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Abstract
Online recommender systems use deep learning recommen-

dation models (DLRMs) to provide accurate, personalized
recommendations to improve customer experience. However,
efficiently provisioning DLRM services at scale is challeng-
ing. DLRMs exhibit distinct resource usage patterns: they re-
quire a large number of CPU cores and a tremendous amount
of memory, but only a small number of GPUs. Running them
in multi-GPU servers quickly exhausts the servers’ CPU and
memory resources, leaving a large number of unallocated
GPUs stranded, unable to utilize by other tasks.

This paper describes Prism, a production DLRM serving
system that eliminates GPU fragmentation by means of re-
source disaggregation. In Prism, a fleet of CPU nodes (CNs)
interconnect with a cluster of heterogeneous GPU nodes
(HNs) through RDMA, leading to two disaggregated resource
pools that can independently scale. Prism automatically di-
vides DLRMs into CPU- and GPU-intensive subgraphs and
schedules them on CNs and HNs for disaggregated serving.
Prism employs various techniques to minimize the latency
overhead caused by disaggregation, including optimal graph
partitioning, topology-aware resource management, and SLO-
aware communication scheduling. Evaluations show that
Prism effectively reduces CPU and GPU fragmentation by
53% and 27% in a crowded GPU cluster. During seasonal
promotion events, it efficiently enables capacity loaning from
training clusters, saving over 90% of GPUs. Prism has been
deployed in production clusters for over two years and now
runs on over 10k GPUs.

1 Introduction

Personalized recommender systems are the key infrastruc-
ture for many user-facing, revenue-generating web services,
such as content streaming, e-commerce, social networks, and
web search [12, 21, 47, 58]. These systems use deep learning
recommendation models (DLRMs) to provide accurate, per-
sonalized recommendations to improve customer experience
and increase user engagement. DLRM serving consumes the
majority of the inference resources in today’s AI cloud, with
top recommendation models account for more than 79% of
AI cycles, according to Meta [26].
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Figure 1: The CPU demands of DLRM services exhibit daily
and seasonal variations; GPU demands follow the same trend.
Trace collected from a production cluster, including three
(starred) e-commerce promotion events.

However, serving DLRMs at scale faces aggravating chal-
lenges. DLRM serving has a stringent latency service-level
objective (SLO), usually on the scale of tens of millisecond
per request. In the meantime, DLRM serving needs to handle
frequent spikes in demand. Meeting the latency SLOs often
means provisioning for the peak load, which can be signifi-
cantly higher than the average [28, 39]. Figure 1 illustrates
the resource demands of Alibaba’s DLRM services in a pro-
duction cluster. We observe a distinct diurnal pattern with
the peak-to-valley ratio over 6×; during seasonal promotion
events, the peak load can be 1.3× higher than the regular
peaks, which is in line with the previous report [68]. Provi-
sioning for the peak load at such scale results in significant
underutilization, making it economically unviable.

To reduce overprovisioning, a better strategy is to provision
for the average load and enable capacity loaning during load
spikes. Large companies like Alibaba own multiple purpose-
specific infrastructures: some for training and the others for
inference. When DLRM serving is in peak hours, it can tem-
porarily loan GPU servers from training clusters as training
jobs are less latency-sensitive and can tolerate interruptions.
However, there is a mismatch between server configuration
and DLRM’s resource demand. Unlike training tasks that
demand extensive GPU cycles, recommendation models ex-
hibit low compute-intensity and are not bottlenecked on GPU.
Instead, they perform sparse computations such as embed-
ding [36, 37], which requires abundant memory for storing
embedding tables and many CPU cores for table look-up and
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pooling operations [26,32]. As a result, running recommenda-
tion models in training servers quickly exhausts the servers’
CPU and memory resources, leaving a large number of unallo-
cated GPUs stranded. In our cluster, a typical DLRM service
requests 48 CPUs and 1 GPU, while training servers com-
monly have 〈96 CPUs, 8 GPUs〉 (Figure 4). Deploying two
DLRM inference instances occupies all CPUs on the host,
leaving 6 unallocated GPUs unable to utilize by other tasks.

This paper presents Prism, a production DLRM serving
system that addresses the resource mismatch problem with
GPU disaggregation. Prism runs on a shared infrastructure
where a fleet of CPU nodes (CNs) interconnect with a cluster
of heterogeneous GPU nodes (HNs) through a high-speed
RDMA network. Each CN has a large number of CPU cores
and high memory but no GPU, while each HN is a typical
training server with multiple GPUs but only a modest amount
of CPU and memory resources. This infrastructure breaks
down a cluster of monolithic servers with fixed configurations
into two disaggregated resource pools, where CNs provide
rich CPU and memory resources while HNs provide abun-
dant GPUs. The two resource pools can be independently
scaled to match the changing demands of dynamic workloads.
Given a DLRM, Prism automatically divides its compute
graph into two subgraphs, one containing CPU- and memory-
intensive operators and the other GPU-intensive. The system
then schedules the two subgraphs on the selected CN and HN
for disaggregated serving and returns the results to users.

This paper describes the challenges, techniques, and lessons
learned in building a disaggregated DLRM system at a produc-
tion scale. First, the disaggregation needs to be transparent
to model owners. Manually re-architecting models to a dis-
aggregated version raises the risk of accuracy degradation
and requires extra efforts from their owners, thus undesir-
able. Second, the system should scale to thousands of servers
to handle excessive load spikes. Given the surging traffic, it
should promptly schedule workloads to a large fleet of servers
to achieve dramatic total throughput in a short period of time.
Third, the system should meet the stringent latency SLOs of
DLRM serving, in the presence of non-trivial communication
overhead between CNs and HNs due to GPU disaggregation.
Prism tackles these challenges with three major components:
a disaggregation-optimized real-time prediction (RTP) frame-
work that optimally partitions compute graphs between CNs
and HNs (§4.1), a topology-aware resource manager that min-
imizes inter- and intra-server communication overhead (§4.2),
and SLO-aware communication scheduling that ensures dis-
aggregated serving within the target latency SLOs (§4.3).

Prism has been pilot deployed in late 2022 as the under-
lying infrastructure for a small number of production online
recommendation services, with serving scale continuously
increasing over the past two years. As of January 2025, Prism
runs on over 10k GPUs, successfully decoupling the CPU and
GPU computation demands of DLRMs without impacting
service performance. Evaluations show that in daily high-
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Figure 2: An architecture overview of DLRM.

allocation GPU clusters, Prism effectively reduces CPU frag-
mentation by 53% and GPU fragmentation by 27%; during
seasonal promotion events, Prism efficiently enables capacity
loaning from training clusters, saving over 90% of GPUs (§5).
Our primary contributions are as follows.
• We identify the challenges in resource provisioning when

deploying elastic DLRM services at a production scale and
motivate the need for GPU-disaggregated serving.

• We design and implement Prism to harvest resources from
CPU nodes and heterogeneous GPU nodes by means of
disaggregated serving, alleviating the resource mismatch
between the server configurations and DLRMs’ resource
demands, while still meeting latency SLOs.

• We evaluate Prism in production and demonstrate that it
can effectively reduce resource fragmentation without com-
promising service performance, enabling efficient capacity
loaning during promotion events.

We have released a production DLRM serving trace1 as
part of the Alibaba cluster trace program [3].

2 Background and Motivation

2.1 A Primer on DLRM
Modern recommendation models have a large feature set,
separated into dense and sparse categories. Dense features,
such as vectors and matrices, are processed by typical deep
neural network layers, while sparse features are processed by
indexing large embedding tables. Figure 2 illustrates a typical
architecture of a DLRM [12, 47, 69]. The input comprises
dense continuous features (e.g., user age and item price) and
sparse categorical features (e.g., user ID and item ID). Sparse
features are transformed into continuous embedding repre-
sentations via a lookup operation in the embedding tables.
These features are then fused and fed into a densely con-
nected deep network, such as a multi-layer perceptron [12]
or transformer [57], for prediction, eventually generating the
model output, such as click-through rate or item score.

1https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-
v2025
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Figure 3: Resource allocation snapshot of a large-scale GPU
cluster H with over 4k nodes, 640k CPU cores, and 11k GPUs.

DLRMs exhibit distinct computational and memory con-
sumption characteristics compared to convolutional and re-
current neural networks [26, 30]. The embedding operations
dominate the run-time of recommendation models. These
operations are characterized by large embedding tables (typ-
ically on the order of tens to hundreds of gigabytes), low
compute-intensity and little to no regularity, making them ill-
suited to run on GPUs. In contrast, the model’s dense network
component is better executed on GPUs, which can achieve
10–44× speedup compared to running on CPUs, as shown in
our experiments. Therefore, current DLRM serving systems
decouple the sparse embedding lookup operations from dense
computations. The former runs on a large number of CPUs,
and the latter runs on a GPU.

2.2 Challenges in DLRM Provisioning

DLRM services serve a massive volume of requests with strin-
gent latency SLOs and account for the majority of inference
cycles in today’s AI cloud [26]. These services feature dy-
namically changing requests with large daily and seasonal
variations as shown in Figure 1. Instead of serving DLRMs
in a dedicated cluster, which requires provisioning for the
peak load and is economically unviable, at Alibaba we serve
DLRMs along with other machine learning models in shared
clusters in normal days; we additionally loan servers from
training clusters to handle large load spikes during seasonal
promotion events. However, this approach faces two chal-
lenges in practice.

C1: Resource fragmentation for daily DLRM serving. In
shared clusters, frequently scaling DLRM provisioning based
on the changing load results in severe resource fragmenta-
tion [64]. Figure 3 illustrates the distribution of available
CPUs and GPUs of servers in a large GPU cluster, where both
CPU and GPU allocation rates reach 90%. Despite having suf-
ficient CPU and GPU quotas, DLRM service owners observe
prolonged scheduling time or even scheduling failures [64].
From their perspective, the cluster has over 30k fragmented
CPUs and more than 200 fragmented GPUs (detailed expla-
nation in §5.4). The severe fragmentation is primarily due
to the high CPU-to-GPU ratio of these inference instances
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Figure 4: CDF of CPU-to-GPU ratio. The DLRM trace was
collected over a period of one week from our production
clusters, comprising of more than 25k instances.

(Figure 4, right), which cannot be accommodated using the
servers’ remaining resources. In practice, scheduling new
DLRM instances often requires manually relocating running
jobs to reduce fragmentation, which is time-consuming.

C2: Ineffective capacity loaning during seasonal load
spikes. Throughout a year, Alibaba hosts several large-scale
seasonal shopping festivals [68], during which DLRM ser-
vices experience significant load spikes, exceeding the daily
peak by more than 1.3× (Figure 1). To handle these transient,
excessive load spikes, capacity loaning is often needed, which
we elaborate as follows.

Production AI clouds are built from a large quantity of
heterogeneous servers with configurations meant to support
either training or inference tasks. Figure 4 (left) shows the
distribution of the CPU-to-GPU ratio of the server nodes used
for training and inference in a production cluster at Alibaba.
In general, nodes suitable for training tasks are configured
to have multiple advanced GPUs (e.g., 4 or 8 H800 GPUs)
with high-speed interconnect (e.g., NVLink) but only a lim-
ited number of CPUs (e.g., 16 to 32 cores), thus having a low
CPU-to-GPU ratio. In comparison, nodes optimized for in-
ference tasks, especially DLRM serving, have a much higher
CPU-to-GPU ratio, typically with a single GPU but a large
number of CPU cores (e.g., 128 cores) to accelerate CPU-
intensive operations, such as data preprocessing and embed-
ding lookup. The presence of these heterogeneous servers
essentially segregates a datacenter into two purpose-specific
infrastructures, one for training and the other for inference.
To improve utilization and reduce overprovisioning, capac-
ity loaning between the two infrastructures should ideally
be enabled. That is, when DLRM serving is in peak hours,
it can temporarily loan training servers to handle excessive
recommendation queries.

However, the mismatch between server configuration and
resource demand renders capacity loaning ineffective. Fig-
ure 4 (right) shows the distribution of CPU-to-GPU ratio of
the recommendation models deployed in our production clus-
ters. Over 90% of DLRMs have CPU-to-GPU ratio greater
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than 20, whereas all multi-GPU training nodes have a ra-
tio below 20. As a result, running DLRMs on these train-
ing nodes quickly exhausts CPUs, leaving a large number of
GPUs stranded, unable to utilize by other tasks.

2.3 GPU-Disaggregated DLRM Serving

Resource disaggregation [18, 23, 25, 53] holds tremendous
promise in DLRM serving. This architecture allows decou-
pled independent scaling-out of CPUs and GPUs, thereby
addressing the mismatch between server configuration and
resource demands. Resource sharing is also made possible as
GPU-intensive AI workloads, such as training, can run on the
same infrastructure, together with recommendation models,
significantly increasing the system utilization. Our design of
a GPU-disaggregated DLRM inference service is motivated
by two fundamental observations.

O1: Distinct characteristics of DLRMs. DLRMs exhibit a
distinctive computational structure that naturally lends itself
to graph partitioning based on operator-level resource affin-
ity. Our analysis reveals that embedding table queries domi-
nate CPU computation, while matrix multiplication accounts
for the majority of GPU computational overhead (Figure 8).
While DLRM services routinely update model parameters
and embedding table values to reflect real-time user interac-
tion, the underlying computational graph remains static. This
architectural stability ensures that graph partitioning and dis-
aggregation optimizations, once computed, remain optimal
throughout the model’s deployment lifecycle, eliminating the
need for dynamic repartitioning.

O2: High-performance RDMA network. Modern RDMA
network interface cards (RNICs) deliver bandwidth capabil-
ities of 200–400 Gbps, matching or even surpassing that of
PCIe 4.0 x16 interconnects (256 Gbps). RDMA’s offload ca-
pabilities bypass the kernel networking stack, minimizing
CPU overhead—–a critical factor for inference workloads
in disaggregated environments. Optimized RDMA network-
ing can provide scalability, stability, and SLO guarantees for
disaggregated inference scenarios (§5).

GPU disaggregation approaches. GPU disaggregation can
be achieved using three approaches, as summarized in Fig-
ure 5. We compare these approaches and justify our choice.

1) API-level disaggregation: this approach intercepts pro-
gram calls to CUDA APIs and redirects them to a remote
GPU node for execution [2, 15, 16]. It requires only replacing
the original CUDA library inside the container without any
modification to the serving framework. However, its applica-
tion agnostic nature offers little optimization opportunities.
Future CUDA upgrades would also require considerable en-
gineering effort in forward compatibility and performance
tuning. Moreover, supporting heterogeneous AI accelerators
(e.g., AMD GPUs) necessitates developing and maintaining
distinct remoting layers for each platform.
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Figure 5: GPU disaggregation at different levels.

2) Hardware-level disaggregation: GPU disaggregation
can be ideally enabled with specialized hardware, such as cus-
tomized multi-hop PCIe switches [29, 42] and CXL technolo-
gies [1]. Hardware-level disaggregation requires no modifica-
tion to software and incurs minimum I/O latency. However, it
faces significant deployment barriers as it requires expensive
infrastructure upgrade and customization. The disaggrega-
tion is also confined to a short distance (e.g., PCIe switches
support disaggregation only within a rack).

3) Graph-level disaggregation: A DLRM is represented
as a compute graph consisting of multiple operators running
on CPU or GPU. Inspired by model parallelism, we can par-
tition the compute graph into a CPU sub-graph and a GPU
sub-graph (O1). The two sub-graphs can then be scheduled
on selected CPU and GPU nodes for disaggregated execu-
tion, with communication over high-speed RDMA network
(O2). Compared with the previous two approaches, graph-
level disaggregation requires no specialized hardware and
can achieve good performance with optimized partitioning,
scheduling, and network transport. We hence consider it as a
viable approach and base our system design on it.

3 Prism Overview

In this section, we present Prism, a large-scale DLRM sys-
tem that enables GPU-disaggregated serving by means of
graph partitioning. Prism has been deployed in our produc-
tion clusters, serving as the underlying infrastructure for core
recommendation services. As of January 2025, the system
serves over 20k DLRM instances, utilizing more than 10k
GPUs and 800k CPUs. As illustrated in Figure 6, Prism oper-
ates on a cluster where a fleet of heterogeneous GPU nodes
(HNs) interconnects with a number of CPU nodes (CNs) via a
high-speed RDMA network. A CN is configured with a large
number of CPUs and high memory, while an HN is a multi-
GPU node. This results in two disaggregated resource pools, a
CPU pool provisioned by CNs and a GPU pool provisioned by
HNs. Prism automatically partitions recommendation models
for distributed inference on CNs and HNs.
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System architecture. Figure 7 provides an overview of
Prism. The RTP framework (§4.1) takes input the compute
graph, associated embedding tables, and configuration param-
eters (e.g., enabling/disabling custom optimizers). It divides
a monolithic recommendation model into two subgraphs, one
consisting of CPU-intensive operations and the other con-
sisting of GPU-efficient operations. The resource manager
(§4.2) then packages the two subgraphs into containerized
CN and HN instances and places them onto the selected CN
and HN nodes for disaggregated execution, by considering
the network and node topology. The manager makes resource
allocation decisions (e.g., CPUs, GPUs, RNICs) and dynami-
cally scales CN and HN instances in response to the changing
load. Once the CN and HN instances are placed on nodes, the
communication scheduler establishes RDMA connections and
performs incast control and SLO-aware request scheduling to
meet latency SLOs (§4.3).

Execution flow. As illustrated in Figure 6, user requests
are first routed to a frontend CN instances for embedding
lookups and other CPU-intensive computations. Intermediate
tensors are then transferred to the remote HN instance on
a GPU node through RPCs over the RDMA network. After
the HN instance returns results, the CN instance performs
post-processing before sending the response to the user.
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Figure 8: Operator analysis of online DLRM services.

4 Prism Design

Prism is designed to meet three key requirements:

• Transparency to model development and optimization: For
production deployment, it is important to make disaggrega-
tion transparent to model developers, without their cooper-
ation to modify model architecture or implementation. It is
hence essential to enable automated graph partitioning to
support disaggregated inference for various recommenda-
tion models, without affecting users or invalidating original
graph optimization strategies (§4.1).

• Compliance to SLOs: Disaggregation inevitably introduces
performance overheads, necessitating a joint optimization
approach across various system components to minimize
the impact on service performance. For example, the com-
pute graph must be judiciously partitioned and optimized to
effectively separate the resource usage of different operators
(§4.1). Furthermore, the node placement and resource allo-
cation of instances require careful consideration to ensure
good performance (§4.2).

• Scalability. In contrast to traditional recommendation ser-
vices, GPU disaggregation introduces non-trivial commu-
nication overhead. Our system must ensure service perfor-
mance remains unaffected, even under conditions of mul-
tiple server instances and high traffic loads in production
environments (§4.3).

4.1 Resource-Aware Graph Partitioner

The most critical first step in decoupling CPU and GPU com-
putation is to partition a model’s original computation graph
into two subgraphs, which are executed respectively by the
CN and HN instances.

Retrofit for the existing workflow. In production DLRM
systems, the recommendation framework provides model de-
velopers with a plethora of optional optimization techniques
(e.g., JIT fusion, CUDA Graphs [22]) to enable or disable
based on the model characteristics. These optimizers are typ-
ically applied in a sequential manner, iteratively rewriting
the original computation graph and ultimately generating an
optimized computation graph tailored for deployment. The
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primary objective of our disaggregation approach is to mini-
mize the impact on the service’s inference performance. Thus,
Prism introduces graph partitioning and disaggregation opti-
mization as the final stages in the existing DLRM workflow,
strategically waiting for all user-specified optimization strate-
gies to be completed before meticulously reconstructing the
computation graph for disaggregated serving.

Operator analysis of DLRMs. To gain deeper insights into
the computational characteristics of DLRM services, we con-
ducted a comprehensive profiling of the operators, as illus-
trated in Figure 8. The results unveil two key observations
that serve as the foundation for our resource-aware graph
partitioning algorithm: (1) Embedding lookup operators ex-
hibit a dominant presence, accounting for over 70% of the
CPU computation (Figure 8, left); consequently, we designate
all embedding lookup-related operators as CPU-intensive
operators. (2) Matrix multiplication computations emerge
as the most significant contributor to GPU computation
time. In more advanced models [11] incorporating transform-
ers [57], the computation ratio of attention layers can even
reach a staggering 40% (Figure 8, right); we categorize these
operators as GPU-efficient operators.

Device placement. Leveraging the aforementioned observa-
tions, the RTP framework employs a heuristic approach to par-
tition the GPU subgraph that necessitates computation on the
HN instance: (1) GPU-efficient operators are selected as
the initial seeds for the partitioning process. (2) Commencing
from the seed operators, a Depth-First Search (DFS) color-
ing algorithm is simultaneously executed from both upstream
and downstream directions, aiming to encompass the maxi-
mum number of operators feasible for GPU computation. (3)
The DFS coloring process is terminated upon encountering
CPU-intensive operators, ensuring an optimal balance
between CPU and GPU utilization.

Optimization for disaggregation. To enhance the efficiency
of distributed graph execution, we introduce two complemen-
tary strategies that achieve up to 50% reduction in inter-node
data transfer volume: (1) We preserve and optimize constant
subgraph execution. While constant operations constitute 10–
20% of GPU computational workload (Figure 8, right), their
optimization potential is often compromised when fragmented
across different servers. By consolidating constant operations
onto the HN instance, we maintain the structural integrity of
constant subgraphs. This ensures that constant computations
are executed exactly once and their results are cached for
subsequent operations, eliminating redundant data transfers.
(2) In cases where multiple derivative tensors are generated
from a common source tensor and subsequently transmitted
from the CN instance to the HN instance, we employ a size-
aware transfer strategy. When derivative tensors’ aggregate
size exceeds the ancestor’s magnitude, we optimize communi-
cation patterns by transmitting only the source tensor, thereby
reducing the network bandwidth requirements.
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Figure 9: Statistical analysis of data transfer for top 100 dis-
aggregated DLRM inference services. Left: Total volume of
RDMA data transfers from a CN instance to a HN instance;
Right: Distribution of transferred tensor sizes.

RPC for remote GPU execution. We develop a unified
operator called FusedGraphOp for RPCs. This operator ag-
gregates all tensors that require transmission from the CN
instance and sends the requests to one of the remote HN
instances. Upon completion of the remote GPU computa-
tion, the results are returned, marking the conclusion of the
entire inference process. To minimize memory copies be-
tween the computational framework (e.g., TensorFlow) and
the RPC system, we establish a unified memory pool where
FusedGraphOp flags tensors requiring transmission and relin-
quishes control to the RPC system. By leveraging GPUDirect
RDMA [7], these data are already stored in the RPC system’s
memory buffer upon creation, realizing defacto zero-copy
data transmission [27, 67]. Experimental results demonstrate
that this approach can yield performance improvements of
19–181%. The RPC system adaptively balances load using
real-time processing latency of each HN instance [13].

Production deployment. We deploy Prism to evaluate DL-
RMs in production. In 80% of recommendation services, the
data transfer size via the RDMA network is less than 10 MiB
(Figure 9, left). Note that we focus on unidirectional data
transfer from the CN instance to the HN instance, as the data
sent back is typically negligible (e.g., approximately 100 KiB).
The results presented in §5 demonstrate that, at this scale of
transfer size, disaggregated inference can effectively separate
resource requirements without compromising service perfor-
mance. Interestingly, we observe a bimodal distribution in the
size of transferred tensors. Only 11% of the tensors exceed
0.25 MiB, while a significant 44% of the tensors are smaller
than 1 KiB (Figure 9, right). These findings motivate us to
adopt a size-based approach when transferring tensors. For
small tensors (e.g., ≤ 4 KiB), we directly employ RDMA
send/recv operations, whereas for large tensors, we utilize
RDMA write operations.

Implementation. Our implementation is built upon an opti-
mized internal version of TensorFlow v1.12 [9], comprising
approximately 2k lines of Python code for graph partitioning
and disaggregation optimization, along with 3,500 lines of
C++ code for the FusedGraphOp functionality. Prism rewrites
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Algorithm 1: Topology-aware resource scheduling
Input: Cluster N, DLRM application id app, CN/HN instance role,

resource requirements (cpu_num, gpu_num, mem_size,
disk_size), deployment density d

Output: Selected node node_id, allocated resources (cpu_id,
gpu_id, rnic_id)

1 Initialize node set S←∅
2 Npod ← N.filter(N.cluster_topology,app) B Retain all nodes in

the pod that runs the same app’s existing instances
3 Nasw← get_asw_nodes(Npod ,app) B Get nodes from ASWs

with maximum instances
4 parallel for node n ∈ Nasw do
5 if (Insufficient resources ‖ get_density(n,app)≥ d) then
6 Return B Filter out unavailable nodes

7 // Prefer the shortest CPU/GPU-to-RNIC path
8 if role = HN then
9 (cpu_id,gpu_id,rnic_id, topo_score)←

calc(n.topology,GPU,RNIC,gpu_num)

10 else if role = CN then
11 (cpu_id,∅,rnic_id, topo_score)←

calc(n.topology,CPU,RNIC,cpu_num)

12 S← S∪ (n,cpu_id,gpu_id,rnic_id, topo_score)

13 node_id, cpu_id, gpu_id, rnic_id ← argmaxS topo_score

the user-submitted model graph, where the CN subgraph re-
ceives the original model inputs (e.g., user attributes, candi-
date item lists), and the HN subgraph receives tensors sent via
FusedGraphOp. If a tensor requires transfer via the RPC li-
brary and subsequent operator consumption, Prism replicates
a new operator and delegates control to the RPC library. We
also provide support for the PyTorch framework [49]. The
subsequent experiments (§5) focus on TensorFlow versions
to evaluate overall system performance.

4.2 Topology-Aware Resource Manager
The RTP framework disaggregates the model onto CN and
HN instances, with the resource manager selecting nodes

and allocating resources. To ensure recommendation service
SLOs, the resource manager adheres to topology-aware node
scheduling and resource allocation principles (Algorithm 1).

Inter-node scheduling. The cluster consists of a fleet of
CNs and HNs (Figure 6). These nodes are grouped in a
cluster unit called a pod (point-of-delivery), where nodes
have one or more dual-port high-performance RNICs. Intra-
cluster communication is achieved through a classic two-tier
clos network [50]. Prism follows two principles for schedul-
ing all CN and HN instances of the same DLRM service.
First, all instances are confined within the same pod (Algo-
rithm 1, Line 2), as cross-pod RDMA connections induce
over 50% performance degradation in our evaluation. Sec-
ond, co-locating CN and HN instances within the same ASW
(Access Switch) offers superior performance. Therefore, we
prefer this affinity and endeavor to pack these instances under
the same ASW. If instances are distributed across multiple
ASWs, Prism schedules new instances to the ASW with the
most existing instances (Algorithm 1, Line 3).

Intra-node resource allocation. The hardware topologies
of a typical HN and CN are depicted in Figure 10. The in-
terconnect between GPUs and RNICs has a substantial im-
pact on performance. Figure 11 shows that arbitrary bindings
of GPUs and RNICs can induce 21–36% performance loss.
Therefore, the resource scheduler prefers to assign RNIC and
GPU on the same PCIe switch for each HN instance, miti-
gating data movement. Regarding CPU and RNIC topology,
Prism mainly considers CPU-intensive CN instances. CN
typically has only one RNIC, so the scheduler prioritizes the
allocation of CPUs under the same PCIe switch connected to
the RNIC (Algorithm 1, Line 8–11).

Production deployment. To ensure fault tolerance, on-
line inference services deploy instances across multiple data
centers. Simultaneously, to mitigate the effects of traffic
peaks, the resource scheduler limits the deployment density
of DLRM instances (Algorithm 1, Line 5). This schedul-
ing policy avoids bursty resource consumption on the same
node. During peak seasonal traffic periods, the scheduler in-
corporates additional instance density constraints at the NIC
switch layer. These constraints are derived from the aggregate
bandwidth capacity of distributed switches and predetermined
safety thresholds (e.g., 80%). The scheduler dynamically al-
locates bandwidth quotas for each instance based on these
constraints, thereby preventing network saturation.

Implementation. We develop topology-aware scheduling
capabilities as a scoring plugin integrated within Kuber-
netes [4]. The device plugin deployed on each node and
the central scheduler each implemented approximately 1,000
lines of code in Golang. The device plugins on individual
nodes manage heterogeneous hardware topologies, reporting
available GPUs and virtualized RNICs to the scheduler.
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4.3 SLO-Aware Communication Scheduler

Online recommendations demand stringent performance and
stability guarantees. Empirical evaluations indicate that to
adhere to stringent SLOs, the p50 and p99 latencies for trans-
mitting 4 MiB model parameters must be below 3 ms and 6
ms, respectively. Notably, when a substantial number of CN
instances concurrently transmit data to a limited number of
HN instances, it generates a fan-in traffic pattern, also known
as incast, as depicted in Figure 12. High-volume incast traffic
can degrade overall performance, including long-tail latency
and reduced throughput.

Incast flow control. As presented in Table 1, under various
incast configurations, failing to impose restrictions on incast
flows can result in request failures, which is unacceptable for
a reliable online service. To meet the strict SLOs and mitigate
the performance degradation caused by incast traffic, we pro-
pose an SLO-aware incast control mechanism. Incast control
enhances communication performance by reducing the vol-
ume of incast traffic. As illustrated in Figure 12, incast control
orchestrates the HN and CN instances to throttle incast traffic
in a window-based manner. Initially, the CN instance sends a
communication request before transmitting model data. Next,
the HN instance verifies whether the incast window has the
sufficient capacity to receive the model parameters. If space is
available, the HN instance sends a communication response
to initiate the data transmission. Otherwise, the HN instance
defers processing the communication request in the incast
queue until the incast window has the adequate capacity.

The incast window size and the processing order of delayed
requests are crucial factors in determining the effectiveness
of incast control in meeting SLOs, necessitating meticulous
design. An undersized window leads to unnecessary delayed
requests, while an oversized window renders incast control
ineffective. Moreover, communication requests arrive with
varying SLOs, and requests with more stringent SLOs might
be impeded by other requests, resulting in SLO violations.
We address these challenges through adaptive incast window
and SLO-aware communication request scheduling.

Incast Size Latency % of Failed Requests
10 10 ms ≈ 33%
20 40 ms ≈ 50%
100 10 s ≈ 100%

Table 1: Incast statistics from our clusters. Incast size is the
number of concurrent messages from different CN instances.
Latency refers to the time for a HN instance to process 1,000
requests. The default message size is 8 MiB, typical for our
services. Failed requests include timeouts or packet loss.

Algorithm 2: SLO-Aware Scheduling
Input: Newly-arrived communication request r′ with its completion

requirement SLOr′ and message size Mr′ , available network
bandwidth B, requests in the incast queue R, current time tnow

Output: Scheduled communication requests R′

1 dr′ ← tnow +SLOr′ −Mr′/B /* calculate deadline */
2 foreach r in R do
3 if dr′ > dr and r′ not in R′ then
4 R′.append(r′)

5 R′.append(r)

Adaptive incast window. In Prism, the incast window size
adapts to the congestion level of network links and PCIe
links, as demonstrated in Figure 10. For PCIe link congestion,
the traffic is stored in the RNIC receiver buffer. For network
link congestion, the switch buffer stores the traffic. When the
buffer occupancy of RNIC and switch surpasses a predefined
threshold, the RNIC notifies the senders of congestion via
Congestion Notification Packets (CNPs). Consequently, the
number of CNPs serves as an estimator of the congestion level.
The HN instance periodically collects the count of sent CNPs
and calculate the congestion level by averaging CNP count
by the number of f congestion requests. If the congestion
level exceeds a predefined threshold Thigh, the window sizes is
increased. Conversely, if the congestion level falls below Tlow,
the window size is decreased. In Prism, the values of Thigh and
Tlow are tunable based on the online workloads, preventing
frequent fluctuations in the window size.

Deadline-aware request scheduling. Intuitively, Prism can
process delayed requests held in the incast queue using a first-
come-first-serve (FCFS) approach. Although straightforward
to implement, FCFS is not SLO-friendly, as early-arriving
requests with loose SLOs can obstruct requests that arrive
later but have more stringent SLOs. To overcome this issue,
the incast queue is designed to pop requests in a SLO-aware
manner. Specifically, upon the arrival of a new communica-
tion request, Prism reorders the requests in the incast queue to
maximize the number of requests meeting their SLOs. Based
on this insight, we propose the early-deadline-first schedul-
ing for delayed communication requests. The deadline of a
communication request is defined as the latest time to initiate
parameter transmission to meet the SLO. Prism calculates
the deadline for the arrived request (Algorithm 2, Line 1) by
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subtracting parameter transmission overhead (Mr′/B) from
the sum of the current time and SLO. Then, r′ is inserted after
the requests with smaller deadline (Line 2–5).

Operational experience. Production clusters frequently em-
ploy a mixed deployment of online and offline tasks to im-
prove efficiency. In our scenarios, the disaggregated DLRM
serving introduces frequent RDMA network communication.
We observe that even with exclusive access to the RNIC,
RDMA transfer latency can experience a tenfold increase un-
der intense resource contention. The root cause is that under
the container overlay network [72], both RDMA and TCP
rely on the overlay network scheme for communication. The
TCP traffic from mixed workloads affects the flow table logic
at the bottom layer of the network card, impacting RDMA
traffic. Our current workaround involves monitoring node re-
source utilization and online service latency, triggering the
eviction of offline tasks when the metrics become abnormal.
We consider this as an open question for future research.

Implementation. We extend the native RoCEv2 [24] stack
and implement an efficient middleware to fully leverage
RDMA communication capabilities in a virtualized environ-
ment. The implementation consists of 40k lines of C++ code.
Standard protocols [71] running in RNICs act as a black
box for upper-level system components, which is not suit-
able for rapid testing and deployment. Thus, we implement
an additional software-level control strategy to mitigate the
negative impact of incast congestion. We design specialized
meta-message packets for negotiation between senders and re-
ceivers to restrict the number of busy connections (Figure 12).
This complementary software control mechanism is tuned
with underlying congestion control protocols to ensure stable
performance. To reduce overhead from registering memory
regions for RDMA requests, Prism maintains a pre-allocated
memory pool and several maps from buffer addresses to the
related memory region objects. A memory allocator similar
to slab is adopted to prevent buffer fragmentation.

5 Evaluation

In this section, we conduct extensive experiments to evaluate
the performance impact and resource efficiency improvements
of Prism. Our results demonstrate the following:
• Prism’s disaggregated inference can maintain service per-

formance under high-traffic scenarios (§5.2).
• Prism can effectively separate CPU and GPU computations,

enhancing GPU efficiency in multi-GPU nodes by 5–9×
(§5.3).

• Prism has been deployed in production clusters for over
two years. In a daily GPU cluster with a high allocation rate
(90%), it can reduce CPU fragmentation by 53% and GPU
fragmentation by 27%. Additionally, during seasonal peak
traffic, Prism can efficiently borrow training nodes to meet
the increased demand, saving over 90% of GPUs (§5.4).

Model Emb Size
(Approximate)

RDMA TX
(Per Req) Dense Features

Model-XS 100 GiB 552.96 KiB 338.67 MiB
Model-S 450 GiB 6.84 MiB 57.20 MiB
Model-M 500 GiB 3.87 MiB 21.46 MiB
Model-L 600 GiB 3.69 MiB 20.79 MiB

Model-XL 700 GiB 9.03 MiB 8.73 GiB

Table 2: Models for evaluation.

5.1 Methodology

Production workloads. We use models from our industrial
DLRM system, with test data originating from real-world
user requests. Table 2 outlines the high-level characteristics
of these models, including the size of their embedding tables,
the communication volume per request transferred via RDMA
after disaggregation, and memory space required for storing
dense features. The models analyzed span a range of scales
and use cases, processing billions of daily requests for tasks
such as video click-through rate prediction, ad conversion rate
prediction, and item ranking.

Machine specifications. The hardware topology of the HN
and CN is illustrated in Figure 10. By default, model instances
are deployed on HNs. Each HN contains 128 CPU cores, 8
A100 [5] GPUs with 80 GiB GPU memory each, and 4 RNICs
with a 200 Gbps. After resource disaggregation using Prism,
CN instances are deployed on CNs. Each CN is configured
with 128 CPU cores and a single 200 Gbps RNIC. All nodes
use Intel(R) Xeon(R) Platinum 8369B CPUs, with 1024 GiB
memory, interconnected in a pod.

Baselines. To the best of our knowledge, Prism is the first
GPU-disaggregated inference system for DLRMs. Our ex-
periments feature three primary baselines for comparison: (i)
Baseline refers to our highly optimized production DLRM
inference system without resource disaggregation, as a com-
parison for performance overhead; (ii) Local Disaggregation
splits the original DLRM instance, but the CN instance and
HN instance co-locates on the same HN server; (iii) Prism
(Remote Disaggregation) disaggregates the DLRM inference
service by placing CN instance on the CN server and the HN
instance on the HN server.

Metrics. We seek to evaluate the DLRM system’s processing
capabilities under peak traffic loads. To simulate such condi-
tions, we initialize 30 workers to continuously send requests
at a predefined frequency. Our key indicators are categorized
into two groups:

Performance-level metrics: (i) goodput, defined as the
number of requests that DLRM instances can process; (ii)
average latency; and (iii) p99 latency.

Resource efficiency metrics: (iv) CPU usage: the overall
CPU consumption of the DLRM service and the proportion
of CPU usage on GPU nodes; (v) GPU efficiency: measured
by the number of inference requests that can be processed on
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Figure 13: Latency of sequentially executing requests.

a single GPU node; and (vi) resource fragments: the amount
of unallocated resources that are expected to be fragmented
because they are too small to meet workload requirements or
become stranded from other dimensional resources, quantified
using the methodology proposed in [64].

5.2 Prism Performance: End-to-End Results

Overhead of serving a single request. First, we quantify
the impact of model disaggregation on inference efficiency
in the worst-case scenario. We send only one request at a
time to the DLRM inference system for sequential execution,
which indicates low resource utilization and throughput. Fig-
ure 13 records the average latency of sequentially processing
requests in different models, showing a 10–38% increase. In
this setup, the performance degradation of inference mainly
stems from two aspects: (1) each request processing requires
data transmission across the RDMA network, and (2) when
executing requests sequentially, only one instance of Prism’s
CN instance or HN instance is computing at a time, whereas
the baseline allows asynchronous executions of CPU and
GPU operators on the same node.

Performance under varying traffic loads. Figure 14 shows
the performance of various baselines under differing levels of
requests per second (RPS). While Prism incurs minor over-
head from cross-node communication during low RPS infer-
ence (e.g., p99 latency of Model-L at 200 RPS), it can lower
latency and increase goodput under higher RPS compared
to other baselines (e.g., p99 latency of Model-L at 800 RPS).
Two main factors drive these improvements. First, modern
GPUs’ first-in-first-out scheduling can result in substantial
queue head-of-line blocking [48], where at high RPS, concur-
rent requests interleavingly submit kernels to the GPU will
drastically increase the latency. Prism mitigates this by lever-
aging FusedGraphOp to fuse each request’s GPU operators,
into a single sequential execution rather than interleaving
across requests. Second, Prism decreases PCIe volume by
converting host-to-device data transfers in DLRM compu-
tation to high-bandwidth device-to-device RDMA transfers.
Local disaggregation also shows performance gains due to the
graph optimizations mentioned above, but CPU contention
between the CN instance and HN instance results in inferior

performance compared to Prism. One special case is Model-
XL, which has the largest communication volume (i.e., over
9 MiB) but very short GPU time (< 1 ms, the lowest part
of Figure 15). Even under this condition, Prism only suffers
at most 6% performance loss. Overall, Prism is capable of
maintaining service performance under high traffic scenarios
in real-world deployments.

Latency breakdown. We perform additional breakdown
analysis of elapsed time across stages, divided into CN com-
putation time, data transmission latency via the RDMA net-
work, and HN computation time. We discover that different
DLRM inference services have distinct bottlenecks, which can
be classified as CPU-bounded, balanced, or GPU-bounded.
For example, the increased latency of Model-XS at high RPS
is primarily attributed to the HN instance, indicating that
the computational capacity (i.e., GPU) of the HN instance
becomes the bottleneck. In contrast to the baseline, Prism
decouples the resource usage of DLRM inference, allowing
for arbitrary configuration of the number of CN and HN in-
stances. This flexibility enables Prism to better accommodate
the diverse resource requirements of different DLRM ser-
vices (e.g., independently scale out HN instances to alleviate
the computational bottleneck, in the case of GPU-bounded
services like Model-XS, as shown in Figure 17).

5.3 Prism at Node: Resource Efficiency

Distinct resource separation. Figure 16 compares the CPU
usage across different DLRM services before and after re-
source disaggregation. Prism maintains nearly identical CPU
consumption when processing equivalent amounts of good-
put, in comparison to the baseline. Notably, Prism effectively
separates the computational resources of DLRM, resulting in
a substantial reduction of CPU consumption on GPU nodes
by 15–84×. These findings suggest that Prism possesses the
capability to effectively mitigate GPU fragmentation issues
that arise due to insufficient CPU resources.

Better resource efficiency on multi-GPU nodes. We de-
ploy varying numbers of inference instances on a single HN
to handle DLRM requests, limiting the service latency to 25
ms, and then compare the total goodput. Figure 17 demon-
strates that Prism can deploy more DLRM instances on a
single multi-GPU node, increasing inference throughput by
5–9×. Without disaggregation, the baseline can deploy a max-
imum of two Model-XS inference instances on the HN, fully
saturating the CPUs while leaving 6 GPUs completely idle
and stranded. For Model-XL, due to the memory limitations
imposed by its massive embedding tables (i.e., 700 GiB), the
baseline can deploy at most one instance. Prism supports
flexible configuration of the ratio between CN and HN in-
stances. For CPU-bounded Model-XL, only increasing the
number of CN instances from 1 to 4 can yield a 36% improve-
ment. For GPU-bounded Model-XS, if the MIG [8] feature
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Figure 14: The end-to-end performance under varying traffic loads.

of A100 (i.e., fine-grained GPU allocation) is enabled, up to
24 HN instances can be deployed, boosting throughput to
9× compared to the baseline. This demonstrates that Prism’s
resource disaggregation allows for more efficient utilization
of multi-GPU nodes customized for training workloads.

5.4 Prism at Scale: Production Deployment
Prism has been deployed in our production cluster for over
two years, scaling to more than 10k GPUs to date. The sys-
tem addresses two challenges: (1) resource allocation in GPU
clusters with high allocation rates and (2) resource provision-
ing during seasonal traffic spikes. By leveraging a design
that avoids costly infrastructure upgrades, Prism has enabled
serving scale to grow continuously throughout this period.

Reduced resource fragmentation in GPU clusters. As dis-
cussed in [64], cluster resource fragmentation must consider
the distribution of workloads. For tasks with different resource
requirements, the cluster resource fragmentation from their
perspective varies. Figure 18 compares the changes in re-
source requirements of DLRM instances before and after our
deployment of Prism. Prism reduces the stringent resource
requirements of the DLRM inference service. For HN in-
stances that require GPU allocation, their CPU requests are
less than 12 cores, and memory requests are below 24 GiB.

In contrast, CN instances, which are CPU-intensive and need
to load embedding tables, have CPU requests exceeding 48
cores and memory requests greater than 240 GiB. We sim-
ulate the deployment of DLRM instances before and after
resource disaggregation to cluster H with a high allocation
ratio. Figure 19 compares the changes in fragmented cluster
resources. As Prism separates the resource requirements of
DLRM instances, CN instances can run on nodes where GPUs
are exhausted but CPUs remain, while HN instances can run
on nodes with insufficient CPUs but available GPUs. Statisti-
cal analysis reveals that this approach significantly reduces
the cluster’s CPU fragments by 53% (18k cores) and GPU
fragments by 27% (60 GPUs). These findings suggest that
even in clusters with high allocation rates, the disaggregated
DLRM service can efficiently utilize fragmented resources to
meet deployment requirements.

Efficient resource loans for peak demand. During e-
commerce promotional periods, we leverage Prism to borrow
a portion of training nodes (equipped with A100 GPUs) to
scale out DLRM inference services, meeting the short-term
yet high-throughput traffic peaks. Table 3 outlines the re-
source requirements of three online services, with each HN
instance requiring only one MIG GPU and minimal CPU
resources (≤ 4), while the remaining CN instances handle
the vast majority of CPU computations. These instances are
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distributed across different nodes to ensure high availability.
Figure 20 illustrates the QPS and latency of the three ser-
vices during seasonal promotions, with the peak occurring at
the 20th hour. Latency for the online service was not detri-
mentally impacted—overall latency remained within 25 ms
and no request exceeded 35 ms, demonstrating the ability in
handling production-level traffic loads. A rough estimation
reveals that only 6 A100 nodes are required to satisfy GPU
requirements of these services, whereas previously, an A100
node could deploy at most 2 inference instances, requiring
up to 70 A100 nodes to meet the same demand. By decou-
pling resource requirements, Prism enables DLRM services
to more efficiently borrow multi-GPU training nodes during
promotional periods, saving over 90% of GPUs.

6 Discussion and Related Work

DLRM systems. Existing DLRM systems primarily focus
on scaling embedding table capacity for enhanced model accu-
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Figure 18: Comparison of resource requirements. Baseline,
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DLRM instances, the disaggregated CN instances, and the
disaggregated HN instances respectively. Both the baseline
and Prism (HN) instances are allocated one GPU.

racy [34,36,46], optimizing embedding lookup operations for
accelerated inference [55,59,63,65,66], maximizing resource
efficiency during training [60, 61], developing embedding ta-
ble pruning techniques [37], and expediting model parameter
updates [54]. Only a few works study DLRM provisioning
at the datacenter scale. Hercules [33], developed for mono-
lithic servers, efficiently searches the task scheduling space
and dynamically provisions the best-matching heterogeneous
resources in the presence of diurnally changing load. To our
knowledge, DisaggRec [34] is the only work that advocates
resource disaggregation for large-scale DLRM serving. Un-
like Prism, DisaggRec is a memory-disaggregated system that
decouples the deployment of compute and memory, with the
aim of addressing the growing memory demands of large-
scale DLRMs. DisaggRec is only a prototype evaluated in an
emulated memory-disaggregated infrastructure.

Colocation of training and inference workloads. Modern
cluster management systems aspire to create a unified infras-
tructure that seamlessly integrate training and inference work-
loads, optimizing resource multiplexing while minimizing
fragmentation. Specifically, Lyra [39] advances this paradigm
by leveraging elastic training mechanisms to repurpose low-
load inference servers. In this work, Prism reveals fundamen-
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Figure 19: The change in resource fragments of a large-scale
GPU cluster H before and after resource disaggregation. The
original node residual resources are depicted in Figure 3.

Service Role # of Instances CPU GPU

Product-A CN 25 48 -
HN 45 4 MIG 2g.20gb

Product-B CN 15 48 -
HN 40 4 MIG 2g.20gb

Product-C CN 15 48 -
HN 55 2 MIG 2g.20gb

Table 3: The resource specifications for three online recom-
mendation services. Each GPU mentioned here corresponds
to one GPU instance on A100 [5], which includes two GPU
compute slices and 20 GiB of GPU memory.

tal inefficiencies in repurposing training clusters for DLRM in-
ference workloads, eliminating resource mismatches through
resource disaggregation.

Resource disaggregation. Resource disaggregation holds
tremendous promise in datacenters, with many prototype im-
plementations demonstrating benefits of independent scal-
ing of compute and memory resources, improved reliabil-
ity, and cost-efficient hardware deployment. Existing works
span multiple domains, encompassing API and framework
innovations [15, 51, 70], operating system and network ar-
chitectures [18, 53], and hardware design [25, 29, 38]. Prism
specifically targets DLRMs, which are characterized by their
substantial memory footprints and intensive CPU usage. By
disaggregating CPU and GPU provisioning, Prism optimizes
resource utilization in heterogeneous GPU clusters. This ap-
proach can potentially generalize to other models exhibit-
ing distinct resource usage patterns, including graph neural
networks [52] and large language models with retrieval aug-
mented generation [20].

Model parallelism. The idea of model parallelism has been
long introduced [35], yet the partitioning of computation
graphs across available devices continues to evolve for dif-
ferent model architectures [17, 31, 44, 45, 56]. Prism focuses
on DLRMs, which are distinct in their large embedding ta-
bles [36, 37]. Moreover, we aim to optimize the inference
rather than the training, thus more concerned with the per-
request latency rather than long-term throughput.
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Figure 20: The statistics of three production services (Table 3)
during a tremendous traffic promotional period.

Communication optimization with RDMA. RDMA tech-
nology has revolutionized datacenter applications across do-
mains, including remote storage systems [10, 19, 43, 62], dis-
tributed training frameworks [6,7,14], and cluster monitoring
solutions [41]. Specifically, previous work [24, 40, 71] at-
tempts to implement high performance and stable RDMA
communications from the protocol level. Prism adopts
software-level flow control and scheduling strategies, which
are more customizable for online services. Prism is comple-
mentary to the above RDMA-optimizing techniques.

7 Conclusion

In this work, we propose Prism, the first GPU-disaggregated
DLRM serving system to efficiently provision resources at
scale. Prism divides DLRMs into CPU- and GPU- intensive
subgraph and offloads them to CPU and GPU servers. Prism
employs various techniques to minimize the latency over-
head, including optimal graph partitioning, topology-aware
resource scheduling, and RDMA network optimization. Ex-
perimental results demonstrate that Prism effectively sepa-
rates CPU and GPU computations while maintaining service
performance. Prism effectively reduces CPU fragmentation
by 53% and GPU fragmentation by 27% in a GPU cluster with
a high allocation rate. During seasonal promotional events
in e-commerce platforms, Prism can efficiently borrow GPU
servers from training clusters to meet peak traffic demands,
resulting in up to 90% of GPU savings.
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