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Abstract
We consider the problem of distilling efficient network topolo-
gies for collective communications. We provide an algorith-
mic framework for constructing direct-connect topologies
optimized for the latency vs. bandwidth trade-off associated
with the workload. Our approach synthesizes many different
topologies and communication schedules for a given cluster
size and degree, then identifies the best option for a given
workload. Our algorithms start from small, optimal base
topologies and associated schedules, using techniques that
can be iteratively applied to derive much larger topologies
and schedules. Additionally, we incorporate well-studied
large-scale graph topologies into our algorithmic framework
by producing efficient communication schedules for them us-
ing a novel polynomial-time algorithm. Our evaluation uses
multiple testbeds and large-scale simulations to demonstrate
significant performance benefits from our derived topologies
and schedules.

1 Introduction
Collective communication operations involve concurrently
aggregating and distributing data on a cluster of nodes and are
used in both machine learning (ML) and high-performance
computing (HPC). With the improved computational capa-
bilities of accelerators, collective operations are a significant
overhead in large-scale distributed ML training [20,44,64,76].

An emerging approach to address these challenges has been
to employ various forms of optical circuit switching to achieve
higher bandwidth at reasonable capital expenditure and energy
costs [29, 30, 40, 43, 73, 77, 81]. Hosts communicate using a
limited number of optical circuits that can be reconfigured
at timescales appropriate for the hardware, thus exposing
network topology as a configurable component. We refer
to this setting as direct-connect with circuits configured and
fixed for an appropriate duration.

Existing optical-circuit-based ML systems [30, 43, 73, 81]
fit this direct-connect model but do not exploit the flexibil-
ity topology reconfiguration offers. Collective operations
such as allreduce are still limited to a few well-known al-
gorithms that can fit the degree constraints of the optical
fabric (e.g., rings, multi-rings, tori) and accept the consequent
performance tradeoffs. For example, ring allreduce, while
bandwidth-efficient, has a high graph diameter, causing high
total-hop latency. A double binary tree, on the other hand,

∗Distribution Statement “A” (Approved for Public Release, Distribution
Unlimited).

has a logarithmic diameter but suffers from load imbalances
and bandwidth inefficiencies. Conversely, the broader spec-
trum of well-known collective algorithms that achieve desired
latency and bandwidth (e.g., recursive-doubling, Bruck algo-
rithm) [72, 79] use dynamic communication patterns ideal
for switch networks but are ill-suited for degree-constrained
direct-connect networks.

To fill this gap, we seek to identify new custom-built topolo-
gies and communication schedules for direct-connect net-
works. We pose the following question: How to efficiently
construct high-performance direct-connect topologies and
communication schedules for collectives given the network’s
performance characteristics and degree constraints?

This question poses several challenges. First, jointly op-
timizing both the network topology and the corresponding
communication schedule is intractable at a large scale. Prior
efforts reduce the search cost by optimizing only one or the
other (e.g., schedules for a given topology [10, 65, 76] or
topology permutations while retaining a ring schedule [77]).
The combination of topological structure and communication
schedule as degrees of freedom explodes the search space,
making this a seemingly intractable problem. Second, the
optimization must carefully consider the workload and the
network’s performance characteristics when distilling a topol-
ogy and schedule. For example, minimizing the topology’s
diameter is ideal not only for latency-sensitive allreduce at
small data sizes but also for all-to-all throughput; however,
this could come at the cost of load imbalance across links
in bandwidth-sensitive allreduce at large data sizes. Finally,
lowering the synthesized schedules to the underlying hard-
ware and runtimes [26,49] in an efficient way requires careful
scheduling to achieve the desired performance in practice.

Our work addresses these issues by developing an algorith-
mic toolchain for quickly synthesizing efficient topologies
and schedules for collective communications.

1. We devise a range of expansion techniques for synthesiz-
ing custom large-scale network topologies and schedules.
The expansions start with small, optimal topologies and
communication schedules and expand them to achieve
near-optimal large-scale topologies and schedules.

2. We devise a polynomial-time schedule generation al-
gorithm to produce optimal collective communication
schedules for large-scale topologies with specific symme-
try properties. This exposes many well-known topologies
as options for the direct-connect network fabric.
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3. We devise a topology enumeration and search algo-
rithm to identify the best option for a target cluster and
workload by exploring the Pareto-efficient options that
provide different tradeoffs for bandwidth efficiency, total-
hop latency, and also all-to-all throughput.

4. We develop compilers to realize our optimized schedules.
We offer efficient implementations for both GPUs and
CPUs, integrating with ML frameworks (e.g., PyTorch)
through the MSCCL [49] and oneCCL [26] runtimes.

We evaluate our approach using two testbeds: a 12-node
GPU cluster capable of topology reconfiguration and torus
clusters on Frontera [69] supercomputer with up to 54 CPU
nodes. Our techniques reduce collective communication times
by >30% for DNN training on the GPU testbed and up to
3.1× in supercomputing settings. Simulations for large-scale
DNN training show up to an order of magnitude reduction
in total communication time from topology and schedule
optimization. Our schedule generation algorithm is orders of
magnitude faster than the state-of-the-art (e.g., SCCL [10] and
TACCL [65]), capable of producing schedules for topologies
with thousands of nodes in a minute.

2 Background & Related Work
2.1 Network Fabric

Our work identifies topologies and schedules helpful for
a broad range of settings, such as switchless physical cir-
cuits, patch-panel optical circuits, and optical circuit switches.
While these options differ in cost and reconfigurability [77],
they are all significantly cheaper than packet-switch solu-
tion [29, 40, 77] and can benefit from our work.

Switchless physical circuits require the least amount of
fabric hardware. However, the topology must remain reason-
ably static for long periods, as the reconfiguration is manual.
Patch-panel optical circuits provide a higher degree of re-
configurability by using a mechanical solution (e.g., robotic
arms) to perform physical reconfigurations through a patch
panel. The reconfigurations occur on the scale of minutes, but
the patch panel itself can scale to a large number of duplex
ports and is reasonably cheap (e.g., 1008 ports at $100 per
port [70]). Both options can benefit from a carefully curated
topology optimized for the workload, but they require it to
remain static for a job given the reconfiguration time.

Commercial optical circuit switches (OCS) can perform
reconfigurations in ≈10ms, are more expensive than patch
panels, and scale to fewer ports (e.g., Polatis 3D-MEMS
switch has 384 ports at $520 per port). Though OCSes sup-
port faster reconfigurations, the delays are still too high to
support the rewiring of the circuits during a typical collective
operation.1 Thus, they cannot take advantage of algorithms

1Research prototypes [1, 48] support µs to ns reconfigurations using
overlay-hop relays and Valiant load balancing (VLB). While this is valuable
for generic workloads, collectives have structured communication patterns,
and it would be ideal to realize them without incurring the VLB overheads.

designed for full-bisection switches, such as recursive halv-
ing/doubling [72, 79], that exploit high logical degree over
time to provide both latency and bandwidth optimality. Thus,
OCSes can also benefit from the custom-built and low-degree
topologies synthesized by our approach.

All of these optical technologies allow for a shared clus-
ter to be split into multiple subclusters for running separate
jobs [29], so each job can be configured with its own topology.
Further, unidirectional topologies are technically feasible on
optical testbeds. Unidirectionality gives greater freedom in
topology design and can enable lower-diameter networks.

Evaluation Target: In this paper, we use a reconfigurable
optical patch panel to configure and evaluate different topolo-
gies. Given the high reconfiguration costs for the patch panel,
we identify an efficient topology that will remain static for the
duration of a job. Nevertheless, our techniques could be used
to derive topologies for finer reconfiguration timescales if the
hardware can efficiently support frequent reconfigurations.

2.2 Related Work

Several existing optical-circuit-based ML systems [30, 43,
73, 77, 81] fit the direct-connect model; however, they rely
on existing implementations of collectives. Typically, com-
munication libraries for ML training [20, 56, 64] offer either
ring collective for high-latency bandwidth-optimal transfers
or tree collective, which has logarithmic latency but suffers
from load-imbalances across links. Other topologies such as
mesh, tori, hypercubes, etc., have also been explored in HPC
systems [3, 8, 11, 12, 18, 23, 58], but their bandwidth-latency
tradeoff choices are limited as well. Bandwidth and latency
optimal collectives for switch networks such as recursive-
doubling, Bruck algorithm [72, 79], BlueConnect [13], etc.,
are unsuitable for direct-connect networks, because their one-
to-one communication patterns fail to utilize all available
links, and they assume a fully connected network.

Our work uniquely considers joint optimization of both the
network topology and the corresponding collective communi-
cation schedule at a large scale, while prior work either opti-
mizes one or the other. For instance, TopoOpt [77] generates
customized shifted-ring topologies to optimize concurrent
collective and non-collective communications for hybrid data-
parallel [15,37,38] and model-parallel [28,52,67] DNN train-
ing, respectively. The collective communications in TopoOpt
still use existing ring collectives. Consequently, when data
parallelism, for example, dominates the workload, TopoOpt’s
performance suffers from similar latency issues present in
existing ring collectives. Our effort is complementary as it
synthesizes new topologies and schedules for collectives that
span the entire cluster, but we do not optimize sub-cluster
communications for hybrid parallelism. Extending our work
to jointly optimize topologies and schedules for hybrid paral-
lelism is future work.

Recent work like Blink [76], SCCL [10], and TACCL [65]
also focus on generating a collective schedule for a given
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M total data size α single-hop latency
N number of nodes B total egress bandwidth of a node
S data shard (|S|= M

N ) B/d bandwidth of a single link
C data chunk (C ⊆ S) TL(A) total-hop latency of schedule
d degree of topology TB(A) bandwidth runtime of schedule

VG vertex/node set of G T ∗
L(N,d) Moore optimality (Def 10)

EG edge/link set of G T ∗
B (N) bandwidth optimality M

B · N−1
N

D(G) graph diameter of G N+
x (u) nodes at distance x from u

Table 9 for graph symbols N−
x (u) nodes at distance x to u

Table 1: Summary of Important Notations

topology. However, they all involve NP-hard optimizations
that severely limit their scalability. SCCL is capable of gen-
erating optimal schedules, but it fails to generate a schedule
in a reasonable time when the topology size is beyond 30
nodes. TACCL improves the scalability of SCCL by using
communication sketches and also handles switch networks,
but it sacrifices schedule performance and is still limited in
scalability. In our approach, we either synthesize the schedule
along with the topology or rely on a polynomial-time sched-
ule generation technique that is provably optimal for networks
with certain symmetry properties.

Generic large-scale topologies are typically not optimized
for collective communications but for general datacenter traf-
fic [6, 31, 33, 68, 75, 80]. Our framework can incorporate
any degree-constrained regular topology (e.g., low-diameter
expander graphs [25, 61]) and generate candidate schedules.

2.3 All-to-All Throughput

While we optimize allreduce, reduce-scatter, and allgather, the
performance of all-to-all communication is also crucial for
training DNN models like Mixture of Experts (MoE) [19,
34, 36, 60] and Deep Learning Recommendation Model
(DLRM) [45, 53, 54]. Unlike other collectives, the scheduling
of all-to-all can be easily formulated and efficiently solved
as a multi-commodity flow (MCF) problem [4, 21, 32, 75, 78].
However, the graph diameter of the underlying topology is
critical for all-to-all throughput [4, 41, 42, 48, 77]. The intu-
ition is that if the nodes are far from each other, then all-to-all
flows cost more bandwidth tax [47, 77] (i.e., the bandwidth
of the flow multiplied by the length of the flow). With a
fixed network capacity (i.e., the total number of links times
link bandwidth), longer flows reduce the available bandwidth
for each flow, thus decreasing all-to-all throughput. In this
work, we construct topologies and associated schedules that
are high-performance in both allreduce-type collectives and
all-to-all by deriving efficient allreduce-type schedules on
existing or our synthesized low-diameter topologies.

3 Formal Model of Collective Communications
We provide a formal model of reduce-scatter, allgather, and
allreduce collectives. In each operation, there are N nodes
operating on a vector of data of total size M. The data can be
divided into N shards. In reduce-scatter, each node i reduces
the i-th shard from all other nodes; in allgather, each node i
broadcasts the i-th shard to all other nodes; in allreduce, each
node i ends up with the fully reduced vector of data.

a

S =

[
C1
C2

]
c

bd

((a,S),(a,c),1)

((a,C1),(c,b),2)

((a,C2),(d,b),2)

((a,S),(a,d),1)

Figure 1: The allgather schedule of complete bipartite graph K2,2. Shard
S is divided into two half chunks C1 and C2. From a, at the 1st comm step, a
sends the entire shard S to both c and d. At the 2nd comm step, c and d send
the two half chunks C1 and C2, respectively, to b. Thus, every node receives
the full shard from a. By applying similar broadcast from c,b,d in parallel,
we have a complete BW-optimal allgather schedule with TL =2α,TB =

M
B · 3

4 .

Throughout the paper, we elaborate only on allgather
schedule construction because the other two collectives are
direct transformations. Since allgather and reduce-scatter
are, respectively, simultaneous broadcasts and reductions for
each node, we can construct reduce-scatter schedules in
bidirectional topologies by simply reversing the communica-
tions in allgather schedules [11]. In unidirectional topologies,
we utilize graph transposition to achieve a similar transforma-
tion (Appendix B).2 To construct an allreduce schedule, we
concatenate reduce-scatter and allgather.

3.1 Communication Topology & Schedule

The network topology is modeled as a directed graph (digraph)
G = (V,E), where V denotes the set of nodes (|V |= N) and
E denotes the set of directed links/edges. The direct-connect
network imposes a constraint that all nodes have degree d,
which is the number of connection ports on each host and is
typically low and independent of N.

A communication algorithm (G,A) uses the communica-
tion schedule A on topology G. Schedule A can be specified
as what chunk C is communicated over which link in which
communication (comm) step t. We define chunk C as a
subset of shard S. Both C and S are specified as index sets
of elements. Typically, S is interval [0,1] representing the
whole shard, and C is some subinterval. We denote v’s chunk
C as (v,C), which is a subset of v’s starting shard (v,S). Let
((v,C),(u,w), t) denote that v’s chunk C is sent by node u to
its neighbor w at comm step t. Schedule A then is specified as
a list of tuples ((v,C),(u,w), t). Figure 1 gives an example of
an allgather schedule in such a tuple notation. Within a sched-
ule, chunks can be different-sized subsets of S. Appendix B
gives formal definitions of reduce-scatter/allgather schedules.

3.2 Cost Model

We use the well-known α-β cost model [24]. The cost of
sending a message of size H over a link is α+βH. This cost
comprises two components: the constant single-hop latency
α and a bandwidth component β, which is the inverse of link

2The main text of this paper focuses on high-level ideas of various tech-
niques. We provide detailed mathematical analyses in the appendix.
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bandwidth, i.e., β = 1
b . This simple model has been shown

to be appropriate for GPU interconnects [10, 35, 65]. In our
analysis, we use node bandwidth B with B = db. In this
paper, we focus on homogeneous networks, although some
techniques also support heterogeneous ones (Appendix E.3).

The runtime of a schedule A can be broken down into a
total-hop latency component and a bandwidth component.
The total-hop latency component TL(A)= tmaxα, where tmax
is the number of comm steps. TL(A) represents the cost of
performing schedule A on an infinitesimal amount of data.
The bandwidth component TB(A), or bandwidth (BW) run-
time, is the sum of the BW runtime of each comm step, i.e.,
∑t TB(At). The BW runtime of comm step t is the max amount
of data transmitted by a link within the comm step, divided
by link bandwidth b=B/d. For N-node d-regular graphs,
the optimal runtime of both reduce-scatter and allgather is
approximately α logd N+ 1

B ·
M(N−1)

N . The 1st term represents
the total-hop latency required for communicating across the
diameter of a topology, while the 2nd term represents the
transmission time for any node to send/recv N−1 shards in
reduce-scatter/allgather. One should not confuse total-hop
latency with overall latency, which is the sum of total-hop
latency and BW runtime. We omit the computational time of
reduction and discuss this in Appendix C.4.

We analyze the optimality of total-hop latency and BW
runtime separately. An algorithm (G,A) is optimal in one
component if no (G′,A′) with the same N,d can perform
better. For BW runtime, an algorithm is bandwidth (BW)
optimal iff its TB equals T ∗

B (N) := M
B · N−1

N . For total-hop la-
tency, given G, the lowest TL achievable is α·D(G), where
D(G) is the graph diameter of G. Thus, the optimal total-hop
latency equals the smallest diameter of any N-node d-regular
graph, which remains an open question in graph theory [50].
Therefore, we define Moore optimality based on Moore bound,
which provides a lower bound for diameter given N,d and
thus a well-defined T ∗

L (N,d). An algorithm is Moore opti-
mal iff TL =T ∗

L (N,d). Moore optimal topologies have the
lowest diameters, which is also ideal for all-to-all throughput.
Appendix C gives formal definitions of optimalities.

Ring allreduce has a total-hop latency that is linear in N,
while the BW runtime is optimal. Double binary trees (DBT),
on the other hand, offer the advantage of logarithmic total-
hop latency but have suboptimal BW performance. Our work
offers a range of topologies that are Pareto-efficient in total-
hop latency and BW performance.

4 Overview of Our Approach
Direct-connect topologies can typically be categorized as ei-
ther low-hop topologies, which have low diameters (e.g., ex-
pander graphs) suited for all-to-all throughput and small-data
allgather/reduce-scatter/allreduce, or load-balanced topolo-
gies, which have simplistic structure (e.g., ring, torus) with
easy load-balanced schedule for large-data allgather/reduce-
scatter/allreduce (see Table 2). We seek to jointly identify

Topology Type Small-Data Allreduce
(Total-Hop Latency TL)

Large-Data Allreduce
(BW Perf TB)

All-to-All
Throughput

Low-Hop ✓ – ✓
Load-Balanced – ✓ –

Table 2: The tradeoffs of low-hop topology vs. load-balanced topology.
Reduce-scatter and allgather perform similarly to allreduce.

network topologies and schedules that achieve high perfor-
mance in both categories to the extent possible. Specifically,
this entails the challenging task of constructing load-balanced
allgather3 schedules for low-hop topologies.

At a small scale, one could handpick a topology such as
the complete bipartite graph K2,2 defined at N=4,d=2. K2,2
is both low-hop and load-balanced that a Moore- and BW-
optimal allgather could be manually constructed (Figure 1).
But how do we scale the topology and the schedule to larger
sizes? Our work approaches this problem with two tools:
expansion techniques (§5) and BFB schedule generation (§6).

Expansion Techniques: Given a base topology and its
schedule, expansion techniques can expand them into a larger
topology and associated schedule with minimal loss in perfor-
mance. We call the resulting topologies synthesized topolo-
gies. The base topologies are small in scale, such as K2,2
in Figure 1, for which straightforward schedules exist or an
exhaustive search for the schedule is feasible. The line graph
expansion, for example, can then expand K2,2 and its schedule
in Figure 1 to an allgather for N=4·2n, for arbitrarily large
n, while retaining a node degree of 2. Multiple expansion
techniques can be composed to achieve the desired N and d.

Breadth-First-Broadcast (BFB) Schedule Generation:
Besides synthesized topologies, we can use known topologies
from graph theory (e.g., twisted torus, expander graphs). We
call them generative topologies as they can be instantiated
at various Ns and ds. Generative topologies are often low-
hop, beneficial for total-hop latency and all-to-all throughput.
The problem, though, is that efficient load-balanced collective
schedules are not known for many of these topologies, and
existing schedule generation methods [10, 65] are intractable
even at moderate scales. Our work offers BFB, a polynomial-
time schedule generation that can yield efficient schedules for
large-scale topologies. For allgather, it performs a breadth-
first broadcast from each node and uses linear programs to
balance the workload on links. Although not always optimal,
BFB schedules are provably optimal for many topologies ex-
hibiting certain symmetries. For instance, BFB can generate a
schedule with the lowest total-hop latency and BW optimality
on any torus, including those with unequal dimensions.

With expansion techniques and BFB schedules, our topol-
ogy finder (§5.4) assembles a large pool of topologies and
schedules, identify Pareto-efficient ones from a low-hop vs.
load-balanced perspective, and select from them for a given
workload. When two options are Pareto-efficient, one must be
better than the other in either low-hop (i.e., total-hop latency)
or load-balanced (i.e., BW performance) but not in both. We

3We construct allreduce and reduce-scatter from allgather schedules.
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choose low-hop options for workloads requiring all-to-all
throughput and small-data allgather/reduce-scatter/allreduce,
and load-balanced options for large-data allgather/reduce-
scatter/allreduce. Finally, the compiler (§7) lowers the chosen
topology and schedule to the runtime and hardware.

5 Expansion Techniques
We present three techniques that can be applied to construct
near-optimal large-scale synthesized topologies and schedules
by expanding small-scale topologies and associated schedules.
The three techniques provide different options for increasing
the size of the topology and the per-node degree while pre-
serving either total-hop latency or BW optimality of the base
graph and schedule (Table 3). While we describe the tech-
niques in the context of allgather, corollary 1.2 in §B implies
equivalent constructions for reduce-scatter and allreduce.

5.1 Line Graph Expansion

We borrow the line graph transformation from graph the-
ory [22], which transforms an input graph G into a larger
graph L(G) as follows: every edge in G becomes a node in
L(G), and two nodes in L(G) are adjacent if the corresponding
edges are adjacent in G (Definition 12).

Intuition: Line graph expands an N-node degree-d topol-
ogy into a dN-node topology. The degree d remains the same,
which is crucial since the degree is often limited by hardware
constraints like the number of available ports. While the num-
ber of nodes grows by d-fold, the diameter of the topology
only increases by one, which is also optimal for total-hop la-
tency and all-to-all performance. In addition, the paths in the
base topology are mapped into the expanded topology, allow-
ing the communication schedule for the base to be expanded
as well. Line graph expansion can be applied repeatedly to
scale the topology and schedule to arbitrarily large sizes.

Figure 2 gives an example of the line graph expansion
of the complete bipartite graph K2,2. Any (shortest) path
w0 )w1 ) . . . )wn in K2,2 can be mapped to a (shortest) path
w−1w0 )w0w1 ) . . . )wn−1wn )wnwn+1 in L(K2,2) from w−1w0
to wnwn+1, for any w−1,wn+1 provided that w−1w0 ̸=wnwn+1.

Given an allgather schedule AG for G, we construct sched-
ule AL(G) for L(G). Pick any node v′v in L(G). It needs to
broadcast its shard to every other node in L(G). Pick any other
node, say, uu′. For each element x of v′v’s shard, we want to
send x to uu′. Since v broadcasts x to every other node in AG,
there is a path v )w1 ) . . . )wn−1 )u in G along which x is sent
to u in AG. Thus, the path v′v )vw1 )w1w2 ) . . . )wn−1u )uu′

can be utilized to send x from v′v to uu′ in L(G).
Definition 1 (Schedule of Line Graph). Given an allgather
schedule AG for topology G, let AL(G) be the schedule for line
graph L(G) containing:

1. ((v′v,S),(v′v,vu),1) for each edge (v′v,vu) ∈ EL(G) with
v′v ̸= vu. [Insert the 1st comm step in AL(G).]

2. ((v′v,C),(uw,ww′), t + 1) for each ((v,C),(u,w), t)∈AG
and v′v ̸= ww′. [Adapt AG to form AL(G).]

At the 1st comm step, x is broadcasted by v′v to every
neighbor, including vw1. Then, for every ((v,C),(wi,wi+1), t)
in AG with x ∈C, there is ((v′v,C),(wiwi+1,wi+1wi+2), t +1)
in AL(G) that takes x from wiwi+1 to wi+1wi+2 and, eventually,
to uu′ (v=w0,u=wn). Since x and uu′ are picked arbitrarily,
v′v broadcasts every element of its shard to all nodes in L(G).
Figure 2c shows an example of schedule construction.

As for the performance of AL(G), we leave the mathematical
details in Appendix D.1. In practice, one can apply line graph
expansion repeatedly to scale the topology and schedule in-
definitely. The more optimal the base topology and schedule
are, the more optimal the expanded topology and schedule
will be. Figure 3 shows how the performance evolves as we
continuously apply line graph expansion to several Moore
and BW optimal base graphs. The total-hop latency always
remains Moore optimal. The BW performance deviates from
optimality T ∗

B but remains a constant factor away asymptot-
ically. A key observation in Figure 3 is that the larger the
size of the base graph is, the closer the expanded schedule
is to BW optimality. Line graph expansion is notable for its
ability to construct indefinitely large-scale topologies without
increasing degree d. The expansion also maintains low-hop,
making it ideal for synthesizing all-to-all topologies as well.

5.2 Degree Expansion

Intuition: While line graph expansion expands the number
of nodes, degree expansion additionally expands the topology
degree. Taking a base topology G, we make n copies of it and
connect two nodes in different copies if they are adjacent in
G. This process forms an expanded topology G ∗ n, which
multiplies both the number of nodes and the degree of G by n.
Because the connections in G∗n are derived from G, similar
to line graph expansion, we can map paths from G to G∗n to
expand the communication schedule of G as well.

Figure 4 gives an example of expanding a 4-node unidirec-
tional ring into an 8-node degree-2 topology (see formal defi-
nition of degree expanded topology in Definition 13). Based
on the input schedule AG for G, we construct a schedule AG∗n
for G∗n. For any data traveling along v )w(1) ) . . . )w(m) )u
in AG, AG∗n has the data travel along vi )w(1)

i ) . . . )w(m)
i )u j

for all i, j. That is, data is transmitted within the i-th copy of
G, except at the last step. With this construction, any node
ui has broadcasted the data to all other nodes except its own
copies u js. We add an additional comm step for u j to collect
the data from its in-neighbors (see Figure 4c).
Definition 2 (Degree Expanded Schedule). Given an all-
gather schedule AG for G, construct AG∗n for G∗n:

1. For all i, j including i= j and for each ((v,C),(u,w), t)∈AG,
add ((v j,C),(u j,wi), t) to AG∗n;

2. Divide shard S into equal-sized chunks C1, . . . ,Cnd . Given
ui,u j ∈ VG∗n with i ̸= j, add ((ui,Cα),(vα,u j), tmax + 1)
to AG∗n for each (v1,u j), . . . ,(vnd ,u j) ∈ EG∗n, where tmax
is the max comm step in AG.
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Figure 2: The complete bipartite topology K2,2 with its line graph L(K2,2). Figure (a) shows the base
topology and broadcast paths from a to c,b,d in AK2,2 (see Figure 1). The number next to edge shows
the comm step using the edge. Figure (b) shows the expanded topology. Observe that every edge in K2,2
becomes a vertex in L(K2,2), and two vertices are connected if the corresponding edges in K2,2 have one’s
head node being the other’s tail node. Figure (c) shows the broadcast paths of node ca, transformed from
the broadcast paths of a in figure (a). At the 1st comm step, by step 1 of Def 1, ca broadcasts its shard to all
its neighbors: ((ca,S),(ca,ac),1), ((ca,S),(ca,ad),1). The rest of the broadcast paths are transformed
from AK2,2 by step 2 of Def 1, e.g. ((a,C1),(c,b),2) 7→ {((ca,C1),(cb,bc),3),((ca,C1),(cb,bd),3)}.
Each of the nodes bc and bd receives C1,C2 from its two in-neighbors, just like b does in AK2,2 .
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Figure 4: 4-node unidirectional ring and its degree expansion to d=2.
Figure (a) shows the base topology and broadcast path from a to b,c,d.
Figure (b) shows the expanded topology. Figure (c) shows the broadcast
paths from a1 and a2 to other nodes marked in red and blue, respectively.
For any u ̸= a, the path from ai to u j stays in i until the very last step when it
jumps to u j , e.g., a1 )b1 )c2 and a2 )b2 )c2 )d1. For ai to a j , each in-neighbor
of a j sends an equal portion of ai’s shard to a j in the end; for example, d1
and d2 each send half of a1’s shard to a2 and half of a2’s shard to a1. The
red and blue broadcast paths are disjoint, resulting in BW optimality.

Unlike line graph expansion, degree expansion preserves
BW optimality. This is because the expanded broadcast paths
from copies of an original node are totally disjoint from each
other (Figure 4c). However, degree expansion does not pre-
serve Moore optimality. While line graph expansion does not
change degree, degree expansion increases it, reducing the
number of comm steps required for Moore optimality.

5.3 Cartesian Product Expansion

The Cartesian product of two graphs G1,G2 is an expanded
graph G1□G2 with size and degree equal to the product of
G1,G2’s sizes and the sum of their degrees, respectively.

Definition 3 (Cartesian Product). The Cartesian product di-
graph G1□G2 of digraphs G1 and G2 has vertex set VG1 ×VG2

with vertex u = (u1,u2) connected to v = (v1,v2) iff either
(u1,v1) ∈ EG1 and u2 = v2; or u1 = v1 and (u2,v2) ∈ EG2 .

This definition generalizes to the Cartesian product of n
digraphs: G1□G2□ . . .□Gn. When G1 = . . .=Gn =G, the
product is denoted as Cartesian power G□n. We use Cartesian
power and product in our topology and schedule expansion.

Intuition: The Cartesian product G1□G2□ . . .□Gn con-
sists of n dimensions, with connections in dimension i iden-
tical to Gi. Taking the schedules of G1,G2, . . . ,Gn, we can
balance the amount of traffic going through each dimension to
achieve high BW performance. Cartesian product expansion
greatly expands the set of topologies we construct by enabling
the combination of existing topologies to form a new product
topology with an efficient schedule.

Cartesian Power Expansion: Given a d-regular G and
schedule AG, we can construct a schedule AG□n for G□n,
which is nd-regular and has |VG|n nodes. This technique helps
generate efficient topologies, including some well-known
ones like hypercube and Hamming graph. We describe how
to construct allgather schedules for Cartesian power graphs by
using ℓ×ℓ torus (ℓ-ring□2) as an example. A typical allgather
schedule on an ℓ× ℓ torus is to perform the ℓ-ring allgather
along rings in one dimension first and then the other dimen-
sion, as in hierarchical ring allreduce [74]. Consider two
schedules: A(1) performs allgather on vertical rings first and
then horizontal ones; A(2) performs allgather in the opposite
order. A(1),A(2) use disjoint set of links at any comm step.
Thus, we divide each data shard in ℓ× ℓ torus into two halves
and let them be allgathered by A(1),A(2) separately. The com-
bined schedule, where A(1) and A(2) are performed in parallel,
is BW-optimal, with a total-hop latency of 2TL(A).

The above torus schedule has appeared in previous liter-
ature [62]. It can be generalized to generate schedules for
Cartesian power of arbitrary topologies (see Appendix D.3).

Cartesian Product Expansion: One can also construct
a schedule for the Cartesian product of distinct topologies.
For example, an a×b× c 3D torus is the Cartesian product
of three rings with lengths a,b,c. Constructing this sched-
ule requires BFB schedule generation technique, which we
introduce in §6. If individual topologies have BW-optimal
BFB schedules, as in the case of any torus, then the schedule
generated for the Cartesian product is BW-optimal (Table 3).
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Expansion Techniques # of Nodes Deg Moore BW Perf
Line Graph Exp Ln(G) dnN d ✓ × Thm 7.1
Degree Exp G∗n nN nd × ✓ Thm 11
Cartesian Power G□n Nn nd × ✓ Thm 12
Cartesian Prod G1□. . .□Gn ∏i Ni ∑i di × ✓ Thm 13

Table 3: Summary of expansion techniques. The table shows the char-
acteristics of the resulting topology and schedule after applying expansion
techniques to an N-node degree-d base topology. “✓,×” show whether the
expansion preserves Moore/BW optimality. The last column refers to the the-
orems that give the exact performance of expanded schedules. Appendix D
presents more formal definitions and analyses of expansion techniques.

Topology TL TB 2(TL+TB) D(G) All-to-All
Π4,1024 5α 1.332M/B 323.5us 5 409.1us
L3(C(16,{3,4})) 6α 1.020M/B 291.0us 6 403.5us
L2(Diamond□2) 8α 1.004M/B 328.4us 8 446.6us
L(DBJMod(2,4)□2) 11α 1.000M/B 387.8us 9 529.9us
(UniRing(1,4)□UniRing(1,8))□2 20α 0.999M/B 567.6us 20 1174.4us
Theoretical Bound 5α 0.999M/B 267.6us 5 382.3us

Table 4: Pareto-efficient topologies at N=1024, d=4. The 2(TL+TB) col-
umn shows the allreduce runtimes for α=10us and M/B=1MB/100Gbps.
We multiply TL+TB by 2 because allreduce is performed by combining
reduce-scatter and allgather. The all-to-all time is computed via multi-
commodity flow (Appendix A.5) with each node having 1MB of data to
send (i.e., sending 1/N MB to each node). For comparison, the baselines
Shifted Ring and Double Binary Tree (§8.2) have allreduce times of 20640us
and 1434us, and all-to-all times of 10738us and 21475us, respectively. Table
9 shows the details of the base topologies.

5.4 Topology Finder

The goal of Topology Finder is to produce the best topologies
and schedules for a target N and d. If we aim for asymptotic
performance (N→∞ with fixed d), we want the base topol-
ogy to be as large as possible and the base schedule to be
as optimal as possible (Theorem 9). However, for a target N
and d, only base topologies with certain sizes (e.g., divisors
of N) and degrees can be expanded to the target. Thus, we
keep a collection of known base topologies and their sched-
ules (Table 9). These topologies and schedules are highly
optimized and cover a wide range of N and d.

Given base topologies, we perform a bottom-up search for
the combinations of expansion techniques to reach the target
N and d. We iteratively apply expansions to candidates. At
intermediate sizes, we prune candidates with inferior perfor-
mance and keep the best ones for further expansion. Because
each expansion multiplies the topology size (Table 3), the
number of expansions that can be applied before the size gets
too large—and hence the number of possible combinations—
is limited, making the search feasible.

While we expand the topologies, proved theorems (Table 3)
allow us to predict the performance of expanded topologies.
This is vital for the search because it is intractable to construct
schedules for every topology and compare their performance.
Using a simple formula for prediction enables us to quickly
compare different topologies and prune inferior ones. We
keep a Pareto frontier of topologies for each given N and d. A
topology is inferior to another only if it is worse in both total-
hop latency and BW runtime. Ultimately, the search finds all
Pareto-efficient topologies for the target N and d. Depending
on the testbed, we may convert unidirectional topologies to

bidirectional ones (Appendix A.6). Then, we determine the
best-performing topology for a given workload.

Table 4 shows the result for N=1024 and d=4. From top
to bottom, the Pareto frontier exhibits an increasing TL and a
decreasing TB, with the top and bottom being Moore and BW
optimal, respectively. On the all-to-all side, the diameters of
the topologies also follow the same trend as TL because of
TL≥α·D(G) (Theorem 3). Table 4 also shows the allreduce
and all-to-all times calculated based on specific α,M,B. No-
tably, the line graph of circulant graph L3(C(16,{3,4})) has
both the lowest allreduce and all-to-all times, within 9% and
6% of the theoretical bounds. Table 7 in appendix contains
more results for N=32,64, . . . ,1024.

While low-hop/diameter indicates high all-to-all through-
put, other metrics like the average distance between nodes [41,
42] also play a role. Thus, despite having a lower diame-
ter, Π4,1024 underperforms L3(C(16,{3,4})). Including other
metrics makes the search process more complex and compu-
tationally expensive. In practice, TL and D(G) are feasible
and accurate enough for predicting all-to-all throughput.

In DNN training experiments, we use one topology for the
entire training due to the high reconfiguration latency of our
target patch panel platform. We select the best option based
on the distribution of collective sizes Ms, which depends on
the communication strategy of the training framework [38].
With faster reconfiguration, one could change topology to
optimize for different collective runs during training.

Our implementation runs under a minute for all d =
2,4,8,16 and N up to 2000. While this can be sped up, we
find it acceptable for now, given that the search is performed
once for all Ns and ds, and results can be saved for future use.

6 Breadth-First-Broadcast (BFB) Schedule
We now present a scalable algorithm for generating sched-
ules for generative topologies, which are directly borrowed
from graph theory, as well as for topologies obtained through
Cartesian Product expansion—the only expansion technique
that does not yield a schedule. State-of-the-art schedule gen-
erations (e.g., Blink [76], SCCL [10], and TACCL [65]) can
scale only to a modest number of nodes because they involve
NP-hard optimization. To ensure polynomial-time genera-
tion, we impose a breadth-first broadcast order from each
node such that (1) data always travels along the shortest paths
between source and destination nodes; (2) the schedule is
structured as a series of comm steps, where each comm step
is responsible for eagerly transmitting data to a set of nodes
that is one additional hop away. Our BFB schedule genera-
tion technique does not guarantee optimality in an arbitrary
topology, given these constraints prohibit the use of longer
paths or delayed (non-eager) transmissions along paths, but
these constraints enable polynomial-time generation.

Despite these constraints, BFB schedules guarantee the fol-
lowing: (1) The schedules have the lowest total-hop latency
as all data is eagerly communicated over the shortest paths.
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(2) For Cartesian product topologies, BFB schedule genera-
tion yields a BW-optimal solution if the underlying product
components admit BW-optimal BFB schedules (thus yielding
optimal schedules for networks such as torus with arbitrary di-
mensions). (3) BFB schedules are also provably BW-optimal
for many generative topologies with certain symmetries.

6.1 BFB Schedule Generation Linear Program

Intuition: Allgather is a simultaneous broadcast from every
node in the topology. A BFB allgather schedule, as the name
suggests, performs a breadth-first broadcast from every node.
At each comm step, a node typically has the option to receive
a chunk from multiple in-neighbors on the previous breadth-
first frontier. To optimize BW performance, BFB uses a linear
program to balance the traffic across the ingress links.

At each comm step t, a BFB schedule requires that for
every node v, all nodes at a distance t from v, i.e., N+

t (v),
receive v’s data shard within the comm step. To achieve this,
all nodes at distance t−1, i.e. N+

t−1(v), need to collectively
multicast the data shard to nodes N+

t (v) in comm step t.
Given any v and u ∈ N+

t (v), u may have multiple in-
neighbor ws in N+

t−1(v). All of them can provide v’s data
shard because they have received it in comm step t −1. Since
the BW runtime of a comm step equals the transmission time
of the most congested link, a question is how to allocate the
amount of data u receives from each w to balance the work-
load on links? Figure 5 shows an example. Here, u1 needs
to get v1’s shard from w1,w2 and v2’s shard from w2. The
solution is simple: since u1 can only get v2’s shard from w2,
we let w1 send v1’s shard and w2 send v2’s shard, achieving a
perfectly balanced workload. For u2, it is more complicated.
We formulate such a problem as a linear program:

minimize Uu,t
subject to ∑

v
xv,(w,u),t ≤Uu,t , ∀w∈N−(u)=N−

1 (u)

∑
w

xv,(w,u),t = 1, ∀v∈N−
t (u)

0 ≤xv,(w,u),t ≤ 1. ∀w,v

(1)

xv,(w,u),t is the proportion of v’s shard that is sent from w to u
and is defined for every v,w such that w∈N−(u) and d(v,u)=
d(v,w)+1= t. Uu,t is the max workload among links to u,
i.e., (w1,u2),(w2,u2),(w3,u2) in the case of u2. Minimizing Uu,t

is equivalent to minimizing M/N
B/d ·Uu,t , the max transmission

time among links to u at comm step t. The 1st and 2nd
constraints ensure correct max workload and u receiving all
data shards, respectively. Appendix E gives the specific LP
for u2, and the solution is shown in blue in Figure 5. The
workload is also balanced with each link sending 2/3 shard
and hence BW runtime M/N

B/d · 2
3 .

SCCL [10] and TACCL [65] use NP-hard optimizations
with discrete variables used to ensure each chunk is received
before being sent. In contrast, we do not need discrete vari-
ables. A key observation from Figure 5 is that because
w1,w2,w3 all receive the entire shard of v1 at comm step t−1,

v1

v2

w1

w2

w3

u1
Uu1,t=1

u2
Uu2,t=2/3

t −1

t −1

t −1

t −1

xv1 ,(w1 ,u1),t
=1

xv1,(w2,u1),t
=0

xv2 ,(w2,u1),t
=1

xv1 ,(w1,u2),t
=2/3xv1,(w2 ,u2),t

=1/3
xv2 ,(w2 ,u2),t

=1/3

xv2 ,(w3 ,u2),t
=2/3

Figure 5: Example of BFB allgather schedule at comm step t. Here,
w1,w2 ∈ N+

t−1(v1) and w2,w3 ∈ N+
t−1(v2). u1,u2 are at distance t from both

v1,v2, so they both need to receive the data shards of v1,v2 in comm step t.
Note that u1 cannot get v2’s shard from w3 because w3 is not an in-neighbor
of u1. The figure also shows the solutions to LPs (1). The red and blue are
independent LPs optimizing Uu1 ,t and Uu2 ,t respectively.

the xv1,(w1,u2),t =2/3 and xv1,(w2,u2),t =1/3 in the solution can
be any portions of the data shard, as long as their union is
the entire shard. Assuming [0,1] is the entire shard of v1,
no matter the 2/3 sent by w1 to u2 is [0, 2

3 ] or [ 1
3 ,1], the 1/3

sent by w2 can simply be [ 2
3 ,1] or [0, 1

3 ] accordingly. Thus,
we only need to decide the amount of data sent on each
link, which are continuous variables, enabling polynomial-
time schedule generation. To obtain a complete schedule, one
needs to solve an LP (1) for each u∈VG and t∈{1, . . . ,D(G)}.
The BW runtime of the generated schedule is

TB =
M/N
B/d

D(G)

∑
t=1

max
u∈VG

Uu,t . (2)

One could create an LP incorporating all Uu,ts and minimize
TB (2) “globally”. However, the result is equivalent to in-
dividually solving small LPs (1) for each u and t. This is
because the LPs are independent of each other, e.g., the deci-
sions made to minimize Uu2,t in Figure 5 do not affect Uu1,t ,
and vice versa. The advantage of small LPs is that they can
be solved in parallel. Due to the breadth-first nature of BFB,
data always follows the shortest paths between source and
destination. Thus, the number of comm steps of the BFB
schedule always equals the graph diameter, i.e., TL=α·D(G),
the lowest possible TL given G.

Appendix E analyzes the BFB schedule and includes modi-
fications to generate discrete chunked schedules (§E.2) and
schedules for heterogeneous link bandwidths (§E.3). Corol-
lary 1.1 implies how to generate reduce-scatter schedules.

6.2 Generative Topologies

Generative topologies, unlike synthesized ones, are large
graphs directly borrowed from graph theory. They are too
large for manual or NP-hard schedule generation. Thus, we
use the BFB linear program to generate schedules. Since a
BFB schedule always has the lowest TL for a topology, if it is
also BW-optimal, then it is the optimal schedule for that topol-
ogy. Generative topologies often have symmetries that allow
us to prove optimality mathematically. Their low diameters
are also ideal for all-to-all throughput.

Torus is a widely used topology in parallel computing sys-
tems. Our torus schedule generated by BFB is theoretically
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optimal and represents a significant improvement over tradi-
tional torus schedules [62]. Given a d1×d2×. . .×dn torus, the
traditional schedule, which performs parallel ring collectives
on dimensions, only works (or is efficient) when dimensions
are equal, i.e., d1 =d2 = . . .=dn, and has TL =∑i(di − 1)α.
BFB torus schedule, however, is BW-optimal with any dis and
TL=∑i⌊di/2⌋α. The BW optimality is due to torus being the
Cartesian product of rings, each of which has a BW-optimal
BFB schedule. BFB torus opens up many more construction
possibilities since dis can be any combination.

Generalized Kautz Graph (§F.2) and Circulant Graph
(§F.4) are a pair of versatile graphs in our toolbox. The former
can be constructed for any N and d, while the latter can be
constructed for any N and even-value d. Furthermore, the
BFB schedule of the former is at most one α away from
Moore optimality, making it the topology with the lowest
TL, while the latter always has a BW-optimal BFB schedule.
Thus, they can fill gaps in N and d that expansion techniques
fail to cover (e.g., prime N) or provide good candidates.

Besides the aforementioned ones, the following graphs also
have optimal schedules by BFB. Distance-Regular Graph
(§F.3) is a family of large highly-symmetric graphs that are
both BW-optimal and low-hop at the same time. The Twisted
Torus [14] used by TPU v4 [29] is also computationally
verified to be BW-optimal for at least N≤104. A BFB Ring
Schedule with half the TL of traditional one is shown in §F.1.

7 Schedule Compilation
We implemented two compilers for lowering communication
schedules to both GPU and CPU clusters, given the signif-
icance of collective communication for both ML and HPC
workloads. We lowered over 1K schedules for various topolo-
gies and configurations. The compilers enable us to evaluate
the performance of our topologies and schedules on hardware
and to validate our mathematical model.

For GPUs, our compiler lowers a mathematically defined
schedule to an XML file that can be executed by the MSCCL
runtime [49]. MSCCL is an open-source collective commu-
nication library that extends NCCL [56] with an interpreter
providing the ability to program custom schedules. Com-
munication schedules are defined in XML as instructions
(send/receive/reduce/copy) for each GPU threadblock. Our
compiler also performs certain optimizations, such as consoli-
dating non-contiguous sends using a scratch buffer and evenly
distributing the computational workload across threadblocks.

For CPU-based supercomputers, we use Intel oneCCL [26]
+ libfabric [39] to execute schedules. We extended oneCCL
with an interpreter that executes XMLs. The mathematical
schedules are lowered into instructions (send/recv/reduce/-
copy/sync) for CPUs in an XML file and then executed.

8 Evaluation
We present performance evaluation results on a 12-node
direct-connect optical GPU testbed and a supercomputing

CPU torus cluster with up to 54 nodes. We also present ana-
lytical and simulation results at larger scales.
Collective Communication: On the 12-node testbed, our
topologies consistently outperform baselines in allreduce,
reduce-scatter, and allgather (§8.3, Fig 6, Fig 12). Analytical
model shows order-of-magnitude improvements in allreduce
and all-to-all performance at larger scales (Fig 7).
DNN Training: In data-parallel training experiments, our
topologies achieve the best performance for both small models
and GPT-2 [59] (§8.4, Fig 8). In simulated large-scale train-
ing, our topologies demonstrate order-of-magnitude improve-
ments in all-to-all involved expert-parallel training (Fig 9).
Schedule Generation: While generating optimal schedules,
BFB is orders of magnitude faster and more scalable than
SCCL [10] and TACCL [65] (§8.5.1, Tab 6 & Fig 10). On
supercomputing torus clusters, BFB schedules outperform tra-
ditional scheduling [62], SCCL, and TACCL (§8.5.2, Fig 11).

Finally, we also conducted experiments on our testbed to
compare BFB against widely adopted solutions for switch
networks (e.g., NCCL and recursive halving & doubling)
(§A.1) and to validate the α-β cost model (§A.2).

8.1 Direct-Connect Optical Testbed

Our testbed consists of 12 servers, each with an NVIDIA
A100-PCIe-40GB GPU [55] and an HPE Ethernet Adapter,
configured as 4x25Gbps breakout interfaces. The NICs are
directly connected via a Telescent optical patch panel [70].
Our testbed can realize topologies by reconfiguring the patch
panel. We limit our evaluation to bidirectional topologies due
to limitations in our testbed (discussed in Appendix A.6).

8.2 Experiment Setup

Baselines: We evaluate against the two baselines at d = 4:
(1) ShiftedRing, which improves upon NCCL ring [56], is
used by TopoOpt [77] for data-parallel training. The topology
is a superposition of two bidirectional rings, each allreducing
half of the data. (2) Double Binary Tree (DBT), implemented
in NCCL [27], uses the topology and schedule from [63].
Methodology: We use the MSCCL runtime [49] to evaluate
the topologies and schedules. We sweep through runtime
parameters, such as the protocol (Simple or LL), number of
channels (1, 2, 4, or 8), degrees of pipelining for the DBT
baseline, etc., and choose the best-performing schedule for
each data size. For DNN training, we run our schedules in
PyTorch through MSCCL as the backend.

8.3 Collective Communication Evaluation

Figure 6 shows allreduce results for varying topology sizes
N and data sizes M. Table 5 shows the topologies generated
by our topology finder (§5.4). We also add ShiftedBFBRing,
which is ShiftedRing topology but with our BFB generated
schedule. We observe that in the small data regime (M =
1KB), our topology beats ShiftedRing by a significant margin
(∼75% at N=12) and also outperforms DBT (∼20% at N=
8,10,12). Our ShiftedBFBRing beats ShiftedRing (∼40%
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N Topology TL
5 Complete Graph: K5 2α

6
Degree Expansion of
Complete graph: K3 ∗2 4α

7 Circulant Graph: C(7,{2,3}) 4α

8 Complete Bipartite Graph: K4,4 4α

9 Hamming Graph: H(2,3) 4α

10
Degree Expansion of BFB augmented
Bidirectional Ring: BiRing(2,5)∗2 4α

11 Circulant Graph: C(11,{2,3}) 4α

12 Circulant Graph: C(12,{2,3}) 4α

Table 5: OurBestTopo at d=4 generated by topology
finder (§5.4). All topologies listed above are BW-optimal.
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Figure 6: Allreduce experiment results on testbed at M = 1KB,1MB,1GB. “OurBestTopo”
topologies are listed in Table 5. Reduce-scatter and allgather results are in Appendix Figure 12.
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Figure 8: Testbed data-parallel training results with different topologies. We compare our topologies
(Table 5) against ShiftedRings (SR) and double binary trees (DBT) at 8- and 12-node scale. (a) shows
results of training small models on 8 A100 GPUs of our testbed, all using batch size 64. The total
allreduce time is the sum of the allreduce times for all layers in the model. (b) shows results of training
GPT-2 with 12 A100 GPUs. The per-GPU batch sizes are selected to max out the 40GB GPU memory,
with the small, medium, and large models having per-GPU batch sizes of 8, 4, and 1, respectively.

at N =12) despite using the same topology. At small data
sizes, the runtime is dominated by total-hop latency TL, and
hence, we can significantly outperform ShiftedRing, which
has linear instead of logarithmic TL growth with respect to N.

In the large data regime (M = 1GB), our topology beats
DBT by a significant margin (∼50% lower at N=8,10,12)
and matches the performance of ShiftedRing. At large data
sizes, the runtime is dominated by BW runtime TB. Since
the ShiftedRing is BW-optimal, we can only match its perfor-
mance. Due to the influence of both total-hop latency and BW
runtime at intermediate data sizes (M=1MB), our topology
outperforms ShiftedRing (∼50% at N=12) and DBT (∼45%
at N=8,10,12) in this regime. Our ShiftedBFBRing also out-
performs ShiftedRing (∼35% at N=12). Note that although
our gains over ShiftedRing diminish as M grows, future in-
creases in hardware bandwidth will enhance gains at large M
due to TL playing a more significant role. Appendix Figure 12
shows the reduce-scatter and allgather results, which demon-
strate trends and conclusions similar to those in Figure 6.

Figure 7 shows the allreduce and all-to-all runtime compar-
ison for large N based on our analytical model. Topologies
generated by our topology finder perform orders of magni-
tude faster in both allreduce and all-to-all. In allreduce, our
best topologies outperform ShiftedRing and DBT by 56× and
10×, respectively, near N=1000, due to the former’s linear

growth in TL and the latter’s poor BW performance. When
compared against 2D torus, our topologies also achieve 4×
better allreduce performance near N=1000 (see §A.3 for a
detailed analysis of our topologies at large N for different
α,M/B). As for all-to-all, we compare baseline topologies
against our lowest-diameter topology, generalized Kautz, and
our highest-diameter topology, circulant, from our Pareto-
frontier for any N and d. These two represent our best and
worst all-to-all topologies, respectively, while also serving as
the worst and best BW-efficient allreduce topologies. Never-
theless, circulant still outperforms all baselines in all-to-all:
9× and 14× better than ShiftdRing and DBT, respectively,
on average from N =900 to 1000. It is barely matched by
the 2D torus, which is limited to the square number Ns. Our
lowest-diameter topology, generalized Kautz, outperforms
ShiftedRing and DBT by 28× and 42×, respectively, and is
within 5.2% of the theoretical bound from N=900 to 1000.

8.4 DNN Training Evaluation

We compare our topologies against ShiftedRings and double
binary trees in DNN training. On our small-scale testbed,
we demonstrate improvements in data-parallel training across
various small models and also GPT-2 [59]. For full-scale
LLM training involving up to 1024 nodes and all-to-all com-
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Figure 9: Simulated expert-parallel training of Switch Transformers
across various topologies of different sizes. The simulation is conducted
assuming α= 10us, B= 100Gbps. All-to-all time is computed via multi-
commodity flow (Appendix A.5). We detailed our setup in Appendix A.4.

munications, we simulate expert-parallel training of a Mixture
of Experts (MoE) model to show our improvements at scale.

Testbed Training: We run PyTorch Distributed Data Paral-
lel (DDP) [38] training experiments on our testbed. Figure 8
shows the results of training both small DNN models and
GPT-2. We compare our topologies (from Table 5) against
ShiftedRings and DBT. In training small models (Figure 8a),
our topology improves total allreduce time by 30% and 50%
on average against ShiftedRing and DBT, respectively. With
optimizations such as compute-communication overlap, our
topology still secures a 10% and 25% average improvement
in iteration time over the baselines. In GPT-2 training (Fig-
ure 8b), despite the limited scale of our testbed, our topology
enhances iteration time by 7% and 25% on average compared
to ShiftedRing and DBT, respectively.

Large-Scale Simulation: While improvements over Shift-
edRing and DBT have been shown in testbed training, full-
scale LLM training is performed on much larger clusters.
In Figure 9, we simulate expert-parallel training of Switch
Transformers [19] on a much larger scale with parameter
sizes up to 1.6 trillion. We collect execution timestamps from
one A100 GPU to derive the compute times for each layer.
Communication times are then added to simulate training,
ensuring compute-communication overlap/dependency. Ap-
pendix §A.4 provides further details of the simulation.

Expert-parallel training involves not only data-parallel allre-
duce for non-expert layers but also all-to-all communications
to transfer tokens to and from the routed experts, which are
in the critical path of compute [19, 34, 36, 60]. In Figure 9,
we break down the iteration time into compute time, non-
overlapped allreduce time, and all-to-all time for a better
understanding of performance. As previously analyzed in Fig-
ure 7, ShiftedRings (SR) exhibit all-to-all performance that is
order-of-magnitude worse than our topologies. At 256-node
training of 14.7B MoE model, ShiftedRing has 8× greater
total all-to-all time, resulting in 4× longer iteration time com-
pared to our topology. We also include 2D torus (tor) for
comparison due to its relatively better all-to-all performance.
However, it still has all-to-all and iteration times that are 2×
and 1.5× greater, respectively, than our topology. The dispar-
ity is even larger at 1024-node training of 1.6T MoE model,

where ShiftedRing and 2D torus show all-to-all times that
are 27× and 3.3× greater, and iteration times that are 9× and
1.7× longer, respectively. At this scale, ShiftedRing and 2D
torus spend 91% and 58% of iteration time on all-to-all com-
munications, while our topology only spends 30%. We omit
DBT in Figure 9 due to its significantly worse performance
(∼2× of ShiftedRing). Due to high performance in both allre-
duce and all-to-all, our topologies consistently remain within
5% of the theoretical lower bound (LB) for iteration time.

Since large models involve large allreduce sizes and both
torus and ShiftedRing are BW-optimal, the allreduce perfor-
mance is similar across these topologies. For a broader spec-
trum of all-to-all efficient low-hop topologies like expander
graphs, the lack of efficient allreduce schedules prior to our
work has prevented their use in allreduce-involved training.

8.5 BFB Schedule Evaluation

We evaluate schedule generation from two aspects: sched-
ule generation runtime and the performance of generated
schedules. In §8.5.1, we compare BFB with state-of-the-art
schedule generations: SCCL [10] and TACCL [65], in both
generation runtime and theoretical schedule performance. In
§8.5.2, we compare, on supercomputing torus clusters, the
performance of torus schedules generated by BFB, traditional
torus scheduling [62], SCCL, and TACCL.

8.5.1 Schedule Generation

In schedule generation, SCCL and TACCL are the closest in
spirit to BFB schedule generation. Table 6 shows the run-
time comparison between SCCL, TACCL, and BFB when
generating allgather schedules for hypercube and 2D torus.
Both SCCL and TACCL use NP-hard optimization to generate
schedules. SCCL, which uses an SMT solver, fails to gener-
ate a schedule within 104 seconds beyond N =30. TACCL
formulates the scheduling problem as a mixed integer linear
program (MILP). It sets an 1800s time limit for its MILP
solver, after which it will return the best solution found up to
that point. However, for larger topologies, TACCL’s solver
fails to find a solution within the time limit, resulting in an
error. In comparison, BFB schedule generation is faster by
orders of magnitude due to its polynomial-time generation.

In terms of theoretical schedule performance, Figure 10
compares the total-hop latency and BW runtime of generated
schedules. Given a topology, SCCL and TACCL need to per-
form a sweep across parameters such as the number of chunks
and symmetry. They have to generate schedules for different
parameter sets to identify the high-performance ones, unlike
BFB, which requires no parameter. In Figure 10, the sched-
ules of SCCL and BFB can both achieve exact optimality, but
TACCL’s have significantly worse performance, especially at
large Ns. SCCL is uniquely capable of generating all Pareto-
efficient schedules. However, due to the prohibitive runtime
of parameter sweep, SCCL can only do so for very small Ns.
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N
SCCL TACCL w/o Symmetry TACCL w/ Symmetry BFB

c=1 c=2 c=3 c=4 c=1 c=2 c=3 c=4 c=1 c=2 c=3 c=4
Hypercube

4 0.59 0.64 0.68 0.72 0.89 0.50 0.83 0.75 0.62 0.51 0.71 0.60 <0.01
8 0.86 1.22 1.86 2.48 96.9 807 63.2 1800 7.97 645 7.39 1801 <0.01

16 21.4 48.4 130 573 1801 1801 1801 1802 1801 n/a n/a n/a <0.01
32 >104 >104 >104 >104 1802 n/a n/a n/a n/a n/a n/a n/a 0.03
64 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 0.17

1024 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 52.7
2D Torus (n×n)

4 0.61 0.63 0.67 0.76 0.68 0.50 0.82 0.72 0.45 0.51 0.76 0.64 <0.01
9 1.00 1.51 2.22 3.44 1801 189 67.8 262 88.6 71.1 67.8 105 <0.01

16 17.5 60 131 603 1801 1801 1801 1802 1801 1801 1801 n/a <0.01
25 3286 5641 >104 >104 1802 1802 1803 n/a 1802 n/a n/a n/a 0.01
36 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 0.03

2500 >104 >104 >104 >104 n/a n/a n/a n/a n/a n/a n/a n/a 61.1

Table 6: Comparing allgather schedule generation runtimes (in seconds) of SCCL, TACCL,
and BFB. The setup of SCCL is to generate schedules with the least number of comm steps. Both
SCCL and TACCL were run with chunks=1,2,3,4 (number of chunks per shard), and TACCL was
run w/ and w/o manually set topology symmetry. “n/a” indicates where TACCL reports an error due
to failure to generate a solution within its 1800s time limit for MILP solver.
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Figure 10: Comparing theoretical performances of
schedules from Table 6. We show both TL and TB of the
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and TACCL, the solid lines show the best results from
parameter sweeps. The inferior ones are dimmed.
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Figure 11: Comparing allreduce performances of torus schedules gener-
ated by BFB, traditional torus scheduling [62], SCCL, and TACCL on
Frontera [69] supercomputer. The y-axis is algorithmic bandwidth (algbw),
computed as M divided by end-to-end runtime. SCCL fails to generate a
schedule for 3×3×3 and 3×3×3×2 tori, and TACCL fails to generate a sched-
ule for 3×3×3×2 torus within the time limits.

8.5.2 Supercomputing Allreduce Experiments

In the supercomputing setting, we run torus schedules gen-
erated by BFB, traditional torus scheduling [62], SCCL, and
TACCL on Frontera [69] supercomputer at the Texas Ad-
vanced Computing Center (TACC) [71]. The cluster consists
of 396 nodes in a 6D torus direct-connect topology. Each
node is equipped with an Intel Xeon Platinum 8280 CPU and
a Rockport NC1225 network card, capable of delivering 25
Gbps per link, with degree 12. However, the total BW of a
single node may be bottlenecked by the 100 Gbps host BW
of PCIe Gen3 x16. Finally, the schedules are lowered and run
using Intel oneCCL [26] + libfabric [39].

We run schedules on two types of sub-torus within the
cluster: equal-dimension (3×3×3) and unequal-dimension
(3×3×2 & 3×3×3×2). As shown in Figure 11, BFB schedules
achieve the highest performance in all settings. As mentioned
in §6.2, the traditional torus schedule can only achieve high
BW performance in tori with equal dimensions. At large M, it
matches BFB’s performance in 3×3×3 torus but significantly
underperforms in 3×3×2 and 3×3×3×2, where BFB has 29%
and 42% higher algbw on average for M≥100MB. At small
to intermediate M (<100MB), BFB outperforms traditional
schedules by 3.1× on average in all settings due to its 2×
lower in total-hop latency and higher BW performance.

As for SCCL and TACCL, we adhere to the same time lim-
its and parameter sweeps as in §8.5.1 and select the best result
at each M from all parameter sets. In 3×3×2 torus, SCCL is
able to generate an optimal schedule, matching BFB’s perfor-
mance across all M. However, it fails to generate a schedule
within 104 seconds for other larger tori. TACCL can only
generate schedules in 3×3×2 and 3×3×3, and its schedules
underperform BFB’s by a large margin. One additional ob-
servation is that the algbw of BFB at large M hardly changes
from 18-node (3×3×2) to 54-node (3×3×3×2) torus. This can
be explained by the fact that BFB schedules have theoretically
achieved allreduce BW optimality ( 2M

B ·N−1
N ), which remains

nearly constant as N increases.

9 Concluding Remarks
Collective communications are critical to both ML training
and HPC workloads. Current solutions often rely solely on
existing topologies and schedules, resulting in high total-hop
latency, bandwidth inefficiency, or low all-to-all throughput.
We presented a general, highly scalable, and automated algo-
rithmic framework for optimizing topology and schedule gen-
eration for collectives by leveraging scalable graph-theoretic
approaches. Our evaluation demonstrates significant perfor-
mance gains across multiple testbeds and large-scale sim-
ulations in both standalone collective communications and
end-to-end ML training.
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Appendix
In this appendix, we give additional evaluation results, along
with formal mathematical definitions and analyses of the vari-
ous techniques and concepts discussed in the main text:

• §A provides supplementary materials to evaluation section.
• §B gives formal definitions of reduce-scatter/allgather

schedule and how one can be transformed into another.
• §C gives formal definitions of total-hop latency and band-

width optimality, along with discussions on optimal allre-
duce schedule and computational cost of reduction.

• §D provides formal definitions of expansion techniques
and optimality analysis of their expanded schedules.

• §E provides optimality analysis of BFB schedule genera-
tion and discusses variant formulations that support gen-
erating schedules for a fixed number of chunks and for
heterogeneous network topology.

• §F discusses various generative topologies and the perfor-
mance of their generated BFB schedules.

• §G provides proofs of all theorems in this paper.
• §H contains supplementary tables and figures. In particular,

Table 9 gives a summary of topologies in this paper.

A Evaluation Appendix
• §A.1 presents experiment results that compare BFB sched-

ule generation with communication solutions for switch
networks: NCCL [56] and recursive halving & doubling.

• §A.2 shows experiment results to validate α-β cost model.
• §A.3 gives an analysis of Pareto-efficient topologies/sched-

ules under different hardware and workload specifications.
• §A.4 details setup of simulated DNN training and the

topologies generated by our topology finder.
• §A.5 provides the multi-commodity flow (MCF) formula-

tion used to compute all-to-all throughput.
• §A.6 shows how to convert unidirectional topologies/sched-

ules into bidirectional ones.

A.1 Comparison Against Switch Solutions

NCCL [56] and recursive halving & doubling (RH&D) are
widely adopted collective communication solutions on switch
networks. We assess the schedule performance of BFB
against these solutions over two direct-connect 8-node topolo-
gies: hypercube and twisted hypercube [17]. Hypercube is
widely used in HPC settings, and its connections perfectly
match the communication pattern of RH&D. Twisted hyper-
cube is a variant of hypercube with a lower diameter.

Figure 13 compares the baselines against our BFB schedule
when run over either hypercube or twisted hypercube with
N =8, d =3 on the testbed. At small M, all schedules and
topologies perform roughly the same, except BFB can take
advantage of the lower diameter of twisted hypercube and
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twisted hypercube on N=8,d=3 testbed. The runtimes are normalized by
the runtime of recursive halving & doubling on hypercube.

achieve ∼20% lower runtime. At large M, because BFB
achieves BW optimality on both topologies, it performs even
better with 60% lower runtime. RH&D and NCCL perform
poorly as M grows because they cannot utilize all d=3 links
simultaneously. At every comm step of RH&D, a node only
communicates with one of the three neighbors, utilizing at
most 1/3 of the total bandwidth (similarly with NCCL). Also,
because the schedule is not matched to the twisted hypercube,
some nodes communicate with nodes multiple hops away,
occupying more links and causing congestion.

A.2 Cost Model Validation

Despite the wide acceptance of α-β cost model by previous
literature [10, 11, 24, 63, 65], we also conducted a linear re-
gression analysis to validate the cost model on our testbed. In
particular, we want to verify that (1) total-hop latency follows
TL = α · x+ ε and (2) BW runtime follows TB = M

B · y, where
x and y are the number of comm steps and bandwidth factor
respectively (y = 2 · N−1

N if BW-optimal). ε is the constant
latency4 including time costs such as GPU kernel launching.
Here, we use linear regression to derive the values of α, ε, and
1/B, and compute the relative errors between the observed

4This part of latency is a fixed constant for all topologies and schedules,
so it is omitted earlier.
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Figure 14: Linear regression results.

runtimes and expected runtimes. We fit the allreduce runtimes
at 1KB to the total-hop latency, since BW runtime is negligi-
ble at such a small M. Similarly, we fit the runtimes at 1GB to
the BW runtime, since total-hop latency is negligible at such
a large M.

Figure 14 shows our results of linear regression analysis to
verify our cost model. For total-hop latency, we obtain esti-
mates α≈13.33us and ε≈21.60us with low errors (average
and maximum relative errors of 1.71% and 6.21% respec-
tively). As one can see from Figure 14a, ShiftedRing and
ShiftedBFBRing have a straight and a stair-step shape of
runtime growth respectively, which match the expected num-
bers of comm steps 2(N −1) and 2⌊N/2⌋ respectively. For
BW runtime, we get an estimate 1/B≈1.018×10−4us/byte
or B≈79Gbps with low errors (average and maximum rel-
ative errors of 0.47% and 1.32% respectively). As one can
see from Figure 14b, all three topologies follow the fitted
curve 2 1GB

B · N−1
N = 2T ∗

B (N) since they are all BW-optimal.
However, there is a gap between B≈79Gbps and the hard-
ware theoretical bandwidth 4x25Gbps=100Gbps. Besides
inevitable loss of bandwidth in actual communication, the gap
can also be explained by the fact that computational cost of
reduction also accounts for part of 1/B as discussed in §C.4.

A.3 Pareto-Efficiency Analysis

There could exist multiple Pareto-efficient topologies at given
N and d. For different α and M/B, the Pareto-efficient topol-
ogy with minimum allreduce runtime is also different. To see
how N affects the best choice of topologies, we use topology
finder (§5.4) to generate Pareto-efficient topologies at d = 4
for N up to 2000 and pick the best one based on specific
values of α and M/B.
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Figure 16: Example of a training timeline for Switch Transformers.

Figure 15 shows two examples of such analysis. At M =
1MB, total-hop latency is more important than BW runtime.
Thus, we see that generalized Kautz graph is the most popular
one, being the best topology at many Ns. On the contrary, at
M = 100MB, BW performance becomes the dominant factor,
and thus circulant graph becomes the most popular one. Line
graphs are also popular in both settings; however, line graph
expansion requires target N to be divisible by some power of
d, so it does not work for any N.

A.4 Details of Simulated Distributed Training

We simulate distributed ML training by first collecting actual
compute times for model layers, running the models on an
NVIDIA A100-SXM-80GB GPU, and then adding communi-
cation times according to the specific parallelism, e.g., data
or expert parallelism. The communication time is calculated
using α-β model for allreduce (§A.2) and multi-commodity
flow for all-to-all (§A.5), assuming α=10us, B=100Gbps
over d=4. Our simulation is designed to match the compute-
communication overlap pattern of PyTorch Distributed Data
Parallel [38]. As in PyTorch DDP, we bucket gradients that
are ready for allreduce during backward propagation. Once
the gradient volume reaches a predefined bucket capacity, an
allreduce is performed. While a large bucket size results in
less latency overhead, a small bucket size enhances compute-
communication overlap. We choose the best bucket size by
comparing the iteration times of bucket sizes {1MB, 10MB,
100MB, 1GB}. To ensure overlap, computation and commu-
nication are handled as independent streams, with the com-
munication stream executing one collective at a time.

For the simulated training of Mixture-of-Experts (MoE)
models, we follow the standard practice of expert paral-
lelism [19, 34, 36, 60], where experts are sharded across all
nodes while non-expert layers are replicated. All-to-all com-

munications are needed before the expert layers to route to-
kens to the nodes of the assigned experts, and afterward to
return tokens to the original nodes for the continuation of the
forward/backward pass, thus blocking the computation stream.
Furthermore, all-to-all and allreduce are not allowed to be
overlapped as they occupy the same network bandwidth [36].
Figure 16 shows a timeline example of the simulated expert-
parallel training. For simplicity, we assume a uniform token
distribution among the experts, as MoE models are trained
to balance expert load [19, 66, 82]. Consequently, the all-
to-all communication is uniform across the nodes. We use
the multi-commodity flow formulation (3) to compute the
all-to-all communication time.

All hyperparameters, including sequence lengths and
global batch sizes, are chosen according to the original paper
of Switch Transformers [19]. The topology degree is fixed at
4, and the topology sizes are chosen such that the local batch
size at each node is ≥ 1 and not so large as to run out of GPU
memory. Table 7 includes all the Pareto-efficient topologies
used in the simulation. For each model and topology size, we
choose the topology that results in the smallest iteration time.

A.5 All-to-All Throughput

The problem of deriving the throughput of all-to-all commu-
nication on a topology can be nicely formulated as a multi-
commodity flow (MCF) problem [4, 21, 32, 75, 78]. In an all-
to-all MCF, each pair of nodes (s, t) ∈V 2

G acts as the source
and sink of a commodity. The objective is to simultaneously
route f units of flows from each s to t such that f is maxi-
mized, with flow allocation subject to flow conservation and
edge capacities. In [4], the authors have devised an efficient
LP formulation to compute the optimal f :

maximize f
subject to ∑

s
ys,(u,v)≤ 1, ∀u,v

f +∑
v

ys,(u,v)≤ ∑
w

ys,(w,u), ∀s,u :s ̸=u

ys,(u,v)≥ 0. ∀s,u,v

(3)

In LP (3), we assume the capacity/bandwidth of each link
is 1 unit. Therefore, if the bandwidth of each link is B/d,
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Topology Allreduce All-to-All
N=32, d=4 TL TB D(G) MCF
L(K4,4) 3α 1.000M/B 3 5.71e−2
DistReg(4,32) 4α 0.969M/B 4 5.26e−2
Theoretical Bound 3α 0.969M/B 3 5.80e−2
N=64, d=4 TL TB D(G) MCF
Π4,64 3α 1.312M/B 3 2.17e−2
L(DBJMod(4,2)) 4α 1.000M/B 4 2.21e−2
Diamond□2 6α 0.984M/B 6 1.87e−2
Theoretical Bound 3α 0.984M/B 3 2.42e−2
N=128, d=4 TL TB D(G) MCF
L2(K4,4) 4α 1.031M/B 4 9.89e−3
L(DistReg(4,32)) 5α 1.000M/B 5 9.26e−3
BiRing(2,8)□UniRing(1,4)□2 10α 0.992M/B 10 5.21e−3
Theoretical Bound 4α 0.992M/B 4 1.00e−2
N=256, d=4 TL TB D(G) MCF
DBJ(4,4) 4α 1.328M/B 4 4.04e−3
L2(DBJMod(4,2)) 5α 1.016M/B 5 4.10e−3
L(Diamond□2) 7α 1.000M/B 7 3.62e−3
DBJMod(2,4)□2 10α 0.996M/B 8 2.94e−3
Theoretical Bound 4α 0.996M/B 4 4.39e−3
N=512, d=4 TL TB D(G) MCF
L3(K4,4) 5α 1.039M/B 5 1.88e−3
L2(DistReg(4,32)) 6α 1.008M/B 6 1.78e−3
L(BiRing(1,4)□3□UniRing(1,2)) 11α 1.000M/B 11 1.12e−3
UniRing(1,4)□3□UniRing(1,8) 16α 0.998M/B 16 5.58e−4
Theoretical Bound 5α 0.998M/B 5 1.90e−3
N=1024, d=4 TL TB D(G) MCF
Π4,1024 5α 1.332M/B 5 8.01e−4
L3(C(16,{3,4})) 6α 1.020M/B 6 8.12e−4
L2(Diamond□2) 8α 1.004M/B 8 7.34e−4
L(DBJMod(2,4)□2) 11α 1.000M/B 9 6.18e−4
(UniRing(1,4)□UniRing(1,8))□2 20α 0.999M/B 20 2.79e−4
Theoretical Bound 5α 0.999M/B 5 8.57e−4

Table 7: Pareto-efficient topologies at N ∈{32,64,128,256,512,1024},
d=4. The results are generated from the topology finder (§5.4). For notations
of the topologies, see Table 3 and 9. For distance regular graphs (DistReg),
see Table 8. The MCF values are computed using LP (3).

then f B/d represents the rate at which every node can send
to every other node simultaneously.

A.6 Unidirectional to Bidirectional

Unidirectional topologies are technically feasible on optical
testbeds. The optical cable contains two fibers, one for each
direction, and the fabric can link them to two distinct end-
hosts, thus enabling unidirectional topologies at no additional
hardware cost.

However, in our evaluation, we only use bidirectional
topologies. While unidirectional topologies can be realized
by configuring the patch panel in simplex mode, the requisite
overlay routing for the reverse path traffic (acks, etc.) is cur-
rently only supported using routing rules performed by the
host kernel as opposed to the NIC, leading to unpredictable
RTTs. Therefore, we can functionally validate unidirectional
topologies on our testbed, but we cannot accurately evaluate
their performance. Note that newer NICs [9, 57] do support
hardware offloading for these rules, which we will examine
in future work.

While this paper considers unidirectional topologies a lot,
many of the techniques can be conveniently applied to bidirec-
tional topologies as well. For example, BFB schedule genera-

tion, degree expansion, and Cartesian product can all be used
on bidirectional topologies by replacing each bidirectional
edge with two opposite unidirectional edges. The resulting
degree expanded and Cartesian product topologies still have
unidirectional edges in opposite pairs. Although line graph ex-
pansion only works within unidirectional topologies, there is
a way to convert unidirectional topology and schedule to bidi-
rectional ones with zero performance sacrifice. In this section,
we will show how to convert a reverse-symmetric (see Defini-
tion 6) d-regular unidirectional topology G and its allgather
schedule A to a 2d-regular bidirectional topology G′ and its
schedule A′ such that TL(A)=TL(A′) and TB(A)=TB(A′).

Let g :VG →VGT be the isomorphism from G to GT , then
it is trivial to see that g(A) (see Definition 7) is an allgather
schedule for GT . Observe that G′=G∪GT is a 2d-regular
bidirectional topology. Consider both A and g(A) as allgather
schedules for bidirectional topology G′. Schedules A and
g(A) use disjoint sets of edges, because they use opposite
directions. Thus, we can divide each shard into two halves.
Let one half follow schedule A and the other half follow g(A).
Let such a schedule be A′.

It is trivial to see that TL(A)=TL(A′). As for TB(A)=TB(A′),
it follows the fact that the total data size is halved for each of
A and g(A), but the bandwidth per edge is also halved due to
the doubling of degree. Note that if A is BW-optimal, then A′

is BW-optimal; however, A′ is not necessarily Moore optimal
if A is Moore optimal.

B Reduce-Scatter & Allgather
We use tuple ((v,C),(u,w), t) to denote that u sends v’s chunk
C to w at comm step t. Node v is the source and destination
node of chunk C in allgather and reduce-scatter respectively.
A communication schedule is thus a collection of tuples.
Definition 4 (Allgather). An algorithm (G,A) is an allgather
algorithm if for arbitrary x ∈ S and distinct u,v ∈VG, there
exists a sequence in A:

((v,C1),(w0,w1), t1),((v,C2),(w1,w2), t2), . . .
((v,Cn),(wn−1,wn), tn),

where w0=v, wn=u, t1<t2<.. .<tn, and x∈C1∩C2∩·· ·∩Cn.
This sequence serves to broadcast x from v to u. A reduce-

scatter algorithm has the same definition except w0=u, wn=v.
In reduce-scatter, we assume any chunk received by a node is
immediately reduced with the node’s local chunk.

In this paper, many of the techniques are discussed under
allgather only. We will show that anything holds in either
reduce-scatter or allgather has an equivalent version for the
other collective operation. To do so, we use the concept
of transpose graph from graph theory and define reverse
schedule. We say a schedule A is for topology G if every
((v,C),(u,w), t) ∈ A satisfies u,v,w ∈VG and (u,w) ∈ EG.
Definition 5 (Reverse Schedule). Suppose A is a schedule
for G. A reverse schedule AT of A is a schedule for trans-
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pose graph GT such that ((v,C),(u,w), tmax − t +1) ∈ AT iff
((v,C),(w,u), t) ∈ A, where tmax is the max comm step in A.

It is trivial to see that TL(A) = TL(AT ) and TB(A) = TB(AT ).
Note that (u,w) ∈ EGT if and only if (w,u) ∈ EG by definition
of transpose graph.
Theorem 1. If A is a reduce-scatter/allgather schedule for G,
then AT is an allgather/reduce-scatter schedule for GT .

Theorem 1 has the following two corollaries:
Corollary 1.1. Suppose G 7→ f (G) is a function to construct
reduce-scatter/allgather schedule given graph G, then G 7→
f (GT )T is a function to construct allgather/reduce-scatter
schedule given graph G.
Corollary 1.2. Suppose (G,A) 7→ ( f (G), f (A)) is a mapping
within reduce-scatter/allgather algorithms, then (G,A) 7→
( f (GT )T , f (AT )T ) is a mapping within allgather/reduce-
scatter algorithms.

For example, the line graph expansion in §5.1 can be seen
as a mapping within allgather, and the BFB linear program (1)
can be seen as a function to construct allgather schedule.
Thus, Corollary 1.1 and 1.2 have shown that they both have
equivalent versions in reduce-scatter.

In undirected topology, it is well-known that reduce-scatter
and allgather are a pair of dual operations such that one can
be transformed into another by reversing the communication
in schedule [11]. It is similar for directed topology but with
extra requirement and more complicated transformation. We
define the following property for directed graphs:
Definition 6 (Reverse-Symmetry). A digraph G is reverse-
symmetric if it is isomorphic to its own transpose graph GT .

In graph theory, there is a similar concept called skew-
symmetric graph. Reverse-symmetry is a weaker condition
than skew-symmetry.

We define a way to transform the schedule for G into a
schedule for GT based on graph isomorphism:
Definition 7 (Schedule Isomorphism). Suppose G and G′ are
isomorphic. Let f : VG →VG′ be the graph isomorphism and
A be a schedule for G, then f (A) is a schedule for G′ that
(( f (v),C),( f (u), f (w)), t)∈ f (A) iff ((v,C),(u,w), t)∈A.
Theorem 2. Suppose G is reverse-symmetric. Let GT be
the transpose graph, and let f : VGT → VG be the isomor-
phism from GT to G. If (G,A) is a reduce-scatter/allgather
algorithm, then (G, f (AT )) is an allgather/reduce-scatter al-
gorithm with TL( f (AT )) = TL(A) and TB( f (AT )) = TB(A).

Theorem 2 establishes that given any reverse-symmetric
topology, if we have either reduce-scatter or allgather, then we
can construct both reduce-scatter and allgather. Since allre-
duce can be achieved by applying a reduce-scatter followed by
an allgather, we only need one of reduce-scatter and allgather
to construct a complete allreduce algorithm. Furthermore, if
the reduce-scatter or allgather algorithm has runtime T , then
the resulting allreduce algorithm has runtime 2T .

Most of our base topologies are reverse-symmetric (Ta-
ble 9). In addition, all of our expansion techniques also

preserve reverse-symmetry. Thus, one can almost always
use Theorem 2 to derive reduce-scatter and allreduce sched-
ules from allgather schedule on our synthesized topologies.
For non-reverse-symmetric topologies like generalized Kautz
graph, one can apply Corollary 1.1 or 1.2 to construct reduce-
scatter and allgather separately.

C Topology-Schedule Optimality
Because our cost model is only concerned with total-
hop latency and BW runtime, the optimality of reduce-
scatter/allgather algorithm is only related to total-hop latency
optimality and BW optimality in this paper. Note that we also
consider topology as a dimension that can be optimized, so
optimality is discussed in the space of all topology-schedule
combinations, i.e., algorithms by our definition.

C.1 Total-Hop Latency Optimality

Definition 8 (Total-Hop Latency Optimal). Given an N-node
degree-d reduce-scatter/allgather algorithm (G,A), if any
other N-node degree-d reduce-scatter/allgather algorithm
(G′,A′) satisfies TL(A′)≥TL(A), then (G,A) is total-hop la-
tency optimal.

Because in reduce-scatter/allgather, every node needs to
send a shard of data to every other node, the number of comm
steps is lower bounded by the graph diameter:
Theorem 3. Every reduce-scatter/allgather algorithm (G,A)
satisfies TL(A)≥α ·D(G), where D(G) is the diameter of G.

Because we can always construct a BFB schedule A for
topology G with TL(A) = α ·D(G), it follows the corollary:
Corollary 3.1. An N-node degree-d reduce-scatter/allgather
algorithm (G,A) is total-hop latency optimal if and only if
TL(A) = α ·D(G) = α ·min{D(G′) : |VG′ |= N,deg(G′) = d}.

The minimum diameter of a directed graph given a number
of vertices and degree is still an open question. One can check
degree/diameter problem [50] for more information. However,
as a close upper bound of number of vertices given degree
and diameter, the Moore bound for digraph is sufficient to tell
the total-hop latency optimality in most cases.
Definition 9 (Moore Bound). Let G be any degree-d digraph
of diameter k. The Moore bound is an upper bound on the
number of vertices in G:

Md,k =
k

∑
i=0

di =
dk+1 −1

d −1
.

Definition 10 (Moore Optimal). Let (G,A) be an N-node
degree-d reduce-scatter/allgather algorithm with TL(A) = kα,
then (G,A) is Moore optimal if N > Md,k−1.

Because for any degree-d digraph G, D(G)≥ k must be true
as long as |VG|> Md,k−1, Moore optimality is a stronger con-
dition than total-hop latency optimality. We define a function
T ∗

L such that T ∗
L (N,d) equals the Moore optimal total-hop la-

tency of N-node degree-d reduce-scatter/allgather algorithms.
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C.2 Bandwidth Optimality

Definition 11 (Bandwidth Optimal). Given an N-node degree-
d reduce-scatter/allgather algorithm (G,A), if any other N-
node degree-d reduce-scatter/allgather algorithm (G′,A′) sat-
isfies TB(A′)≥ TB(A), then (G,A) is BW-optimal.

In reduce-scatter/allgather, each node needs to send/receive
at least M · N−1

N amount of data. Thus, the following holds:
Theorem 4. M

B · N−1
N is a lower bound of TB(A) for any N-

node reduce-scatter/allgather algorithm (G,A).
Note that one can always construct a ring of degree d by

sending d parallel edges from one node to the next node. The
trivial ring reduce-scatter/allgather schedule has M

B · N−1
N BW

runtime. Therefore, we have:
Corollary 4.1. An N-node reduce-scatter/allgather algorithm
(G,A) is BW-optimal if and only if TB(A) = M

B · N−1
N .

We define a function T ∗
B such that T ∗

B (N) = M
B · N−1

N is the
optimal BW runtime of N-node reduce-scatter/allgather algo-
rithms. From Corollary 4.1, we have the following necessary
and sufficient condition for BW optimality:
Theorem 5. An allgather algorithm (G,A) is BW-optimal if
and only if:

1. 1
B/d ∑((v,C),(u,w))∈At |C|=TB(At) for all (u,v)∈EG and t∈
{1, . . . , tmax}. At is the subschedule of A at comm step t.

2. Pick any distinct u,v ∈VG. For each x ∈ S, there exists a
unique ((v,C),(w,u), t) ∈ A such that x ∈C.

Condition 1 ensures that at each comm step, every link of
topology G has equal workload, so no link finishes early and
results in waste of bandwidth. Condition 2 ensures that no
piece of data is received twice by some node, so no duplicated
send exists.

C.3 Allreduce Optimality

In this paper, we construct an allreduce algorithm through a
reduce-scatter followed by allgather. In such construction, the
lower bound of allreduce algorithm is 2(T ∗

L (N,d)+T ∗
B (N)).

To compare this with the lower bound of any allreduce con-
struction, in [58], the authors have proved that 2T ∗

B (N) is
indeed the lower bound of BW runtime of any allreduce al-
gorithm. As for total-hop latency, a reduce-scatter followed
by allgather has at least 2D(G) number of comm steps, so
2T ∗

L (N,d) is the lower bound of total-hop latency. Although
one can use all-to-all to construct an allreduce with number of
comm steps equal to one diameter D(G) (lower bound being
T ∗

L (N,d) instead of 2T ∗
L (N,d)), the lower bound of BW run-

time for all-to-all is M
B · (N −1) = N ·T ∗

B (N), which is much
worse than 2T ∗

B (N).
There is also another way of constructing allreduce: reduce

followed by broadcast. In such an approach, the number of
comm steps can be twice the radius of G instead of twice the
diameter. However, the Moore bound for graph diameter also
applies to graph radius, so 2T ∗

L (N,d) is still a lower bound
of allreduce via reduce+broadcast. By Theorem 16, the total-

hop latency optimal allreduce via reduce+broadcast is at most
2α lower than the total-hop latency of generalized Kautz
graph can do with reduce-scatter plus allgather. Furthermore,
reduce+broadcast is usually poor in BW performance.

C.4 Computational Cost

In this paper, we omit the computational cost of reduction
operation in performance analysis. While this approach is
commonly adopted in previous literature [10, 63, 65, 76], we
give a formal reasoning why this approach is legitimate. It
is not only because computational cost is generally orders of
magnitude lower than network cost, but also because compu-
tational cost can be incorporated into network cost.

Assume a cost model where computation and network com-
munication do not overlap at each node.5 In particular, at
each comm step of reduce-scatter, the computation to re-
duce chunks happens immediately after the node receives
all chunks and before the node starts to send out chunks for
the next comm step. We adopt notations from [11], where
γ denotes the computational time cost per size of data. Like
total-hop latency and BW runtime, we also let TC(A) be the
total time spent on computation by schedule A. As argued
in [11], a lower bound of computational cost is TC ≥M ·γ · N−1

N
for both reduce-scatter and allreduce, which is identical to the
BW optimality of reduce-scatter and half of that of allreduce.
The following theorem shows that BW runtime of a schedule
can act as an upper bound for the computational time.

Theorem 6. Given a reduce-scatter algorithm (G,A), sup-
pose TB(A) = M

B · y, then TC(A)≤ M · γ · y.

The rationale behind Theorem 6 is that the amount of com-
putation for any node at a given comm step equals the amount
of data the node receives during that comm step. Thus, as
we balance network transmission, it naturally leads to a
more balanced computation. With Theorem 6, if the BW
runtime of some allreduce schedule A is TB(A) = 2 M

B · y, then
TB(A)+TC(A) ≤ M · ( 2

B + γ) · y. We can thus simply define
B′ = ( 1

B + γ

2 )
−1, and then 2 M

B′ ·y can represent the sum of BW
runtime and computational runtime altogether. The value of y
is all that matters. The following corollary shows that if an
algorithm is BW-optimal, then such representation is exact.

Corollary 6.1. If allreduce algorithm (G,A) is BW-optimal,
i.e., TB(A)= 2 M

B · N−1
N , then TC(A)=M ·γ· N−1

N and TB(A)+
TC(A)=2M·( 1

B + γ

2 )·
N−1

N .

When profiling a testbed, one can simply derive the value
of 1

B + γ

2 using BW-optimal topologies and use it as the new
1/B to apply the results of this paper. While it is still possible
for two schedules with the same BW runtime to have different
computational runtimes, such difference is bounded by the
aforementioned theorems and orders of magnitude smaller
than BW runtime.

5Otherwise, the computational cost would be even more negligible.
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D Optimality of Expansion Techniques
In this section, we provide formal definitions and detailed
performance analysis of expansion techniques.

D.1 Line Graph Expansion

Definition 12 (Line Graph). Given a directed graph (or di-
graph) G, each edge (u,v) ∈ EG corresponds to a vertex uv
in the line graph L(G). For every uv,vw pair in VL(G), there
exists an edge (uv,vw) ∈ EL(G).

In the case of multiedges between u and v, the line graph
also contains multiple vertex uv.
Definition 1 (Schedule of Line Graph). Given an allgather
schedule AG for topology G, let AL(G) be the schedule for line
graph L(G) containing:

1. ((v′v,S),(v′v,vu),1) for each edge (v′v,vu) ∈ EL(G) with
v′v ̸= vu. [Insert the 1st comm step in AL(G).]

2. ((v′v,C),(uw,ww′), t + 1) for each ((v,C),(u,w), t)∈AG
and v′v ̸= ww′. [Adapt AG to form AL(G).]

The following theorem gives the performance of the ex-
panded schedule:
Theorem 7. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm, then (L(G),AL(G)) is a dN-node
allgather algorithm satisfying:

TL(AL(G)) = TL(AG)+α, (4)

TB(AL(G))≤ TB(AG)+
M
B

· 1
N
. (5)

From Theorem 7, one can see that the performance of the
expanded schedule depends on that of the base schedule. Note
that TB also depends on M and B. For simplicity, we write
TB(AG) instead of TB(AG,M,B) when there is no ambiguity.
Theorem 7 makes an implicit assumption that TB(AG,M,B)=
τ(M/B) for some constant τ. This assumption, suggesting that
TB scales linearly with data size and inversely with bandwidth,
should hold for any reasonably designed schedule.

Consequently, if we apply line graph expansion n times,
the performance of the expanded schedule is:
Corollary 7.1. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm with TB(AG,M,B)=τ(M/B) for
some constant τ, then (Ln(G),ALn(G)) is a dnN-node allgather
algorithm satisfying:

TL(ALn(G)) = TL(AG)+nα, (6)

TB(ALn(G))≤ TB(AG)+
M
B

· d
d −1

(
1
N
− 1

dnN

)
. (7)

In terms of the optimality of line graph expansion:
Theorem 8. (Ln(G),ALn(G)) is Moore optimal if and only if
(G,AG) is Moore optimal.
Theorem 9. If (G,AG) is BW-optimal with N nodes, then
TB(ALn(G))/T ∗

B (d
nN)≤ 1+[(d −1)N]−1 for all n.

As mentioned in the main text, by Theorem 9, the key
metric for the quality of base graph is how large it is while
achieving both Moore and BW optimality. Currently, our

largest such base graph that works for any even degree is
Hamming graph H(2,1+d/2), which has (1+d/2)2=Θ(d2)
number of nodes. The corresponding line graph expanded
topology is always Moore optimal and at most O(1/d3) away
from BW optimality by Theorem 9.

Line graph expansion is closely related to BFB schedule for
two reasons: (1) most of our base topologies like complete
bipartite graph and Hamming graph use BFB schedule as
the base schedule, and (2) the line graph expansion of BFB
schedule is still a BFB schedule. To see the performance
bound in Theorem 7 is tight, we have the following results in
the context of BFB schedule:
Theorem 10. Let AG be a BFB allgather schedule for d-
regular topology G with |N+(u)|>1 for all u ∈VG, then the
expanded schedule AL(G) is a BFB allgather schedule for
L(G). In particular, if AG is the optimal BFB schedule for G,
then AL(G) is the optimal BFB schedule for L(G) satisfying:

TB(AL(G)) = TB(AG)+
M
B

· 1
N
. (8)

Corollary 10.1. Let AG be a BFB allgather schedule for d-
regular topology G with |N+(u)|>1 for all u ∈VG, then the
expanded schedule ALn(G) is a BFB allgather schedule for
Ln(G). In particular, if AG is the optimal BFB schedule for G,
then ALn(G) is the optimal BFB schedule for Ln(G) satisfying:

TB(ALn(G)) = TB(AG)+
M
B

· d
d −1

(
1
N
− 1

dnN

)
.

D.2 Degree Expansion

Definition 13 (Degree Expanded Topology). Given an N-
node d-regular topology G without self-loops, construct the
degree expanded nN-node nd-regular topology G∗n:

1. For each vertex v ∈VG, add v1, . . . ,vn to VG∗n,

2. For each edge (u,v) ∈ EG, add (ui,v j) to EG∗n for all i, j
including i = j.

Definition 2 (Degree Expanded Schedule). Given an all-
gather schedule AG for G, construct AG∗n for G∗n:

1. For all i, j including i= j and for each ((v,C),(u,w), t)∈AG,
add ((v j,C),(u j,wi), t) to AG∗n;

2. Divide shard S into equal-sized chunks C1, . . . ,Cnd . Given
ui,u j ∈ VG∗n with i ̸= j, add ((ui,Cα),(vα,u j), tmax + 1)
to AG∗n for each (v1,u j), . . . ,(vnd ,u j) ∈ EG∗n, where tmax
is the max comm step in AG.

Theorem 11. Given a d-regular topology G without self
loops, if (G,AG) is an N-node allgather algorithm with
TB(AG,M,B) = τ(M/B) for some constant τ, then (G ∗
n,AG∗n) is an nN-node allgather algorithm satisfying:

TL(AG∗n) = TL(AG)+α, (9)

TB(AG∗n) = TB(AG)+
M
B

· n−1
nN

. (10)

Corollary 11.1. If (G,AG) is BW-optimal and TB(AG,M,B)=
τ(M/B) for some τ, then (G∗n,AG∗n) is BW-optimal.
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Degree expansion preserves BW optimality. As for
total-hop latency of degree expanded topology, observe that
T ∗

L (N,d) = Θ(logd N) and lognd nN < logd N, so T ∗
L de-

creases as we apply degree expansion. Since TL increases
in degree expansion, Moore optimality is not preserved.

D.3 Cartesian Product Expansion

Definition 3 (Cartesian Product). The Cartesian product di-
graph G1□G2 of digraphs G1 and G2 has vertex set VG1 ×VG2

with vertex u = (u1,u2) connected to v = (v1,v2) iff either
(u1,v1) ∈ EG1 and u2 = v2; or u1 = v1 and (u2,v2) ∈ EG2 .

Definition 3 generalizes to Cartesian product of multiple di-
graphs: G1□G2□G3=(G1□G2)□G3. The Cartesian product
of n identical digraphs is denoted as Cartesian power G□n.
Definition 14 (Schedule of Cartesian Power). Given an all-
gather schedule AG for topology G and n ∈ N, construct the
schedule AG□n for G□n:

1. Construct the schedule A(1) as follows:

2. For j = 1, . . . ,n, for each ((w,C),(u,v), t) ∈ AG, add
(((x,w,z),C),((y,u,z),(y,v,z)), t +( j−1)tmax)

to A(1) for all x,y ∈V j−1
G and z ∈V n− j

G . tmax is the max
comm step in AG.

3. Similarly, construct A(i) for i=2, . . . ,n that each vertex v
in A(1) is shifted by i−1 to (v[n−i+2:n],v[1:n−i+1]).

4. Divide each shard into n equal-sized subshards. Construct
schedule AG□n such that A(i) performs allgather over the
i-th subshards of all nodes.

Theorem 12. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm with TB(AG,M,B) = τ(M/B) for
some constant τ, then G□n is an nd-regular topology, and
(G□n,AG□n) is an Nn-node allgather algorithm satisfying:

TL(AG□n) = n ·TL(AG), (11)

TB(AG□n) = TB(AG) ·
N

N −1
· Nn −1

Nn . (12)

We then have the following corollary:
Corollary 12.1. If (G,AG) is BW-optimal and TB(AG,M,B)=
τ(M/B) for some τ, then (G□n,AG□n) is BW-optimal.

Like degree expansion, Cartesian power expansion does
not preserve Moore optimality.

We use BFB schedule generation when dealing with Carte-
sian product of distinct topologies:
Theorem 13. Let G1,G2, . . . ,Gn be topologies that

1. G1, . . . ,Gn are nontrivial simple digraphs;

2. Every Gi has BW-optimal BFB allgather schedule.

Then, the optimal BFB allgather schedule, i.e. the sched-
ule generated by BFB LP (1), for G1□ . . .□Gn is also
BW-optimal. The total-hop latency of the schedule equals
α ·D(G1□ . . .□Gn)=α ·∑i D(Gi).

The BFB schedule generation can also be used when indi-
vidual topologies do not have BW-optimal BFB schedules;

however, in such a case, we do not have performance bound
for the schedule of the Cartesian product.

E BFB Schedule Generation
The LP formulation for u2 in Figure 5 is:

minimize Uu2,t
subject to xv1,(w1,u2),t≤Uu2,t ,

xv1,(w2,u2),t + xv2,(w2,u2),t≤Uu2,t ,
xv2,(w3,u2),t≤Uu2,t ,

xv1,(w1,u2),t + xv1,(w2,u2),t= 1,
xv2,(w2,u2),t + xv2,(w3,u2),t= 1,

0 ≤ xv,(w,u2),t≤ 1. ∀v,w

Definition 15 (BFB schedule). An allgather schedule A for
G is a BFB schedule if A satisfies: ((v,C),(w,u), t) ∈ A only
if d(v,u) = d(v,w)+1 = t.

Theorem 14. A schedule A for G is a BFB allgather schedule
if and only if the following are satisfied:

1. If ((v,C),(w,u), t) ∈ A, then d(v,u) = d(v,w)+1 = t;

2. For any distinct u,v ∈VG, the collection of chunks Cv =
{C | ((v,C),(w,u), t) ∈ A} satisfies S =

⋃
C∈Cv C.

Condition 1 ensures the schedule follows the breadth-first
broadcast order. Condition 2 ensures every node receives the
entire shard from every other node and thus a valid allgather.

E.1 Optimality

Theorem 15. If A is a BFB schedule for G, then the total-hop
latency TL(A) = α ·D(G).

There may exist many BFB schedules for a given topology
G. They all have the same TL but may have different TBs.
Thus, the optimal BFB schedule is the one with the lowest TB.
Since every BFB schedule can be expressed as a solution to
linear program (1), we have the following result:
Theorem 16. Given any topology G, linear program (1) gives
the optimal BFB schedule of G.

An important implication of Theorem 16 is that if we can
show a BW-optimal BFB schedule exists for a topology
G, then linear program (1) is guaranteed to generate one.
This has become an important tool for us to prove that BFB
schedule generation can always generate BW-optimal sched-
ules for some families of topologies (see §F). For the rest of
this section, we show conditions that, if met by a topology,
ensure it has a BW-optimal BFB schedule.

The following theorem shows the necessary and sufficient
conditions for a BFB allgather schedule to be BW-optimal:
Theorem 17. Suppose (G,A) is a BFB allgather schedule.
(G,A) is BW-optimal if and only if:

1. There exists a sequence N−
1 ,N−

2 , . . . ,N−
D(G) ∈ N such that

for any x ∈ N and u ∈VG, |N−
x (u)|= N−

x .

2. For any (w,u)∈ EG, ∑((v,C),(w,u))∈At |C|= M
N |N−

t (u)|/d =
M
N N−

t /d.
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We assume G is d-regular. Condition 1 and 2 together
ensure that at each comm step, all links have perfectly bal-
anced workloads. In Theorem 13, we have already proven
that a Cartesian product graph has BW-optimal BFB schedule
if it is the product of graphs that each have a BW-optimal
BFB schedule. Here, Theorem 17 also leads to the follow-
ing sufficient condition for a bidirectional topology to have a
BW-optimal BFB schedule:

Theorem 18. There exists a BW-optimal BFB schedule for
undirected graph G if for every distance x, two of the following
constants exist:

1. Nx = |Nx(u)| for any u ∈VG;

2. ax = |Nx(u)∩Nx−1(w)| for any u ∈VG and w ∈ N(u);

3. bx = |N(u)∩Nx−1(v)| for any u ∈VG and v ∈ Nx(u).

Moreover, if two of Nx,ax,bx exist, then the third one must
also exist with Nx = dax/bx.

Note that in undirected graphs, we have N+
x (u) = N−

x (u) =
Nx(u). To understand these constants, Nx is the number of data
shards u needs to receive at comm step x; ax is the number of
data shards that can be transmitted by each link (w,u) at comm
step x; bx is the number of link (w,u)s that each data shard
can use to transmit the data to u at comm step x. These three
constants collectively ensure that links are perfectly balanced
with each link transmitting M

N Nx/d = M
N ax/bx amount of data

at comm step x.
Now, we give a necessary and sufficient condition for any

topology to have a BW-optimal BFB schedule. The condition
is derived based on the observation that the BFB optimiza-
tion problem is equivalent to a job scheduling problem. In
each comm step t, for each node u, we have a set of jobs
{ j1, j2, . . . , jm} (data from the source nodes v∈N−

t (u)) and
a set of processors {p1, p2, . . . , pd} (links from in-neighbors
w∈N−(u)). There exists a map f from any job to a set of
processors that ji can only be scheduled to the processors
in f ( ji) (in-neighbor ws satisfying d(v,u) = d(v,w)+1 = t).
Assuming jobs can be arbitrarily divided into subjobs for par-
allel execution on multiple processors, the problem is how
to schedule these jobs to processors so that workloads are
balanced across all processors. We have the following result:

Theorem 19. The workloads can be balanced if and only if
there exists no subset J ⊆ { j1, j2, . . . , jm} such that

|J|∣∣⋃
j∈J f ( j)

∣∣ > m
d
.

Note that there is an independent scheduling problem for
each comm step t and node u. Therefore, topology G has a
BW-optimal BFB schedule if and only if:

1. At each comm step t, |N−
t (u)| is the same for all u ∈VG.

2. The scheduling problem w.r.t. each t and u satisfies the
condition in Theorem 19.

E.2 Discrete Chunked BFB Schedule

The BFB LP (1) makes an assumption that shards can be
divided arbitrarily and infinitesimally. However, to compile
the schedule into an executable form, one may need a dis-
crete chunked schedule, where each shard is divided into a
fixed number of equal-sized chunks. In practice, xv,(w,u),ts are
usually solved to be rational numbers. We can divide each
shard into a number of chunks equal to the LCM of xv,(w,u),ts’
denominators so that each xv,(w,u),t represents some integer
number of chunks. This approach has worked for us in evalu-
ations. However, there exists the case where each shard of the
data can only be divided into P equal chunks (i.e., the whole
data M can only be divided into PN equal chunks). In such a
case, we show that we can approximate the optimal discrete
chunked BFB schedule in polynomial time.

Consider the following integer program given u, t:
min Wu,t
s.t. ∑

v
yv,(w,u),t ≤Wu,t , ∀w ∈ N−(u)

∑
w

yv,(w,u),t = P, ∀v ∈ N−
t (u)

yv,(w,u),t∈ {0,1, . . . ,P}, ∀w,v.

(13)

Compared with (1), one can easily see that the optimal solu-
tion of (13) gives the optimal BFB allgather schedule when
each shard of the data can only be divided into P chunks. One
can also easily solve the LP relaxation of (13) in polynomial
time. Let T OPT

B be the optimal BW runtime of the schedule
obtained by directly solving integer program (13). Suppose
the LP relaxation gives a schedule with BW runtime T LP

B ,
then it holds that T LP

B ≤ T OPT
B .

Let yLP
v,(w,u),ts be the solution to the LP relaxation of (13).

We can obtain an integer solution yv,(w,u),ts of (13) by rounding
yLP

v,(w,u),ts up or down to integers. For each v, we have

∑
w

⌊
yLP

v,(w,u),t

⌋
≤ P ≤ ∑

w

⌈
yLP

v,(w,u),t

⌉
.

Thus, it is trivial to round yLP
v,(w,u),ts to integer yv,(w,u),ts that

∑w yv,(w,u),t =P and yv,(w,u),t <yLP
v,(w,u),t+1. We give the follow-

ing approximation bound for the resulting schedule:

Theorem 20. Rounding LP gives a solution with BW runtime

TB≤T OPT
B +M

B · d(dD(G)−1)
(d−1)PN . In addition, if topology G is Moore

optimal, then TB≤T OPT
B +M

B · d
P .

The cost M
B · d

P is negligible since P can easily be hundreds
or even thousands while degree d is usually a small integer.

E.3 Heterogeneous BFB Schedule

The BFB LP (1) assumes a homogeneous network. It turns
out that with little modification, (1) can become an LP for
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Figure 17: The broadcast paths of ring BFB allgather schedule. The
left and right figures respectively show the broadcast patterns for odd- and
even-sized bidirectional rings. Edges of the rings are omitted. C1 and C2 are
two halves of shard S.

heterogeneous network too:
min Uu,t

s.t. αw,u +
M/N
Bw,u ∑

v
xv,(w,u),t ≤Uu,t , ∀w ∈ N−(u)

∑
w

xv,(w,u),t = 1, ∀v ∈ N−
t (u)

0 ≤xv,(w,u),t ≤ 1, ∀w,v.

(14)

αw,u and Bw,u are the hop latency and bandwidth of link (w,u).
In some cases, the α of some link (w,u) is so high that αw,u
alone dominates Uu,t in (14) even though ∑v xv,(w,u),t = 0. This
is problematic because one should not pay αw,u if link (w,u)
is not used. However, such a scenario can be easily detected
after solving LP (14). One can avoid the issue by simply
removing link (w,u) and solving the LP again.

F Generative Topologies
In this section, we introduce several topologies for which
applying BFB schedule generation yields high-performance
communication schedules.

F.1 Bidirectional Ring

Ring is the most common topology for allreduce. The tra-
ditional schedule on ring is to make each shard go a full
circle to do reduce-scatter/allgather. In a bidirectional ring,
one can simply make half the shard go clockwise and the
other half go counterclockwise to utilize both directions of
the links. Such a reduce-scatter/allgather schedule is BW-
optimal but poor in total-hop latency with TL = (N − 1)α.
With BFB schedule generation, we discovered a new ring
reduce-scatter/allgather schedule that achieves half the total-
hop latency (TL=⌊N/2⌋α) while maintaining BW optimality.
From each node, the BFB allgather schedule broadcasts the
entire shard clockwise and counterclockwise in parallel. Thus,
each direction only needs to go half a circle instead of a full
circle. If N is even, then the farthest node across the ring
receives each half of the shard from each of its two neighbors
in the end. Figure 17 shows examples in odd- and even-sized
rings respectively.

F.2 Generalized Kautz Graph

Generalized Kautz graph [5, 25] is a low-TL unidirectional
topology that can be constructed for every N and d.
Definition 16 (Generalized Kautz Graph). The Πd,m digraph
has the set of integers modulo m as vertex set. Its arc set A is

defined as follows:
A = {(x,y) | y ≡−dx−a,1 ≤ a ≤ d}.

If m = dn+1 +dn, then Πd,m = K(d,n), where K(d,n) is the
Kautz graph Ln(Kd+1).

We apply BFB schedule generation to generalized Kautz
graph. The resulting schedule is not always Moore optimal,
but the following theorem shows that it is at most one α away
from Moore optimality, i.e., TL ≤ T ∗

L (N,d)+α:
Theorem 21. Suppose D(Πd,m) = k, then m > Md,k−2.

Remember Moore optimality is stricter than total-hop la-
tency optimality, so it is possible that generalized Kautz graph
is total-hop latency optimal. The special case, Kautz graph
K(d,n), is always Moore optimal and is, in fact, the largest
known digraph in degree/diamter problem for any degree
d > 2 [50].

As for BW performance, from Figure 18, one can see
that generalized Kautz graph is also close to BW optimality,
especially at higher degrees.

F.3 Distance-Regular Graph

In graph theory, distance-regular graphs are a family of highly
symmetric undirected graphs. We can show that there exists
a BW-optimal BFB schedule for any distance-regular graph,
and thus LP (1) can always generate one. We borrow the
following definition from [2]:
Definition 17 (Distance-Regular Graph). A connected graph
G is distance-regular if for any vertices x,y ∈VG and integers
i, j, the number of vertices at distance i from x and distance j
from y depends only on i, j and d(x,y).

In other words, there exists a constant sh
i, j for every h, i, j

such that sh
i, j = |Ni(x)∩ N j(y)| whenever x,y ∈ VG satisfy

d(x,y) = h. Thus, we can apply Theorem 18 with Nx = s0
x,x,

ax = s1
x,x−1, and bx = sx

1,x−1.
The significance of distance-regular graph is not only about

BW optimality. Many of distance-regular graphs have low
diameters, so their schedules are not only BW-optimal but
also close to, and in some cases exactly, Moore optimal. Ta-
ble 8 gives examples of distance-regular graphs at d = 4. In
addition, many of the base graphs mentioned in this paper are
also distance-regular like complete bipartite graphs (Figure 1)
and Hamming graphs. One can refer to [16] for a repository
of distance-regular graphs.

F.4 Circulant Graph

Circulant graph is a well-studied topology in both graph the-
ory and network design. Many popular network topologies
like shifted ring, chordal ring, and loop network are either
subcategories of or closely related to circulant graphs. The
definition of circulant graph is as follows:
Definition 18. The circulant graph C(n,{a1, . . . ,ak}) is a
bidirectional graph with vertex set {0,1, . . . ,n−1} and each
node i is adjacent to nodes i±a1, . . . , i±ak (mod n).
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Figure 18: TB/T ∗
B of generalized Kautz graph Πd,N up to N = 2000. As shown, the BW runtime of Πd,N is less than or equal to 2T ∗

B at all times for
d = 2,4,8,16. In particular, the higher the degree is, the closer TB is to optimal. As for total-hop latency, Theorem 21 shows that TL ≤ T ∗

L (N,d)+α.

Graph Name N TL T ∗
L TL−T ∗

L T ∗∗
L TL−T ∗∗

L
Octahedron J(4,2) 6 2 2 0 2 0
Paley graph P9∼=H(2,3) 9 2 2 0 2 0
K5,5-I 10 3 2 1 2 1
Distance-3 graph of
Heawood graph 14 3 2 1 2 1

Line graph of Petersen graph 15 3 2 1 2 1
4-cube Q4∼=H(4,2) 16 4 2 2 2 2
Line graph of Heawood graph 21 3 2 1 3 0
Incidence graph of PG(2,3) 26 3 3 0 3 0
Incidence graph of AG(2,4)
minus a parallel class 32 4 3 1 3 1

Odd graph O4 35 3 3 0 3 0
Line graph of Tutte’s 8-cage 45 4 3 1 3 1
Doubled Odd Graph D(O4) 70 7 3 4 4 3
Incidence graph of GQ(3,3) 80 4 3 1 4 0
Line graph of Tutte’s 12-cage 189 6 4 2 5 1
Incidence graph of GH(3,3) 728 6 5 1 6 0

Table 8: Examples of distance-regular graphs at d = 4 [16]. T ∗∗
L is the

bidirectional Moore optimality.

Note that in this paper, we only consider connected cir-
culant graphs, and C(n,{a1, . . . ,ak}) is connected if and
only if gcd(n,a1, . . . ,ak) = 1 [46, 51]. It is easy to see that
C(n,{a1, . . . ,ak}) is an n-node 2k-regular topology.

We have found that the BFB schedule generation seems
to give BW-optimal schedules for all circulant graphs. In
particular, we have the following conjecture:
Conjecture 1. For any circulant graph C(n,{a1, . . . ,ak}),
there exists a BW-optimal BFB schedule.

While we leave a complete proof or disproof of this con-
jecture for future work, we have proved the conjecture holds
when k = 2, which corresponds to the graph having degree 4.

Circulant graph revolutionized our Pareto frontier of topolo-
gies since it can be constructed for every N and even value
d. It can provide a BW-optimal topology if our expansion
techniques fail to produce one at some N and d. Since all
circulant graphs seem to be BW-optimal, the question is what
choices of a1, . . . ,ak result in minimum total-hop latency, or
equivalently, minimum diameter for a given n and k. While
this remains largely an open question in graph theory [51],
the case of k = 2 has been solved in [7]:
Theorem 22. Given n>6 and m=⌈(−1+

√
2n−1)/2⌉, cir-

culant graph C(n,{m,m+1}) has a diameter equal to m,

which is the minimum diameter over all circulant graphs
C(n,{a1,a2}).

We can certainly use multiedge to apply this construction
for any even degree that is ≥ 4. The resulting topology has
Θ(

√
N) diameter, which is a significant improvement in terms

of total-hop latency when BW optimality is required. Previ-
ously, the only topology that is known to be BW-optimal for
any N and d is ring, which has Θ(N) diameter.

G Proofs
Theorem 7. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm, then (L(G),AL(G)) is a dN-node
allgather algorithm satisfying:

TL(AL(G)) = TL(AG)+α, (4)

TB(AL(G))≤ TB(AG)+
M
B

· 1
N
. (5)

Proof. Let v′v,uw be arbitrary two distinct vertices in L(G).
We want to show there exists a sequence in AL(G) going from
v′v to uw like in Definition 4 for any x∈ S. If u= v, then
((v′v,S),(v′v,uw),1) at the first comm step suffices. If u ̸=v,
because AG is allgather, there exists a sequence in AG:

((v,C1),(v,w1), t1),((v,C2),(w1,w2), t2), . . .
((v,Cn),(wn−1,u), tn),

where t1 < t2 < · · · < tn and x∈C1 ∩C2 ∩ ·· ·∩Cn. Thus, by
Definition 1, there exists a sequence in AL(G):

((v′v,S),(v′v,vw1),1),((v′v,C1),(vw1,w1w2), t1 +1), . . .
((v′v,Cn),(wn−1u,uw), tn +1),

as desired. The new algorithm (L(G),AL(G)) has dM total
data length, because the number of nodes has grown d-fold
while the size of a shard remains the same.

As for TL(AL(G)) and TB(AL(G)), equality (4) trivially fol-
lows the Definition 1. Let [AL(G)]t and [AG]t be the subsched-
ules of AL(G) and AG at comm step t. Given v∈VG, because G
is d-regular, we have |{v′v | v′v∈VL(G)}|= |{(v′,v) | (v′,v)∈
EG}|= d. Given any edge (uw,ww′) and t, there are at
most d number of ((v′v,C),(uw,ww′), t +1)∈AL(G) for each
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((v,C),(u,w), t)∈AG by Definition 1. Thus, given (uw,ww′),

∑
((v′v,C),(uw,ww′))∈[AL(G)]t+1

|C| ≤ ∑
((v,C),(u,w))∈[AG]t

d · |C|.

It follows that TB([AL(G)]t+1,dM,B)≤ d ·TB([AG]t ,M,B) and
hence ∑

tmax+1
t=2 TB([AL(G)]t ,dM,B)≤ d ·TB(AG,M,B). For the

first comm step, we have

TB([AL(G)]1,dM,B) =
|S|

B/d
=

M/N
B/d

.

Assuming TB(AG,M,B)= τ(M/B) for some constant τ, we
have d ·TB(AG,M,B)=TB(AG,dM,B). It follows that

TB(AL(G),dM,B) =
tmax+1

∑
t=1

TB([AL(G)]t ,dM,B)

≤ M/N
B/d

+d ·TB(AG,M,B) = TB(AG,dM,B)+
dM
B

· 1
N
.

Replacing dM by M gives (5) as desired.

Corollary 7.1. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm with TB(AG,M,B)=τ(M/B) for
some constant τ, then (Ln(G),ALn(G)) is a dnN-node allgather
algorithm satisfying:

TL(ALn(G)) = TL(AG)+nα, (6)

TB(ALn(G))≤ TB(AG)+
M
B

· d
d −1

(
1
N
− 1

dnN

)
. (7)

Theorem 9. If (G,AG) is BW-optimal with N nodes, then
TB(ALn(G))/T ∗

B (d
nN)≤ 1+[(d −1)N]−1 for all n.

Proof. If (G,AG) is BW-optimal, then TB(AG)=
M
B · N−1

N and

TB(ALn(G))≤
M
B

[
1+

1
d −1

(
1
N
− d

dnN

)]
. (15)

It is trivial to see that (15)/T ∗
B (d

nN)↗ 1+[(d −1)N]−1 as
n → ∞.

Theorem 1. If A is a reduce-scatter/allgather schedule for G,
then AT is an allgather/reduce-scatter schedule for GT .

Proof. Suppose (G,A) is a reduce-scatter algorithm. For
arbitrary x∈S and distinct u,v∈VG, there exists a sequence
of tuples in A:

((v,C1),(u,w1), t1),((v,C2),(w1,w2), t2), . . .
((v,Cn),(wn−1,v), tn),

where t1 < t2 < · · ·< tn and x∈C1 ∩C2 ∩·· ·∩Cn. It follows
that there exists a sequence of tuples in AT :

((v,Cn),(v,wn−1), t ′n), . . .
((v,C2),(w2,w1), t ′2),((v,C1),(w1,u), t ′1).

where t ′i = tmax − ti +1, so t ′n < · · ·< t ′2 < t ′1. Since u,v,x are
abitrary, AT is an allgather schedule on GT . One can similarly
show that if (G,A) is an allgather algorithm, then (GT ,AT ) is
a reduce-scatter algorithm.

Corollary 1.1. Suppose G 7→ f (G) is a function to construct
reduce-scatter/allgather schedule given graph G, then G 7→

f (GT )T is a function to construct allgather/reduce-scatter
schedule given graph G.
Corollary 1.2. Suppose (G,A) 7→ ( f (G), f (A)) is a mapping
within reduce-scatter/allgather algorithms, then (G,A) 7→
( f (GT )T , f (AT )T ) is a mapping within allgather/reduce-
scatter algorithms.
Theorem 2. Suppose G is reverse-symmetric. Let GT be
the transpose graph, and let f : VGT → VG be the isomor-
phism from GT to G. If (G,A) is a reduce-scatter/allgather
algorithm, then (G, f (AT )) is an allgather/reduce-scatter al-
gorithm with TL( f (AT )) = TL(A) and TB( f (AT )) = TB(A).

Proof. By definition of f (AT ),
(( f (v),C),( f (w), f (u)), tmax − t +1) ∈ f (AT )

⇔ ((v,C),(w,u), tmax − t +1) ∈ AT

⇔ ((v,C),(u,w), t) ∈ A.
Note that (u,w)∈EG ⇔ (w,u)∈EGT ⇔ ( f (w), f (u))∈EG, so
f (AT ) is a valid schedule for G.

Suppose (G,A) is a reduce-scatter algorithm. For any x∈S
and distinct u,v∈VG, there exists a sequence of tuples in A:

((v,C1),(u,w1), t1),((v,C2),(w1,w2), t2), . . .
((v,Cn),(wn−1,v), tn),

where t1 < t2 < · · ·< tn and x∈C1 ∩C2 ∩·· ·∩Cn. It follows
that there exists a sequence of tuples in f (AT ):

(( f (v),Cn),( f (v), f (wn−1)), t ′n),
(( f (v),Cn−1),( f (wn−1), f (wn−2)), t ′n−1),

...
(( f (v),C1),( f (w1), f (u)), t ′1),

where t ′i = tmax − ti +1, and x∈Cn ∩Cn−1 ∩·· ·∩C1. Because
f is a bijection, (G, f (AT )) is an allgather algorithm. TL(A)=
TL( f (AT )) and TB(A)=TB( f (AT )) are trivial, and one can
similarly prove that if (G,A) is an allgather algorithm, then
(G, f (AT )) is a reduce-scatter algorithm.

Theorem 3. Every reduce-scatter/allgather algorithm (G,A)
satisfies TL(A)≥α ·D(G), where D(G) is the diameter of G.

Proof. The proof is mentioned in text.

Corollary 3.1. An N-node degree-d reduce-scatter/allgather
algorithm (G,A) is total-hop latency optimal if and only if
TL(A) = α ·D(G) = α ·min{D(G′) : |VG′ |= N,deg(G′) = d}.
Theorem 4. M

B · N−1
N is a lower bound of TB(A) for any N-

node reduce-scatter/allgather algorithm (G,A).

Proof. The proof is mentioned in text.

Corollary 4.1. An N-node reduce-scatter/allgather algorithm
(G,A) is BW-optimal if and only if TB(A) = M

B · N−1
N .

Theorem 5. An allgather algorithm (G,A) is BW-optimal if
and only if:
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1. 1
B/d ∑((v,C),(u,w))∈At |C|=TB(At) for all (u,v)∈EG and t∈
{1, . . . , tmax}. At is the subschedule of A at comm step t.

2. Pick any distinct u,v ∈VG. For each x ∈ S, there exists a
unique ((v,C),(w,u), t) ∈ A such that x ∈C.

Proof. If TB(A)=T ∗
B (N)= M

B · N−1
N , then the amount of data

received by each vertex must be equal to M · N−1
N , and the

ingress bandwidth B must be fully utilized. If condition 1
does not hold, then some link (w,u) is not fully utilized. If
condition 2 does not hold, then the amount of data received
by some node is greater than M · N−1

N .
If both 1 and 2 hold, then every vertex receives exactly M ·

N−1
N in total and bandwidth are fully utilized. Thus, TB(A)=

T ∗
B (N) and (G,A) is BW-optimal.

Theorem 6. Given a reduce-scatter algorithm (G,A), sup-
pose TB(A) = M

B · y, then TC(A)≤ M · γ · y.

Proof. At any comm step t, suppose the BW runtime is
TB(At)=

M
B · yt . It follows at comm step t, the amount of

data each node receives is at most B · TB(At) = M · yt , so
TC(At)≤M ·γ ·yt . The theorem trivially follows y=∑t yt .

Corollary 6.1. If allreduce algorithm (G,A) is BW-optimal,
i.e., TB(A)= 2 M

B · N−1
N , then TC(A)=M ·γ· N−1

N and TB(A)+
TC(A)=2M·( 1

B + γ

2 )·
N−1

N .
Theorem 8. (Ln(G),ALn(G)) is Moore optimal if and only if
(G,AG) is Moore optimal.

Proof. Suppose TL(AG)=αk. Thus, (G,AG) is Moore opti-
mal if and only if

N > Md,k−1 =
k−1

∑
i=0

di =
dk

d −1
− 1

d −1
. (16)

(Ln(G),ALn(G)) is Moore optimal if and only if

dnN > Md,k+n−1 ⇔ N >
dk

d −1
− 1

dn(d −1)
. (17)

Because (17)− (16) < 1 and (16) is an integer, (16) and (17)
are equivalent.

Theorem 10. Let AG be a BFB allgather schedule for d-
regular topology G with |N+(u)|>1 for all u ∈VG, then the
expanded schedule AL(G) is a BFB allgather schedule for
L(G). In particular, if AG is the optimal BFB schedule for G,
then AL(G) is the optimal BFB schedule for L(G) satisfying:

TB(AL(G)) = TB(AG)+
M
B

· 1
N
. (8)

Proof. It is trivial to see that AL(G) is a BFB allgather schedule
on L(G). For the sake of contradiction, suppose there exists
a BFB schedule A′

L(G) that TB(A′
L(G))< TB(AG)+

M
B · 1

N . Let
x∗v′v,(wu,uu′),ts be the solution of BFB LP (1) corresponding to

A′
L(G). We build a schedule A′

G by constructing a solution of
(1) such that

xv,(w,u),t =
1
d ∑

v′∈N−(v)
x∗v′v,(wu,uu′),t+1,

where u′∈N+(u) \ {v} is arbitrary. To verify the construc-
tion is a valid solution, given any u∈VG and v∈N−

t (w), the
equality of (1) follows:

∑
w

xv,(w,u),t =
1
d ∑

v′
∑
w

x∗v′v,(wu,uu′),t+1

=
1
d ∑

v′
∑
wu

x∗v′v,(wu,uu′),t+1 =
1
d ∑

v′
1 =

1
d
·d = 1.

The third equality follows the equality constraint in (1). Now,
given (w,u)∈EG, observe that

∑
v

xv,(w,u),t =
1
d ∑

v
∑
v′

x∗v′v,(wu,uu′),t+1

=
1
d ∑

v′v
x∗v′v,(wu,uu′),t+1 ≤

1
d

U∗
uu′,t+1.

Thus, Uu,t =maxw ∑v xv,(w,u),t ≤ 1
dU∗

uu′,t+1 and hence

max
u∈VG

Uu,t ≤
1
d

max
uu′∈VL(G)

U∗
uu′,t+1.

Note that U∗
uu′,1=1 for all uu′ ∈VL(G), as each node must send

the full shard to every neighbor at the 1st comm step in any
BFB allgather schedule. By (2), we have

TB(A′
G)≤ TB(A′

L(G))−
M/(dN)

B/d

= TB(A′
L(G))−

M
B

· 1
N

< TB(AG),

contradicting AG being the optimal BFB schedule. Thus,
combined with inequality (5), we have proven AL(G) being
optimal as well as the equality (8).

Corollary 10.1. Let AG be a BFB allgather schedule for d-
regular topology G with |N+(u)|>1 for all u ∈VG, then the
expanded schedule ALn(G) is a BFB allgather schedule for
Ln(G). In particular, if AG is the optimal BFB schedule for G,
then ALn(G) is the optimal BFB schedule for Ln(G) satisfying:

TB(ALn(G)) = TB(AG)+
M
B

· d
d −1

(
1
N
− 1

dnN

)
.

Theorem 11. Given a d-regular topology G without self
loops, if (G,AG) is an N-node allgather algorithm with
TB(AG,M,B) = τ(M/B) for some constant τ, then (G ∗
n,AG∗n) is an nN-node allgather algorithm satisfying:

TL(AG∗n) = TL(AG)+α, (9)

TB(AG∗n) = TB(AG)+
M
B

· n−1
nN

. (10)

Proof. Let ui,v j be arbitrary two distinct vertices in G ∗ n.
Suppose u ̸=v in G, then for any x∈S, there exists a sequence
in AG:

((v,C1),(v,w(1)), t1),((v,C2),(w(1),w(2)), t2), . . .
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((v,Cn),(w(n−1),u), tn),
where t1 < t2 < · · ·< tn and x∈C1 ∩C2 ∩·· ·∩Cn. By Defini-
tion 2, there exists a sequence in AG∗n:

((v j,C1),(v j,w
(1)
j ), t1),((v j,C2),(w

(1)
j ,w(2)

j ), t2), . . .

((v j,Cn),(w
(n−1)
j ,ui), tn),

as desired. Now, suppose u=v in G. By previous proof, the
shard of v j reaches every in-neighbor u′α of ui by the end of
comm step tmax since u′ ̸=v. Then, the last comm step tmax+1
added in step 2 of Definition 2 delivers the shard to ui with
each edge (u′α,ui) delivering 1/nd of a shard. Thus, AG∗n is
a complete allgather.

In step 1 of Definition 2, we have TB([AG∗n]t ,nM,nB)=
TB([AG]t ,M,B) and hence ∑

tmax
t=1 TB([AG∗n]t ,nM,nB) =

TB(AG,M,B). The nM and nB are due to the fact that both
the number of nodes and degree have grown n-fold. Thus,
TB(AG∗n,M,B) = TB(AG∗n,nM,nB)

= TB(AG,M,B)+TB([AG∗n]tmax+1,nM,nB)

= TB(AG,M,B)+(n−1) · (nM)/(nN)

nd
· 1

nB/(nd)

= TB(AG,M,B)+
M
B

· n−1
nN

.

The first equality follows the assumption that TB(AG,M,B)=
τ(M/B) for some constant τ.

Corollary 11.1. If (G,AG) is BW-optimal and TB(AG,M,B)=
τ(M/B) for some τ, then (G∗n,AG∗n) is BW-optimal.
Theorem 12. Given a d-regular topology G, if (G,AG) is an
N-node allgather algorithm with TB(AG,M,B) = τ(M/B) for
some constant τ, then G□n is an nd-regular topology, and
(G□n,AG□n) is an Nn-node allgather algorithm satisfying:

TL(AG□n) = n ·TL(AG), (11)

TB(AG□n) = TB(AG) ·
N

N −1
· Nn −1

Nn . (12)

Proof. We will show that A(1) is a valid allgather schedule.
Since A(i)s are simply starting at different dimensions, this
also shows that A(i)s and hence AG□n are all valid allgather
schedules for G□n.

Let u be arbitrary vertex in G□n. For any x∈S, we will show
that schedule A(1) broadcasts x from u to all vertices in G□n.
At j=1, A(1) performs an allgather over vertices {(v1,u[2 :
n]) | v1 ∈VG} which induce a subgraph of G□n isomorphic
to G. Thus, x has been broadcast to all vertices in {(v1,u[2:
n]) | v1 ∈VG}. At j = 2, A(1) performs an allgather over
vertices {(v1,v2,u[3 : n]) | v2 ∈VG} for each v1. By the end
of j=2, x has been broadcast to all vertices in {(v1,v2,u[3 :
n]) | v1,v2∈VG}. By the end of j=n, x has been broadcast to
all vertices in {v | v∈V n

G}=VG□n . Since u and x are arbitrary,
A(1) is a valid allgather schedule for G□n.

As for performance, (11) is trivial. To prove (12), observe
that at each j in A(1), allgather AG is performed with a data
size N j−1M/n over the subgraph induced by {(y,v,z) | v∈

VG} for each y∈V j−1
G ,z∈V n− j

G . The bandwidth of each node
within the subgraph is 1/n of that in G□n. It follows that

TB(A(1),Nn−1M/n,nB) =
n

∑
j=1

TB(AG,N j−1M/n,B)

=
n

∑
j=1

N j−1

n
TB(AG,M,B)

=
Nn −1

n(N −1)
TB(AG,M,B).

Therefore,

TB(AG□n ,M,B) =
n

Nn−1 TB(AG□n ,Nn−1M,nB)

=
n

Nn−1 TB(A(1),Nn−1M/n,nB)

=
n

Nn−1 · Nn −1
n(N −1)

TB(AG,M,B)

= TB(AG,M,B) · N
N −1

· Nn −1
Nn .

Corollary 12.1. If (G,AG) is BW-optimal and TB(AG,M,B)=
τ(M/B) for some τ, then (G□n,AG□n) is BW-optimal.
Theorem 13. Let G1,G2, . . . ,Gn be topologies that

1. G1, . . . ,Gn are nontrivial simple digraphs;

2. Every Gi has BW-optimal BFB allgather schedule.

Then, the optimal BFB allgather schedule, i.e. the sched-
ule generated by BFB LP (1), for G1□ . . .□Gn is also
BW-optimal. The total-hop latency of the schedule equals
α ·D(G1□ . . .□Gn)=α ·∑i D(Gi).

Proof. To prove the theorem, it is sufficient to show that if G1
and G2 have BW-optimal BFB schedules, then G1□G2 has a
BW-optimal BFB schedule. By Theorem 16, let x∗v1,(w1,u1),t1

s
and x∗v2,(w2,u2),t2

s be the solutions of (1) on G1 and G2 respec-
tively. Let u=(u1,u2),v=(v1,v2). Define r∈[0,1], which we
will decide later. We construct a solution of (1) for G1□G2
such that:

xv,((w1,u2),u),t1+t2 =

{
r · x∗v1,(w1,u1),t1

if u2 ̸= v2,

x∗v1,(w1,u1),t1
if u2 = v2,

xv,((u1,w2),u),t1+t2 =

{
(1− r) · x∗v2,(w2,u2),t2

if u1 ̸= v1,

x∗v2,(w2,u2),t2
if u1 = v1.

(18)

First of all, because dG1□G2(v,u)=dG1(v1,u1)+dG2(v2,u2),
it is easy to verify that (18) gives a BFB schedule. In addition,
for any distinct u,v∈G1□G2 with u1 ̸=v1 and u2 ̸=v2,

∑
w

xv,(w,u),t1+t2 = r∑
w1

x∗v1,(w1,u1),t1
+(1− r)∑

w2

x∗v2,(w2,u2),t2

= r+(1− r)
= 1

satisfying the equality in (1). The u1 =v1 or u2 =v2 case is
trivial. Because G1 and G2 have BW-optimal BFB schedule,
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by Theorem 17, for any (w1,u1)∈EG1 ,

∑
v1∈N

−G1
t (u1)

x∗v1,(w1,u1),t
=

N−G1
t

d1
, (19)

where N−G1
t (u1) is N−

t (u1) in G1. Define N−G1□G2
t1,t2 (u) =

N−G1
t1 (u1)×N−G2

t2 (u2), then it holds that

N−G1□G2
t (u) =

t⋃
t1=0

N−G1□G2
t1,t−t1 (u)

=N−G1
t (u1)×{u2}∪{u1}×N−G2

t (u2)∪
t−1⋃
t1=1

N−G1□G2
t1,t−t1 (u).

Thus, (19) gives

∑
v∈N

−G1□G2
t (u)

xv,((w1,u2),u),t =
N−G1

t

d1
+ r

t−1

∑
t1=1

N−G1
t1 N−G2

t−t1
d1

.

(20)
for any ((w1,u2),u)∈EG1□G2 . For G2, one can similarly get

∑
v∈N

−G1□G2
t (u)

xv,((u1,w2),u),t =
N−G2

t

d2
+(1−r)

t−1

∑
t2=1

N−G1
t−t2 N−G2

t2

d2
.

(21)
The value of r is the solution to (20)=(21):

N−G1
t

d1
+r

t−1

∑
t1=1

N−G1
t1 N−G2

t−t1
d1

=
N−G2

t

d2
+(1−r)

t−1

∑
t2=1

N−G1
t−t2 N−G2

t2

d2
.

To see there is always a solution r∈ [0,1], we have N−G1
t ≤

d1 ·N−G1
t−1 and N−G2

t ≤ d2 ·N−G2
t−1 , so

N−G1
t

d1
− N−G2

t

d2
≤ N−G1

t

d1
≤ N−G1

t−1 ≤
t−1

∑
t2=1

N−G1
t−t2 N−G2

t2

d2
,

N−G2
t

d2
− N−G1

t

d1
≤ N−G2

t

d2
≤ N−G2

t−1 ≤
t−1

∑
t1=1

N−G1
t1 N−G2

t−t1
d1

.

The last inequality follows that because G2 is nontrivial sim-
ple digraph, N−G2

1 = d2 and hence N−G1
t−1 = N−G1

t−1 N−G2
1 /d2.

Note that a+ rb=c+(1− r)d always has a solution r∈ [0,1]
if a− c ≤ d and c−a ≤ b. With (20)=(21), by Theorem 17,
we have constructed a BW-optimal solution of (1) for G1□G2.
The theorem trivially follows by induction.

Theorem 14. A schedule A for G is a BFB allgather schedule
if and only if the following are satisfied:

1. If ((v,C),(w,u), t) ∈ A, then d(v,u) = d(v,w)+1 = t;

2. For any distinct u,v ∈VG, the collection of chunks Cv =
{C | ((v,C),(w,u), t) ∈ A} satisfies S =

⋃
C∈Cv C.

Proof. Let v0,vk be arbitrary two distinct vertices in VG with
d(v0,vk)= k. For any x∈S, we want to show that there ex-
ists a path taking x from v0 to vk. At comm step k, condi-
tions 1 and 2 guarantee that there exists vk−1 ∈N−(vk) and
((v0,Ck),(vk−1,vk),k)∈A such that d(v0,vk−1)= k − 1 and
x∈Ck. At comm step k− 1, similarly, it is guaranteed that
there exists vk−2∈N−(vk−1) and ((v0,Ck−1),(vk−2,vk−1),k−

1)∈A such that d(v0,vk−2)= k− 2 and x∈Ck−1. Thus, we
have a sequence of tuples in A:

((v0,C1),(v0,v1),1),((v0,C2),(v1,v2),2), . . .
((v0,Ck),(vk−1,vk),k),

where x∈C1 ∩C2 ∩·· ·∩Ck as desired. In the other direction,
if condition 1 fails, then A is not a BFB schedule; if condition
2 fails, then A is not a valid allgather schedule.

Theorem 15. If A is a BFB schedule for G, then the total-hop
latency TL(A) = α ·D(G).

Proof. The proof is trivial.

Theorem 16. Given any topology G, linear program (1) gives
the optimal BFB schedule of G.

Proof. The proof is mentioned in text.

Theorem 17. Suppose (G,A) is a BFB allgather schedule.
(G,A) is BW-optimal if and only if:

1. There exists a sequence N−
1 ,N−

2 , . . . ,N−
D(G) ∈ N such that

for any x ∈ N and u ∈VG, |N−
x (u)|= N−

x .

2. For any (w,u)∈ EG, ∑((v,C),(w,u))∈At |C|= M
N |N−

t (u)|/d =
M
N N−

t /d.

Proof. At comm step t, each vertex needs to receive shards
from vertices in N−

t (u). By condition 1 of Theorem 5, each
in-edge of vertex u receives equal amount of data, so each
in-edge receives M

N |N−
t (u)|/d. In addition, condition 1 of The-

orem 5 also forces every edge in G receiving equal amount of
data at any given comm step, so BW optimality is achieved
if and only if M

N |N−
t (u)|/d = M

N |N−
t (v)|/d = M

N N−
t /d for all

u,v∈VG. Note that condition 2 of Theorem 5 is automati-
cally satisfied. Thus, the conditions of Theorem 17 lead to
Theorem 5, and vice versa.

Theorem 18. There exists a BW-optimal BFB schedule for
undirected graph G if for every distance x, two of the following
constants exist:

1. Nx = |Nx(u)| for any u ∈VG;

2. ax = |Nx(u)∩Nx−1(w)| for any u ∈VG and w ∈ N(u);

3. bx = |N(u)∩Nx−1(v)| for any u ∈VG and v ∈ Nx(u).

Moreover, if two of Nx,ax,bx exist, then the third one must
also exist with Nx = dax/bx.

Proof. It is easy to see Nx = dax/bx. Constant Nxs satisfy
condition 1 of Theorem 17. As for 2 of Theorem 17, at comm
step t, consider a BFB schedule such that for any u,v,w∈VG
with d(v,u)=d(v,w)+1= t, node w sends 1/bt of v’s shard
to u. Thus, ∑((v,C),(w,u))∈At |C|= M

N at/bt =
M
N Nt/d.

Theorem 19. The workloads can be balanced if and only if
there exists no subset J ⊆ { j1, j2, . . . , jm} such that

|J|∣∣⋃
j∈J f ( j)

∣∣ > m
d
.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation    735



Proof. Consider a flow network, where each ja is connected
to each pb∈ f ( ja) with ∞ capacity. Source s is connected to
each ja with capacity 1, and each pb is connected to sink t
with capacity m/d. Thus, the workloads can be balanced if
and only if the max flow is m. Given any subset J, consider
the s-t cut (A, Ā) that A=s+ J + f (J). The cut has capacity
m− |J|+ m

d | f (J)|, which is less than m if and only if the
inequality is true.

Theorem 20. Rounding LP gives a solution with BW runtime

TB≤T OPT
B +M

B · d(dD(G)−1)
(d−1)PN . In addition, if topology G is Moore

optimal, then TB≤T OPT
B +M

B · d
P .

Proof. For any (w,u) at comm step t, since |N−
t−1(w)|≤dt−1,

∑
v

yv,(w,u),t < ∑
v

1+ yLP
v,(w,u),t ≤ dt−1 +∑

v
yLP

v,(w,u),t .

Thus, we have Wu,t ≤W LP
u,t +dt−1. By (2),

TB −T OPT
B ≤ TB −T LP

B

≤ M/N
B/d

· 1
P

D(G)

∑
t=1

dt−1 =
M
B

· d(dD(G)−1)
(d −1)PN

.

Note that we need to divide (2) by P, because yv,(w,u),t ∈ [0,P]
in (13) while xv,(w,u),t ∈ [0,1] in (1). If G is Moore optimal
(i.e., N > Md,D(G)−1), it follows that

TB −T OPT
B <

M
B

· d(dD(G)−1)
(d −1)PMd,D(G)−1

=
M
B

· d
P
.

Theorem 21. Suppose D(Πd,m) = k, then m > Md,k−2.

Proof. From [25], we know that k ≤ ⌈logd m⌉. Then,

m ≥ dk−1 >
dk−1 −1

d −1
= Md,k−2.

Theorem 22. Given n>6 and m=⌈(−1+
√

2n−1)/2⌉, cir-
culant graph C(n,{m,m+1}) has a diameter equal to m,
which is the minimum diameter over all circulant graphs
C(n,{a1,a2}).

Proof. See [7].

H Supplementary Tables and Figures

2

1 6

5 74 3

0

Figure 19: Diamond Topology (N = 8,d = 2).

Figure 20: An Example of Modified de Bruijn Graph (N = 8,d = 2). The
modification rewires the self loops and 2-cycles in de Bruijn graph to form a
single long cycle without violating degree constraint.
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