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Abstract
Far memory systems are a promising way to address the re-
source stranding problem in datacenters. Far memory systems
broadly fall into two categories. On one hand, paging-based
systems use hardware guards at the granularity of pages to in-
tercept remote accesses, which require no application changes
but incur significant faulting overhead. On the other hand,
app-integrated systems use software guards on data objects
and apply application-specific optimizations to avoid faulting
overheads, but these systems require significant application
redesign and/or suffer from overhead on local accesses. We
propose Eden, a new approach to far memory that combines
hardware guards with a small number of software guards in
the form of programmer annotations, to achieve performance
similar to app-integrated systems with minimal developer
effort. Eden is based on the insight that applications gen-
erate most of their page faults at a small number of code
locations, and those locations are easy to find programmati-
cally. By adding hints to such locations, Eden can notify the
pager about upcoming memory accesses to customize read-
ahead and memory reclamation. We show that Eden achieves
19.4–178% higher performance than Fastswap for memory-
intensive applications including DataFrame and memcached.
Eden achieves performance comparable to AIFM with almost
100× fewer code changes.

1 Introduction
As the memory requirements of datacenter applications in-
crease without a commensurate decrease in DRAM costs,
datacenter operators are increasingly concerned by memory
stranding. At the same time, host interconnects are delivering
higher bandwidth and lower latency [20, 25, 27, 28, 30, 36].
As a result, there is a renewed interest in far-memory sys-
tems which enable servers to access under-utilized DRAM
on other servers or pooled on dedicated devices within a rack
or cluster. Recent efforts have explored a range of issues that
arise including prefetching, access models, and fault toler-
ance [8, 13, 16, 24, 26, 39, 42, 43, 45, 50, 52, 53] but they all
make sacrifices along at least one dimension: performance,
developer effort, or flexibility.

Existing far-memory systems generally take one of two
approaches. Paging-based systems like Infiniswap [24],

Fastswap [13] and their extensions [12, 39, 50] rely on hard-
ware guards to intercept accesses to remote memory: the
microprocessor checks if a page is not locally present and in
such case triggers a page fault to fetch it remotely [9]. This
approach works with unmodified applications and incurs little
overhead on local accesses, but suffers from two issues. First,
page faults are expensive because they require trapping into
the kernel—which takes on the order of a microsecond, mak-
ing it impractical to context switch to a different task while
waiting for a page fetch to complete (which takes 5–6 µs in
our RDMA cluster). As a result, systems such as Fastswap
busy wait on page fetches, wasting CPU cycles and limit-
ing performance [13]. Second, their transparent page-based
approach does not provide the kernel with the information
needed to implement application-specific policies to improve
performance (e.g., custom prefetching or eviction).

Alternatively, app-integrated systems such as AIFM [42]
and Carbink [53] manage memory in user space at object
granularity and rely on software guards to intercept remote ac-
cesses: applications use remotable pointers which, when deref-
erenced, check if the data is remote and if so fetch it. Their
user-space implementation avoids the overheads of kernel-
moderated page faults and makes use of the CPU during a
remote fetch by switching to a different lightweight user-level
thread. In addition, by operating at object granularity, they
can expose data-structure-specific access patterns to the run-
time to enable application-specific optimizations. However,
app-integrated systems must pay the cost of software guards
even on local accesses, and require significant developer ef-
fort to port applications to use remotable pointers. Systems
like TrackFM [45] and Mira [26] employ compiler techniques
to decrease the porting effort but still incur software guard
overheads and require source code access to all of the library
dependencies of the application, which may be infeasible in
many scenarios (§2.1).

We propose Eden, a page-based system that combines soft-
ware and hardware guards to expose memory access patterns
without imposing a disruptive object-based interface. Eden
is based on the insight that far-memory applications tend to
generate their page faults at a small number of code loca-
tions, and those locations are easy to find programmatically.
We provide a tool to identify fault locations, and our study
of 22 applications shows that, at the median, 12 code loca-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation    1067



tions cover 95% of page faults. Hence, Eden deploys software
guards (code annotations) at these few performance-critical
code locations to presage most remote accesses, while relying
on hardware guards (page faults) to service the few remaining
remote accesses that may occur elsewhere in the application.

The parsimonious use of software guards balances their ex-
pressive power against their runtime overhead. By capturing
most far memory accesses with code annotations, we avoid
almost all expensive kernel-mediated page fetches. Moreover,
we show that Eden can effectively coalesce related far mem-
ory accesses to provide the same type of application-specific
optimizations as systems that resort to object-based interfaces,
but with significantly less programmer effort. Finally, by em-
ploying software guards only where accesses are likely to be
remote, Eden minimizes their overhead.

Based on this insight, Eden asks the developer to instrument
these code locations with memory-access hints. By using a
hybrid kernel/user-space page management scheme, these
hints allow Eden to tailor memory policies to the application
(including fetch, eviction, and read-ahead policies) and to
leverage a lightweight scheduling framework to run user-level
threads during page fetches, thereby improving performance.
Specifically, a hint transfers control to Eden’s user-space run-
time, which checks for page presence and detects an impend-
ing fault without trapping into the kernel. If a page is missing,
Eden initiates the fetch from user space.

Efficient joint kernel/user-space page management is chal-
lenging to realize, as some parts of page-fault handling must
occur in kernel context. For example reading the faulting ad-
dress is a privileged operation on x86 processors. Similarly,
mapping and unmapping pages must occur in kernel space.
Finally, hints may not be perfect, so Eden’s user-space run-
time may not catch every fault. Thus, employing a page-based
approach with today’s CPUs fundamentally requires some
kernel participation, whose overheads, if left unchecked, can
quickly overwhelm any potential performance benefits.

Eden uses two key ideas to overcome the challenges of
hybrid kernel/user-space page management. First, because
the kernel retains control of page tables in Eden, syscalls
are still needed for tasks such as mapping pages after they
are fetched, toggling write protection, and indicating when
pages can be reclaimed from a process’ address space. Our
design streamlines these operations by extending Linux’s
userfaultfd and madvise() syscalls to provide vectorized
APIs. Using these enhanced syscalls, Eden amortizes the cost
of necessary kernel traps across many pages, dramatically
improving performance.

Second, Eden further uses its hints to pass additional
application-specific information to guide prefetching and
reclamation. As the hinted accesses cover most page faults
in the application, these hints provide a great opportunity to
pass data-access knowledge gained either through developer
insight or offline profiling. For example, in loops or when
accessing large objects, hints can provide precise read-aheads

to batch page faults and amortize the page-in cost. Similarly,
faulting accesses to certain data structures can be prioritized
for reclaim over others by setting different priorities for dif-
ferent hints. We show that such extended hints help Eden
perform on-par with app-integrated approaches that require
significant developer effort. While Eden relies on developer
insight to extend hints (similar to app-integrated systems), the
effort is smaller and we carefully design the hint extensions to
be simple enough for automatic detection and injection based
on offline profiling.

We implement Eden on top of Shenango [37], a highly
scalable user-level thread scheduling runtime, which Eden
leverages to efficiently switch from one thread to another
while a hinted fault is being resolved. We evaluate Eden
across a variety of workloads both from a performance and
developer-effort standpoint. We show that Eden achieves
higher throughput than a recent kernel-based far memory
system, Fastswap [13], by 19.4–178% on real-world appli-
cations such as DataFrame and memcached. Furthermore,
Eden achieves similar throughput to an app-integrated ap-
proach, AIFM [42], on both DataFrame and synthetic Web
service workloads with sufficient local memory. In terms
of developer effort, we show that for several example appli-
cations, only a handful of hints (2–32) are required to han-
dle 95% of page faults in Eden. In contrast, the AIFM au-
thors modified 1,192 lines in the DataFrame library—108×
more than Eden. Our code is openly available at https:
//github.com/eden-farmem/eden.

2 Background and Motivation
In this section we justify our key design decisions. First, we
explain the issues with prior app-integrated systems that we
address with our hybrid approach. We then document the
overheads inherent in managing traditional, page-based vir-
tual memory from user level and suggest how hints can be
used to both communicate application-specific workload in-
formation and ameliorate the cost of user/kernel transitions.
And finally, we show that there are typically only a small num-
ber of locations where such hints are needed so introducing
them requires limited developer effort.

2.1 Issues with prior app-integrated systems
The original app-integrated approach to far memory, used in
AIFM [42] and Carbink [53], entails significant developer
effort and performance overhead due to its remotable point-
ers. To use these systems, the developer must identify every
location where a remote pointer dereference might occur and
insert a software guard at each. The guard checks that the
data is in local memory, and if not, reads it from far memory.
Adding these guards can involve significant modifications; for
example, porting the DataFrame library to use AIFM required
modifying 7.7% of the lines of code.1 In addition, while these

1The AIFM authors reported modifying 1,192 lines of code [42] out of
15,525 lines of C, C++, and makefiles in the library [2].

1068    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/eden-farmem/eden
https://github.com/eden-farmem/eden


guards are highly optimized, they still incur overhead, even if
the check succeeds (i.e., the data is already in local memory).

For example, AIFM’s guard contains 5 instructions in the
best case, and can take up to 489 cycles at the 90th percentile
even when data is in local memory. (In contrast, the hardware
guards of paging-based approaches use highly optimized TLB
hardware.) Unfortunately, for functional correctness, guards
are needed throughout the application (anywhere a pointer
to the heap may be dereferenced) resulting in a large num-
ber of guards. To avoid invoking guards on every access,
AIFM employs programmer-assisted dereference scopes—
small blocks in the program code—wherein the object is
marked unevictable and guards are avoided using native point-
ers. Such optimizations, while helpful, are not always appli-
cable (e.g., streaming workloads where objects experience
a single access) and may even add to the programmer bur-
den. For example, the DataFrame library above sees up to
30% slowdown with AIFM even after these guard optimiza-
tions. Eden does not need such optimizations because it uses
hardware guards where accesses are likely to be local.

More recently, systems such as TrackFM [45] and Mira [26]
use compiler techniques to programmatically insert software
guards. While effective at reducing programmer burden, nei-
ther can eliminate the overhead of guards (e.g., TrackFM’s
guard contains 14 instructions). Both TrackFM and Mira try
to reduce the number of guards required through static analy-
sis, but such techniques have limits (e.g., when the compiler
cannot statically resolve branching, function calls, or shared
accesses from multiple threads). Ultimately, even with opti-
mizations, TrackFM’s overheads are significant: up to 40%
slowdown in application performance (§5). Furthermore, for
correctness, both systems require instrumenting most or all
external library dependencies of an application, which may
not be possible (e.g., when source code is not available). In
addition, the instrumentation produces larger binaries, incurs
higher compilation times—TrackFM reports 2.4× bigger bi-
naries and 6× longer compilation times on average—and
complicates the tasks of debugging and profiling.

2.2 Page management overheads
When we combine software and hardware guards, any piece
of remote data may be fetched through either our user library
(software guards) or page faults (hardware guards). Our li-
brary thus needs a way to track and manage page faults to
ensure consistent operation: if the user library fetches a page,
it should be marked as present in its page table entry, so that
subsequent accesses do not cause a page fault; similarly, if
the fault handler fetches a page, our software guard should
know that the page is local.

The Linux kernel has a simple mechanism to manage
page faults in user space called userfaultfd [4]. To use
userfaultfd, a process first registers a region of virtual
memory with the kernel and receives a file descriptor in return.
Then, if the process faults on an address in that region, the

1 2 3 4 5 6 7 8
Cores

0

1

2

3

M
OP

S

map page
write protect
unmap page
zero-page faults

Figure 1: The maximum throughput of memory operations when
performed from user space on Linux, as a function of the number of
cores. Faults are serviced by four dedicated handler cores; additional
cores do not improve performance.

kernel notifies the process by sending an event to the file de-
scriptor. Typically, the process will dedicate a core to polling
the file descriptor to detect page faults and resolve them by us-
ing the UFFDIO_COPY ioctl() to map the missing page in the
process’ address space and unblock the faulting thread. When
pages are no longer needed, processes use the madvise()
syscall to ask the kernel to unmap them, and processes use
another ioctl(), UFFDIO_WRITEPROTECT, to write-protect
dirty pages while they are written out.

However, we find that userfaultfd can entail significant
overheads. Figure 1 presents a simple microbenchmark in
which a variable number of application cores trigger each
of the above memory-management operations as quickly as
possible. (We service the zero-page faults on separate handler
cores; the other three operations are performed locally at
each core.) Even when faults are resolved in the simplest way
possible—supplying a zeroed page with UFFD_ZERO—we find
that the maximum rate at which (any number of) handler cores
can poll for faults via a single userfaultfd file descriptor is
350 thousand faults per second on our hardware (“zero-page
faults” plotted in red).2 A far-memory system that handles all
page faults via userfaultfd would only be able to handle
∼12% percent of the 3 million page transfers per second that
are possible with a 100-Gbps NIC. While the other three
operations are more lightweight, both unmapping (shown in
purple) and write protecting pages (green) scale poorly due
to the need to flush TLBs across all impacted cores.

Fortunately, our approach invokes this expensive
userfaultfd machinery only occasionally, as hints can
invoke our user-space page-management code before a page
fault occurs. Moreover, we provide some simple vectorized
enhancements to system calls to reduce the overheads of
context switching to the kernel; with these enhancements, our
library can manage multiple pages with a single system call.

2.3 Faulting locations
We validate our intuition regarding the number of different
places in an application’s source code that generate page faults

2Using additional file descriptors can improve throughput, but requires
sharding far memory into one segment per fd (and, hence, across multiple
handler cores) potentially causing load imbalance across handler cores.
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Figure 2: The number of unique lines of source code that account for 100% (blue) and 95% (green, localized to application code in red) of the
page faults in 22 different applications. Local memory is configured to hold only 10% of the working set. The x-axis labels indicate the total
number of lines of code in each application and the application’s category (bolded letter).

in a far-memory context—and, therefore, require a program-
mer to add hints—by conducting a study across a set of 22
applications drawn from different benchmark suites to cover
a range of application categories. (These results were pub-
lished in a workshop paper [14]; we reproduce the high-level
findings in this subsection for self-contained review.3)

Specifically, we consider HPC applications from
PARSEC [15], Key-value stores from LK_PROFILE [48]
(e.g., LevelDB [5] and Memcached [33]), Graph algorithms
from CRONO [11], and three Other applications used in
our evaluation. We run each application with its standard
benchmarking workload to ensure realistic code coverage.
Details about the applications and their workloads are
provided as Supplementary Material (§A). Using our
Eden-based fault-tracing tool (§4), we observe the behavior
of each application while restricting the amount of local
memory available to 10% of its maximum resident set.
The tool identifies all unique fault-triggering source code
locations in the application and the libraries it uses.

Figure 2 shows for each application both the total number
of code locations that trigger faults and the number of code
locations responsible for 95% of faults. In most cases, a small
number of locations cover 95% of faults—12 locations at
the median and fewer than 32 for all applications. Moreover,
when we trace the faults back to the line of application code
that led to the fault, even fewer unique lines of code are impli-
cated: less than 10 in most cases. Further experimentation on
these and other applications published elsewhere [14] shows
that the set of locations is robust across different degrees
of memory pressure. Manual analysis reveals the reason is
straightforward: few code paths dominate runtime in these
applications. At even 10% of the maximum resident set size,
local memory is sufficiently large that each page brought in on
a code path tends to remain available for later page accesses
in that path. As a result, only the initial reference on a given
path is likely to cause a fault.

3We emphasize that the workshop paper studies faulting locations in far-
memory applications; neither Eden nor its evaluation have been published.
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Figure 3: Eden’s runtime runs on each application core and a dedi-
cated control core. Hinted faults are handled directly by the runtime
on the faulting core while unhinted faults are caught by the kernel
and steered to the control core.

3 Eden Design
Eden is a far memory system that aims to achieve three goals:

1. Low developer effort: developers should not have to
extensively modify their application to use Eden.

2. Flexible policies: applications should be able to spec-
ify prefetch and eviction policies, and to leverage
application-specific information in these policies.

3. High throughput: Eden should minimize its overheads
as much as possible to deliver high throughput.

Eden’s key idea is to manage remote memory accesses
with software guards in the common case while avoiding
these guards for most local accesses. It achieves this by hav-
ing the developer add (a small number of) hints to their pro-
gram about locations where remote accesses are most likely
to occur. Eden’s runtime can then efficiently check in user
space whether the needed page is present, and initiate its
fetch if not. In addition, Eden’s hints provide an opportunity
for applications to convey additional application-specific in-
formation about their memory-access patterns to customize
prefetch and reclamation policies. Finally, for operations like
write-protecting and unmapping pages which require kernel
privileges, Eden provides low-overhead vectorized syscalls.

Figure 3 shows Eden’s overall design. Application cores
run applications in lightweight, user-level threads. Eden’s
runtime runs on each core and provides general-purpose func-
tionality such as threading and networking. In addition, the
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hint_fault(
/* basic hint */
address, /* faulting address or page */
mut = false, /* map read-only or writable */
size = PAGE_SIZE, /* size of the region */
/* extended hint */
rdahead = 0, /* positive or negative read-ahead */
ev_prio = 0, /* eviction priority */
seq = false, /* sequential access */ );

Figure 4: Eden’s hint API. Basic hints suffice to signal potential
impending page faults; developers wishing to convey additional
workload information can use extended hints.

runtime implements memory-management functionality such
as logic for handling hints, fetching and evicting pages, and
prefetch and reclaim policies. In addition to the application
cores, Eden’s design includes a dedicated control core which
is responsible for proactive memory reclamation and handling
any “unhinted faults”, i.e., those remote accesses which are
not presaged by Eden’s hints and therefore trigger a hardware
guard (i.e., page fault). The kernel steers these (relatively rare)
faults to the control core using userfaultfd.

3.1 Hint API
Hints are annotations that a developer adds to their program
to notify the runtime of a potential page fault and to convey
application-specific information about memory access pat-
terns. The runtime uses the information provided by hints to
fetch missing pages and avoid almost all page faults, as well
as to improve its policies for prefetch and memory reclaim.

3.1.1 Basic hints
Figure 4 shows Eden’s hint API. It includes two types of hints:
basic hints and extended hints. Eden expects applications to
provide at least the basic hints; otherwise all page faults will
be handled with high overhead via traditional hardware guards
and userfaultfd. The key piece of information that each
hint conveys is the upcoming memory address (or region)
that, if unhinted, might trigger page fault(s), and whether the
faulting pages should be mapped read-only or writable. These
addresses need not be page aligned. Eden strives to make
placing hints as easy as possible, both in terms of lines of
code modified and time spent to identify hint locations. We
provide a tool to assist in this process (§4).

3.1.2 Extended hints
Eden’s extended hints allow motivated developers to pass
application-specific knowledge to the runtime. For example,
an application can trigger prefetching by using rdahead to
specify a number of batched pages to read either immediately
before or after the hinted address. When the size of the hinted
region is large, read-ahead can be extremely useful as the
entire region can be fetched in a few rdahead-size chunks,
amortizing the cost of page faults. Note that unlike size,
rdahead is only suggestive and does not necessitate fetching
all the pages in the window (e.g., when necessary page locks

cannot be obtained). Eden also lets the application specify a
page’s eviction priority with ev_prio, which enables cache
separation similar to AIFM’s non-temporal hints. In addition,
developers can use the seq flag to reduce the overhead of hints
for workloads that scan data sequentially (e.g., array lookup
in a for loop). When the seq flag is set, the runtime saves
the last page accessed by a hint and skips the hint-handling
process if the next invocation of that hint points to the same
page.

Extended hints enable Eden to convey far more information
than what is available to existing prefetch and eviction policies
that run inside the kernel. Existing prefetching policies in
Linux tend to rely on detecting sequential accesses or using
more sophisticated algorithms to detect more complex access
patterns [12]. In contrast, when an application knows (even
parts of) its memory-access pattern, it can use extended hints
to directly convey this information to Eden. The API could
be extended to convey access patterns as well (for example to
specify non-contiguous pages to prefetch) but we defer a full
exploration to future work, focusing instead on leveraging
deliberately limited annotation.

3.2 Handling page faults
In Eden, there are two paths for handling page faults, depend-
ing on whether the remote access is detected by a software
or hardware guard. The hinted path corresponds to instances
where the address is signaled by a hint before the program
attempts to access it—thus, the fault is detected by Eden’s
software guards and no trap to the kernel is required. The
unhinted path is followed if the application actually traps to
the kernel due to a hardware guard, i.e., traditional page fault.

In both cases, if the page is not present, Eden’s runtime
fetches the page—or pages, in the case of extended hints—
from far memory via RDMA and uses the UFFDIO_COPY
ioctl to allocate a physical page, copy the fetched data
in, and map it in the process’ page tables. If the fault
is due to missing write privileges, the runtime uses a
UFFDIO_WRITEPROTECT ioctl to remove write-protection
on the page. (The expensive ioctl calls are necessary in
both hinted and unhinted paths because, unlike pure app-
integrated systems, Eden needs to support hardware guards
as well. While Eden is in control of what pages are mapped
locally, the kernel still controls the page tables and transla-
tion hardware that support the hardware guards. Hence, when
evicting pages, Eden must unmap them from the page tables.)
However, the two paths differ in several aspects including
which core handles the fault and whether detecting the fault
involves context switching to the kernel.

Hinted path. Eden expects to handle the majority of page
faults via the hinted path. When an application invokes Eden’s
hint API (i.e., hint_fault(...)), it calls into Eden’s run-
time, which implements a software guard. The runtime com-
putes the page-aligned address and looks up the page in its
own internal data structure of page metadata. If the page re-
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quires that write-protection be removed, the runtime issues a
synchronous ioctl(). Otherwise, if the page is present, the
runtime returns to the application immediately. This process
completes entirely on the same core as the application.

If the page is missing, the runtime fetches it from far mem-
ory and runs another user-level thread while the page is being
fetched (unless the hint specifies otherwise). First, the run-
time marks the current user-level thread as blocked. Then it
initiates the RDMA read for the page. While the page is being
fetched, Eden’s runtime can switch to a different user-level
thread and run it. This enables Eden to effectively utilize CPU
cycles while a page fetch is outstanding, in contrast with ex-
isting systems such as Fastswap that busy wait [13]. When
control returns to the runtime (e.g., the thread yields, exits,
or issues another hint), it polls for any completed RDMA
operations on its local queue. On a page-fetch completion,
the runtime UFFDIO_COPYs the page and resumes the original
user-level thread. While issuing the ioctl() still requires a
context switch to the kernel, hinted faults only require one
such context switch, whereas unhinted faults (described be-
low) require two. In addition, the copy happens on the same
core, warming up the cache for the application thread, unlike
in the unhinted path.

Unhinted path. Hints may not catch all page faults in
Eden, so regular page faults can still occur. This can hap-
pen if a developer instruments most of—but not quite all
of—the potential fault locations, or the system experiences
unexpected memory pressure. Eden handles these faults in
the control core. In Eden, each application’s memory is regis-
tered with a single userfaultfd file descriptor (§4). When
an unhinted fault occurs, traditional hardware guards detect
the fault and trap to the kernel, which then writes an event to
the userfaultfd file descriptor. The control core polls this
descriptor and receives the event. It resolves the fault in man-
ner similar to the hinted path with a key difference: Because
the control core does not run application threads, it handles
other faults or memory reclaim (§3.3) while a page fetch is
outstanding. When unhinted faults are rare, the control core
is not a bottleneck.

Concurrent faults. It is possible that while a fault (either
hinted or unhinted) is being resolved, another user-level thread
faults on the same page. The runtime must not re-execute the
fault-handling logic for the second fault, because this would
trigger an extra page fetch and could potentially overwrite the
page of memory after the first thread had already resumed.
Eden handles this by including a lock in its page metadata,
which the runtime acquires when it starts working on a page
fault to ensure concurrent faults are resolved exactly once.
When the runtime encounters a concurrent fault, it places
the fault on a local waiting queue and proceeds to do other
work. When the first fault finishes, the runtime sets the page
status bits in global page metadata. Whenever a core returns
to the runtime, it checks for completed faults and releases the
blocked threads.

Fault stealing. In the common case, Eden resolves hinted
faults on the core that triggered them. However, when load is
imbalanced or deadlocks occur, Eden can also resolve faults
on a different core via work stealing. Load can become im-
balanced if an application thread runs for a long time without
yielding (Eden inherits Shenango’s non-preemptive coopera-
tive threading model [37]) while another core sits idle. Dead-
locks can arise due to asynchronous page fault handling where
application cores block while waiting for locked pages to be
handled by other cores that in turn wait on the former cores.
Eden addresses both of these challenges with fault stealing.
Faults can be stolen (served) not just by other application
cores, but by the runtime on the control core. This is neces-
sary for correctness as all the application cores may block.
We ensure progress because the control core never blocks, so
any faults waiting past a timeout get handled.

3.3 Memory reclamation
In Eden, both the control core and application cores partic-
ipate in memory reclaim; this is similar to Fastswap [13],
which has a dedicated “reclaimer core”. Reclaim involves
evicting enough cold pages to maintain the fraction of empty
page frames at a configurable threshold. (We use 1% by de-
fault.) Most memory reclamation in Eden happens on the con-
trol core, since only a small portion of its time is consumed
with handling unhinted faults. In some instances, however,
the control core may become overwhelmed. In this case (i.e.,
when there are no empty frames), a faulting core will perform
its own reclamation (i.e., instead of running another user-level
thread while a page fetch is outstanding).

Regardless of which core performs reclamation, the run-
time first must identify which page(s) to reclaim by run-
ning a reclaim policy (§4). Once the runtime has selected
a page to evict, it first locks the page to check whether it is
dirty. (Eden initially write protects pages pulled in by read
faults and sets the dirty bit on a write hint or a userfaultfd
write notification.) If the page is dirty, Eden write protects
it using UFFDIO_WRITEPROTECT so that it cannot be mod-
ified during eviction. Then it copies the page to a buffer
and writes it out to far memory using RDMA. Once this
is complete—or if the original page was clean to begin with—
the runtime removes the page from process memory with the
madvise(MADV_DONTNEED) syscall.

3.4 Vectorized syscalls
The Userfaultfd syscalls that Eden relies on for memory
reclamation (specifically, for write-protecting and unmapping
pages), scale poorly due to the need to flush TLBs across cores
(§2.2). These operations limit the rate at which Eden can pos-
sibly evict pages, and therefore the rate at which Eden can
fetch pages as well. As currently implemented in Linux, these
operations support batching of contiguous ranges of pages,
thereby amortizing the overheads of context switching in and
out of the kernel and flushing TLBs. However this is not par-
ticularly helpful in our context because the set of pages to be
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R P D L E A
core
id

page
node
pointer

unused64 63 62 61 60 59 58 32 048

Figure 5: Eden’s page metadata format. Each page has six bitflags
(Registered, Present, Dirty, Locked, Evicting, Accessed), the ID of
the core managing any outstanding faults, and a pointer to the page
node for pages present locally.

reclaimed simultaneously is rarely contiguous. Thus Eden in-
troduces vectorized variants of UFFDIO_WRITEPROTECT and
madvise(MADV_DONTNEED), which enable Eden to reclaim
multiple non-contiguous pages in a single syscall and a TLB
flush. This significantly improves the scalability of these op-
erations, as shown in Figure 8(a) of our evaluation.

4 Implementation
Our prototype builds on Shenango [46], a user-level thread
scheduler written in C/C++. The Eden runtime extends
Shenango in several ways. It adds 6,296 lines of code that
implement: an LD_PRELOAD library to provide transparent sup-
port for the standard memory allocation API; fault handling,
work stealing and memory reclamation; and page manage-
ment. Note that while we based Eden on Shenango, Eden
can be easily extended to run with other “two-level” thread
schedulers like Arachne [40] or GoLang [22]. In addition,
Eden includes an RDMA network stack (605 lines) and a far-
memory RDMA server (1,304 lines). Finally, we implement
a stand-alone tool to identify page fault locations [14] and a
patch for the Linux kernel to support vectorized syscalls.

Memory management. Eden intercepts memory alloca-
tion functions and forwards them to to jemalloc [18], which
generates easier-to-manage batched page-sized allocations.
Eden supports mapping multiple far memory segments from
one or more memory servers as separate memory regions
that are registered with userfaultfd. Eden maintains a sin-
gle metadata array per segment with 64-bit per-page entries
(shown in Figure 5) that hold page flags, an index to the page
node in the reclaim page lists (that is valid only if the page
exists locally), and a few bits to save the current application
core ID when a fault is in progress. The core ID allows the
control core to perform targeted stealing and resolve dead-
locks (§3.2). In terms of memory overhead, Eden requires
both a 64-bit entry for every mapped page and an additional
24-B page node for resident pages; e.g., supporting 256 GB
of far memory with a 64-GB local cache requires 750 MB
(∼1%) for Eden’s bookkeeping using standard 4-KB pages.

Reclaim policies. Even Eden’s basic hints enable more
sophisticated reclaim policies than existing kernel-based sys-
tems. We implemented four reclaim policies; applications are
free to choose the policy that provides the best trade-off for
them. With default, Eden does not use hints for page hotness
and just maintains one big page list that it pops off candidates
from. Second chance is similar to the Linux kernel’s default
policy, where hints set a hot bit and Eden maintains two lists

and bumps or evicts a page depending on the hot bit. With
LRU, hints update a timestamp on the page on each access
which Eden uses to either evict or bump the page to any of
the top (N −1) lists based on how recent the last access was,
where N is the configurable number of lists. Finally, with pri-
ority, Eden lets applications set different priorities for pages
faulted in through hints (via the ev_prio argument). Eden
maintains a configurable number of priority levels for each
eviction page list, which are appended to based on the priority
set by hints (default is zero for low priority). When evicting,
Eden starts with the higher priority levels. This policy gener-
alizes AIFM’s non-temporal dereferences, which reclaims an
object immediately after its DerefScope ends [42].

Fault tracing tool. To find which source code lines should
be hinted, we provide a simple tool (also used in [14]) that
outputs faulting code locations and the fraction of total page
faults they trigger. Like Eden, the tool registers applica-
tion’s memory with userfaultfd and records the call stacks
on each page fault. While tools like ftrace can also be
used to collect traces, our tool can run as a part of Eden
and help the developer iteratively with the hinting process;
when running with Eden, the tool will only record the un-
hinted faults, and generate flame graphs that highlight only
the parts of the application that are yet to be hinted. In
future work, we could extend the tool to help detect mis-
placed hints (e.g., by checking to see if each hint results
in page fetches) and automatically suggest hint extensions
like rdahead and seq based on profiled access patterns at
the hinted faulting locations. The tool is openly available at
https://github.com/eden-farmem/fltrace.

5 Evaluation
Our evaluation seeks to address the following questions:

1. How much developer effort does Eden require? (§5.2)
2. How does Eden perform for different applications, and

how does it compare to Fastswap, AIFM, and TrackFM?
(§5.3)

3. How much do each of Eden’s individual elements con-
tribute to its performance? (§5.4)

We answer these questions using four C/C++ far-memory
applications: The synthetic Web service and DataFrame li-
brary [2] used in the AIFM paper [42], Memcached [33], and
an implementation of parallel sort [44]. We use the first two
to compare Eden’s mechanisms for leveraging application-
specific information against those of AIFM (and TrackFM in
the case of DataFrame). The latter two represent common real-
world workloads. (For brevity, we discuss parallel sort in the
Supplementary Material (§A.4), as the results are qualitatively
similar to the DataFrame benchmark.)

5.1 Experimental setup
We evaluate Eden and Fastswap on a testbed of three Linux
servers, each equipped with a single 100-Gbps Mellanox
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App LoC # Hints Coverage Extensions Reclaim Policy Max gain% Benefits from
DataFrame [2] 15k 11 97.3% rdahead,seq Default 37% Read ahead
Syn Web Service [42] 1.1k 4 > 99% ev_prio Priority 178% Priority reclaim
Memcached [33] 43k 2 > 99% - Second-chance 104% Latency hiding
Parallel Sort [44] 1.2k 6 > 99% rdahead,seq Default 19.4% Read ahead

Table 1: For each application, we show the total lines of code (LoC), the number of hints we add (# Hints), the percentage of faults covered by
the hints, any hint extensions employed, the reclaim policy (§4) employed, the maximum relative performance gain over Fastswap at any local
memory, and the main reason for that speedup.

ConnectX-5 NIC and two 14-core Intel Xeon Gold 5120
CPUs clocked at 2.20 GHz and provisioned with 94 GB of
DRAM per socket. We run on a single NUMA node and
disable hyperthreading, TurboBoost, C-states, and CPU fre-
quency scaling. One server plays the role of both the far-
memory server and, for certain applications, the client traffic
generator. The applications under test run on one of the other
two servers: one is configured for Eden and runs Linux 5.15,
the other for Fastswap which requires Linux 4.11. We disable
page-table isolation (PTI) because it is not available until 4.15,
although Eden’s performance is similar with PTI enabled.

Both Eden and Fastswap use a dedicated core for memory
reclamation, placing them on equal footing. For Eden we use
the reclaim policy that worked best for each benchmark (listed
in Table 1) while Fastswap uses the Linux default. We employ
eviction batching (32 pages) and set the eviction threshold
(the local memory usage at which the control core begins
to reclaim memory) to 99% of local memory. For Fastswap,
the analogous eviction batching parameter is hardwired in
the kernel with the reclaim core activating when the memory
is above the limit, and other cores joining in if the excess
memory use exceeds 2,048 pages.

We run AIFM and TrackFM in the same configurations as
their published artifacts on Cloudlab [1, 3]. AIFM requires
manual porting and we use only benchmarks ported by the
AIFM authors. To facilitate comparisons across all systems,
we normalize the results and report the throughput (or run-
time) of each system as a fraction of its performance in a
fully local baseline configuration, i.e, when no page faults
are required. For Eden we measure baseline performance be-
fore adding hints (so the normalized numbers incorporate any
hinting overhead). In the case of AIFM and TrackFM, we
normalize to the performance of versions of the application
programs that do not link these libraries to account for their
dereference overheads.

5.2 Developer effort
Our analysis in Section §2.3 shows that, for many applications,
we can achieve good coverage of potential page faults with a
small number of faulting locations. Table 1 summarizes the
hinting effort for the applications we evaluate by showing
the number of (single-line) hints added, the resulting page
fault coverage, and the way hints are extended to benefit each
application. We find that we are able to hint faults in Eden
for all four of these applications with a handful of hints (at
most 11). For DataFrame, the percentage of unhinted fault

occurrences is at most 2.7% and for the rest of the applications
it remains less than 1%. In the rest of this section, we detail
the hinting process for DataFrame as it is the most complex
application we consider and allows direct comparison to the
effort required for an AIFM port. The process was much more
straightforward for the other applications which we omit due
to space constraints. (We summarize the analogous process
for Memcached in the Supplementary Material (§A.2)).

DataFrame and AIFM porting. DataFrame [2] provides a
Pandas-like C++ library for common data-analysis tasks like
slicing, grouping, and aggregating table-based in-memory
data structures. Tables are stored in columnar format with
STL vectors for each column, and, as such, most data ac-
cesses occur through vector indexing. The AIFM authors
report changing 1,192 lines of code, or 7.7% of the total
codebase to port the library to far memory; most of these
changes replace the STL vectors used to implement table
columns with custom, far-memory-friendly vectors provided
by AIFM’s customized STL library. Instead of transforming
the data structures, TrackFM [45] (like Eden) interposes on
all memory allocations using a pre-defined object size for the
entire program. It then uses LLVM-based compiler passes
to transforms all pointers, while applying a loop-chunking
optimization to reduce dereference overheads which is nec-
essary for this heavy array-scanning application. Because
NOELLE [32], TrackFM’s LLVM C++ frontend, does not
currently support certain C++ semantics in its loop analysis,
the authors first port the application to C. (Mira’s authors [26]
reported a similar effort to simplify DataFrame’s C++ con-
structor and list initializations for which their frontend [34]
had limited support.)

Hinting DataFrame for Eden. For Eden, we took the
original, unmodified DataFrame library [2] and traced faults
when running with AIFM’s analytics benchmark based on
NYC Taxi trip data. 23 distinct code locations are responsible
for 95% of DataFrame’s faults (Figure 2) but we are able to
presage two thirds of the faults by adding hints for just the
top-three faulting locations. These locations are highlighted
by our tool in a list of top faulting locations ordered by fault
density. (Figure 10 in the Supplementary Material shows an
example fault-density flame graph for DataFrame). Out of
the 23 locations, 13 raise allocation faults for newly created
column vectors. Because Eden controls memory allocations,
we optionally support pre-faulting small allocations, i.e., those
less than 100 MB, at allocation time to avoid the need to add
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679 new_col.reserve(std::min(sel_indices.size(), vec_size));
680 hint_fault(new_col.data(),new_col.size(),mut=True,rdahead=MAX);
681 for (const auto citer : sel_indices)
682 hint_fault(&(*citer), seq=True, rdahead=MAX);
683 const size_type index =
684 citer >= 0 ? citer : static_cast<IT>(indices_size) + citer;
685 const auto citer = sel_indices[i];
686 const size_type index =
687 citer >= 0 ? citer : static_cast<IT>(indices_size) + citer;
688 if (index < vec_size) {
689 hint_fault(&vec[index], seq=True, rdahead=MAX);
690 new_col.push_back(vec[index]);

Listing 1: Lines 680, 682 and 689 are the hints we add to cover
the two top faulting locations in DataFrame. Line 680 hints the
write faults for the new_col vector in 690, whereas 682 and 689
hint the read faults for the lines that immediately follow them. The
latter two hints are extended with rdahead and seq as they access a
contiguous vector in a loop.

explicit hints. With DataFrame, this feature obviates the need
to explicitly hint all but one allocation location, leaving only
11 locations to hint.

The top-three faulting locations fall in the selection oper-
ator where new columns are generated out of existing ones,
and involves a lot of data copying; Listing 1 (without the high-
lighted green lines) shows the portion of original code where
a new column is written to from an existing one (Line 690
sees two faults) based on an index vector (accessed in Line
683 that sees another fault). Unsurprisingly, this is one—and
by far the most impactful (c.f. [42, Fig. 8])—of the operations
that AIFM offloads to the memory server. We add two hints
to read in the index and data vectors, and a third to allocate
the column vector in one go.

Extended hints. Each of these hints are inside C++ vector
scans, prompting us to add rdahead to bring in more pages
and seq to reduce hinting overhead in each instance. (As we
show in Section 5.3.1, this enables Eden to perform on par
with AIFM.) Overall, our changes to the application include
11 hints, all similar to those above, each incurring an extra
line of source code. With the assistance of our tracing tool, it
took the first author only a couple of hours to insert the hints
and no time was spent in debugging.

5.3 Performance benefits
We compare the performance of Eden to AIFM, TrackFM, and
Fastswap [13], a state-of-the-art kernel-based far-memory sys-
tem. We evaluate each of our four applications with Fastswap,
two with AIFM, and one with TrackFM. Eden consistently
outperforms Fastswap, due to the benefits enabled by its hints;
for each app, a single mechanism (listed in the last column of
Table 1) predominantly drives the performance improvement.
Eden’s hints can capture most of the benefits of AIFM with
many fewer code changes. Specifically, for DataFrame, Eden’s
hint-level read-ahead was enough to match AIFM’s data
structure-specific prefetching. In AIFM’s Synthetic bench-
mark, Eden’s hint-level eviction priority matched AIFM’s
data structure-level cache separation. We only evaluate the
Synthetic and DataFrame applications on AIFM because the

effort of porting other applications to AIFM is high and out
of scope given our limited expertise with AIFM. Eden bests
TrackFM’s DataFrame performance due to the latter’s need to
insert software guards around every potentially remote access
as opposed to Eden’s few hint locations.

5.3.1 DataFrame
We start with the performance of the DataFrame application
described in §5.2. We use the benchmark provided by the
AIFM authors [1], varying the local memory between 3 GB
and 31 GB, the workload’s full working set size. The leftmost
graph of Figure 6 shows the overhead of running DataFrame
on Fastswap, AIFM, TrackFM, and Eden in fully local config-
urations. At 100% local memory, AIFM incurs a slowdown
of 30% (85 seconds normalized to the 65-second baseline
on AIFM’s testbed) because of overheads on pointer deref-
erences, while TrackFM’s overhead is even higher (more so
than reported in their paper [45]) because TrackFM runs a
C-ported version of the application while all the other systems
run the original C++ version. Eden incurs a 12% (82 seconds
normalized to the 73-second baseline on Eden’s testbed) over-
head due to its localized hints. Fastswap incurs essentially no
overhead due to its exclusive reliance on hardware guards.

The second graph of Figure 6 shows the normalized runtime
of DataFrame on each system as a function of available local
memory.4 Fastswap’s performance degrades significantly due
to page-fault overheads whereas Eden, TrackFM, and AIFM
degrade more gradually. As local memory becomes extremely
constrained, Eden’s performance deteriorates slightly due to
an increased prevalence of unhinted faults (rising to 2.7% at
9% local memory); yet even then Eden’s performance remains
close to that of AIFM—achieving a normalized runtime 37%
faster than Fastswap—because Eden is able to amortize page-
fault costs with targeted read ahead and eviction batching.
For example, with only basic hints Eden’s performance at
22% (5 GB) local memory is 4× (296 secs) the baseline (not
shown), compared to Fastswap’s 2.7×. With eviction batching
Eden improves to 2.9× (214 secs)—comparable to Fastswap—
and adding targeted read ahead drops Eden’s runtime to the
final 1.75× (127 secs), competitive with AIFM’s 1.67×.

5.3.2 Synthetic Web service front end
We demonstrate Eden’s ability to perform application-
informed reclaim using the Web service described in the
AIFM paper [42]. This application services each client re-
quest with a series of lookups: it retrieves a 4-byte user ID by
doing several lookups (32 in AIFM’s benchmark) into a hash
table and then an additional lookup retrieves a large (8-KB)
object from a user data array. Both objects are compressed
with Snappy [21] and encrypted before being sent back to the
client. The workload is designed to stress the hash-table data,
which is prone to cache evictions by the much larger user data

4This is the experiment depicted in Figure 7 of the AIFM paper [42],
but we (like [45]) plot normalized runtime because the benchmark does not
specify how to compute normalized throughput.
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Figure 6: Performance comparison with two AIFM-ported applications. From the left, the first graph shows the performance overhead of
DataFrame running on Eden, TrackFM, AIFM, and Fastswap in fully-local configurations compared to its native performance, highlighting
the much higher overheads of object-based approaches. The second graph shows the runtime of DataFrame as a function of local memory
normalized to the native performance. The third graph similarly shows the normalized throughput of AIFM’s synthetic Web server on Eden
with and without (Eden NP) priority hints, AIFM non-temporal, and Fastswap. The rightmost graph shows the same experiment with 1,600-byte
hash entires.

objects, thus hurting performance under oblivious reclaim
policies. AIFM’s “non-temporal” feature isolates hash-table
data from the user data to avoid cache evictions of the former.
Eden deliver similar benefits with priority-reclaim hints (§4).

To facilitate comparison to Eden and Fastswap, we “back-
port” the application to transparent page-based far memory
by replacing AIFM’s custom far-memory data structures
with standard variants, including the “local-only” hopscotch
hashtable available in the AIFM repo [1]. Running the back-
ported application through our fault-tracing tool with AIFM’s
workload identifies two faulting locations in the hash table and
one location for the user-data array access. As a baseline (plot-
ted as “Eden NP”), we add 2 basic hints to the Web service,
one before accessing the bucket structure in the hopscotch-
hash lookup, and a second ahead of accessing the object itself
(the key-value objects are stored separately from the buckets).
We consider the workload from the AIFM paper: 128 M hash-
table entries and 2 M user objects, resulting in a ∼26-GB
memory footprint. Client requests are Zipf(0.8) distributed.

The third graph of Figure 6 plots the normalized perfor-
mance of Eden, Fastswap, and AIFM, each with 10 cores.
At 100% local memory, both Eden and Fastswap achieve
normalized throughput close to 1.0 (520 KOPS in absolute
terms). However, AIFM incurs overhead due to dereferencing
its smart pointers; in this workload this occurs much more
frequently than hints in Eden, yielding 10.6% lower through-
put for AIFM (385 KOPS normalized to 430 KOPS vanilla
performance on AIFM testbed) in fully local configuration.5

At lower local memory where paging is required, Fastswap
degrades roughly linearly, down to a normalized throughput
of 0.02 (10.7 KOPS) at 4% local memory. Eden’s through-

5Note that the original AIFM evaluation uses the far-memory-capable
variant as a baseline, leading to higher normalized throughput at all local
memory percentages presented in their paper [41].

put degrades as well, but remains higher than Fastswap (43
KOPS). Unsurprisingly, AIFM degrades more gracefully than
either page-based system, maintaining roughly stable perfor-
mance until about 20% local memory, at which point almost
all local memory is required for the hash table.6

To mimic AIFM’s non-temporal feature, we prioritize re-
claim of array data in the array-access hint using Eden’s
ev_prio setting (plotted as “Eden”). Under this configura-
tion, Eden’s performance remains competitive with that of
AIFM down to about 40% local memory, as the cache miss
rate is low (< 1 miss per request for both) and there is no I/O
amplification as all the misses are for page-sized array items—
hence, the network read I/O (not shown) for both systems is
similar at 15 Gbps. Eden also sees the highest normalized
performance gain of 0.49 (or 178%) over Fastswap at this
setting. As local memory becomes further constrained, both
systems begin evicting (4-B) hash-table entries, causing I/O
amplification for Eden. Specifically, AIFM is able to reference
far memory on a per-object basis, while Eden must pull in—
and evict—entire pages at a time, resulting in less efficient
local memory utilization. For example, at 8% local memory,
AIFM sees an average of 13 misses per request and generates
a network I/O rate of 6 Gbps. Eden sees a much higher I/O
rate with 1.2 million page faults at 40 Gbps (which saturates
our NIC, explaining the performance bottleneck) due to both
a higher miss rate (23 per request) and page-sized I/O (i.e.,
amplification). Recall that each request in this benchmark can
see up to 33 far memory lookups.

To isolate this effect, we re-run the experiment with larger
hash-table entries. Specifically, instead of a 4-byte entry as
before (for which the memory allocator uses a 32-B slab), we
use a 1,600-byte entry (requiring a 2-KB slab) while maintain-

6AIFM employs hand-crafted look-aside tables in the smallest (<20%)
memory configurations to avoid spilling the hash table to far memory.
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Figure 7: Memcached performance as a function of the fraction of
the working set that can fit in local memory. The left-hand graph
shows the maximum achievable throughput on both Eden (red; block-
ing hints in dashed red) and Fastswap (blue) normalized to their
respective fully local configurations. The right graph shows the cor-
responding page fault rate for the same experiment.

ing total hash-table size by decreasing the number of entries
to 2 M. In this configuration (shown in the rightmost graph
of Figure 6), the normalized performance of Eden and AIFM
is similar. Hence, we conclude that Eden’s poor performance
(relative to AIFM) on the original synthetic workload is due
to the interaction of Eden’s page-based granularity and the
workload’s lack of (spatial) locality.

5.3.3 Memcached
Next we consider an application that benefits from our user-
level scheduler that hides the latencies more effectively than
the kernel: memcached. We add only 4 hints using our tracing
tool, 3 to cover item search in the hash table in the GET path
and an extra write-fault hint in the PUT path. (More details are
in the Supplementary Material (§A.2).) To maximize through-
put we use a read-only workload and preload memcached
with 30M (24-byte, 512-byte) key-value items, resulting in a
∼8-GB memory footprint. We issue client requests based on
a Zipf(1.0) distribution.

Figure 7 shows the performance on 5 cores in comparison
to Fastswap. We plot the average across multiple runs; the
standard deviation is below 2% in all cases, and usually well
below 1%. The leftmost graph plots the throughput of each
system normalized to the performance of its fully local base-
line (4.45 MOPS for Eden and 3.74 for Fastswap). Because
memcached requires almost no computation to service each
request, its throughput drops dramatically as memory pres-
sure increases. Eden degrades more gracefully than Fastswap,
maintaining 29.4% of its baseline performance with ony 10%
local memory as compared to 14.4% for Fastswap—an im-
provement of 104%. (In absolute terms, the gap is even larger:
Eden delivers 1.31 vs. Fastswap’s 0.54 MOPS.) For this work-
load, Eden extracts significant additional throughput from the
increased concurrency of its lightweight threads (memcached
services each request with a separate thread), allowing it to
process client requests in parallel on each core, resulting in a
dramatically higher page-fault throughput (836 KOPS) than

Fastswap (312 KOPS), as shown in the center graph. To iso-
late this effect from Eden’s other features we also measure the
performance when Eden spins during fetches (“Eden (BH)”)
rather than scheduling another thread.

5.4 Microbenchmarks
In this section we isolate the performance benefits of different
components of Eden’s design through microbenchmarks.

Vectorized operations First we evaluate the per-
formance of Eden’s vectorized operations by repeat-
ing the experiment from Section §2.2, for the write
protect (UFFDIO_WRITEPROTECT ioctl()) and unmap
(madvise(MADV_DONTNEED)) operations. The leftmost por-
tion of Figure 8 shows that with a batch size of 16, Eden’s vec-
torized operations achieve 5.4–6.6× and 3.7–5.7× as much
throughput, respectively, as Linux’s standard versions. This
is because batching enables Eden to amortize the overhead
of context switching in and out of the kernel and batch TLB
flushes. Eden’s vectorized operations are sufficient to sustain
line rate of page operations with 100-Gbps NICs, with 1 core
for write protecting and 6 for unmapping pages.

Page fetch rate Next we evaluate the maximum rate at
which Eden can fetch pages, with eviction disabled. We run a
simple multi-threaded benchmark that first registers a unique,
large memory region on each core, then touches every page
and evicts it to far memory. Next the benchmark accesses the
evicted pages sequentially such that each access incurs a major
page fault (but local memory is sufficient to never trigger
reclaim). We evaluate three systems: Eden, Eden without
hints, and Fastswap.

The second graph in Figure 8 shows that, without hints,
Eden is bottlenecked by the control core (which must handle
every fault), and cannot sustain high throughput. However,
with hints, Eden approaches 2 MOPS, achieving 38–88%
more throughput than Fastswap, with the same number of
cores. This demonstrates the benefit of non-blocking hints,
which allow Eden to continue the microbenchmark and initi-
ate additional asynchronous page fetches.

Fetching and evicting Now we adapt the sequential bench-
mark above by restricting the amount of local memory avail-
able so that every page access triggers both a page fetch and an
eviction. We evaluate the performance of two reclaim configu-
rations: non-dirty reclaim and dirty reclaim (with write-back)
by touching pages with reads and writes respectively, on ini-
tialization. Eden uses a batch size of 16. The third graph in
Figure 8 shows that throughput with reclaim decreases sig-
nificantly for both Eden and Fastswap compared to without
reclaim (second graph), because reclaim adds more work to
every page fault. Though Eden incurs additional kernel cross-
ings during reclaim for write protecting (when the page is
dirty) and unmapping, its vectorized APIs enable it to amor-
tize these costs across several pages. In addition, Eden ben-
efits from overlapping the eviction work with page fetches,
allowing it to achieve higher throughput than Fastswap.
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Figure 8: The performance of Eden’s vectorized write protect and unmap implementations compared to default Linux (c.f. Figure 1) (a).
On a sequential microbenchmark (b,c,d), Eden achieves higher throughput than Fastswap when just fetching pages (b) and both fetching and
reclaiming pages (c). In addition, Eden benefits significantly from hints (b) and read ahead (d).

Read-ahead performance Finally, we evaluate the bene-
fits of leveraging application-specific knowledge with Eden’s
read-ahead feature in its extended hints. We repeat the mi-
crobenchmark shown in the third graph (“Eden Clean”) with
varying amounts of read-ahead, so that Eden can fetch multi-
ple pages in a single RDMA read. The right graph in Figure 8
demonstrates that, with this sequential workload, read ahead
improves throughput significantly, saturating the 100-Gbps
NIC at high core counts.

6 Related Work
Far memory systems vary widely in terms of programmer ef-
fort. Solutions based entirely on transparent hardware guards
have been implemented at both the hardware [16, 23, 31] and
kernel [9, 10, 12, 13, 19, 24, 29, 39, 43, 50, 51] level, but leave
potential application and workload-specific optimizations on
the table. In contrast, some app-integrated systems [8, 42, 53]
eke out those gains through software guards at the cost of
heavy application modifications. Other recent app-integrated
systems like TrackFM [45] and Mira [26] use compiler help to
automate application changes however they still suffer from
significant overhead of their software guards and bring in
some practicality concerns like requiring source code for all
external dependencies.

Like Eden, DiLOS [52] leverages hardware guards while
moving page handling into the application to enable special-
ized swap caching policies and app-specific optimizations;
however, DiLOS employs a LibOS approach to handle hard-
ware guards in the application and cannot run applications
natively on Linux. Moreover, while DiLOS’s design obviates
basic hints, it can still benefit from Eden’s extended hints.

Hints, whether specified by the user or a compiler, have
long been used to supply prefetching information [35, 38, 47,
49]. Eden’s hints go further by both preventing page faults
and specifying reclaim behavior. In that way, Eden’s hints
are semantically analogous to some madvise() options. For
example, Eden’s read-ahead hints are similar to madvise()
with MADV_POPULATE and reclaim priority hints are similar to
MADV_COLD but with more levels. Critically, Eden’s hints are
much lower overhead than madvise() calls, allowing them to
be used more generously in the code. Moreover, madvise()
guidance is input to the kernel’s fixed swap implementation
whereas Eden’s policies are much more flexible.

7 Conclusion
Eden represents a new point in the design space of far-
memory systems: it combines software and hardware guards
to intercept accesses to remote memory. Eden uses software
guards at the few code locations where most of the remote
accesses tend to occur, while relying on hardware guards
elsewhere in the application. This approach provides good
performance—better than paging-based approaches (pure
hardware guards) and comparable and sometimes better than
prior app-integrated systems (pure software guards).

It does not, however, tackle a few remaining limitations
with page-based accesses. First, for applications that work
with small objects and poor locality, managing memory at
page granularity can result in overhead due to cache and
I/O amplification (as we saw in § 5.3.2). While object-based
designs address this issue, such benefits may be easily off-
set by their high guard and bookkeeping overheads (e.g., ob-
ject tracking for eviction), which also grow with smaller ob-
jects [17]. Second, Eden’s far memory handling (miss path)
is slower than pure app-integrated systems, especially when
Eden triggers a hardware guard and traps into the kernel; in
fact, here Eden is even slower than other existing paging-
based systems due to its use of userfaultfd.

On balance, we believe Eden strikes a useful middle ground
between completely transparent page-based systems and ex-
isting app-integrated designs. Our approach reduces program-
mer effort and the overhead of software guards while still
enabling application-specific optimizations, which we find
more than compensate for the remaining overheads of our
page-based design.
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Category Count LoC Max RSS
Parsec [15] 7 10–32K 110–800 MB
Key-value stores [48] 4 7–260K 0.5–1.3 GB
Graph [11] 10 0.2–1.2K 0.1–300 MB
Other 3 1K-15K >20 GB

Table 2: Application suite for fault location analysis.

A Supplementary Material
We provide additional information about the applications used
in our fault analysis (§A.1) and the hinting process for two of
our evaluated applications (§A.2 and §A.3).

A.1 Applications
Table 2 lists the number of applications that we evaluate per
category and the lines of code and maximum resident set size
(RSS) for each.

PARSEC: PARSEC [15] is a benchmarking suite of
compute-intensive applications designed to stress parallel
performance on multi-core CPUs. We include a subset of
these applications which are more HPC focused. We run each
with 8 threads and its native dataset.

KVS: We evaluate four key-value store applications: two
in-memory caches (Redis [6] and Memcached [33]) and two
persistent data stores (Rocksdb [7] and LevelDB [5] with
memory caches). We use the workloads from LK_PROFILE
but increase the number of operations to at least a million,
which yields a proportionally larger memory footprint.

Graph: We consider the CRONO graph benchmark [11],
which consists of 10 independent multi-threaded graph algo-
rithms. We use the inputs provided with the benchmark suite
and run each program with 4 threads.

Other: Contains applications from our evaluation de-
scribed in Section 5.3. Synthetic and DataFrame are ported
from AIFM’s evaluation [42], and psort is our own multi-
threaded quicksort implementation.

A.2 Memcached hinting
Here we describe the hinting process for Memcached, a
widely used in-memory key-value store. Key-value items are
sorted into buckets indexed by the hash of the key, and each
bucket is a linked list of items storing a key, its associated
value, and other metadata like reference counts, locks, and
list pointers. To look up a key, Memcached finds the bucket
and walks the list until the key is found. We use a port by the
authors of Shenango [46] where each request is served by a
separate lightweight thread.

We run the executable on our selected workload (see Sec-
tion 5.3) linked against our tracing tool. The tool produces a
flame graph that visualizes the frequency and call stacks for
a configurable fraction of faulting locations. Figure 9 shows
the locations of 95% of all faults. The bottom-most layer cor-
responds to main and includes all faults, while the top-most
layer shows the functions that include the faulting locations.

memcached.c:3114

i..

i..

a..

clone3.S:83

0x7ffff55568a7

thread.c:136

m..

proto_text.c:2772

i..
thread.c:811

assoc.c:79[r] assoc.c:85[r]
items.c:957

thread.c:521

0x7ffff5554f58

proto_text.c:207

thread.c:136

assoc.c:85[r]

items.c:957

item..
thread.c:146

memcached.c:2960

memcached.c:2174

thread.c:910

pthread_create.c:442

assoc.c:79[r]

i..

proto_text.c:487

proto_text.c:573

i..

memcached.c:1571

GET PathPUT Path

LRU

Figure 9: Output of our fault-tracing tool on Memcached.

82 item *ret = NULL;
83 int depth = 0;
84 while (it) {
85 hint_fault(&it->nkey);
86 if ((nkey == it->nkey) && (memcmp(key, ITEM_key(it), nkey) ==

0)) {
87 ret = it;
88 hint_fault(&ITEM\_data(it), it->nbytes);
89 break;
90 }
91 it = it->h_next;

Listing 2: In Memcached we add a hint on line 85 to prevent
the fault on line 86 and another hint on line 88 to indicate
size of the data and ensure that all pages spanned by the item
data are faulted in.

Read faults are colored blue, write faults are shown in red,
and the protection faults (i.e., the page is present as read only)
are greenish yellow. Based on this graph we see that there are
two major faulting locations (assoc.c:79 and assoc.c:85)
which occur in both the PUT and GET code paths triggered
by our 50:50 workload. These correspond to accesses for the
bucket and the items. An additional protection fault location
appears in the PUT path.

After identifying the faulting locations, Listing 2 shows
how we add hints to the item access location, assoc.c:85.
The fault occurs inside a while loop that traverses a linked list
in a hash-table bucket: The value of the key being looked up is
compared against the contents of the bucket by dereferencing
a pointer (it->nkey); this dereference frequently causes a
fault. We add a basic hint immediately beforehand to prevent
this fault. The hint added for the second faulting location
(assoc.c:79) is similar.

While these two locations cover the majority of faults, there
are others. The (write-fault) locations on the far left corre-
spond to accesses by the LRU-maintainer thread. Memcached
tracks per-item access information to maintain LRU lists and
evicts cold items under memory pressure, thereby dirtying
memory even when serving reads. Additionally, it performs
“item shuffling” between these lists and updates item pointers
in the background, further dirtying memory. As a result, read-
only workloads dirty pages at a rate similar to write-heavy
workloads. Rather than insert (four additional) hints at these
locations, we instead disable both of these unnecessary fea-
tures in our tests—dramatically improving performance for
both Eden and Fastswap—as the underlying far-memory sys-
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Figure 10: A flame chart for faulting code locations generated from DataFrame’s entire execution.
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Figure 11: Performance of parallel-sort application with optimal
read-ahead settings. The plot shows the run time (lower is better)
normalized to the (unhinted) fully local configuration.

tem already takes care of access tracking and moving pages
to and from far memory—obviating the need for such inter-
nal LRU lists. A number of other rare locations on the right
happen when the item found falls across two pages and the
page hint brings in only one of them, so we add an extra hint
(assoc.c:88) for the matched item indicating the size of the
item to bring in both pages in such cases.

A.3 DataFrame hinting
Figure 10 presents the fault-density flame graph for
DataFrame generated by our tracing tool when running the
analytics benchmark. The benchmark runs nine different ana-
lytics queries on the data, with seven segments in the flame
graph showing the most time-consuming ones.

A.4 Parallel-sort evaluation
Here, we describe the evaluation of a sorting benchmark, in
which, unlike the other applications we evaluated, each thread
has its own distinct working set. Specifically, we implement
parallel sorting with regular sampling [44]. This application
first shards an input buffer to individual threads which each
quicksort their shard. Then it merges the sorted shards to-

gether into an output buffer and copies it back to the input
buffer. Because of the overhead of merging results, best per-
formance is typically achieved by matching the number of
threads to the number of CPU cores.

Our benchmark sorts 3B 4-byte integers (resulting in a 21-
GB memory footprint). We implement two versions: one us-
ing Linux pthreads for Fastswap and another using Shenango
threads for Eden. We add 6 hints (2 in quicksort, 3 in merge
and 1 in copy-back stages) to the baseline code for Eden.
The rightmost graph of Figure 11 presents the normalized
runtime of both systems running on 10 cores, with Fastswap
normalized to the fully local pthreads version and Eden nor-
malized to the (unhinted) Shenango version. (The total run-
time does not differ substantively between fully local pthreads
and Shenango versions.) Eden experiences a 17.5% slowdown
when fully local, most of it coming from the (unnecessary, in
that configuration) hints in the partition function of quicksort.
However, the (64-page) read ahead signaled through these
hints starts helping as memory pressure increases. We plot
Fastswap’s performance with an optimal system-wide config-
uration of 7-page read ahead. Fastswap extracts less benefit
from read ahead because prefetched pages are not mapped
until accessed, triggering minor page faults for pages that are
already present. As a result, Eden’s runtime is 19.4% less
than Fastswap’s in the 10% local-memory case. Note that the
hinting effort, hint extensions and the performance benefits
are similar to those of DataFrame as both applications have
similar array scanning patterns.
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