is a

𝐏𝟒𝟏𝟔 core language
• syntax and semantics
• keywords, types, control

structures, ...

Architecture-specific
• intrinsic metadata
• template blocks and packages
• extern constructs (e.g.,

hashing, counters)

core.p4 library
• built-in P4 constructs (e.g.,

error codes, std. match kind)

include <core .p4 >

include < arch_specific .p4 >
control ingress_block {

Counter () total_pkt ;

table ipv4_lpm {
key = { hdr.ipv4 : lpm; }
actions = { ... }

}
apply {

ipv4_lpm.apply();

total_pkt.count();
}

}
...
Pipeline (parser, ingress, egress,

deparser) main

Figure 2: P416 language structures

pipeline package. Developers can customize programmable
blocks within the pipeline package. P4 enables developers
to implement diverse packet processing logic using only
general-purpose operations and table look-ups. More impor-
tantly, P4 provides a general packet processing abstraction to
shield developers from the underlying hardware details.

However, the original P414 language is complex, mainly
attributed to the integration of architecture-specific features
into the language, making it hard to adapt to other archi-
tectural models [36]. P416, as an improved version of P414,
separates the architecture-specific features from the P4 core
language. As shown in Figure 2, the basic syntax, seman-
tics, and keywords (e.g., table, apply) are defined in P416
core language. In contrast, the programmable blocks, ex-
tern constructs (e.g., Counter), and pipeline packages are
architecture-specific. P416 makes the P4 language relatively
stable, leaving the architecture-specific parts to be imple-
mented by target manufacturers. However, all existing P4
architecture models are based on the pipeline architecture,
such as the PISA [37] used in P414, Portable Switch Architec-
ture (PSA) [36], and Tofino native architecture (TNA) [38]
introduced after P416. The adaptation of P4 to the RTC ar-
chitecture remains unexplored, leaving a gap in the current
research community. As a result, when researchers consider
utilizing the P4 programmable data plane for designing new
network features, they commonly regard the pipeline archi-
tecture as their primary target.

Providing a publicly available RTC programming model
based on P4 is highly essential. Firstly, introducing the RTC
architecture will enhance the programmability of the P4 pro-
grammable data plane. As discussed earlier, the pipeline
architecture sacrifices programmability to enhance overall
forwarding efficiency, which forces many algorithm imple-
mentations to make compromises. For instance, some sys-
tems execute their algorithm through recirculations, albeit at
the cost of reduced bandwidth [4, 39]. Others [6, 40] opt to
compromise on the design of their algorithms, implementing
an approximate version instead, which inevitably results in a
decrease in the algorithm’s accuracy. Fortunately, the RTC
architecture can make up this aspect, thanks to their unlimited
logical length and large-capacity shared memory. With this

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1489

flexibility, P4 programmers can implement network features
previously unachievable in the pipeline architecture. On the
other hand, P4 can facilitate the rapid development of the
RTC-based data plane. P4 abstracts away the tedious hard-
ware details for users, while ongoing support for P4 allows
existing advancements from the P4 community to remain
valuable within the RTC architecture.

3 P4RTC Overview
As shown in Figure 3, the workflow of P4RTC consists of
four stages: P4 programs, compilation, firmware, and targets.

Firstly, users define their customized data plane and con-
trol plane programs. In the compilation stage, a P4 compiler
transforms the P4 code into microcode instructions, and a mi-
crocode compiler further generates a binary file according to
it. The deployment of P4 tables is also completed at this stage.
The binary file and configuration files generated during the
compilation stage are collectively called the chip’s firmware.
Finally, the firmware is loaded onto the target hardware.

Given that both P4 and our RTC chip have reached mature
stages individually, we strive to maximize component reuse
during the implementation of P4RTC. As shown in Figure 3,
the grey components are reused components. Specifically,
P4 has public specifications and open-source compilers [41].
The chip used is not a brand-new design but was chosen from
our existing RTC chips, previously used for fixed-function
routers. Therefore, some legacy components exist, such as
the microcode compiler and software development kit (SDK).
However, we still encounter the following three challenges:
How to extend P4 to fully leverage the flexibility of RTC
without altering P416 core language? Since the P4 lan-
guage was initially designed around the pipeline architecture,
directly referencing the existing architecture models cannot
fully utilize the flexible programmability of RTC devices. To
this end, we propose a new P4 architecture model for the RTC
architecture. Under this architecture model, we provide a set
of novel extern constructs (in RTC.p4) rather than modify the
syntax and semantics of P4. We will introduce the new P4
architecture model and extern constructs in §4.
How does the compiler map the P4 language to the RTC
architecture? Due to architectural differences in the hard-
ware, the compiler needs to be designed explicitly for the
RTC architecture, especially in table deployments and mi-
crocode generation. We implement a new backend for the
open-source P4C compiler to generate RTC-specific mi-
crocode and table structures. We will introduce the novel
issues in the table deployments of the RTC architecture and
the experience in the microcode generation process in §5.
How do we verify the performance of the chip after load-
ing customized P4 code? Unlike deterministic performance
in the pipeline architecture, the flexibility of the RTC archi-
tecture makes it easy to introduce poor performance code.
Conducting real machine experiments takes a lot of time
and effort. It involves setting up connections, generating traf-

Main
.p4

Chip

Performance
Model

Data-plane
Program

Main
.cpp

Control-plane
Program

Program Compiler Firmware Target

Frontend

Midend

Backend

Table
Struct

SD
KMicro

Code

P4C

MC
Compiler

Table
Deployment

Tool

Main
.bin

Chip
cfg.

RTC
.p4 IR

IR

User-define Existing Tool Auto-generate New*

Table
API

Extern Ctrl

table
.json

Figure 3: P4RTC system overview. The newly introduced
components to address the challenges are colored orange.

fic, and collecting and analyzing results. More importantly,
it is hard to accurately capture the performance details of
the chip’s internal components. To this end, we introduce a
performance model to help users verify their P4 code in §6.

4 P4RTC Programming
4.1 New P4 Architecture Model
Figure 4 illustrates the new P4 architecture model introduced
by P4RTC. Considering a regular packet forwarding path, a
packet enters the chip through the RX MAC and is dispatched
to an idle core, where each core can be understood as a thread.
Once a packet is handled by a core, all operational logic is
executed on that core, where P4 programs define how to
process and forward the packet. After processing, the packet
is sent to a reorder engine for flow-level sequencing. Then,
the packet is sent to the output queue of the destination port
through the traffic manager (TM). After leaving the TM, the
packet bypasses egress processing by default and is directly
sent to TX MAC. If egress processing is necessary, it will
again be assigned to a core. In general, the processing logic
of the cores is the programmable part of the RTC architecture,
while the other parts are non-programmable.

When programming RTC devices with the P4 language,
the programmable blocks that users must write reserve
those in the pipeline architecture, including the parser, in-
gress/egress control flow, and deparser. In other words, in the
perspective of packets, packets are still processed by a log-
ical pipeline composed of the traditional P4 programmable
blocks. At the same time, the user’s programming habits are
also preserved. However, the concept of ‘pipeline’ in P4RTC
has the following three main differences.
Many-core programming model. Packets are no longer
serially processed by a single pipeline of physical stages.
In contrast, there are many cores in RTC devices, and each
packet is processed by an independent ’logical pipeline’ op-
erating on a dedicated core. Users define a pipeline package
consisting of P4 programmable blocks, and then the cores
run this package to process the packets in parallel. As shown

1490 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2023/9/20 1

RX / TX
MAC

𝑪𝟏

…

Dispatcher

Cores
Foreground

𝑪𝟐

𝑪𝒃

Memory
on-chip

Background

Counter

Table 1

Reorder
Traffic

Manager

P4 Code
…
control ingress1 {

if (! table1.apply().hit)
counter.count();

} …
Pipeline(parser, ingress1, deparser1)

foreground_pipe;

control ingress2 {
sleep.ms(100); counter.clear();

} …
Pipeline (ingress2, deparser2)

background_pipe;

𝑪𝟏
𝑪𝟐

𝑪𝒃

Other
Tables &
Counters

off-chip

…

Select an Idle
foreground core

Packets from
cores

R

R&W

W

Rx Pkts.

Tx Pkts.

Figure 4: P4 programming abstraction for RTC architectures

in Figure 4, both the core C1 and the core C2 are running the
foreground_pipe package defined in the P4 code. While C1 is
accessing table 1, C2 updates a counter.
Unlimited logical length. In the RTC architecture, packet
processing is performed by a dedicated core executing mi-
crocode instructions. The logical length is no longer con-
strained by the number of physical stages, as is the case in
the pipeline architecture. This feature dramatically enhances
chip programmability, but at the same time, it can easily lead
to inefficient code, which degrades overall throughput.
Shared memory subsystem. Packets are no longer sequen-
tially processed by multiple physical stages. Thus there is no
need to access separate memory on these stages. Multiple
cores can simultaneously access a shared memory system
through on/off-chip memory controllers and crossbars. Given
the shared nature of the memory, any memory location (e.g.,
match-action tables, counters, and registers) can be accessed
multiple times during the packet processing. As an instance,
both C1 and C2 can access the counter extern in Figure 4.

4.2 Extensions for Pipeline Package
In the RTC architecture, the running instructions of each core
can be defined separately. To provide a simplified view of
P4 programming, the pipeline packages are grouped into two
roles: foreground pipeline and background pipeline. By de-
fault, most cores run the foreground pipeline package, respon-
sible for parsing, processing, and forwarding received packets.
The other cores step back into the background. As shown in
Figure 4, foreground cores C1 and C2 are running the P4 code
in the ‘foregound_pipe’. Cb is running the ‘backgound_pipe’
independently as a background core, which resets the counter
every 100 ms.

A core running the background pipeline is stuck in an
infinite loop of ingress → deparser → ingress → ··· . The
background pipeline has no parser block since it does not
require packet reception. However, it does not mean that
background pipelines cannot process packets. Like standard
P4 programming, users can use a setValid() method to

enable protocol headers within the ingress block. When the
control flow reaches the deparser, protocol headers marked
as valid will be emitted. Therefore, the background pipeline
can also generate customized packets.

To further exploit the programmability of the background
pipeline, we introduce the following P4 extern constructs:
1 extern Foreach{
2 void apply(in bit <32> start ,in bit <32> end);
3 }
4 extern void break();
5 extern void continue();
6 extern Sleep{
7 void us(in bit <32> value);
8 void ms(in bit <32> value);
9 }

The Foreach() extern allows iteratively access to table en-
tries by binding with a table. It can also be bound to a virtual
table to implement a generic range for loop. The reason why
we do not introduce a ‘for loop’ syntax like C/C++ is to retain
the P4 core language, which is a crucial design philosophy of
P416 for its target-independent feature. The Sleep() extern
controls the activation frequency of background cores. The
following example shows how to use the Foreach extern:
1 control back_ingress{
2 action __for_act0(KEY_T k, DATA_T data)
3 { /* loop body */ }
4 @tbl("t")
5 @methods(act0="__for_act0")
6 Foreach() foreach_t;
7 Sleep() sleep;
8 apply{
9 sleep.ms(10);

10 /* setValid() related headers. */
11 foreach_t.apply();
12 }
13 }
14 control back_deparser {
15 apply { pkt.emit(hdr); }
16 }
17 Pipeline(back_ingress , back_deparser) back_pipe;

In the above code, the Foreach extern binds a table called
t and a loop body (i.e., __for_act0). The core running
the back_pipe will traverse each row of t, read the match
key and action data of that row, and pass them to the
loop body to perform the user-customized operations. Once
the table traversal is complete, the control flow is trans-
ferred from back_ingress to back_deparser, and the
back_deparser block sends a packet if any headers are valid.
The Sleep extern can control the loop frequency.

It seems that the background pipeline is similar to tradi-
tional control plane threads. The main differences are that
(i) it runs directly on the data plane and has a shorter control
loop, and (ii) it has better performance scalability.
Inter-pipeline communication. To better assist in functional
decoupling between different pipeline roles, we propose a
Queue extern construct.
1 extern Queue<T> {
2 Queue(bit <32> depth);
3 bool push(in T value);
4 bool pop(out T value);
5 bool popWait(out T value);
6 }

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1491

The pipelines running on different cores can implement
message push, pop, and a blocking pop through a parallel-
safe queue extern. For example, the Queue extern can be
used to implement messages passing between the foreground
pipeline and the background pipeline. In the measurement
project outlined in §7.1, we implement a background pipeline
to periodically age out expired flow entries (i.e., those that
need to be reported to an analyzer). Nevertheless, employing
a linear scan of the flow table proves inefficient, as the flow
entries accessed by the background pipeline frequently do
not meet the aging criteria. We adopt a smart aging tech-
nology to improve aging performance. When a foreground
pipeline receives the FIN or RST flagged packet, it pushes
the corresponding flow information into a Queue extern. The
background pipeline just needs to pop flow IDs from the
queue and directly complete the aging of the flows, which
can significantly improve the aging performance. The corre-
sponding P4RTC pseudocode can be found in Appendix A.

4.3 Extensions for Match-action Table
In P4RTC, we expand the types of match-action tables. Ac-
cording to the deployment location, tables can be divided into
on-chip tables and off-chip tables. The on-chip tables have
lower accessing latency, but the capacity is only a few tens
of MB. In contrast, off-chip tables have GB-level capacity,
but the access latency is an order of magnitude higher.

According to the memory layout, tables can be classified
into content addressing tables (CAT) and linear addressing
tables (LAT). The CAT tables perform exact matching and
longest prefix matching (LPM) by storing keys in SRAM
or specialized memories like content-addressable memory
(CAM). In comparison, the LAT tables directly utilize the
key as the memory index and then perform the action phase
based on the action ID and action data stored in the memory
address. LAT tables are more efficient than CAT tables, while
it is limited by the capacity of the address space. They are
commonly used for short-bit-width matching operations, such
as Port-VLAN mapping.

The default definition of the P4 table is an on-chip CAT
table. Users can use annotations to change the attributes of
the table, including deploy locations, table layouts, and bank
group size in the following format:
1 @linear
2 @offchip(x4)
3 table offchip_linear { ... }

The first annotation, @linear, indicates that a LAT table is re-
quired instead of CAT table. Another annotation, @offchip,
signifies that the table needs to be deployed in off-chip
memory to accommodate a larger table size. Additionally,
users can specify the size of the bank group in the format
@offchip(x<group_size>), which improves memory read
performance for off-chip tables.

In the RTC architecture, packets can operate table entries
directly in the data plane, both for CAT tables and LAT ta-
bles. Compared with existing pipeline architecture that can

only add or delete CAT entries from the control plane, the
in-data-plane table operations have a shorter control loop,
thus reducing the delay from milliseconds to hundreds of
nanoseconds. To utilize this feature, we introduce a new P4
extern construct:
1 extern TableOperation {
2 TableOperation();
3 bool entryDel <KEY_T >(in KEY_T k);
4 bool entryAdd <KEY_T , DATA_T >(in KEY_T k,
5 in bit <8> act,
6 in DATA_T data);
7 bool entryGet <KEY_T , DATA_T >(in KEY_T k,
8 out bit <8> act,
9 out DATA_T data);

10 }

Table operations enable much of the logic that needs to be
initially executed on the control plane to be efficiently of-
floaded to the data plane. A typical use case is to use the
on-chip memory as a cache for off-chip big tables. We can
dynamically add frequently hit entries to the on-chip memory.
The code below shows an implementation example:
1 control foreground_ingress{
2 table onchip_cache { ... }
3 @offchip
4 table offchip_tbl { ... }
5 apply{ /* Only apply the off-chip table
6 when a cache miss occurs. */
7 if(onchip_cache.apply().hit == false)
8 offchip_tbl.apply();
9 }

10 }
11 control background_ingress{
12 @tbl(onchip_cache)
13 TableOperation() cache_op;
14 @tbl(offchip_tbl)
15 TableOperation() tbl_op;
16 apply{
17 /* Find a heavy key, denoted as 'hk' */
18 bool re = cache_op.entryAdd(hk, act, data);
19 if(re == false)
20 { /* The cache is full. Make eviction. */}
21 }
22 }

In the above code, we implemented a simple caching strat-
egy for an off-chip large table named offchip_tbl. The
foreground_ingress only accesses offchip_tbl in case
a cache miss happens. The background_ingress, which is
packaged in a background pipeline, periodically loads hot
entries into the onchip_cache through the entryAdd() ta-
ble operation. Note that we omit the selection of the heavy
key and the cache eviction strategy in the code. Through the
Foreach extern, users can customize their heavy-key selec-
tion and idle-key eviction strategies.

Furthermore, we introduce a lastRowIndex() extern
method. If the lastRowIndex() method is called after ap-
plying table or executing table operations, it returns the
row id of the operated table entry. An important use of
lastRowIndex() is attaching counters and registers with
match-action tables, thereby constructing some advanced
data structures. For example, suppose we have an exact
matching table with size n and a counter array with size 2n.
With the lastRowIndex() extern, the counters can serve as
a one-to-two supplement for the exact matching table, which

1492 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

can implement packet&byte counters for each table entry.
1 control foreground_ingress{
2 table tbl {... size=64}
3 Counter() cnt(128);
4 apply{
5 table_1.apply();
6 bit <32> row_index = lastRowIndex();
7 bit <32> pkt_index = row_index << 2;
8 bit <32> byte_index = (row_index << 2) + 1;
9 cnt.count(pkt_index , 1);

10 cnt.count(byte_index , getPktLength());
11 }
12 }

4.4 Parallel Safety
A non-negligible concern is the handling of parallel safety of
the RTC architecture. Most data-plane operations are state-
less operations, which will have no parallel contention issues.
However, some stateful operations involve modifying the de-
vice state. If not handled, it will lead to unpredictable errors.

The first type of stateful object is the Counter extern. The
counter operations including count, get, and set, are imple-
mented as atomic operations in hardware. The second type of
stateful operation is the TableOperation extern that makes
addition and deletion of flow tables. These operations involve
inserting items into a hashing structure, such as cuckoo hash-
ing [42] or d-left hashing [43], which incurs parallel issues
when handling hash conflicts. Fortunately, users can regard
the entire operation as an atomic transaction because efficient
hardware locks guarantee parallel security.

However, when the above operations are combined to im-
plement read-modify-write operations, it can lead to race
conditions if not correctly synchronized. The key to ensuring
parallel safety in read-modify-write operations is to prevent
all other cores from initiating the same operation until the
first core has completed its task. In P4RTC, we provide a
Lock extern construct to solve this problem.
1 extern Lock {
2 Lock(bit <32> size);
3 bool acquire(in bit <32> idx, in bool blocking);
4 bool release(in bit <32> idx);
5 }

The underlying of the Lock extern is the test-and-swap (TAS)
atomic instruction. A core obtains a lock that can either be
blocking or non-blocking. The distinction is whether the core
chooses to spin and wait if it cannot acquire the lock imme-
diately. A Lock extern can contain multiple lock instances,
and users can implement row-level locking by utilizing the
lastRowIndex() extern method mentioned before.

5 P4RTC Compilation
This section will discuss our experience in developing the
P4RTC compiler, focusing on two main aspects: table de-
ployments and generating microcode instructions.

5.1 Table Deployments
Table deployment entails strategically allocating P4-defined
tables (i.e., match-action tables, counters, registers) to the
chip’s physical memory resources. In the RTC architec-

Table Information

Cores

Table Search Engine(s)
Address Mapping

Bank 1 Bank 2 Bank 3 Bank 4 B 𝑚𝑚

on-chip off-chip

Crossbar

Table Deployment View

Profile

Deploy
Table n

Controller

Crossbar

𝑇𝑇3𝐹𝐹1 …𝑇𝑇3𝐹𝐹2
𝑇𝑇1𝐹𝐹1 𝑇𝑇1𝐹𝐹2 …𝑇𝑇2

…

Cache

Table 1
Type: em
Loc: on-chip
Size: 1024
Load: 100%

Table 2
Load: 50%...

Table 3
Loc: off-chip...

…

Figure 5: Table deployment view in P4RTC

ture, there is no need to consider table dependencies as in a
pipeline architecture; only capacity constraints and perfor-
mance optimization issues need to be addressed.
Problem Constraints and Optimization Objective. The ta-
ble deployment problem in the RTC architecture can be mod-
eled as a variant of the bin packing problem (BPP), where the
bins are the memory banks, and the items are the P4-defined
tables. There are two main differences from the standard
BPP. Firstly, in the shared memory subsystem, read and write
requests caused by table matching and TableOperation ex-
tern will be queued in the channel of corresponding memory
banks. Specific memory banks may suffer congestion due to
simultaneous access by multiple cores, and the negative effect
is more evident for off-chip deployed tables with higher la-
tency. Therefore, the optimization goal is not to minimize the
number of memory banks used but to minimize the maximum
load among the memory banks to optimize the performance
of the memory subsystem 1.

Secondly, P4RTC allows table fragmentation to utilize
memory capacity fully. Specifically, we can fragment a table
to satisfy capacity constraints or to reduce the load the table
imposes on a single bank. However, each table fragmentation
occupies an address mapping entry in table search engines
(TSEs 2), and the number of mapping entries available is
limited. Consequently, this introduces a constraint that the
quantity of table shards must be less than the number of
supported mapping entries.

Based on the above considerations, we use an integer lin-
ear programming (ILP) model to solve the problem. Given
n tables and m memory banks, each table i has a size of si,
where i = 1,2, . . . ,n. For each memory bank j, it has a capac-
ity of c j, where j = 1,2, . . . ,m. We define an integer variable
xi j to represent the size of the fragment of the table i put in
the memory bank j. We consider this variable as an integer
(included between 0 and si). We also define a decision vari-
able yi j that equals 1 if the fragment of the table i is deployed

1Note that the load balancing of memory requests involves more hard-
ware components (e.g., table search engines). Our experience is that as long
as the load balancing of memory banks is done well, it is straightforward to
handle the balancing of other upper-layer components.

2Table search engines are specialized memory controllers optimized for
table operations, efficiently managing table search, read, and write requests.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1493

on memory bank j, and 0 otherwise. Then, the total number
of fragments of table i can be expressed as ∑

m
j=1 yi j. The fol-

lowing ILP model formalizes the table deployment problem:

minimize max
j∈{1,...,m}

n

∑
i=1

xi j · li (1)

subject to
m

∑
j=1

xi j = si, ∀i ∈ {1, . . . ,n} (2)

n

∑
i=1

xi j ≤ c j, ∀ j ∈ {1, . . . ,m} (3)

xi j

si
≤ yi j, ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} (4)

n

∑
i=1

m

∑
j=1

yi j ≤ T (5)

xi j ∈ N, ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} (6)
yi j ∈ {0,1}, ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} (7)

Here, li denotes the load incurred by the unit size of table
i, while T denotes the maximum number of available map-
ping entries. The optimization objective (Equation (1)) is to
minimize the maximum access frequency among all memory
banks. Equation (2) is the table assignment constraint, ensur-
ing that each table is fully deployed. Equation (3) guarantees
that the capacities of the memory banks are not exceeded.
Equation (4) mandates that the variable yi j must be equal to
1 as soon as the variable xi j is strictly greater than 0. Finally,
Equation (5) ensures that the maximum number of mapping
entries does not exceed.
Profile-guided optimization on table deployments. The
above model relies on load information for each table. How-
ever, table access’s read/write frequency is determined by
runtime traffic and specific table entries. We employ a profile-
guided optimization (PGO) compilation strategy. Initially, we
adopt a profile where each branch evenly shares the load of its
parent node. Then, after running the switch, a new table load
information can be obtained 3, and we use the new profile to
solve the table deployment problem again. Empirically, we
perform PGO 2-3 times in the early stages of deployment to
gradually adapt to the traffic of the new environment. In the
subsequent stages, we will only proceed with a new round of
PGO iteration if there is a significant change in the workload
and it stabilizes in the new state.

The PGO’s performance maintenance and enhancement
are especially noticeable in scenarios with significant work-
load changes. For instance, within our traffic measurement
project, we employ distinct off-chip tables to measure TCP,
UDP, and RoCEv2 traffic, enabling the collection of protocol-
specific metrics. The DAG graph of the program is shown
in Figure 6a. Initially, TCP traffic predominated; however,
with the gradual integration of RDMA technology across
the network, RoCEv2 traffic has steadily gained prominence
over the past years, as it also occurs in Microsoft Azure
Storage [44]. We are comparing the performance of two
strategies: one utilizing PGO optimization and the other not

3The compiler will automatically insert counter instrumentation.

Parser

TCP Measure

Deparser

If IP?

If TCP?

If UDP?

UDP Measure

RDMA Measure

If RDMA?

1.0

1.0

0
0.8 0.2

0.99

0.01

1.0

0.9
0.1

1.0

1.0

(a) Program DAG

20% 30% 40% 50% 60%
RoCEv2 Traffic Ratio(%)

300

400

500

600

Th
ro

ug
hp

ut
 (m

pp
s)

No PGO
PGO

(b) Throughput

20% 30% 40% 50% 60%
RoCEv2 Traffic Ratio(%)

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

D
el

ay
 (u

s)

No PGO
PGO

(c) Latency (400 Mpps)

Figure 6: Effect of PGO on performance.

using PGO. The PGO optimization strategy employs the op-
timal configuration based on the latest workload, whereas the
non-PGO strategy consistently utilizes the initial configura-
tion with RDMA traffic at 20%. As shown in Figure 6, as
the proportion of RoCEv2 traffic increases to 60%, the non-
PGO strategy’s throughput drops by 64.7%, and its latency
increases by 2.3x. In contrast, the performance of the PGO
strategy remains good, with a slight performance degradation
as RoCEv2 traffic needs to access more off-chip tables.

5.2 Microcode Generation
P4 is a high-level language that cannot be run directly on
chips. Microcode are the closest language to the RTC chip’s
machine code, usually built from a specific instruction set de-
signed by manufacturers. We must implement a compiler to
generate the microcode instructions from P4 code. We reuse
the open-source P4C project [41] but rewrite the compiler’s
backend. Due to space constraints in the paper, we provide
an overview of the compilation process and our experiences.
A detailed example of compiling P4 to microcode and inter-
mediate representations (IR) is elaborated in Appendix B.
Define Microcode IR. Lowering P4 IR (i.e., generated by
P4C) directly into the microcode would increase the coupling
between the compiler and microcode, making the compila-
tion process difficult to control. We introduce a Microcode
IR, enabling detailed control, optimization, and validation,
considering the specific characteristics and constraints of the
target hardware, as we will discuss further. Figure 7 shows
part of Microcode IR definition for the Foreach extern:
Transform the P4 IR to Microcode IR. This is the most
complex step in the compilation process. An example of the
Foreach extern translation is shown in Figure 8.
1. Align P4 IR with Microcode IR. Specific Microcode IR

nodes can be directly mapped from the equivalent nodes
in P4 IR, such as assignment and logical operations shown
in the right part of Figure 7. This step identifies the cor-
responding operations and control flow constructs within

1494 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 /*McIR definition diff.
2 from P4IR */
3 class Branch:Statement;
4 class Label:Expression;
5 class LabelStmt
6 :Statement;
7 class EntryGet
8 :Statement;
9 ...

/*McIR definition equiv.
to P4IR */

class AssignmentStmt
:Statement;

class IfStatement
:Statement;

class Lss
:Expression;

...

Figure 7: Microcode IR Definition

the Microcode IR that align with those in the P4 IR. Dur-
ing this process, the compiler must carefully handle type
translation, including endianness, padding, and bit width.

2. Implement P4-specific and architecture-specific constructs.
Handle complex P4 constructs such as match-action tables
by mapping them to corresponding Microcode IR nodes.
New extern constructs introduced by P4RTC are imple-
mented in this step. As shown in Figure 8, the Foreach
extern is mapped to an assembly-like loop control flow,
including a series of label statements, jump instructions
(i.e., Branch), and loop body. This process reads relevant
information from multiple parts of the P4 IR based on the
desired loop structures in microcode.

3. Manage Dependencies. Ensure that the semantic proper-
ties and constraints of the P4 program are preserved in
the Microcode IR. Consider the dependencies between P4
IR operations and ensure they are correctly accounted for
in the Microcode IR. This includes preserving data de-
pendencies, control flow dependencies, and ensuring the
proper ordering of instructions in the microcode to avoid
hazards or incorrect behavior.

4. Validate and Verify. Ensure the correctness and integrity
of the transformed Microcode IR. This includes maintain-
ing correct packet processing behavior, adherence to P4
language rules, compliance with micro-architectural re-
strictions or limitations, and checking for potential errors
and inconsistencies.

Emit Microcode Instruction. After completing the previous
phases, the lowered Microcode IR can be directly mapped
to the microcode instructions (please see Appendix B). The
more details are lowered in the Microcode IR level, the less
complexity there is in the emission stage, resulting in fewer
introduced bugs. Besides, when facing different versions of
microcode, Microcode IR allows developers to reuse existing
compilation logic, especially target-independent compilation
passes, such as assignment and logical operations.

6 Performance Model
In the RTC architecture, P4 codes and actual workloads sig-
nificantly impact the chip performance. Therefore, strict per-
formance testing must be conducted on P4 programs be-
fore deployment. Besides standard functionality models like
BMv2 [45], we introduce a performance model for P4RTC to
explore potential bottlenecks and optimize users’ programs.

P4Action name=act0
parameters: <...ParameterList...>
body: <...body...>

P4Table name=t
properties: TableProperties
Property name=actions
value: <...ActionList...>

Property name=key isConstant=0
value: <...user_meta.key...>

P4Action name=__foreach_act0
annotations: Annotations

Annotation name=foreach
parameters: <...ParameterList...>
body: <...body...>

Declaration_Instance name=foreach_t
annotations: Annotations
Annotation name=tbl text=t
<...annotations...>

type: Type_Name name=Foreach

LabelStmt
label: Label name=entry

AssignmentStatement
<...assign 0 to i...>

Branch
target: Label name=cond

LabelStmt
label: Label name=cond

IfStatement
condition: Lss
<...if i < end_idx...>

Branch
target: Label name=body

Branch
target: Label name=exit

LabelStmt
label: Label name=body
<...foreach body ...>

AssignmentStatement
<...assign i+1 to i...>

Branch
target: Label name=cond

LabelStmt
label: Label name=exit

P4 IR Microcode IR

Figure 8: An example of P4 IR to Microcode IR

In general, performance models are utilized to evaluate
metrics such as the throughput and latency of a chip un-
der specific programs and workloads [46, 47]. We build a
system-level model utilizing the Electronic System Level
(ESL) methodology, leveraging the robust capabilities of the
SystemC library [48]. We model main hardware components,
encompassing cores, the traffic manager (TM), TSEs, the
memory subsystem (MSS), and their interconnections (e.g.,
FIFOs and back-pressure mechanisms). The model employs
a global clock (i.e., sc_clock in SystemC) to synchronize
the chip components, define their operational frequencies,
govern instruction execution, and regulate packet rates. As a
result, the model can simulate cycle-level behaviors across a
range of packet processing scenarios, enabling a more granu-
lar real-time depiction of each chip component’s status.

As shown in Figure 9, our performance model uses four
steps to obtain the performance metrics:
Step 1. Given a P4 program and a specific workload (i.e., a
packet trace), we perform functional simulations [45, 49] to
process packets, record the microcode paths that each packet
traverses, and then save the paths to a codepath file. For in-
stance, the sequence Parser→ TCP Measure→ Deparser
in Figure 6a represents an execution path. To realize the
system-level simulation, we must also model the hardware
behaviors. Specifically, when applying a P4 table, packets ac-
cess various table entries, thus generating different microcode
instructions that interact with multiple memory banks. How-
ever, for large P4 projects, recording all different microcodes
for an extensive number of packets may result in the codepath
file becoming excessively large. To deal with these scenarios,
we use a probabilistic approach to construct the codepath
file. We summarize all microcode paths in the codepath file
as multiple branches and sub-branches of microcodes, each
bearing distinct probabilities. The below example illustrates
a sample codepath file:
1 <codepath name="demo" bw="1000Mpps">
2 <microcode percentage="90%">
3 <!-- microcode branch 1 --> ...
4 <io type="read" table="IPv4", tse="0", ...>
5 <!-- sub-branch -->

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1495

Traffic
Generator Dispatcher

Memory
Subsystem

<codepath>
<microcode P=“90%”>

...
</microcode>
<microcode P=“10%”>

...
</microcode>

</codepath>
Codepath

header
timestamps (t0, t1, ...)

RO&Traffic
Manager

Performance
Monitor

Throughput
Latency

Cores

...
<io type=“R” table=“IPv4”>
<bank id=1 P=“50%” ...>
<bank id=2 P=“50%” ...>

</io>
...

Inter
connect

Microcode 1

ChipSim

Generate
packets with different microcode

Running microcode (waiting and queing)

Program
Microcode 1

Microcode 2Trace

Config

PCAP

Obtain a codepath1

2

34
Calculate
throughput and latency

Figure 9: Workflow of performance model

6 <bank id="31" percentage="50%", .../>
7 <bank id="32" percentage="50%", .../>
8 </io>
9 <action>

10 <!-- sub-branch -->
11 <alu name="l3_fwd" percentage="90%", .../>
12 <alu name="drop" percentage="10%", .../>
13 </action> ...
14 </microcode>
15 <microcode percentage="10%">
16 <!-- microcode branch 2 --> ...
17 </microcode>
18 </codepath>

There are two microcode branches, each with several sub-
branches. The selection of the branches and sub-branches is
performed dynamically in the following steps.
Step 2. After obtaining a codepath file, we upload it to a
traffic generator. The traffic generator then interprets the
codepath and generates traffic at a specified rate. Specifically,
the traffic generator creates packets based on the probability
of each microcode branch. Each packet includes a reference
to the relevant microcode instructions, an identifier, and a
metadata space for storing timestamps, which are used to
calculate the latency experienced in each chip component.
Step 3. The chip simulator receives packets and navigates the
microcode instructions. For each instruction, the simulator
only emulates the performance behavior rather than execut-
ing it precisely. Take an IO instruction as an example: it
will generate specific IO requests for the memory subsystem
and emulate behaviors, including addressing and queuing a
particular memory bank. Each behavior costs specific cycles,
consistent with the chip’s microarchitecture [50]. When en-
countering a sub-branch, the simulator dynamically employs
a probabilistic process to execute the selected instruction,
such as bank selection. When a component is over-stressed,
a back-pressure signal is sent to upstream components, trig-
gering chip-wide performance impacts.
Step 4. A performance monitor receives the packet output
from the chip simulator and summarizes various performance
metrics, including throughput and latency. Moreover, the per-
formance monitor can acquire load or utilization information
on each hardware component by inserting monitoring probes

200 400 600 800
Traffic Input (Gbps)

0

2

4

6

8

O
ut

pu
t (

G
bp

s)

P4RTC-Mon
TurboFlow

(a) Bandwidth Cost

200 400 600 800
Traffic Input (Gbps)

0.000

0.002

0.004

0.006

0.008

Pr
op

or
tio

n

Output Traffic
Failed Traffic

(b) Traffic Proportion

Figure 10: Accurate Per-flow Monitoring

(i.e., codes for monitoring) into the chip simulator.
In §7.3, we demonstrate how the performance model can

guide performance optimization and assess its accuracy by
comparing its outputs with those of a hardware chip.

7 Case Study
We prototype P4RTC on a 1.2-Tbps RTC chip with 8 GB
high-bandwidth memory (HBM), used in Huawei NetEngine
8000 F1A-C (NE8000F1AC) routers. The adaptation to
higher-throughput chips with the same architecture is on-
going. We evaluate P4RTC through several use cases and
summarize the following findings:
P4RTC benefits P4 programmability. It incorporates RTC
architectures into the P4 community, enabling previously un-
supported functions in P4. A comprehensive case on accurate
per-flow monitoring demonstrates that P4RTC can monitor
up to 50 million concurrent flows at a near line rate. When
the input traffic surpasses 800 Gbps, the report traffic sent
from the data plane to a collector occupies less than 0.06%
of the total input bandwidth (see case 1).
P4RTC benefits RTC-based devices. Besides existing C-
like high-level languages, P4RTC offers another efficient
method for data plane development. It reduces the lines
of code (LOC) by 4.6x-7.7x compared with microcode pro-
gramming. Besides, existing P4 functions can be migrated to
P4RTC with minimal effort (see case 2).
The performance model benefits P4RTC optimization. It
details the performance impact of different P4 codes on the
chip under specific traffic inputs. In case3, we employ the
performance model iteratively to identify system bottlenecks
and implement targeted optimizations. Finally, we enhance
the throughput to 14.4 times that of the baseline program.

7.1 Case#1: Accurate Per-flow Monitoring
Accurate per-flow monitoring is helpful for network perfor-
mance analysis since it completely records flow-level traffic
information. Due to the limitation of memory capacity and
programmability, the task is challenging to implement on
existing pipeline ASICs. Existing efforts employ a sampling
strategy to monitor packets with general-purpose servers [51].
Nevertheless, this sampling strategy can lead to imprecise
statistics and result in substantial information loss.

With P4RTC, implementing accurate per-flow monitoring

1496 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

becomes straightforward and flexible. Specifically, we can
define an off-chip big table as a flow measuring table (FMT)
and the matching key as a flow key (e.g., 5-tuple). Then,
some counters and registers are defined to record the size,
times-tamps, and other flow attributes. When a packet arrives
in the foreground pipeline, it first tries to match a table entry.
If a table miss occurs, we use TableOperation to add a new
flow entry for recording. On the other hand, the FMT needs
to age in time to make room for new flows. We complete
the aging function by combining the foreground pipeline and
background pipeline. In the foreground pipeline, we identify
end-of-flow signals such as TCP’s FIN and RST flags. In the
background pipeline, we use the Foreach extern to traverse
table entries, and we also use the Queue extern to acceler-
ate the performance (see Appendix A). If a flow record is
marked as finished or there is no packet access after a certain
timeout, the flow will be reported and deleted from the FMT.
This background pipeline can be bound to multiple cores to
improve aging performance, where each core is responsible
for aging a portion of the FMT.

We implement the above function with P4RTC. We con-
nect a NE8000F1AC device to two ToR switches of a storage
cluster (with a mix of client traffic and backend traffic) and
mirror the truncated upstream packets to the device. With 4
GB of memory, it can measure up to 50M concurrent flows.
It is lower than ideal (i.e., 4 GB / the size of a flow record)
due to hardware details such as memory alignment and re-
dundancy of hash tables to reduce conflicts. We compare the
performance with TurboFlow [33], a state-of-the-art accu-
rate per-flow monitoring system based on Tofino. Turboflow
evicts older flow records to the control plane when a hash col-
lision occurs. In contrast, P4RTC can use the TableOperation
extern to add flow records to an exact match table, automat-
ically handling hash conflicts in the data plane. Therefore,
it can continue to measure flows regardless of conflicts, re-
ducing the additional bandwidth overhead caused by hash
conflicts. As shown Figure 10a, our solution reduced the
bandwidth overhead for sending measurement data by 86%
to 90%. Note that packets will fail when multiple packets of a
flow add entries simultaneously (i.e., there is a row lock when
adding table entries). In Figure 10b, we find that the band-
width occupied by the failed packets is less than 0.2% of the
input traffic. This is because packet failures occur only during
the creation of flow entries due to lock contention. Once the
table entries for the flows are established, subsequent packet
counter updates proceed normally. Since the time taken to
build entries in the data plane is short, the number of failed
packets is minimal.

7.2 Case#2: Reduce RTC Developing Burden
Table 2 shows the comparison of the number of P4 code lines
required for developing functions such as accurate flow mon-
itoring in case 1 and SpaceSaving algorithm in Appendix C.
We find that P4 can reduce the LOC development by 4.6x-

Table 2: Lines of Code (LOC). ‘Modification (Mod.)’ denotes
the P4 code modifications required to migrate the original
project to P4RTC. The required LOCs are comparable to
NPC++, in the O(100) range.

Project Microcode P416 (Mod.)
Accurate Flow Mon. 2825 547 (N/A)

SpaceSaving [52] 1166 152 (N/A)
CocoSketch [6] 1244 270 (35)

AES Encryption [15] 2883 561 (41)
ONTAS [53] 3029 637 (27)

7.7x compared with microcode programming in the five
projects. This efficiency is comparable to NPC++, a C-like
programming language developed for the chip. The NPC++-
related projects are still under development. We estimate
the LOC needed to replicate the same functionality using
pseudo code written in NPC++ syntax. NPC++ will take
about O(100) LOC and the error comes from the constant-
level discrepancies between P4RTC and NPC++ languages
(e.g., table definition, ‘for loop’ syntax). Additionally, we
successfully compile CocoSketch [6], ONTAS [53], and AES
encryption [15] by only modifying 4.3%-13.0% of P4 code.
These modifications mainly involve the architecture-specific
extern constructs (e.g., RegisterAction), and similar extern
constructs can be easily found in P4RTC.

7.3 Case#3: Using the Performance Model
This case specifically aims to evaluate how the performance
model can identify bottlenecks within the memory subsystem
and guide optimization. Figure 11 is a sample P4 code we use
when opening up the system process. The baseline deploy-
ment does not take any optimization. As shown in Table 3, its
throughput is less than 40 Mpps. Then, we repeatedly used
the performance model to guide the optimization.

Firstly, observing the status of memory banks in the base-
line, we find that the utilization gap among the banks is
significant. The maximum utilization is 0.99, the minimum
is 0.03, and the average is low. This prompts us to adopt table
fragments and use the load-aware table deployment strategy
discussed in §5. After this optimization (O1), the system’s
performance increased 7.2 times.

After O1, we further find that load imbalance also existed
among the table search engines (TSEs). We use a similar
load-aware strategy to rebind the P4 tables to multiple TSEs
(O2), balancing the loads of multiple TSEs. This performance
optimization increases performance by 1.38 times.

Thirdly, when the bottleneck of TSEs is eliminated, the
bottleneck point is once again transferred to the memory
subsystem. We find all memory banks’ utilization is above
90%. This reveals that the off-chip deployment of the P4
tables limits the system throughput. We offloaded a small
number of hotspot table entries to on-chip memory (O3). This
further improves performance to 1.45x over O2.
The Accuracy of the performance model. In the above

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1497

T1
T2

T3
T4

1.0

0.9

0.1
1.0

1.0

1.0

Figure 11: Case 3 P4 program. All off-chip tables.

Table 3: Performance analysis with the performance model.

Opt.
Banks Util.
(Min / Max)

Avg

TSEs Util.
(Min / Max)

Avg

Throughput
Model
(Mpps)

Throughput
Hardware

(Mpps)

Baseline 0.03 / 0.99
0.09

0 / 0.09
0.04 39.4 38.3

+ O1. Table
Redeploy

0.63 / 0.90
0.68

0.03 / 0.63
0.32 283.9 279.4

+ O2. TSE
Rebind

0.90 / 0.99
0.95

0.44 / 0.44
0.44 392.7 401.9

+ O3. Table
Caching

0.77 / 0.96
0.82

0.63 / 0.63
0.63 569.5 561.0

experiments, the overall error of the performance was less
than 3%, which is sufficient for the optimization scenario. We
discuss the lessons and current limitations about the accuracy
of the performance model in §8.

8 Lessons and Discussion
P4 language design for the run-to-completion architec-
ture. The expressiveness of the RTC architecture is not lim-
ited to the externs proposed in this paper. In practice, we also
developed some more specialized P4 extensions based on
application requirements, such as using @cache annotation
to directly support the table caching mechanism. Considering
openness, the ultimate design of the P4 language for the RTC
architecture merits discussion within open communities.
Performance challenges introduced by programmability.
The NE8000F1A series comprises high-performance com-
modity routers designed with fixed functions that are opti-
mized for their functional logic and configurations. Upon
introducing programmability, we encountered numerous per-
formance challenges. Some early applications consistently
achieved throughputs of less than 100 Gbps. Contrasting
with conventional deterministic performance switches, both
toolchain developers and users need to invest additional effort
to achieve the best performance.
Accuracy boundary of the performance model. Replicat-
ing all hardware details in a cycle-accurate manner is a mon-
umental engineering challenge. The modeling granularity
directly affects the accuracy and execution efficiency of the
performance model. Currently, the performance model is
built based on actual needs to maintain satisfactory predic-
tion accuracy in the typical (or known) scenarios (e.g., ta-
ble deployments). Due to the probabilistic execution of the
codepath, the current model cannot simulate some detailed
behaviors, such as complex locking mechanisms and scenar-
ios where the specific order of packets matters. Our ongoing
development is focused on refining the model’s traffic gener-
ator and chip simulator to support a richer array of scenarios
and performance behaviors.
Parallel safety issues in P4RTC. Users must use the Lock

extern reasonably according to their scenarios and consider
potential performance risks. Better-performance concurrency
management methods are worthy of future research, espe-
cially case-by-case optimizations and trade-offs. Our explo-
ration in Appendix C provides an optimization case.
Future work. We will enrich P4RTC and adapt it to our
higher-throughput RTC chips. Support for P4 Runtime is also
in the planning process. Besides, we are applying P4RTC
to more practical projects, such as traffic generators [54],
in-network storage [1], and ML training acceleration [55].

9 Related Work
RMT [11] makes the concept of programmable switches a
reality. Nevertheless, RMT is plagued by sub-optimal mem-
ory utilization due to the coupling between memory and the
MAU stage. dRMT [56] enhances memory utilization and
improves execution efficiency by moving table memories out
of pipeline stages and into a centralized pool. P4ALL [26]
and O4 [57] are extensions of P4 that support elastic switch
programming and reduce the voluminosity of P4 code, re-
spectively. Lyra [58] is a cross-platform language for data
plane programming. Although these efforts simplify func-
tion development and enhance resource utilization, they are
not designed to overcome the inherent limitations of P4’s
programmability within pipeline architectures.

There have been some applications and research
around RTC architecture devices. Turboflow [59] em-
ploys Netronome NFP-4000 for implementing network flow
records generation. Trio [31] is Juniper’s programmable
chipset using RTC architecture. The language design of
P4RTC, along with its experience in compiler optimization
and performance modeling, can serve as a reference for Trio.
P4TC [28] focuses on applying the P4 language to the Linux
tc layer. It is still programmed from a pipeline perspective.
Designing new externs to extend the P4 language to the
RTC architecture and leveraging the RTC architecture are
not within the scope of its design.

10 Conclusion
We proposed P4RTC, a comprehensive summary of our expe-
riences in applying the P4 language to the RTC architecture.
P4RTC includes a unified programming model with novel
extern constructs, compilers, and a performance model. Case-
oriented evaluation demonstrates that P4RTC can enhance
P4 programmability and reduce RTC development burdens.

Acknowledgments
We thank our shepherd, Srinivas Narayana, and the anony-
mous reviewers for their constructive feedback. This research
is supported by the National Natural Science Foundation
of China under Grant Numbers 62325205, 62072228, and
62172204 , the Fundamental Research Funds for the Central
Universities, the Collaborative Innovation Center of Novel
Software Technology and Industrialization, and the Jiangsu
Innovation and Entrepreneurship (Shuangchuang) Program.

1498 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica, “NetCache: Balancing Key-
Value Stores with Fast In-Network Caching,” in
Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York,
NY, USA: Association for Computing Machinery,
Oct. 2017, pp. 121–136. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3132747.3132764

[2] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and
X. Jin, “NetLock: Fast, Centralized Lock Management
Using Programmable Switches,” in Proceedings
of the Annual conference of the ACM Special
Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, ser. SIGCOMM ’20.
New York, NY, USA: Association for Computing
Machinery, Jul. 2020, pp. 126–138. [Online]. Available:
https://dl.acm.org/doi/10.1145/3387514.3405857

[3] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng,
L. Tang, Z. Cao, M. Zhang, F. Kelly, M. Alizadeh,
and M. Yu, “HPCC: high precision congestion
control,” in Proceedings of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’19.
New York, NY, USA: Association for Computing
Machinery, Aug. 2019, pp. 44–58. [Online]. Available:
https://dl.acm.org/doi/10.1145/3341302.3342085

[4] K. Liu, C. Tian, Q. Wang, H. Zheng, P. Yu, W. Sun,
Y. Xu, K. Meng, L. Han, J. Fu, W. Dou, and
G. Chen, “Floodgate: taming incast in datacenter
networks,” in Proceedings of the 17th International
Conference on emerging Networking EXperiments
and Technologies, ser. CoNEXT ’21. New York,
NY, USA: Association for Computing Machinery,
Dec. 2021, pp. 30–44. [Online]. Available: https:
//doi.org/10.1145/3485983.3494854

[5] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rex-
ford, “Hula: Scalable load balancing using pro-
grammable data planes,” in Proceedings of the Sym-
posium on SDN Research, 2016, pp. 1–12.

[6] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao,
P. Liu, R. Zhang, and J. Jiang, “CocoSketch: high-
performance sketch-based measurement over arbitrary
partial key query,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, ser. SIGCOMM ’21.
New York, NY, USA: Association for Computing
Machinery, Aug. 2021, pp. 207–222. [Online].
Available: https://doi.org/10.1145/3452296.3472892

[7] H. Namkung, Z. Liu, D. Kim, V. Sekar, and
P. Steenkiste, “{SketchLib}: Enabling Efficient Sketch-

based Monitoring on Programmable Switches,” 2022,
pp. 743–759. [Online]. Available: https://www.usenix.
org/conference/nsdi22/presentation/namkung

[8] ——, “Sketchovsky: Enabling ensembles of sketches
on programmable switches,” in 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23). Boston, MA: USENIX Association, Apr.
2023, pp. 1273–1292. [Online]. Available: https://www.
usenix.org/conference/nsdi23/presentation/namkung

[9] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An
Exhaustive Survey on P4 Programmable Data Plane
Switches: Taxonomy, Applications, Challenges, and Fu-
ture Trends,” IEEE Access, vol. 9, pp. 87 094–87 155,
2021, conference Name: IEEE Access.

[10] R. Bifulco and G. Rétvári, “A survey on the pro-
grammable data plane: Abstractions, architectures, and
open problems,” in 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing
(HPSR). IEEE, 2018, pp. 1–7.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,
“Forwarding metamorphosis: fast programmable match-
action processing in hardware for SDN,” ACM
SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 99–110, Aug. 2013. [Online]. Available:
https://doi.org/10.1145/2534169.2486011

[12] V. Sivaraman, S. Narayana, O. Rottenstreich,
S. Muthukrishnan, and J. Rexford, “Heavy-Hitter
Detection Entirely in the Data Plane,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: Association for Computing Ma-
chinery, Apr. 2017, pp. 164–176. [Online]. Available:
https://dl.acm.org/doi/10.1145/3050220.3063772

[13] R. Ben-Basat, X. Chen, G. Einziger, and O. Rot-
tenstreich, “Efficient Measurement on Programmable
Switches Using Probabilistic Recirculation,” in 2018
IEEE 26th International Conference on Network Proto-
cols (ICNP), Sep. 2018, pp. 313–323, iSSN: 1092-1648.

[14] “Intel halts Tofino networking chip development - Sili-
con Valley Business Journal.” [Online]. Available: https:
//www.bizjournals.com/sanjose/news/2023/01/26/
intel-halts-development-of-tofino-switch-chips.html

[15] X. Chen, “Implementing aes encryption on pro-
grammable switches via scrambled lookup tables,”
ACM SIGCOMM 2020 Workshop on Secure Pro-
grammable Network Infrastructure (SPIN 2020), 2020.

[16] S. Vaucher, N. Yazdani, P. Felber, D. E. Lucani, and
V. Schiavoni, “ZipLine: in-network compression at

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1499

https://dl.acm.org/doi/10.1145/3132747.3132764
https://dl.acm.org/doi/10.1145/3132747.3132764
https://dl.acm.org/doi/10.1145/3387514.3405857
https://dl.acm.org/doi/10.1145/3341302.3342085
https://doi.org/10.1145/3485983.3494854
https://doi.org/10.1145/3485983.3494854
https://doi.org/10.1145/3452296.3472892
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi22/presentation/namkung
https://www.usenix.org/conference/nsdi23/presentation/namkung
https://www.usenix.org/conference/nsdi23/presentation/namkung
https://doi.org/10.1145/2534169.2486011
https://dl.acm.org/doi/10.1145/3050220.3063772
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html
https://www.bizjournals.com/sanjose/news/2023/01/26/intel-halts-development-of-tofino-switch-chips.html

line speed,” in Proceedings of the 16th International
Conference on emerging Networking EXperiments
and Technologies, ser. CoNEXT ’20. New York,
NY, USA: Association for Computing Machinery,
Nov. 2020, pp. 399–405. [Online]. Available: https:
//doi.org/10.1145/3386367.3431302

[17] H. Zhu, T. Wang, Y. Hong, D. R. Ports, A. Sivara-
man, and X. Jin, “{NetVRM}: Virtual register memory
for programmable networks,” in 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 155–170.

[18] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Ne-
greanu, and C. Raiciu, “Debugging P4 programs
with vera,” in Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’18. New York,
NY, USA: Association for Computing Machin-
ery, Aug. 2018, pp. 518–532. [Online]. Available:
https://dl.acm.org/doi/10.1145/3230543.3230548

[19] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee,
R. Soulé, H. Wang, C. Caşcaval, N. McKeown,
and N. Foster, “p4v: practical verification for
programmable data planes,” in Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’18. New
York, NY, USA: Association for Computing Machinery,
Aug. 2018, pp. 490–503. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3230543.3230582

[20] D. Dumitrescu, R. Stoenescu, L. Negreanu, and
C. Raiciu, “bf4: towards bug-free p4 programs,” in Pro-
ceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for
computer communication, 2020, pp. 571–585.

[21] M. A. Noureddine, A. Hsu, M. Caesar, F. A. Zaraket,
and W. H. Sanders, “P4aig: Circuit-level verification
of p4 programs,” in 2019 49th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and
Networks–Supplemental Volume (DSN-S). IEEE, 2019,
pp. 21–22.

[22] N. K. Sharma, M. Liu, K. Atreya, and A. Krishna-
murthy, “Approximating fair queueing on reconfig-
urable switches,” in 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
2018, pp. 1–16.

[23] B. Vass, C. Sarkadi, and G. Rétvári, “Programmable
packet scheduling with sp-pifo: Theory, algorithms and
evaluation,” in IEEE INFOCOM 2022-IEEE Confer-
ence on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE, 2022, pp. 1–6.

[24] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim,
A. Krishnamurthy, and A. Sivaraman, “Programmable
calendar queues for high-speed packet scheduling,”
in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp.
685–699. [Online]. Available: https://www.usenix.org/
conference/nsdi20/presentation/sharma

[25] R. Doenges, M. T. Arashloo, S. Bautista, A. Chang,
N. Ni, S. Parkinson, R. Peterson, A. Solko-Breslin,
A. Xu, and N. Foster, “Petr4: formal foundations for p4
data planes,” Proceedings of the ACM on Programming
Languages, vol. 5, no. POPL, pp. 1–32, 2021.

[26] M. Hogan, S. Landau-Feibish, M. Tahmasbi Arashloo,
J. Rexford, D. Walker, and R. Harrison, “Elastic
switch programming with p4all,” in Proceedings of
the 19th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 168–174. [Online].
Available: https://doi.org/10.1145/3422604.3425933

[27] A. G. Alcoz, C. Busse-Grawitz, E. Marty, and
L. Vanbever, “Reducing P4 language’s voluminosity
using higher-level constructs,” in Proceedings of the
5th International Workshop on P4 in Europe, ser.
EuroP4 ’22. New York, NY, USA: Association for
Computing Machinery, Dec. 2022, pp. 19–25. [Online].
Available: https://doi.org/10.1145/3565475.3569078

[28] J. Hadi Salim, D. Chatterjee, V. Nogueira, P. Tammela,
T. Osinski, E. Haleplidis, B. Sambasivam, U. Gupta,
K. Jain, and S. Sethuramapandian, “Introducing
P4TC - A P4 implementation on Linux Kernel
using Traffic Control,” in Proceedings of the 6th on
European P4 Workshop, ser. EuroP4 ’23. New York,
NY, USA: Association for Computing Machinery,
Dec. 2023, pp. 25–32. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3630047.3630193

[29] P. Community, “p4-dpdk-target,” https://github.com/
p4lang/p4-dpdk-target, 2023, accessed: 2024-8-30.

[30] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel,
and S. Laki, “T4P4S: A Target-independent Compiler
for Protocol-independent Packet Processors,” in
2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), Jun. 2018,
pp. 1–8, iSSN: 2325-5609. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8850752

[31] M. Yang, A. Baban, V. Kugel, J. Libby, S. Mackie,
S. S. R. Kananda, C.-H. Wu, and M. Ghobadi, “Using
trio: juniper networks’ programmable chipset - for
emerging in-network applications,” in Proceedings
of the ACM SIGCOMM 2022 Conference, ser.

1500 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://doi.org/10.1145/3386367.3431302
https://doi.org/10.1145/3386367.3431302
https://dl.acm.org/doi/10.1145/3230543.3230548
https://dl.acm.org/doi/10.1145/3230543.3230582
https://dl.acm.org/doi/10.1145/3230543.3230582
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://doi.org/10.1145/3422604.3425933
https://doi.org/10.1145/3565475.3569078
https://dl.acm.org/doi/10.1145/3630047.3630193
https://dl.acm.org/doi/10.1145/3630047.3630193
https://github.com/p4lang/p4-dpdk-target
https://github.com/p4lang/p4-dpdk-target
https://ieeexplore.ieee.org/abstract/document/8850752
https://ieeexplore.ieee.org/abstract/document/8850752

SIGCOMM ’22. New York, NY, USA: Association
for Computing Machinery, Aug. 2022, pp. 633–648.
[Online]. Available: https://dl.acm.org/doi/10.1145/
3544216.3544262

[32] P. Wintermeyer, M. Apostolaki, A. Dietmüller, and
L. Vanbever, “P2go: P4 profile-guided optimizations,”
in Proceedings of the 19th ACM Workshop on Hot Top-
ics in Networks, 2020, pp. 146–152.

[33] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith,
“Turboflow: information rich flow record generation
on commodity switches,” in Proceedings of the
Thirteenth EuroSys Conference, ser. EuroSys ’18.
New York, NY, USA: Association for Computing
Machinery, Apr. 2018, pp. 1–16. [Online]. Available:
https://dl.acm.org/doi/10.1145/3190508.3190558

[34] H. Zolfaghari, H. Mustafa, and J. Nurmi, “Run-to-
Completion versus Pipelined: The Case of 100 Gbps
Packet Parsing,” in 2021 IEEE 22nd International Con-
ference on High Performance Switching and Routing
(HPSR), Jun. 2021, pp. 1–6, iSSN: 2325-5609.

[35] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker, “P4: programming
protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, Jul. 2014. [Online]. Available:
https://dl.acm.org/doi/10.1145/2656877.2656890

[36] “P4~16~ Portable Switch Architecture (PSA).” [On-
line]. Available: https://p4.org/p4-spec/docs/PSA.html

[37] D. D. Robin and J. I. Khan, “P4TE: PISA switch based
traffic engineering in fat-tree data center networks,”
Computer Networks, vol. 215, p. 109210, Oct. 2022.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S138912862200295X

[38] I. Tofino, “Tofino2,” May 2023. [Online]. Avail-
able: https://www.intel.com/content/www/cn/zh/
products/network-io/programmable-ethernet-switch/
tofino-2-series.html

[39] R. Ben-Basat, X. Chen, G. Einziger, and O. Rot-
tenstreich, “Efficient Measurement on Programmable
Switches Using Probabilistic Recirculation,” in 2018
IEEE 26th International Conference on Network Proto-
cols (ICNP), Sep. 2018, pp. 313–323, iSSN: 1092-1648.

[40] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu,
N. Zheng, R. Wang, H. Wu, Y. Wang, and N. Zhang,
“{LightGuardian}: A {Full-Visibility}, Lightweight,
In-band Telemetry System Using Sketchlets,” 2021,
pp. 991–1010. [Online]. Available: https://www.usenix.
org/conference/nsdi21/presentation/zhao

[41] “p4c,” Aug. 2023, original-date: 2016-04-
04T18:12:32Z. [Online]. Available: https://github.
com/p4lang/p4c

[42] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal
of Algorithms, vol. 51, no. 2, pp. 122–144, May 2004.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0196677403001925

[43] A. Broder and M. Mitzenmacher, “Using multiple hash
functions to improve IP lookups,” in Proceedings IEEE
INFOCOM 2001. Conference on Computer Commu-
nications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat.
No.01CH37213), vol. 3, Apr. 2001, pp. 1454–1463
vol.3, iSSN: 0743-166X.

[44] e. a. Wei Bai, “Empowering azure storage with RDMA,”
in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 49–67. [Online].
Available: https://www.usenix.org/conference/nsdi23/
presentation/bai

[45] “BEHAVIORAL MODEL (bmv2),” Sep. 2023,
original-date: 2015-01-26T21:43:23Z. [Online]. Avail-
able: https://github.com/p4lang/behavioral-model

[46] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry,
“Contention-Aware Performance Prediction For Vir-
tualized Network Functions,” in Proceedings of the
Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for com-
puter communication, ser. SIGCOMM ’20. New
York, NY, USA: Association for Computing Ma-
chinery, Jul. 2020, pp. 270–282. [Online]. Available:
https://dl.acm.org/doi/10.1145/3387514.3405868

[47] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli,
K. Argyraki, and G. Candea, “Performance Contracts
for Software Network Functions,” 2019, pp. 517–
530. [Online]. Available: https://www.usenix.org/
conference/nsdi19/presentation/iyer

[48] “SystemC,” Aug. 2023, page Version ID: 1172583305.
[Online]. Available: https://en.wikipedia.org/w/index.
php?title=SystemC&oldid=1172583305

[49] J. Xing, Y. Qiu, K.-F. Hsu, S. Sui, K. Manaa, O. Shabtai,
Y. Piasetzky, M. Kadosh, A. Krishnamurthy, T. S. E.
Ng, and A. Chen, “Unleashing SmartNIC Packet
Processing Performance in P4,” in Proceedings of
the ACM SIGCOMM 2023 Conference, ser. ACM
SIGCOMM ’23. New York, NY, USA: Association
for Computing Machinery, Sep. 2023, pp. 1028–1042.
[Online]. Available: https://dl.acm.org/doi/10.1145/
3603269.3604882

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1501

https://dl.acm.org/doi/10.1145/3544216.3544262
https://dl.acm.org/doi/10.1145/3544216.3544262
https://dl.acm.org/doi/10.1145/3190508.3190558
https://dl.acm.org/doi/10.1145/2656877.2656890
https://p4.org/p4-spec/docs/PSA.html
https://www.sciencedirect.com/science/article/pii/S138912862200295X
https://www.sciencedirect.com/science/article/pii/S138912862200295X
https://www.intel.com/content/www/cn/zh/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/cn/zh/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/cn/zh/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://www.usenix.org/conference/nsdi21/presentation/zhao
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi23/presentation/bai
https://github.com/p4lang/behavioral-model
https://dl.acm.org/doi/10.1145/3387514.3405868
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://en.wikipedia.org/w/index.php?title=SystemC&oldid=1172583305
https://en.wikipedia.org/w/index.php?title=SystemC&oldid=1172583305
https://dl.acm.org/doi/10.1145/3603269.3604882
https://dl.acm.org/doi/10.1145/3603269.3604882

[50] “Microarchitecture - an overview | ScienceDirect
Topics.” [Online]. Available: https://www.sciencedirect.
com/topics/computer-science/microarchitecture

[51] S. Panchen, N. McKee, and P. Phaal, “InMon
Corporation’s sFlow: A Method for Monitoring
Traffic in Switched and Routed Networks,” Internet
Engineering Task Force, Request for Comments RFC
3176, Sep. 2001, num Pages: 31. [Online]. Available:
https://datatracker.ietf.org/doc/rfc3176

[52] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient
Computation of Frequent and Top-k Elements in Data
Streams,” in Database Theory - ICDT 2005, ser. Lecture
Notes in Computer Science, T. Eiter and L. Libkin, Eds.
Berlin, Heidelberg: Springer, 2005, pp. 398–412.

[53] H. Kim and A. Gupta, “Ontas: Flexible and scalable
online network traffic anonymization system,” in Pro-
ceedings of the 2019 Workshop on Network Meets AI &
ML, 2019, pp. 15–21.

[54] Y. Chen, B. Tian, C. Tian, L. Dai, Y. Zhou,
M. Ma, M. Tang, H. Zheng, Z. Yang, G. Chen,
D. Cai, and E. Zhai, “Norma: Towards Practical
Network Load Testing,” 2023, pp. 1733–1749. [Online].
Available: https://www.usenix.org/conference/nsdi23/
presentation/chen-yanqing

[55] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,
C. Kim, A. Krishnamurthy, M. Moshref, D. Ports,
and P. Richtarik, “Scaling Distributed Machine
Learning with {In-Network} Aggregation,” 2021, pp.
785–808. [Online]. Available: https://www.usenix.org/
conference/nsdi21/presentation/sapio

[56] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman,
S. Vargaftik, A. Berger, G. Mendelson, M. Alizadeh,
S.-T. Chuang, I. Keslassy, A. Orda, and T. Edsall,
“Drmt: Disaggregated programmable switching,” in
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIG-
COMM ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 1–14. [Online].
Available: https://doi.org/10.1145/3098822.3098823

[57] A. G. Alcoz, C. Busse-Grawitz, E. Marty, and L. Van-
bever, “Reducing p4 language’s voluminosity using
higher-level constructs,” in Proceedings of the 5th Inter-
national Workshop on P4 in Europe, 2022, pp. 19–25.

[58] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou,
B. Tian, C. Sun, D. Cai, M. Zhang, and M. Yu, “Lyra:
A Cross-Platform Language and Compiler for Data
Plane Programming on Heterogeneous ASICs,” in
Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the

applications, technologies, architectures, and protocols
for computer communication, ser. SIGCOMM ’20.
New York, NY, USA: Association for Computing
Machinery, Jul. 2020, pp. 435–450. [Online]. Available:
https://dl.acm.org/doi/10.1145/3387514.3405879

[59] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith,
“Turboflow: Information rich flow record generation on
commodity switches,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys ’18. New York, NY,
USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3190508.
3190558

[60] “LLVM Assembly Language Reference Manual.”
[Online]. Available: https://releases.llvm.org/1.1/docs/
LangRef.html

[61] M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierar-
chical heavy hitters with the space saving algorithm,”
in 2012 Proceedings of the Fourteenth Workshop on
Algorithm Engineering and Experiments (ALENEX).
SIAM, 2012, pp. 160–174.

[62] K. Cho, K. Mitsuya, and A. Kato, “Traffic data reposi-
tory at the wide project,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
ser. ATEC ’00. USA: USENIX Association, 2000,
p. 51.

1502 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.sciencedirect.com/topics/computer-science/microarchitecture
https://www.sciencedirect.com/topics/computer-science/microarchitecture
https://datatracker.ietf.org/doc/rfc3176
https://www.usenix.org/conference/nsdi23/presentation/chen-yanqing
https://www.usenix.org/conference/nsdi23/presentation/chen-yanqing
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://doi.org/10.1145/3098822.3098823
https://dl.acm.org/doi/10.1145/3387514.3405879
https://doi.org/10.1145/3190508.3190558
https://doi.org/10.1145/3190508.3190558
https://releases.llvm.org/1.1/docs/LangRef.html
https://releases.llvm.org/1.1/docs/LangRef.html

Appendix
Appendices are supporting material that has not been peer
reviewed

A. Example of the Queue extern
In the following example, the foreground pipeline uses the
Queue extern to send signals of finished flows to background
pipelines. The motivation behind this design is this. First,
the foreground pipeline offloads the reported tasks to the
background pipeline for better logical separation. In this way,
the cores running the foreground pipeline do not need more
packet processing time when reporting is required. And the
background pipeline can implement advanced reporting logic,
such as batching and compression. However, it is inefficient
for the backend pipeline to blindly scan the flow table to
determine whether it needs to be aged. A simple optimization
method is to pass the end-of-flow signal from the foreground
pipeline to the background pipeline through the Queue to
achieve more intelligent and efficient table aging.
1 Queue<FlowInfo > queue (4096);
2 control foreground_ingress{
3 @offchip
4 table FlowTable {...}
5 ...
6 apply{
7 if (hdr.tcp.flags & TCP_FIN
8 || hdr.tcp.flags & TCP_RST)
9 {

10 queue.push({ hdr.ipv4.srcAddr ,
11 hdr.ipv4.dstAddr ,
12 hdr.ports.srcPort ,
13 hdr.ports.dstPort});
14 }
15 /* Measurement logic here , store flow data
16 in the action data of FlowTable */
17 }
18 }
19 control background_ingress{
20 @tbl(FlowTable)
21 TableOperation() tbl_op;
22 apply{
23 /* Get an expired flow record */
24 FlowInfo flow;
25 queue.pop(flow);
26 /* Read flow infomation*/
27 bit <8> action_id;
28 FlowData action_data;
29 tbl_op.entryGet(flow , action_id ,
30 action_data);
31 ...
32 /* Deleta the flow record*/
33 tbl_op.entryDel(flow);
34 /* Set valid the report header and send to
35 the measurement analyzer. */
36 }
37 }

B. Example of Microcode Generation
The following example introduces how to convert the
Foreach extern into the final microcode step by step. Since
the specific microcode cannot be made public for confiden-
tiality reasons, we use LLVM assembly language [60] for
demonstration, which is very close to our final microcode.

The P4 language snippet we’re working with introduces
an extern library for table traversal, named Foreach. This
library also contains methods such as continue() and
break(), which control the traversal flow. The Foreach ex-
tern is used in the P4 program as follows:
1 action act0(bit <32> value) {}
2 action act1(bit <32> value0 ,
3 bit <32> value1) {}
4 table t {
5 key = {
6 user_meta.key : exact;
7 }
8 actions = { act0(); act1(); }
9 size = 1024;

10 }
11

12 /* Add '@foreach' annotation to indicate this
13 action is a method in 'Foreach' procedure */
14 @foreach
15 action __for_act0(bit <32> key,
16 bit <32> val) {
17 // ...
18 continue();
19 /* Use 'continue' extern function to
20 continue to the next iteration */
21 }
22 @foreach
23 action __for_act1(bit <32> key,
24 bit <32> val0 ,
25 bit <32> val1) {
26 // ...
27 break();
28 /* Use 'break' extern function to
29 break the loop */
30 }
31

32 // Instantiate a 'Foreach' variable.
33 // Bind this instance to table 't'
34 // Bind method '__for_act0'
35 // to action 'act0' of table 't'
36 // Bind method '__for_act1'
37 // to action 'act1' of table 't'
38 @tbl("t")
39 @methods[act0="__for_act0", act1="__for_act1"]
40 Foreach() foreach_t;
41 apply {
42 // ...
43 foreach_t.apply();
44 }

The Foreach extern needs to be bound to a table, and each
table action of the table requires a separate foreach action
(i.e., loop body). This is because different actions usually
have various types of action data, and we need to match the
function parameter list.

Firstly, the P4C compiler translates the P4 language into
the corresponding P4 IR. The P4 IR is a tree structure rep-
resenting the P4 code in a more abstract form, including
information about tables, actions, and extern constructs.
1 P4Action name=act0
2 parameters: ParameterList
3 Parameter name=value
4 type: Type_Bits size=32 isSigned=0
5 body: BlockStatement
6 <... body ...>
7 P4Action name=act1
8 parameters: ParameterList
9 Parameter name=value0

10 type: Type_Bits size=32 isSigned=0
11 Parameter name=value1
12 type: Type_Bits size=32 isSigned=0

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1503

13 body: BlockStatement
14 <... body ...>
15 P4Table name=t
16 properties: TableProperties
17 Property name=actions isConstant=0
18 value: ActionList
19 <... act0 ...>
20 <... act1 ...>
21 Property name=key isConstant=0
22 value: Key
23 <... user_meta.key ...>
24 P4Action name=__for_act0
25 annotations: Annotations
26 Annotation name=foreach
27 parameters: ParameterList
28 Parameter name=key
29 type: Type_Bits size=32 isSigned=0
30 Parameter name=value
31 type: Type_Bits size=32 isSigned=0
32 body: BlockStatement
33 <... body ...>
34 P4Action name=__for_act1
35 annotations: Annotations
36 Annotation name=foreach
37 parameters: ParameterList
38 Parameter name=key
39 type: Type_Bits size=32 isSigned=0
40 Parameter name=value0
41 type: Type_Bits size=32 isSigned=0
42 Parameter name=value1
43 type: Type_Bits size=32 isSigned=0
44 body: BlockStatement
45 <... body ...>
46 Declaration_Instance name=foreach_t
47 annotations: Annotations
48 Annotation name=tbl text=t
49 Annotation name=methods
50 NamedExpression name=act0 value=__for_act0
51 NamedExpression name=act1 value=__for_act1
52 type: Type_Name name=Foreach

We can see that the P4 IR uses the elements in P4 as the main
content and is still far away from the final microcode. We
first translate the P4 IR to Microcode IR. This transformation
involves converting the high-level P4 constructs into lower-
level ones that are more suitable for generating microcode
instructions. For example, we must build a loop structure,
conditions for entering or exiting the loop, and distinguish-
ing the logic of calling different table action’s loop bodies
(i.e., SwitchStatement). Here is the representation of the
Microcode IR of the P4 code:
1 BlockStatement
2 LabelStmt
3 label: Label name=entry
4 AssignmentStatement
5 left: PathExpression name=i
6 right: Constant value=0
7 Branch
8 target: Label name=cond
9 LabelStmt

10 label: Label name=cond
11 IfStatement
12 condition: Lss
13 type: Type_Boolean
14 left: PathExpression name=i
15 right: Constant value=10
16 Branch
17 target: Label name=body
18 Branch
19 target: Label name=exit
20 LabelStmt
21 label: Label name=body
22 EntryGet

23 table: PathExpression name=t
24 key: PathExpression name=idx
25 act: PathExpression name=act
26 data: PathExpression name=data
27 SwitchStatement
28 expression: PathExpression name=act
29 SwitchCase
30 label: Constant value=0
31 statement: BlockStatement
32 <... body ...>
33 SwitchCase
34 label: Constant value=1
35 statement: BlockStatement
36 <... body ...>
37 AssignmentStatement
38 left: PathExpression name=i
39 right: Add
40 left: PathExpression name=i
41 right: Constant value=1
42 Branch
43 target: Label name=cond
44 LabelStmt
45 label: Label name=exit

Finally, the Microcode IR is transformed into microcode in-
structions. After the conversion from P4 IR to Microcode IR,
the conversion from Microcode IR to microcode instructions
is a straightforward parallel mapping.
1 %union.Data = type { %struct.Act0_Data }
2 %struct.Act0_Data = type { i32 }
3 %struct.Act1_Data = type { i32, i32 }
4

5 define void @foreach_t() {
6 %act_ptr = alloca i8
7 %data_ptr = alloca %union.Data
8 %idx_ptr = alloca i32
9 br label %enter

10

11 enter:
12 store i32 0, i32* %idx_ptr
13 br label %cond
14

15 cond:
16 %cond_idx = load i32, i32* %idx_ptr
17 %cond_result = icmp slt i32 %cond_idx , 100
18 br i1 %cond_result , label %body,
19 label %exit
20

21 body:
22 %body_idx = load i32, i32* %idx_ptr
23 %body_entry_get_result = call i1
24 @entry_get(i32 %body_idx ,
25 i8* %act_ptr ,
26 %union.Data* %data_ptr)
27 br i1 %body_entry_get_result ,
28 label %body_switch,
29 label %next
30

31 body_switch:
32 %body_act = load i8, i8* %act_ptr
33 switch i8 %body_act , label %next [
34 i8 0, label %body_act0
35 i8 1, label %body_act1
36]
37

38 body_act0:
39 %act0_idx = load i32, i32* %idx_ptr
40 %act0_data = bitcast %union.Data*
41 %data_ptr to %struct.Act0_Data*
42 %act0_result = call i1
43 @foreach_act0(i32 %act0_idx ,
44 %struct.Act0_Data*
45 %act0_data)
46 br label %next
47

1504 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

~0.1%

~10%

100%

2023/9/11 1

Overview

of NetFilm

Servers

DCN

ToR
Switch

RTC ASIC (Chip-X)
Mirror

（only header）

Aging
& Reporting

Key Data

𝑓1 counters, times

... ...

Figure 12: Testbed for Accurate Per-flow Monitoring

48 body_act1:
49 %act1_idx = load i32, i32* %idx_ptr
50 %act1_data = bitcast %union.Data*
51 %data_ptr to %struct.Act1_Data*
52 %act1_result = call i1
53 @foreach_act1(i32 %act1_idx ,
54 %struct.Act1_Data*
55 %act1_data)
56 br label %next
57

58 next:
59 %next_idx = load i32, i32* %idx_ptr
60 %next_new_idx = add i32 %next_idx , 1
61 store i32 %next_new_idx , i32* %idx_ptr
62 br label %cond
63

64 exit:
65 ret void
66 }
67

68 declare i1 @entry_get(i32, i8*,%union.Data*)
69 declare i1 @foreach_act0(i32 ,%struct.Act0_Data*)
70 declare i1 @foreach_act1(i32 ,%struct.Act1_Data*)

C. Profiling Complex Algorithms
Algorithms that involve complex memory operations can now
be implemented with the help of P4RTC. A typical example
is SpaceSaving (SS) [61], which is utilized to detect the top-k
flows. SS maintains O(k) slots in memory, where each slot
contains a flow key and a counter to track large flows. Upon
receiving a packet from flow i, the algorithm employs a loop
to verify whether the flow is stored within a slot. If the flow
is found, the algorithm increments the corresponding counter.
Otherwise, it locates the slot with the minimum counter value
and replaces the existing flow with flow i. These kinds of
operations cannot be implemented in the pipeline architecture.
With P4RTC, we can easily use Foreach extern to implement
an SS algorithm.

However, parallel safety issues may occur during the updat-
ing process. Using locks can lead to significant performance
issues as they negate the performance benefits of parallel
packet processing. Therefore, we are curious whether SS
can be applied directly without the locks. To deeply reveal
the impact of the parallel safety issues on algorithm accu-
racy, we leverage our performance model (in §6) to help us
analyze this process. We embed a customized execution envi-
ronment in the performance model to actually run the actual
instructions in the codepath, thus profiling the functional
performance in a multi-threaded environment. We input a

256 320 384 448 512
Number of Counters

0.0

0.1

0.2

0.3

Fa
ls

e
Po

si
tiv

e

P=1
P=64
P=256
P=1024

(a) SS Accuracy Profiling

0 64 128 256 512
Number of Counters

1
2

4

6

8

Av
g.

 D
el

ay
 (u

s)

(b) SS Latency Profiling

Figure 13: Profiling with the performance model

real-world packet trace collected by the WIDE Project in
2020 [62], which contains 10M packets. Figure 13a shows
the false negative of the SS algorithm across numbers of
cores at 1, 64, 256, and 1024. We detect top-256 large flows
(k = 256) and the x-axis represents the number of slots allo-
cated for SS. We surprisingly find that we can optimistically
neglect the locks. Even when utilizing 1024 cores (paral-
lelism P = 1024), the algorithm maintains its accuracy with-
out noticeable degradation. This is primarily due to the stabil-
ity of the large flow candidates in memory as the algorithm
progresses. The accumulation of these atomic counters is
parallel safe. The only potential parallel safety concerns arise
during the eviction of the smallest flow. Fortunately, this op-
eration does not impact the other slots that contain larger
flows, thus the impact of parallel safety issues is limited.

The performance model can also help us balance parame-
ter k (i.e., the number of large flows that need to be identified)
and performance overheads. Suppose for each k, we allocate
2k slots in memory to obtain a satisfactory recall ratio. Fig-
ure 13b shows the variation of average packet latency with
the change of allocated slots. Developers can choose the most
appropriate parameters k based on their tolerance for delays
and the top-k flow requirements.

Table 4: Comparison between P4RTC with regular P4

Language P4 P4RTC
Target Pipeline Run-to-completion

Architecture
Model Pipeline Only Pipeline and

Manycore RTC
Table

Management
Control plane

Only
Control plane

and Data plane

Memory Layout Isolated memory
& Limited access

Shared on-chip/
off-chip Memory

Multi-Program
Programming

Physical Pipeline
Level

Logical pipeline level
for each thread

with different roles
Thread Safety Safe Unsafe
Performance

Guarantee
Deterministic
Performance

Varying
Performance

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1505

	Introduction
	Background and Motivation
	Architecture Flavors of Dataplane
	Dataplane Programmability and P4

	P4RTC Overview
	P4RTC Programming
	New P4 Architecture Model
	Extensions for Pipeline Package
	Extensions for Match-action Table
	Parallel Safety

	P4RTC Compilation
	Table Deployments
	Microcode Generation

	Performance Model
	Case Study
	Case#1: Accurate Per-flow Monitoring
	Case#2: Reduce RTC Developing Burden
	Case#3: Using the Performance Model

	Lessons and Discussion
	Related Work
	Conclusion
	Example of the Queue extern
	Example of Microcode Generation
	Profiling Complex Algorithms

