
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Vegeta: Enabling Parallel Smart Contract Execution
in Leaderless Blockchains

Tianjing Xu and Yongqi Zhong, Shanghai Jiao Tong University; Yiming Zhang,
Shanghai Jiao Tong University and Shanghai Key Laboratory of Trusted Data Circulation,

Governance and Web3; Ruofan Xiong, Xiamen University; Jingjing Zhang, Fudan
University; Guangtao Xue and Shengyun Liu, Shanghai Jiao Tong University and

Shanghai Key Laboratory of Trusted Data Circulation, Governance and Web3

https://www.usenix.org/conference/nsdi25/presentation/xu-tianjing

Vegeta: Enabling Parallel Smart Contract Execution in Leaderless Blockchains

Tianjing Xu1*, Yongqi Zhong1*, Yiming Zhang1,2*, Ruofan Xiong3, Jingjing Zhang4, Guangtao Xue1,2,
Shengyun Liu1,2#

1Shanghai Jiao Tong University 2Shanghai Key Laboratory of Trusted Data Circulation, Governance and
Web3 3Xiamen University 4Fudan University

Abstract

Consensus and smart contract execution play complemen-
tary roles in blockchain systems. Leaderless consensus, as
a promising direction in the blockchain context, can better
utilize the resources of each node and/or avoid incurring the
extra burden of timing assumptions. As modern Byzantine-
Fault Tolerant (BFT) consensus protocols can order several
hundred thousand transactions per second, contract execution
is becoming the performance bottleneck. Adding concurrency
to contract execution is a natural way to boost its performance,
but none of the existing frameworks is a perfect fit for leader-
less consensus.

We propose speculate-order-replay, a generic framework
tailored to leaderless consensus protocols. Our framework
allows each proposer to (pre-)process transactions prior to
consensus, better utilizing its computing resources. We in-
stantiate the framework with a concrete concurrency control
protocol Vegeta. Vegeta speculatively executes a series of
transactions and analyzes their dependencies before consen-
sus, and later deterministically replays the schedule. We ran
experiments under the real-world Ethereum workload on 16-
vCPU virtual machines. Our evaluation results show that Veg-
eta achieved up to 7.8× speedup compared to serial execution.
When deployed on top of a leaderless consensus protocol with
10 nodes, Vegeta still achieved 6.9× speedup.

1 Introduction

Blockchain or state machine replication (SMR) is a promising
solution for providing trustworthy services among a group of
untrusted entities or nodes. To mask failures, blockchain sys-
tems rely on a consensus protocol [32, 50, 51, 58] to reach an
agreement on the sequence of blocks (and transactions). Each
node is abstracted as a state machine [65], which sequentially
executes the ordered transactions based on the same initial

*Equally contributed authors.
#Corresponding author: shengyun.liu@sjtu.edu.cn

world state. Towards wide-scale adoption, boosting perfor-
mance of blockchain systems is becoming a hot topic in both
academia and industry [36, 59, 68, 77].

As Nakamoto-style consensus (such as Bitcoin [58] and
Ethereum 1.0) has limited performance, modern permission-
less and permissioned blockchains [17, 24, 37] are adopting
Byzantine-Fault Tolerant (BFT) consensus protocols [22, 25,
29,49,57,78] as their consensus layer. Most classical BFT pro-
tocols are leader-based [22, 25, 39, 78], meaning that a single
leader is in charge of disseminating proposals and coordinat-
ing consensus. To select a single and stable leader, however,
they rely on additional timing assumptions which may not
be realistic in large-scale Wide Area Networks (WANs). Be-
sides, such a single node may easily become the performance
bottleneck [47, 68, 76].

Recently, many leaderless protocols are proposed targeting
deployment in blockchain systems. Leaderless variants either
have no timing assumption to elect any special role [17, 29,
41, 55, 57, 60], or assign the leader role to every node [28, 68].
Each node is required to act as a proposer and make a block
proposal, and the final decision is a (sub)set of all proposals.
Leaderless protocols are becoming an appealing solution to
blockchain systems. For instance, Sui [7,38], HashGraph [17]
and Conflux [52] use a DAG-based protocol as their consensus
layer, while AntChain leverages an asynchronous consensus
for adaptive advancement [55].

BFT consensus protocols nowadays can process hundreds
of thousands of transactions per second (TPS) [29], or even
beyond one million [19] when deployed within a LAN. In
contrast, the serial transaction execution engine of Ethereum
platform only achieves around 100 TPS throughput [44],
throttling the whole system. A natural way to improve ef-
ficiency of smart contract execution is to leverage modern
multi-core architecture and add concurrency to transaction
processing [26, 30, 36, 53].

When designing a concurrency control protocol in
blockchain contexts, we argue that the consensus layer should
also be taken into consideration as they play complementary
roles. Currently, there are two trends in designing such pro-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 795

tocols [66]: the order-execute framework [15, 36, 48], where
transactions are (concurrently) executed after consensus in
a deterministic way and produce the same results; and the
execute-order-validate framework [14, 42, 46], where trans-
actions are first speculatively executed by proposer(s) before
consensus, and (re-)executed and/or validated by other nodes
after consensus. In the order-execute framework, transaction
execution is totally decoupled from consensus and thus can
be readily plugged into any consensus protocol (leader-based
or leaderless). The execute-order-validate framework allows
proposer(s) to orchestrate transaction execution before con-
sensus, such that other nodes can follow the order produced
by proposer(s) and execute them in an efficient manner.

Despite being a more promising direction towards
blockchain deployments, leaderless consensus introduces new
challenges for efficient transaction processing, and neither of
the aforementioned frameworks is a perfect fit. On the one
hand, the order-execute framework cannot fully inherit the
scalability feature from leaderless consensus, as each node
must execute every block after consensus. Besides, they must
schedule transactions in a deterministic way in order to pro-
duce the same execution results, limiting speedups when in-
consistency resolution is frequently involved. On the other
hand, the execute-order-validate framework either targets
leader-based consensus [15, 42, 44, 46], or aborts transactions
if new conflicts are introduced after consensus [14]. In the
second case, aborted transactions must go through the whole
procedure (i.e., execute, order and validate) again. Besides,
neither takes leaderless consensus into special consideration.

We observe that the transaction execution layer of any
blockchain system or SMR protocol can be divided into two
parts: the pre-consensus part that allows every node to indi-
vidually process distinct transactions, and the post-consensus
part that requires every node to perform the same set of tasks
(e.g., transaction execution and validation). To better adapt to
leaderless consensus and improve scalability, in general we
should place more work in the former if this can effectively
reduce the burden of the latter.

Notably, the idea of allowing nodes to (pre-)process trans-
actions prior to replication has been extensively explored
in deterministic databases [40, 45, 69, 73, 79]. For instance,
for transactions which cannot determine read/write sets a
priori (also named dependent transactions), reconnaissance
queries [72] is typically performed before replication. This
pattern is a natural fit for transferring the scalability feature
of leaderless consensus to the smart contract layer and thus
deserves further study.

We accordingly propose a speculate-order-replay frame-
work for efficient smart contract execution in leaderless
blockchains. Before disseminating block proposals, each node
first speculatively executes a series of transactions and/or
performs any task that may help accelerate post-consensus
tasks. Once blocks are totally ordered, each node enters the
replay phase, during which it tries to (efficiently) execute

transactions with the help of the information provided by
speculation. Because in leaderless consensus there exist other
concurrent proposals, such information may not be accurate
with regard to the actual execution context. In case some
transactions/operations introduce new conflicts in the replay
phase, they must be processed in a deterministic way.

We instantiate this framework by a concrete concurrency
control protocol (Vegeta). Vegeta realizes transaction-level
parallelism, meaning that each transaction is treated as an in-
divisible unit. In the speculation phase, Vegeta executes trans-
actions in a fully parallel manner, and obtains their read/write
sets in order to construct a DAG that encapsulates the depen-
dency information. In the replay phase, each node tries to
“replay” the schedule provided by speculation. If a transaction
tx produces the same read/write sets, its execution is finalized.
Otherwise, if tx introduces new dependencies by accessing
new keys, tx is re-executed after other transactions complete.
The rationale of Vegeta is simple: although proposers are less
likely to obtain correct execution results based on an inaccu-
rate world state, the dependency information provided is most
likely accurate.

We have implemented Vegeta in Golang and evaluated it
with the Ethereum workload, meaning all the transactions and
blocks are real and taken from the most representative smart
contract platform. We ran experiments on Amazon EC2 plat-
form, both on a single virtual machine and among a group of
at most 10 machines in order to evaluate Vegeta with a lead-
erless consensus protocol. The evaluation results demonstrate
that Vegeta on a single machine achieved an average speedup
of 7.8× compared to serial execution. We also evaluated the
performance of AriaFB [56], a deterministic optimistic Con-
currency control protocol. Vegeta outperformed AriaFB by
up to 2.1×. We postpone the proof of Vegeta to Appendix A
due to space limit.

2 Background and Related Work

2.1 System Model
We focus on the blockchain or state machine replication
(SMR) problem [65], a solution to which is a highly reliable
and available distributed system. Each node is abstracted as a
state machine and sequentially executes a series of requests or
transactions issued by clients. We target authenticated Byzan-
tine failure model [51], meaning that the faulty nodes may
exhibit any malicious behavior except for breaking crypto-
graphic schemes. We assume at most f nodes can be faulty
and there are a total of n = 3 f +1 nodes, the lower bound for
BFT SMR protocols under asynchrony assumption [32].
Transaction semantics. Each transaction contains several
operations and may read and/or write a set of keys or ob-
jects, which are collectively maintained as a world state in
blockchains [5]. The world state can be simply considered
a key-value store. Blockchain systems provide serializabil-

796 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Uniswap

User (addr):
swap APEFI for USDC

exchange WETH for USDC

1

2

4

Check APEFI
balance

WETH USDCWETHAPEFI

exchange APEFI for WETH

3

Figure 1: Example for Ethereum smart contract invocation.

ity [21] semantics, in the sense that any execution result is
equivalent to the outcome of sequentially executing all trans-
actions in some (pre-defined) order. To enable parallel pro-
cessing, we further distinguish between conflicting and non-
conflicting transactions. We say two transactions tx1 and tx2
are conflicting if they access the same key x and at least one
of them writes x. Otherwise, tx1 and tx2 are non-conflicting.

2.2 Smart Contracts

Smart contracts [71] implement application logic and can
be simply considered a piece of code deployed on top of
blockchains. Each transaction invokes the code of a contract,
which may recursively invoke another contract.

In Figure 1 we give an example for Ethereum smart con-
tract invocation. This example [2] is stripped off from the
Ethereum mainnet. A user wanted to trade some Ape Finance
tokens (APEFI) [1] for USDC [9], a stablecoin pegged to
US dollar. Uniswap [8] is a Decentralized Exchange (DEX)
contract for facilitating token swap. The user first invoked the
Uniswap contract (step 1), which then checked the balance
of the user by invoking the APEFI contract (step 2). At that
particular moment, there was not a liquidity pool available for
exchanging APEFI and USDC. Hence, the Uniswap contract
leveraged Wrapped ETH (WETH) [10] as an intermediary
token for achieving the desired trade (step 3). Finally, the
Uniswap contract exchanged WETH for USDC (step 4). By
this example we can observe, when a user initiates a trans-
action, the user is not aware of the (full) list of addresses
(or keys) that the transaction will access. To accurately ob-
tain such information, an Ethereum node must execute this
transaction based on the most recent world state.

2.3 Leader-Based vs. Leaderless Consensus

Existing SMR protocols can be roughly classified into two
categories according to the ways they order proposals: leader-
based and leaderless. Leader-based protocols rely on a special
role (named leader) to coordinate consensus, i.e., disseminat-
ing proposals to and/or collecting votes from other nodes.

We take PBFT [25] and HotStuff [78], two representative
leader-based BFT protocols for example. PBFT assigns the
leader role to a single node until this node is faulty or parti-
tioned, upon which a view change sub-protocol is triggered

co
ns

en
su

s

co
ns

en
su

sleader

leader

𝐵௛ାଵ𝐵௛ …

𝑡𝑥ଵ:
R(𝑥)=0, W(𝑥,1)

𝑡𝑥ଶ:
R(𝑥)=1, W(𝑥,2)

…

(a) Leader-based

co
ns
en
su
s

co
ns
en
su
s

𝐵௛ାଵ,௡𝐵௛,௡

…
𝐵௛,ଵ… 𝐵௛ାଵ,ଵ…𝑡𝑥ଵ

𝑡𝑥ଶ

(b) Leaderless

Figure 2: Comparison between leader-based and leaderless
consensus protocols.

to elect a new leader. HotStuff proactively rotates the leader
role, ensuring that every node has the opportunity to propose.
Upon making a new block proposal Bh+1 (see Figure 2a),
the leader is aware of the most recent proposal Bh that pre-
cedes Bh+1. Transitively, the leader knows all the previous
proposals. Thus, the leader can pre-execute tx2 based on the
execution result of tx1, which is included in Bh. In summary,
leader-based protocols have the following feature:
Definition 1. (Perfect Context) we say a consensus protocol
has perfect contexts, if when any node makes a proposal B ,
the node is aware of an ordered list of all proposals that are
(or will be) committed before B .

Both PBFT and HotStuff and several permissionless
blockchains such as Bitcoin [58] and Ethereum [5] have per-
fect contexts. With this feature, the proposer (e.g., the single
leader) can (pre-)execute all transactions before consensus,
give a total or partial order among them and insert (the digest
of) execution results as well as transaction dependencies into
the proposal. Other nodes, upon receiving the proposal, can
(re-)execute the transactions in the same pre-defined order
and obtain the same results.

Leaderless protocols, in contrast, have no fixed leader role
but allow every node to act as a proposer. One type of leader-
less protocols [16,28,68] pre-partitions sequence space and as-
signs them to every node, while another type [29,31,38,41,57]
is designed under asynchrony assumption. The final output
of leaderless protocols is a combination of all committed pro-
posals. By allowing each node to act as a proposer, leaderless
protocols can distribute workloads and better utilize resources
(e.g., CPU and network capacity). Since leaderless protocols
allow concurrent proposals made by multiple proposers, they
have no perfect context. For instance, in Figure 2b, concur-
rent proposals Bh,1, ...,Bh,n are proposed by distinct nodes,
and hence are totally ordered only after consensus. Their
proposers have no perfect knowledge of other concurrent pro-
posals and thus cannot get correct results.

2.4 Parallel Execution
To integrate parallel execution into blockchains or SMR pro-
tocols, existing approaches can also be categorized into two
types: the order-execute and execute-order-validate frame-
works, as shown in Figure 3.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 797

execute

order

１ ２

…

௢௘

(a) order-execute

execute

order

validate

…

１ ２
௘௫௘

௩௔௟

௘௫௘

(b) execute-order-validate

Figure 3: Existing frameworks for parallel execution.

Order-execute. The order-execute framework [15, 36, 48]
(Figure 3a) orchestrates a (parallel) execution phase that
emerges after consensus. Each node individually tries to paral-
lelize transaction execution in a deterministic way. Typically,
the results of parallel execution must be equivalent to the
ones obtained by sequentially executing those transactions in
the order given by consensus. The order-execute framework
“blindly” imposes constraints on the order of transactions and
may incur additional costs for, e.g., sequentially executing
non-conflicting transactions and/or re-executing conflicting
ones. The execution component in order-execute is decoupled
from consensus, and thus can be integrated into any consen-
sus protocol (leader-based or leaderless). Saber [54] improves
transaction execution by allowing different groups to execute
different transactions. The idea of Saber is akin to inter-node
parallelism and largely orthogonal to our contribution.
Execute-order-validate. The execute-order-validate frame-
work [14, 18, 42, 46, 67] (Figure 3b), in contrast, enables pro-
poser(s) to (pre-)execute transactions before consensus. There
are two trends in instantiating this framework: they either tar-
get a leader-based consensus protocol [18, 42, 67] or resolve
conflicts in a trivial way [14,46]. In the former case, the single
leader orchestrates transaction execution and re-orders them
if necessary, while other nodes follow the schedule and ac-
cordingly execute transactions in the same pre-defined order.
In the latter case, existing protocols tend to trust the execu-
tion results obtained prior to consensus, but resort to a heavy
fallback mechanism to resolve newly-introduced conflicts.
For example, Eve [46] assumes the read/write sets of each
transaction can be obtained a priori, otherwise it must rely
on a leader-based protocol (i.e., PBFT) to resolve conflicts.
Hyperledger Fabric [14] requires every peer to speculatively
execute transactions and later reach consensus also on execu-
tion results, so as to deal with non-deterministic operations.
If new conflicts are introduced after consensus, conflicting
transactions must go through the whole procedure again.
Deterministic database systems. Concurrency control has
long been a hot topic in database systems [13, 21, 64]. There
are numerous works targeting deterministic scheduling and
execution [12, 33, 34, 43, 72–74]. To enable parallel exe-
cution while still producing identical results, deterministic
databases usually require the reach/write sets of each trans-
action can be obtained a priori. Otherwise, reconnaissance
queries [33, 61, 62, 72, 73] or speculative execution should

be performed before transaction scheduling. Such a tech-
nique [72] decomposes a dependent transaction with un-
known read/write sets into a combination of some read-only
transactions and a conditional-write transaction. The read-
only transactions discover the read/write sets (say, before
replication),while the conditional-write transaction commits
(after replication) if the read values match. Calvin [73] adopts
a lock-level concurrency control protocol and orchestrates
lock acquisition based on a pre-defined total order. Calvin
does not readily support dependent transactions, but can lever-
age the mechanism discussed above (also named Optimistic
Lock Location Prediction, OLLP) to obtain read/write sets.
Caracal [62] and Epic [61] utilize multi-version concurrency
control (MVCC) to reduce conflicts and can also run a simi-
lar identification phase to determine read/write sets. Recon-
naissance query is analogous to the speculation in Vegeta,
but Vegeta and our framework specifically target leaderless
blockchains (under Byzantine faults) and are more focused
on co-design between pre- and post-consensus tasks. Besides,
Vegeta does not consider the speculation output as potential
results, but only relies on it for dependency analysis.

Aria [56] does not require read/write sets to be known be-
fore execution but first executes transactions batch by batch
in a fully parallel manner. If any transaction tx introduces
conflicts with an earlier transaction in the same batch, tx is
aborted and re-tried with the next batch. When a workload re-
sults in a very high abort rate, Aria further resorts to a fallback
mechanism (e.g., Calvin [73]) to deterministically resolve the
conflicts, instead of repeatedly trying aborted transactions.
In a sense, Vegeta uses a similar batching mechanism in
the replay phase, but further leverages the speculation phase
to wisely group transactions into batches. Morty [23] is a
recently-proposed concurrency control method that leverages
transaction re-execution to improve throughput. Our method
instead introduces re-execution to ensure consistency among
different nodes. Basil [70] is a newly-proposed BFT transac-
tional storage system, which demonstrates that the leaderless
feature can effectively improve performance.

3 The Speculate-Order-Replay Framework

We observe that the successful story of leaderless consensus
protocols stems from the equality of all nodes in disseminat-
ing proposals and processing transactions [75], thus effec-
tively balancing workloads. We intend to further achieve such
a feature in the contract execution layer. To this end, we study
a generic framework called speculate-order-replay (SOR, as
shown in Figure 4). Similar to utilizing resources of all nodes
in a leaderless consensus protocol, the speculate-order-replay
framework allows each node to process and speculatively
execute distinct transactions before consensus. We call this
step speculation. Although proposers do not have a perfect
execution context, they may still obtain crucial information
about transaction conflicts, read/write sets and program traces,

798 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

① speculate

② order

③ replay (re-execute)

node 0 1

node 1
node 2

node 3

2

3

1 2 3

1 2 3

1 2 3

1 2 3

𝑇௦௣௘௖ 𝑇௥௣௟

Figure 4: The speculate-order-replay framework.

which can greatly help maximize parallelism.
Once the speculation phase completes, each proposer takes

the transactions and other information as input and enters
the ordering phase. The ordering phase is run solely by a
consensus protocol, and thus we omit its detail in this paper.
Once the sequence of committed proposals is agreed upon
by consensus, each node enters the replay phase. In general,
conflicting operations must be executed in the same (serial)
order, while non-conflicting operations can be processed in
parallel. If the information provided by speculation is almost
accurate, nodes in the replay phase may execute transactions
with a maximum degree of parallelism, while at the same
time paying no/few extra costs for handling (unnecessary)
aborts. However, if some transactions impose new conflicts,
they must be carefully treated. We postpone the detail to §4
as it is related to specific parallelism schemes.
Analysis of speedups. We give a simple analysis for demon-
strating why the SOR framework may scale better with regard
to the speedup achieved. The results are also shown in Ta-
ble 1. We assume on average, sequentially executing a block
of transactions takes Tseq seconds, which is the baseline for
further comparison. Executing m blocks takes mtseq seconds.
Similarly, the order-execute framework (Figure 3a) takes mToe
seconds to execute m blocks if each block on average costs Toe
seconds. Compared to serial execution, the speedup achieved
by the order-execute framework is Tseq

Toe
.

As for the execute-order-validate framework (Figure 3b),
each block first goes through an execution phase, which takes
Texe seconds. After consensus, each node validates the execu-
tion results by (re-)executing them, which takes Tval seconds.
Thus, each block incurs Texe+Tval seconds for execution. Due
to pipelining techniques, the execution phase of Bh+1 can be
overlapped with the validation phase of Bh. By doing so, the
speedup approaches Tseq

Texe
if m is large and Texe ≥ Tval . The

latter assumption holds because the leader usually takes more
time to orchestrate transaction execution [15].

Finally, we assume in SOR, the speculation phase takes
Tspec seconds, while the replay phase takes Trpl seconds
(Figure 4). We further assume transactions are equally dis-
tributed to each node, which is an ideal assumption for SOR
and in practice can be implemented by, e.g., applying load-
balancing [68]. For each block, the speculation phase is only
executed by one node, and different blocks can be specu-
latively executed in parallel. Thus, each block still takes

Table 1: Analysis of speedups of different frameworks. Toe ≈
Tseq

#cores ≈ Texe ≈ Tval if very few conflicts between transac-
tions exist (which is not the case for Ethereum workloads). In
contrast, Trpl ≈

Tseq
#cores if the information provided by the spec-

ulation phase is almost accurate and the degree of parallelism
is approximately equal to the number of cores (though with
many conflicts).

latency speedup

sequential Tseq -

order-execute Toe (Figure 3a) Tseq
Toe

execute-order-validate Texe+Tval (Figure 3b) Tseq
Texe

speculate-order-replay Tspec+Trpl (Figure 4) Tseq
Tspec/n+Trpl

Tspec +Trpl seconds, but the speedup, which takes m blocks
into consideration, is mTseq

mTspec/n+mTrpl
=

Tseq
Tspec/n+Trpl

.

We can observe that the bottleneck of speculate-order-
replay mainly locates at the replay phase, which must be
performed by every node. Intuitively, we may (moderately)
put additional efforts into speculation if Trpl can decrease.
In contrast to order-execute, nodes in our framework can
freely choose in what order transactions are executed, thus
maximizing parallelism and alleviating re-execution burden.
Compared to execute-order-validate, our solution is tailored
to leaderless protocols and may better scale as nodes can
speculate in parallel.

The SOR framework can be instantiated on different layers,
e.g., transaction-level parallelism (Vegeta), lock-level paral-
lelism or instruction-level parallelism. One may even inte-
grate other techniques (e.g., zero-knowledge rollups [11] or
I/O prefetching [27]) into SOR, so long as they help alleviate
the burden of replay and the extra costs of speculation are
acceptable.

4 Vegeta

We then elaborate on Vegeta, which follows the speculate-
order-replay framework and implements transaction-level par-
allelism. Vegeta does not need to maintain a multi-version
key-value store, nor does it need to roll back any transaction.

4.1 Speculation

The main purpose for the speculation phase is to give a spe-
cific (partial) order among transactions within a block, such
that by following this order each node (in the replay phase)
can efficiently execute them. A primary advantage of pro-
cessing transactions prior to consensus lies in the absence of
(unnecessary) ordering constraints between transactions. In

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 799

Algorithm 1: Speculation phase
Variables: BLOCK: a block containing a list of transactions

DAG: a two-dimensional array storing dependencies
access: a map from key to tx_chain

1 procedure Speculate():
2 txs← BLOCK.transactions
3 ParallelExecute(txs)
4 tx_chains← SortDependencyChains(txs)
5 txs← /0

6 for chain ∈ tx_chains do
7 for tx ∈ chain do

/* Adjust the order of txs */
8 if tx /∈ txs then
9 append(txs, tx)

10 BLOCK.transactions← txs
11 DAG← BuildDAG(txs)
12 call Consensus(⟨BLOCK,DAG⟩)
13 function ParallelExecute(txs):
14 for tx ∈ txs do

/* Run in parallel mode */
15 (tx.RS, tx.WS)← execute(tx)

16 function SortDependencyChains(txs):
17 for tx ∈ txs do
18 for ∀ key ∈ tx.RS∪ tx.WS do
19 append(access[key], tx)

20 for chain ∈ access do
21 append(tx_chains, chain)

22 Sort tx_chains from the longest to the shortest
23 return tx_chains

24 function BuildDAG(txs):
25 for tx ∈ txs do
26 for ∀ tx′ : tx′.idx < tx.idx do
27 if tx′.WS ∩ tx.WS ̸= /0 then
28 DAG [tx][tx′] ← WAW
29 continue

30 if tx′.RS ∩ tx.WS ̸= /0 then
31 DAG [tx][tx′] ← WAR

32 if tx′.WS ∩ tx.RS ̸= /0 then
33 if DAG [tx][tx′] == WAR then
34 DAG [tx][tx′] ← WAW
35 else
36 DAG [tx][tx′] ← RAW

37 return DAG

other words, each proposer can orchestrate an order at will,
maximizing parallelism as much as possible.

On the contrary, any pair of conflicting transactions need
to be processed sequentially (if they access the same key and
one of them writes the key). Those conflicting transactions
form a so-called dependency chain, which is the main enemy
of high degree of parallel processing. The long dependency

𝑡𝑥1: W(a), W(b)

𝑡𝑥2: W(d)

𝑡𝑥3: W(a)

𝑡𝑥4: W(c)

𝑡𝑥5: R(a), W(b), R(c)

𝑡𝑥6: W(c)

𝑡𝑥1 𝑡𝑥2 𝑡𝑥3 𝑡𝑥4 𝑡𝑥5 𝑡𝑥6

𝑡𝑥1 𝑡𝑥3 𝑡𝑥5 𝑡𝑥4 𝑡𝑥6 𝑡𝑥2

a 𝑡𝑥1 𝑡𝑥3 𝑡𝑥5

c 𝑡𝑥4 𝑡𝑥5 𝑡𝑥6

b 𝑡𝑥1 𝑡𝑥5

d 𝑡𝑥2

keys

ordered
dependency

chains

Original order:

Adjusted order:

Figure 5: Example for the speculation phase. After obtaining
the read/write sets, transactions are (re-)ordered according to
the lengths of dependency chains. The corresponding DAG is
depicted in Figure 6.

chain problem also appears in the Ethereum workload and was
discussed in [35]. The heuristic here is we should give trans-
actions within a longer dependency chain a higher priority,
and thus in the replay phase the longer chain starts execution
prior to other shorter chains. We thus have the following rule:

Rule 1. Transactions should be sequenced in descending
order based on the lengths of their dependency chains.

The pseudocode is given in Algorithm 1. First, each node
gets a series of transactions and executes them in paral-
lel (Line 2-3). To obtain transaction dependencies, the pro-
poser only needs the read/write sets of each transaction. Thus,
at this stage transactions are executed in parallel and will
not modify the world state. Based on the read/write sets, we
are able to analyze transaction dependencies and create a
schedule for the replay phase.

To this end, we first count the number of transactions
that have accessed a given key and group them into a de-
pendency chain (Line 17-21). A transaction may appear in
several chains. Note that this simple method only obtains
an approximation of accurate dependency chains, as each
chain only takes one key for consideration. Nonetheless, this
simple solution already leads to prominent performance (as
shown in §6). Then, we sort different chains according to their
lengths (Line 22). We finally arrange the transactions within
a longer chain in front of those within a shorter chain and
obtain an ordered list txs (Line 6-9).

Based on the order given in txs, we can analyze their
dependencies and accordingly build a Directed Acyclic
Graph (DAG) (Line 24-36). The dependency relationship
forms a DAG (with no circle) because any transaction may
only depend on ones with lower indices, but not vice versa.
There are three types of dependencies: write after read (WAR),
write after write (WAW) and read after write (RAW). If a trans-
action writes the same key that its previous transaction reads,
the corresponding place of these two transactions in DAG
is tagged with WAR. Other two types of dependencies are

800 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tagged similarly. Note that if two transactions have multi-
ple dependencies, we prioritize WAW (Line 27-29) due to
a specific optimization [56] that we will elaborate on §4.2.
Also note that if two transactions have both WAR and RAW
dependencies (for different keys), we treat them as having a
WAW dependency (Line 34). Finally, the transactions, their
read/write sets, as well as the DAG are inserted into a block
proposal (Line 12). With such information, every node in the
replay phase can process these transactions deterministically.

4.2 Replay
After consensus, blocks are totally ordered and each node
enters the replay phase. The main purpose for replay is to de-
terministically and efficiently execute all transactions within
each block. We only exploit intra-block parallelism, though
enabling inter-block parallelism may further speed up exe-
cution, which we leave for future work. The replay phase is
further divided into two stages: (1) the first stage that follows
the DAG and execute transactions accordingly; and, (2) the
second stage that re-executes transactions that may introduce
new dependencies. For the first stage, our concurrency control
method is inspired by Aria [56]. For the second stage, we
first describe a scheme that simply re-executes all possibly
affected transactions. In §4.3 we describe an optimization that
further reduces re-execution rate.

The pseudocode is given in Algorithm 2. Each node gets
a block, the read/write set of each transaction, as well as the
DAG from the consensus component (Line 2). To enable
parallel processing, transactions within a block are further
divided into several batches, where in each batch all the trans-
actions can be executed in parallel (if they do not access some
new keys compared to the ones obtained in the speculation
phase). Transactions within a block are executed in a batch-
by-batch manner, and in each batch the execution results will
not update the world state until all the transactions complete.

Each node repeatedly obtains a batch of transactions that
have no forward dependency from the transaction list txs
(Line 4), then executes them in parallel. We have the following
specific rule for defining whether a transaction has no forward
dependency:
Rule 2. A transaction tx has no forward dependency if: (1)
tx has no WAW dependency on any previous transaction that
has not completed, and (2) tx does not have both WAR and
RAW dependencies on any previous transactions that have
not completed.

The intuitions of Rule 2 are: (1) even if transaction tx WAR
depends on tx′, tx can start execution immediately because its
update will not be visible to tx′, as they are in the same batch;
and (2) even if tx RAW depends on tx′, tx can be re-ordered
before tx′ because the update of tx. The idea of Rule 2 is
elaborated in [56].

Once tx finishes execution, we need to check its newly-
generated read/write sets. If the read/write sets have changed

Algorithm 2: Replay phase
Variables: T xsRe: a set of transactions to be re-executed

1 procedure Replay():
2 (BLOCK,DAG)← Consensus()
3 txs← BLOCK.transactions
4 ready← PopTxsBatch(txs)
5 while ready ̸= /0 do
6 for tx ∈ ready do

/* Run in parallel mode */
7 (rs,ws)← execute(tx)
8 if rs ̸= tx.RS ∨ ws ̸= tx.WS then
9 append(TxsRe, tx)

10 ready← ready \{tx}

11 for tx ∈ ready do
12 commit(tx)

13 ready← PopTxsBatch(txs)

14 procedure ReExecute():
15 for tx ∈ T xsRe do
16 execute(tx)
17 commit(tx)

18 function PopTxsBatch(txs):
19 ready_txs← /0

20 for tx ∈ txs do
21 if tx has no WAW-dependencies then
22 if no WAR ∨ no RAW then
23 append(ready_txs, tx)
24 txs← txs \{tx}

25 return ready_txs

26 function commit(tx):
27 Apply updates in tx.WS to the world state

compared to the results obtained in the speculation phase,
tx may introduce new dependencies with other transactions
in the same block, and thus will be re-executed at the end
of the replay phase (Line 8-10). Nonetheless, we can still
commit other transactions in ready by updating the world
state according to their write sets (Line 11).

Finally, we present a simple re-execution stage that hap-
pens at the end of the replay phase (Line 14-17). Transactions
in T xsRe are sequenced based on their indices and executed in
serial order. In §A we prove that T xsRe is the same among all
correct nodes. In Figure 6 we depict an example for demon-
strating the replay phase.

4.3 Reducing Re-Execution Rate
Because transaction re-execution may badly affect perfor-
mance, we further improve our strategy for determining
whether a transaction needs to be re-executed. The new strat-
egy is described in Algorithm 3, which replaces Line 5-12 in
Algorithm 2.

Remember that in Algorithm 2, a transaction should be re-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 801

𝑡𝑥1: W(a), W(b)

𝑡𝑥3: W(a)

𝑡𝑥5: R(a), W(b), R(c)

𝑡𝑥4: W(c)

𝑡𝑥6: W(c)

𝑡𝑥2: W(d)

WARWAW RAW

𝑡𝑥1

𝑡𝑥6

𝑡𝑥2

𝑡𝑥5

𝑡𝑥3

Batch 1:
exec(𝑡𝑥1, 𝑡𝑥4, 𝑡𝑥2)

in parallel

Batch 2:
exec(𝑡𝑥3, 𝑡𝑥5, 𝑡𝑥6)

in parallel

b

a

a

c

serialized order:
𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥5, 𝑡𝑥3, 𝑡𝑥6, 𝑡𝑥4

𝑡𝑥4
c c

re-execute(𝑡𝑥4)
𝑡𝑥4: W(a)

write a new key

𝑡𝑥6𝑡𝑥5

𝑡𝑥3

a

c

Figure 6: Example for the replay phase. On the left we show the read/write sets of each transaction obtained in the speculation
phase. Batch 1 contains tx1, tx4 and tx2 as they have no forward dependency (Rule 2). tx4 newly writes key a, and thus will
be re-executed at the end. Batch 2 contains tx3, tx5 and tx6, even though tx6 WAR depends on tx5. The execution results are
equivalent to executing tx1, tx2, tx5, tx3, tx6 and tx4 in serial order.

Algorithm 3: Improved replay strategy
1 all_keys← all keys accessed by tx in txs in speculation
2 while ready ̸= /0 do
3 for tx ∈ ready do

/* Run in parallel mode */
4 (rs,ws)← execute(tx)
5 if tx reads/writes a new key key′ ∈ all_keys then
6 append(TxsRe, tx)
7 ready← ready \{tx}
8 continue

9 if tx reads a new key key′ /∈ all_keys then
10 append(read, tx)

11 if tx writes a new key key′ /∈ all_keys then
12 new_keys← new_keys∪{key′}

13 read← read \{tx : tx has not read any key ∈ new_keys}
14 commit(tx ∈ ready\ read) based on DAG
15 for tx ∈ read do
16 execute(tx)
17 commit(tx)

executed once its read/write sets have changed. In fact, some
changes do not necessarily lead to re-execution, as they do
not introduce new dependencies. For instance, if tx accesses
fewer keys in the replay phase. We intend to further reduce
re-execution rate, but at the same time keeping the method
simple and straightforward to be implemented. To this end,
we first group all the keys that have been accessed in the
speculation phase (Line 1 in Algorithm 3). Then we further
distinguish the following three cases:

1. If a transaction tx reads/writes a new key that other trans-
actions also accessed during speculation (Line 5-8), it is
highly possible that tx will introduce new dependencies.
In this case, tx will be re-executed.

2. If tx reads a new key key′ that other transactions did
not access during speculation (Line 9-10, 15-16), key′

may not necessarily introduce new dependencies, but
tx (in read) has to wait until other transactions in the
batch complete execution. If some transaction has newly

written key′ (in new_keys), tx will be executed again and
get committed. Otherwise, tx is removed from read and
committed with other transactions by following the serial
order extracted from DAG.

3. If tx writes a new key key′ while other transactions
did not access key′ during speculation (Line 11-14), we
record key′ in new_keys. tx will also be committed with
other transactions once all the transactions complete ex-
ecution.

In other cases, tx will not be re-executed.

4.4 Further Discussion
This paper solely focuses on improving the performance
of contract execution. In decentralized finance applications,
however, transaction ordering is also crucial for participants’
profits. Regarding the speculation phase in Vegeta, miners
or proposers may be motivated to initiate frontrunning and
sandwich attacks [3, 63] to increase their profits, rather than
maximizing parallelism. To defend against adversarial play-
ers, existing literature either introduces additional restrictions
on transactions ordering (e.g., by providing a fairness prop-
erty [80]), or resorts to some economic mechanism (e.g., the
proposer/block-builder separation [6]). For the former case,
proposers cannot freely choose at what order transactions are
replayed, thus limiting its performance gains. For the latter
case, we may quantify the degree of parallelism and also lever-
age an incentive mechanism to motivate rational proposers.

5 Implementation

We have implemented Vegeta in Golang and adopted Go-
Ethereum, a.k.a., Geth as our Ethereum execution environ-
ment. We integrated Ethereum Virtual Machine (EVM) [4]
with Vegeta to enable transaction execution. We still used
the data structure StateDB in EVM for caching and storing
the world state in memory. StateDB can be simply consid-
ered an in-memory key-value store. As EVM only provides
single-threaded execution, we modified StateDB in order to
support shared access. To do so, we used a sync.Map structure

802 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

disk mem

warm up
C

i speculation of block i i replay of block i C consensus

9 10 11 12

1 2 3 4

5C1

5 6 7 8

C9

9 10 11 12

5 6 7 81 2 3 4

Figure 7: Example from node 1’s perspective for consensus-
integrated implementation (n = 4).

for thread-safe state management. We started a new EVM in-
stance for each transaction, and all instances can concurrently
access StateDB.

To focus on transaction execution performance, we skipped
updating the Merkle Patricia Trie (MPT) in StateDB (after
each execution). MPT is a combination of Patricia trie and
Merkle tree. MPT is used to cryptographically authenticate
and verify the content of the world state. One exception is we
used MPT for correctness validation (§6.1), which updated
MPT after the execution of each block. We also disabled data
persistence to eliminate its impact on performance evaluation,
allowing us to focus solely on transaction execution.
Consensus integration. In Vegeta the speculation phase of
a given block Bh may overlap with the replay phase of some
earlier block Bh′ (h′ < h), so the two phases may compete for
computing resources on each node. To study this impact, we
also integrated a consensus component, which is a seminal
leaderless consensus protocol proposed by Ben-Or, Kelmer,
and Rabin (BKR) [20]. BKR is the core component of several
recent works [31, 57, 77]. We chose BKR also because it
allows us to easily distribute Ethereum blocks to each node,
in such a way that the total order given by the consensus
protocol is the same as given by Ethereum. In general, BKR
requires each node to make a proposal in each consensus
instance (i.e., for each sequence number). The final output
of each instance is a subset of all proposals (ranging from
n− f to n proposals). To strictly follow the order of Ethereum
workloads, we further restrict the number of proposals output
by BKR to n, ensuring that no proposal is abandoned.

We assigned block Bh to a node i for speculation if i =
h%n, where n is the number of nodes1. We also configured a
parameter K, where on each node i, if only K blocks are left
for replay, node i takes the next block and starts its speculation
phase. In principle, the smaller the K, the better the accuracy
for speculation, as node i is with a more recent world state.
However, to effectively pipeline the two phases of different
blocks, K should not be too small. In our experiments, we
set K to 2, as on average the time it takes to speculatively
execute a block is less than twice the time it takes to replay a
block (see §6.2). Before each test there is a warm-up phase,
which loads the world state and all blocks after that state
into memory. Figure 7 demonstrate how we integrate Vegeta
into the consensus protocol. Our code is available at https:

1Note that in real-world cases, nodes continuously receive new transac-
tions and batch them into blocks. No pre-defined order exists.

Table 2: Ethereum datasets used in our evaluation.

Tag Date Block range
(height)

Tx
count

Longest
chain

Ratio

S1 3/7/2023 16774645-
16779644

739863 88136 8.39

S2 3/7/2023 16774645-
16777644

436115 52862 8.25

S3 3/7/2023 16774645-
16774745

15129 1779 8.50

S4 11/17/2023-
11/18/2023

18581726-
18586725

747651 89961 8.31

//github.com/Decentralized-Computing-Lab/Vegeta.

6 Evaluation

We evaluated Vegeta under the real-world Ethereum work-
loads. We compared Vegeta with serial execution and a de-
terministic optimistic concurrency control protocol, AriaFB,
which was derived from Aria [56]. AriaFB is a typical way
of instantiating the order-execute framework. We adopted the
same execution and commit phases used in Aria, and also
integrated a fallback strategy (i.e., our replay phase) to get
AriaFB, as vanilla Aria cannot handle high abort rates (see
§6.2).
Testbed. We conducted experiments on Amazon EC2 plat-
form. Our testbed consists of up to 10 m6i.4xlarge instances,
with 3.5 GHz Intel Xeon Ice Lake 8375C processor of 16
vCPUs, 64 GB RAM, running Ubuntu 20.04 LTS. Every node
has downloaded Ethereum workloads.
Datasets. Our evaluation was conducted mainly with the
Ethereum datasets shown in Table 2. S1 contains 5,000 blocks
and is used to evaluate the performance in single-node mode
and validate the correctness of Vegeta. S2 contains 3,000
blocks and is used for multi-node test. S3 contains 101 blocks
and is used for time-consumption analysis of each phase (Fig-
ure 8 in §6.2). S4 contains 5,000 more recent blocks and is
used to evaluate the performance in both single-node and
multi-node modes. In Table 2, tx count refers to the total
number of transactions of all blocks. For each block, we first
calculate the length of its longest dependency chain, i.e., the
maximum number of transactions that have accessed a given
key. Then, we sum the lengths of the longest chains of all
blocks and get the longest chain in Table 2. Finally, the ratio
equals to the tx count divided by the longest chain. The ratio
approximately represents the maximum speedup Vegeta can
achieve for a specific workload, if we assume every trans-
action has equal execution time. For simplicity, we did not
change the block structure of Ethereum, but in practice we
may only treat the workload as a transaction stream.

6.1 Correctness Validation
The correctness of Vegeta has been extensively validated as
a by-product of our evaluation. This is because Ethereum

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 803

https://github.com/Decentralized-Computing-Lab/Vegeta
https://github.com/Decentralized-Computing-Lab/Vegeta
https://github.com/Decentralized-Computing-Lab/Vegeta
https://github.com/Decentralized-Computing-Lab/Vegeta

0 1000 2000 3000

Vegeta
Serial

Time consumption (ms)

Spaculation Replay
Re-execution Serial Execution

Figure 8: Time consumption of each
phase.

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%

1 2 3 4 5 6 7 8 9 10

R
e-

ex
ec

ut
io

n
ra

te

gaps

2023 2021 2019 2017

Figure 9: Re-execution rates.

1x 1x

3.8x 3.6x
5.5x 5.4x

7.8x 7.7x

0

10

20

30

40

S1 S4Th
ro

ug
hp

ut
 (k

tx
/s

)

Serial Execution AriaFB
Vegeta (w/o re-ordering) Vegeta

Figure 10: Throughput and speedups
in single-node test.

maintains the world state as an MPT. Two states are identical
if and only if the values of their MPT roots are equal. Every
block carries a value of the state’s MPT root after all the
transactions in the block are executed. Although the execution
result of Vegeta differs from the original state of Ethereum
due to the re-ordering rule we adopted in the speculation
phase, we can still perform the execution repeatedly (i.e.,
the speculation and replay phases) with the same series of
blocks and validate whether their MPT root values are equal.
We have managed to process a total of 5,000 blocks (S1)
carrying 739,863 transactions for 100 times, always resulting
in a matching value of the MPT root in every block.

6.2 Single-Node Performance

We demonstrate the performance of Vegeta and other proto-
cols when they were deployed on a single node.
Time consumption of each part. We first tested 101 blocks
carrying 15,129 transactions (S3 in Table 2) to measure the
time consumption of each phase in Vegeta. Figure 8 depicts
the results. In this measurement, the speculation phase was
based on the latest Ethereum world state, i.e., block Bh is
speculatively executed based on the world state of block Bh−1.
The speculation yields 1.47% re-execution rate. The cost of
re-execution is insignificant compared to other parts. The
speculation phase consumed more time than the replay phase
because of the overhead of ordering transactions and building
the DAG for capturing dependencies. It can also be observed
that Vegeta spent much less time in executing all phases com-
pared to serial execution. Note that in real systems the spec-
ulation phase is executed only by a single node and can be
further overlapped with the replay phase of some previous
blocks.
Re-execution rate. We conducted evaluation in the re-
execution rate by performing the speculation phase based
on different world states. We then counted how many trans-
actions are re-executed in the relay phase and accordingly
calculated the rate. The results are shown in Figure 9. We
performed the similar experiment based on the Ethereum data
ranging from 2017 to 2023. X-axis indicates the gap of block
heights between the speculation and the world state it is based
on. For instance, 0 means the speculation results of block Bh
is based on the world state of block Bh−1, while 9 means the

speculation results of block Bh is based on the world state
of Bh−10. With more recent world states the speculation can
obtain more accurate dependencies among transactions, thus
reducing the re-execution rate. Even with the most recent
state, the re-execution rate is still a non-zero value. This is
because in the speculation phase Vegeta executes transactions
in a fully parallel manner. A concrete example is actually de-
picted in Figure 1, where the check-balance operation (step 2)
for APEFI token failed during speculation but succeeded in
the relay phase, because another transaction (within the same
block) transferred a sufficient number of tokens to the user’s
address. The re-execution rate is relatively small except 2021,
presumably due to the explosion of DeFi and NFT applica-
tions.
Speedup. We compared Vegeta with AriaFB and serial exe-
cution to demonstrate the effectiveness of our approach. In
the speculate-order-replay framework, the burden of specula-
tion can be evenly distributed to every node and amortized by
pipelining, while the replay (and re-execution) phase must be
performed by every node. Therefore, in the single-node test,
we only measured the time it takes to perform the replay phase
and compared it with that of other approaches. The speedup
can be considered the upper bound Vegeta can achieve for the
given Ethereum workloads.

The evaluation was conducted on the datasets S1 and S4 (in
Table 2), each of which contains 5,000 blocks. The results
are depicted in Figure 10. The performance bottleneck of
Vegeta for Ethereum datasets mainly stems from the longest
dependency chain, which was also discussed in [35]. Trans-
actions in the same dependency chain must be executed in
serial order. We also observe that the longest dependency
chain is generated by Wrapped Ethereum (WETH) decentral-
ized application [10], which swaps ethers (cryptocurrency in
Ethereum) between layer-1 (native coin) and layer-2 (token)
for facilitating trade with ERC-20 tokens. The ratio shown
in Table 2 also reflects an upper limit to some extent (8.39×
versus 7.8× and 7.7×).

AriaFB treated each block as a batch and first executed all
transactions in parallel. If any transaction had a forward de-
pendency (according to Rule 2), the transaction was aborted.
We found that without fallback, aborted transactions in vanilla
Aria kept accumulating and eventually led to out-of-memory
error. We thus integrated our replay phase into vanilla Aria

804 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.3x
3.8x

0 15 30 45 60 75

2021
2023

Time consumption (s)

Parallel Fallback

Figure 11: Time consumption and
speedups of AriaFB.

6.4x
7.6x

4.8x
6.2x

0.01% 1.56%

8.05%

4.33%
0
0.02
0.04
0.06
0.08
0.1

0
2
4
6
8

2017 2023 2021 2023

0 gap 9 gaps R
e-

ex
ec

ut
io

n
ra

te

Sp
ee

du
p

Speedup Re-ex rate

Figure 12: Speedups with different re-
execution rates.

2.6x
4.7x

5.5x
7.8x

0 2 4 6 8Speedup

replay w/o re-ordering
w/o all optimization spec + replay

Figure 13: Ablation study of Vegeta.

and obtained AriaFB2. For datasets S1 and S4, respectively,
40.2% and 42.3% transactions were aborted and further re-
sorted to the fallback for re-execution. Compared to AriaFB,
the speedup gain of Vegeta largely comes from the specu-
lation that wisely orders transactions and groups them into
batches, effectively reducing abort (re-execution) rate. We
further measured the execution time of each part under the
datasets of 2021 and 2023 (as shown in Figure 11). The abort
rate of 2023 dataset is 40.2%, and the corresponding speedup
is 3.8×, while the abort rate of 2021 dataset is 52.1%, so the
speedup decreased to 3.3×.

To assess the impact of re-execution rates, we also mea-
sured the speedups with the datasets from different years
(thus leading to different re-execution rates), as shown in
Figure 12. The datasets from 2017 and 2023 exhibit lower
re-execution rates, resulting in higher speedups. However, the
longest dependency chain problem in the 2017 dataset has a
greater impact on the degree of parallelism, leading to a lower
speedup compared to the 2023 dataset. To evaluate the perfor-
mance with even higher re-execution rates, we then purposely
performed the speculation phase with a gap of 9 blocks. The
speedups were negatively affected.
Ablation study of Vegeta. We evaluated the influence of each
optimization in Vegeta. The results are shown in Figure 13. To
assess the impact of re-ordering in the speculation phase, we
purposely disabled this approach (i.e., sorting and selecting
dependency chains, Line 4-9 in Algorithm 1) and preserved
the original order in each Ethereum block. The speedup (with-
out re-ordering) decreased to 5.5×, as transactions in some
longer dependency chains may start execution later during the
relay phase, highlighting that transaction order significantly
impacts performance improvement. We emphasize that in
real-world deployment, there is no concept of re-ordering,
as proposers can freely choose in what order transactions
are executed. We then stepped further and removed the opti-
mization for re-execution, which is described in Algorithm 3.
The speedup decreased to 4.7×. Finally, we evaluated the
performance of Vegeta when both phases (i.e., speculation
and replay) are performed after consensus by every node. It
can be regarded as a deterministic concurrency control pro-
tocol based on the order-execute framework. The speedup

2As also discussed in [56], any deterministic concurrency control can
potentially be used.

Table 3: Re-execution rates in multi-node test.

S2 S4
4 nodes 1.66% 1.58%
10 nodes 1.89% 1.82%

decreased to 2.6×. This result demonstrates the benefit of
distributing speculation across all nodes.
Multi-core scalability. To evaluate the multi-core scalability,
we conducted experiment with different configurations of 2,
4, 8, 16 and 32 cores. The results are shown in Figure 14. The
speedup of Vegeta grows linearly from 2 to 8 cores. As the
number of cores continues to increase, this trend diminishes.

6.3 Multi-Node Performance
When it came to multi-node deployment, we integrated trans-
action execution with a consensus module. We set the number
of nodes n to 4 and 10 in this experiment, which respectively
tolerates 1 and 3 Byzantine nodes. We did not conduct even
larger-scale experiments because the Ethereum workloads
were generated sequentially. With larger n, there will be a
larger gap between speculation and replay, which are not re-
alistic in practice. Nonetheless, as Vegeta aims to provide
scalability in the speculation phase, we expect Vegeta will
perform even better when n becomes larger. The evaluation
was conducted on the datasets S2 and S4 in Table 2.

As with a leaderless consensus protocol, we evenly as-
signed blocks to every node, i.e., node i is responsible for
speculatively executing block B j (in Vegeta) and proposing
B j in consensus if j%n= i. When the consensus layer outputs,
n blocks are delivered to the upper layer for execution. These
n blocks are totally ordered based on proposers’ IDs.
Re-execution rate. As already shown in Figure 9, a more
recent world state can provide a higher precision for depen-
dency analysis. Due to this reason, a node would not perform
speculation of a new block until its remaining blocks ready
for replay is equal to or less than K. We set K to 2 in this
experiment because as shown in Figure 8, the time taken by
speculation is less than twice the replay time. Table 3 shows
the re-execution rate.
Leaderless vs. leader-based protocols. We first compared
the performance of Vegeta integrated with BKR (a leaderless
protocol) with that integrated with a leader-based protocol.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 805

1
3
5
7
9

11

2 4 8 16 32

Sp
ee

du
p

Number of cores

Vegeta AriaFB

Figure 14: multi-core scalabil-
ity.

1x 1x 1x 1x

6.4x

2.9x

6.9x

2.8x

0
5

10
15
20
25

LL LB LL LB

4 nodes 10 nodes

Th
ro

ug
hp

ut
 (k

tx
/s

)

Serial Execution VegetaLL -- leaderless
LB -- leader-based

Figure 15: Throughput of leaderless and
leader-based protocols.

1x 1x 1x 1x
3.1x 3.1x 3.4x 3.3x

6.4x 6.5x
6.9x 6.9x

0
5

10
15
20
25

S2 S4 S2 S4

4 nodes 10 nodesTh
ro

ug
hp

ut
 (k

tx
/s

)

Serial Execution AriaFB Vegeta

Figure 16: Throughput and speedups in multi-
node test.

1x 1x1.2x 1.1x

2.0x 1.9x

0

2

4

6

8

4 nodes 10 nodesTh
ro

ug
hp

ut
 (k

tx
/s

)

Serial Execution Byz1 Byz2

Figure 17: Throughput under Byzantine faults.

For the latter case, our evaluation chose PBFT [25] as the
ordering module. The single leader performs the speculation
phase, while every node replays the block after consensus.
The evaluation was conducted on the datasets S2 in Table 2,
and the results are shown in Figure 15. Because the single
leader took the heaviest burden of computation, the leader
node throttled Vegeta’s performance.
Speedup. The results are shown in Figure 16. Being affected
by consensus, the throughput of all protocols decreased com-
pared to Figure 10. Because of the competition between spec-
ulation and replay for computing resources, the performance
of Vegeta is further affected. Although for 10-node case the
re-execution rate is slightly higher than that for 4-node case
(Table 3), the n = 10 throughput raised because with larger
n, leaderless consensus can commit more proposals in each
instance. The performance of serial execution and AriaFB
exhibited a similar trend due to the same reason.

6.4 Performance under Byzantine Faults

As blockchain systems target Byzantine faults, in this experi-
ment we evaluate their impact on performance by configuring
f nodes to exhibit two typical Byzantine behaviors. Specifi-
cally in our design, a Byzantine node can purposely generate
incorrect dependencies and/or read/write sets in the specula-
tion phase. Such an anomaly cannot affect the safety property
of Vegeta but may badly affect its performance.

The results are shown in Figure 17. In the first scenario
(Byz1), f Byzantine nodes provided a serial order and empty
read/write sets for each block proposal, which forced other
correct nodes to sequentially execute each transaction twice
(one for replay, and the other for re-execution). Note that the
proposals of other correct nodes were still correctly specu-
lated. The performance gains coming from correct nodes are

almost eliminated by Byzantine nodes. Although in 10-node
case Vegeta had higher speedup compared to 4-node case
(Figure 16), it also suffered more badly than 4-node case due
to the higher proportion of Byzantine nodes (1/4 versus 3/10).
We argue that the impact of this typical malicious behavior
may be simply mitigated by, e.g., sequentially executing each
transaction only once, as the speculation already provided
serial order.

The second scenario (Byz2) is a bit more subtle, where
Byzantine nodes provided correct dependencies but empty
read/write sets, which still led to 100% re-execution rate for
their proposals. The throughput of Vegeta still significantly
decreased. For the block proposals made by Byzantine nodes,
all the transactions were first executed (efficiently) in the
replay phase and then re-executed in serial order. Note that
Byzantine behaviors may also badly affect the performance
of AriaFB, e.g., by deliberately orchestrating a sequence of
transactions that causes frequent aborts.

7 Conclusion

Towards efficient transaction processing in blockchains, we
presented the speculate-order-replay framework. Our frame-
work is tailored to leaderless consensus, which brings both
challenges for deterministic parallelism and opportunities
for boosting performance. Our framework allows each node
to independently pre-execute transactions and analyze their
dependencies in the speculation phase, in order to provide
information that enables efficient parallel execution in the
replay phase. We instantiated our framework through Vegeta,
a transaction-level concurrency control protocol. Experimen-
tal evaluation under Ethereum workload showed promising
performance compared to other parallel processing schemes.

Acknowledgments

We are very grateful to our shepherd, Xiaoqi Chen, and
the anonymous reviewers for their insightful feedback. This
work was supported by the National Natural Science Foun-
dation of China (grant no. 62372293) and the Shanghai Ac-
tion Plan for Science, Technology and Innovation (grant no.
24BC3201300). Shengyun Liu is the corresponding author.

806 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Ape finance. https://ape.fi/swap.

[2] Ethereum example for smart contract innocation. https:
//etherscan.io/tx/0xf195576ee9915449726ccd
ad80d389cb6a1853cea685368ea98da2b79e1b57c9.

[3] Ethereum is a dark forest. https://www.paradigm.x
yz/2020/08/ethereum-is-a-dark-forest.

[4] Ethereum virtual machine. https://ethereum.org
/en/developers/docs/evm/.

[5] Ethereum whitepaper. https://ethereum.org/en/
whitepaper/.

[6] Proposer/block builder separation. https://ethresea
r.ch/t/proposer-block-builder-separation-f
riendly-fee-market-designs/9725.

[7] Sui documentation: Validator committee. https://do
cs.sui.io/guides/operator/validator-commi
ttee.

[8] Uniswap. https://uniswap.org/.

[9] Usd coin. https://www.circle.com/en/usdc.

[10] Wrapped ethereum. https://101blockchains.com
/wrapped-ethereum/.

[11] Zero-knowledge rollups. https://ethereum.org/e
n/developers/docs/scaling/zk-rollups/.

[12] Daniel J. Abadi and Jose M. Faleiro. An overview
of deterministic database systems. Commun. ACM,
61(9):78–88, aug 2018.

[13] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh
Maheshwari. Efficient optimistic concurrency control
using loosely synchronized clocks. In Proceedings of
the 1995 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’95, page 23–34, New
York, NY, USA, 1995. Association for Computing Ma-
chinery.

[14] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,
Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolić, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permis-
sioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, New York, NY, USA,
2018. Association for Computing Machinery.

[15] Parwat Singh Anjana, Sweta Kumari, Sathya Peri,
Sachin Rathor, and Archit Somani. An efficient frame-
work for optimistic concurrent execution of smart con-
tracts. In 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing
(PDP), pages 83–92, 2019.

[16] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, and
Roger Wattenhofer. Fnf-bft: Exploring performance
limits of BFT protocols. CoRR, abs/2009.02235, 2020.

[17] Leemon Baird. The swirlds hashgraph consensus algo-
rithm: Fair, fast, byzantine fault tolerance. Swirlds, Inc.
Technical Report SWIRLDS-TR-2016, 1, 2016.

[18] C. Basile, Z. Kalbarczyk, and R.K. Iyer. Active replica-
tion of multithreaded applications. IEEE Transactions
on Parallel and Distributed Systems, 17(5):448–465,
2006.

[19] Johannes Behl, Tobias Distler, and Rüdiger Kapitza.
Consensus-oriented parallelization: How to earn your
first million. In Proceedings of the 16th Annual Mid-
dleware Conference, Middleware ’15, page 173–184,
New York, NY, USA, 2015. Association for Computing
Machinery.

[20] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asyn-
chronous secure computations with optimal resilience
(extended abstract). In Proceedings of the Thirteenth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’94, page 183–192, New York, NY,
USA, 1994. Association for Computing Machinery.

[21] Philip A Bernstein, Vassos Hadzilacos, Nathan Good-
man, et al. Concurrency control and recovery in
database systems, volume 370. Addison-wesley Read-
ing, 1987.

[22] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The
latest gossip on BFT consensus. CoRR, abs/1807.04938,
2018.

[23] Matthew Burke, Florian Suri-Payer, Jeffrey Helt,
Lorenzo Alvisi, and Natacha Crooks. Morty: Scaling
concurrency control with re-execution. In Proceedings
of the Eighteenth European Conference on Computer
Systems, EuroSys ’23, page 687–702, New York, NY,
USA, 2023. Association for Computing Machinery.

[24] Vitalik Buterin and Virgil Griffith. Casper the friendly
finality gadget. CoRR, abs/1710.09437, 2017.

[25] Miguel Castro and Barbara Liskov. Practical byzan-
tine fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 807

https://ape.fi/swap
https://etherscan.io/tx/0xf195576ee9915449726ccdad80d389cb6a1853cea685368ea98da2b79e1b57c9
https://etherscan.io/tx/0xf195576ee9915449726ccdad80d389cb6a1853cea685368ea98da2b79e1b57c9
https://etherscan.io/tx/0xf195576ee9915449726ccdad80d389cb6a1853cea685368ea98da2b79e1b57c9
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://docs.sui.io/guides/operator/validator-committee
https://docs.sui.io/guides/operator/validator-committee
https://docs.sui.io/guides/operator/validator-committee
https://uniswap.org/
https://www.circle.com/en/usdc
https://101blockchains.com/wrapped-ethereum/
https://101blockchains.com/wrapped-ethereum/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/

[26] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen,
Lidong Zhou, Yajin Zhou, and Xian Zhang. Forerunner:
Constraint-based speculative transaction execution for
ethereum. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 570–587, New York, NY, USA, 2021. Association
for Computing Machinery.

[27] Yong Chen, Surendra Byna, Xian-He Sun, Rajeev
Thakur, and William Gropp. Hiding i/o latency with
pre-execution prefetching for parallel applications. In
SC ’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, pages 1–10, 2008.

[28] T. Crain, C. Natoli, and V. Gramoli. Red belly: A se-
cure, fair and scalable open blockchain. In 2021 2021
IEEE Symposium on Security and Privacy (SP), pages
1501–1518, Los Alamitos, CA, USA, may 2021. IEEE
Computer Society.

[29] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: A
dag-based mempool and efficient bft consensus. In Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 34–50, New York,
NY, USA, 2022. Association for Computing Machinery.

[30] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and
Eric Koskinen. Adding concurrency to smart contracts.
In Proceedings of the ACM Symposium on Principles
of Distributed Computing, PODC ’17, page 303–312,
New York, NY, USA, 2017. Association for Computing
Machinery.

[31] Sisi Duan, Michael K. Reiter, and Haibin Zhang. Beat:
Asynchronous bft made practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 2028–2041,
New York, NY, USA, 2018. Association for Computing
Machinery.

[32] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. J. ACM,
35(2):288–323, April 1988.

[33] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Heller-
stein. High performance transactions via early write vis-
ibility. Proc. VLDB Endow., 10(5):613–624, jan 2017.

[34] Jose M. Faleiro, Alexander Thomson, and Daniel J.
Abadi. Lazy evaluation of transactions in database sys-
tems. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD
’14, page 15–26, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[35] Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long,
and Ming Wu. Utilizing parallelism in smart contracts
on decentralized blockchains by taming application-
inherent conflicts. In Proceedings of the 44th Inter-
national Conference on Software Engineering, ICSE
’22, page 2315–2326, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[36] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang,
George Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and
Runtian Zhou. Block-stm: Scaling blockchain execution
by turning ordering curse to a performance blessing. In
Proceedings of the 28th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Program-
ming, PPoPP ’23, page 232–244, New York, NY, USA,
2023. Association for Computing Machinery.

[37] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings
of the 26th Symposium on Operating Systems Princi-
ples, SOSP ’17, page 51–68, New York, NY, USA, 2017.
Association for Computing Machinery.

[38] Neil Giridharan, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Bullshark: DAG BFT
protocols made practical. CoRR, abs/2201.05677, 2022.

[39] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. Reiter, D. Seredinschi, O. Tamir, and
A. Tomescu. Sbft: A scalable and decentralized trust
infrastructure. In 2019 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pages 568–580, 2019.

[40] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis
Shasha. The dangers of replication and a solution. SIG-
MOD Rec., 25(2):173–182, jun 1996.

[41] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu,
and Zhenfeng Zhang. Dumbo: Faster asynchronous bft
protocols. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’20, page 803–818, New York, NY, USA, 2020.
Association for Computing Machinery.

[42] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
speed of multi-core. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, EuroSys ’14,
New York, NY, USA, 2014. Association for Computing
Machinery.

[43] R. Jimenez-Peris, M. Patino-Martinez, and S. Arevalo.
Deterministic scheduling for transactional multithreaded
replicas. In Proceedings 19th IEEE Symposium on Reli-
able Distributed Systems SRDS-2000, pages 164–173,
2000.

808 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[44] Cheqing Jin, Shuaifeng Pang, Xiaodong Qi, Zhao Zhang,
and Aoying Zhou. A high performance concurrency
protocol for smart contracts of permissioned blockchain.
IEEE Transactions on Knowledge and Data Engineer-
ing, 34(11):5070–5083, 2022.

[45] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: a high-
performance, distributed main memory transaction pro-
cessing system. Proc. VLDB Endow., 1(2):1496–1499,
aug 2008.

[46] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All about
Eve: execute-verify replication for multi-core servers.
In Proceedings of the 10th USENIX conference on Op-
erating Systems Design and Implementation, OSDI’12,
pages 237–250, Berkeley, CA, USA, 2012. USENIX
Association.

[47] Marios Kogias and Edouard Bugnion. Hover-
craft: Achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In Proceedings
of the Fifteenth European Conference on Computer Sys-
tems, EuroSys ’20, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[48] R. Kotla and M. Dahlin. High throughput byzantine fault
tolerance. In International Conference on Dependable
Systems and Networks, 2004, pages 575–584, 2004.

[49] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
Byzantine fault tolerance. In Proceedings of the Sympo-
sium on Operating Systems Principles (SOSP). ACM,
2007.

[50] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, may 1998.

[51] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Trans. Program.
Lang. Syst., 4(3):382–401, July 1982.

[52] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew
Chi-Chih Yao. A decentralized blockchain with high
throughput and fast confirmation. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pages
515–528. USENIX Association, July 2020.

[53] Haoran Lin, Yajin Zhou, and Lei Wu. Operation-level
concurrent transaction execution for blockchains, 2022.

[54] Jian Liu, Peilun Li, Raymond Cheng, N. Asokan, and
Dawn Song. Parallel and asynchronous smart con-
tract execution. IEEE Trans. Parallel Distrib. Syst.,
33(5):1097–1108, may 2022.

[55] Shengyun Liu, Wenbo Xu, Chen Shan, Xiaofeng Yan,
Tianjing Xu, Bo Wang, Lei Fan, Fuxi Deng, Ying Yan,
and Hui Zhang. Flexible advancement in asynchronous
bft consensus. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP ’23, page 264–280,
New York, NY, USA, 2023. Association for Computing
Machinery.

[56] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria:
A fast and practical deterministic oltp database. Proc.
VLDB Endow., 13(12):2047–2060, jul 2020.

[57] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
31–42, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[58] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. Technical report, Manubot, 2019.

[59] Ray Neiheiser, Miguel Matos, and Luís Rodrigues.
Kauri: Scalable bft consensus with pipelined tree-based
dissemination and aggregation. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, page 35–48, New York, NY, USA, 2021. As-
sociation for Computing Machinery.

[60] Afonso Oliveira, Henrique Moniz, and Rodrigo Ro-
drigues. Alea-bft: Practical asynchronous byzantine
fault tolerance. CoRR, abs/2202.02071, 2022.

[61] Shujian Qian and Ashvin Goel. Massively parallel Multi-
Versioned transaction processing. In 18th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 24), pages 765–781, Santa Clara, CA, July
2024. USENIX Association.

[62] Dai Qin, Angela Demke Brown, and Ashvin Goel. Cara-
cal: Contention management with deterministic concur-
rency control. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 180–194, New York, NY, USA, 2021. Association
for Computing Machinery.

[63] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying
blockchain extractable value: How dark is the forest? In
2022 IEEE Symposium on Security and Privacy (SP),
pages 198–214, 2022.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 809

[64] Pedro Ramalhete, Andreia Correia, and Pascal Felber.
2plsf: Two-phase locking with starvation-freedom. In
Proceedings of the 28th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Program-
ming, PPoPP ’23, page 39–51, New York, NY, USA,
2023. Association for Computing Machinery.

[65] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, dec 1990.

[66] Ankur Sharma, Felix Martin Schuhknecht, Divya
Agrawal, and Jens Dittrich. Blurring the lines between
blockchains and database systems: the case of hyper-
ledger fabric. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19,
page 105–122, New York, NY, USA, 2019. Association
for Computing Machinery.

[67] Weihai Shen, Ansh Khanna, Sebastian Angel, Sid-
dhartha Sen, and Shuai Mu. Rolis: A software approach
to efficiently replicating multi-core transactions. In Pro-
ceedings of the Seventeenth European Conference on
Computer Systems, EuroSys ’22, page 69–84, New York,
NY, USA, 2022. Association for Computing Machinery.

[68] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko
Vukolić. State machine replication scalability made
simple. In Proceedings of the Seventeenth European
Conference on Computer Systems, EuroSys ’22, page
17–33, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[69] Michael Stonebraker, Samuel Madden, Daniel J. Abadi,
Stavros Harizopoulos, Nabil Hachem, and Pat Helland.
The end of an architectural era: (it’s time for a com-
plete rewrite). In Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB ’07, page
1150–1160. VLDB Endowment, 2007.

[70] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yun-
hao Zhang, Lorenzo Alvisi, and Natacha Crooks. Basil:
Breaking up bft with acid (transactions). In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 1–17, New York, NY,
USA, 2021. Association for Computing Machinery.

[71] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), Sep. 1997.

[72] Alexander Thomson and Daniel J. Abadi. The case for
determinism in database systems. Proc. VLDB Endow.,
3(1–2):70–80, sep 2010.

[73] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J. Abadi.
Calvin: Fast distributed transactions for partitioned

database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’12, page 1–12, New York, NY, USA,
2012. Association for Computing Machinery.

[74] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and
Sam Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling.
In Proceedings of Twenty-First ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07, page
59–72, New York, NY, USA, 2007. Association for Com-
puting Machinery.

[75] Bo Wang, Shengyun Liu, He Dong, Xiangzhe Wang,
Wenbo Xu, Jingjing Zhang, Ping Zhong, and Yiming
Zhang. Bandle: Asynchronous state machine replication
made efficient. In Proceedings of the Nineteenth Euro-
pean Conference on Computer Systems, EuroSys ’24,
page 265–280, New York, NY, USA, 2024. Association
for Computing Machinery.

[76] Michael Whittaker, Ailidani Ailijiang, Aleksey Chara-
pko, Murat Demirbas, Neil Giridharan, Joseph M.
Hellerstein, Heidi Howard, Ion Stoica, and Adri-
ana Szekeres. Scaling replicated state machines
with compartmentalization. Proc. VLDB Endow.,
14(11):2203–2215, jul 2021.

[77] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. DispersedLedger: High-
Throughput byzantine consensus on variable bandwidth
networks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
493–512, Renton, WA, April 2022. USENIX Associa-
tion.

[78] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, PODC ’19, page 347–356,
New York, NY, USA, 2019. Association for Computing
Machinery.

[79] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker,
and Tim Kraska. Rethinking database high avail-
ability with rdma networks. Proc. VLDB Endow.,
12(11):1637–1650, jul 2019.

[80] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou,
and Lorenzo Alvisi. Byzantine ordered consensus with-
out byzantine oligarchy. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 633–649. USENIX Association, November
2020.

810 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Correctness proof of Vegeta

We prove that the execution results on each node are equiv-
alent to the same serial order. Since all information (e.g.,
transactions and their dependencies) leveraged by the replay
phase is agreed upon using consensus and each node exe-
cutes transactions in a batch-by-batch manner, we only need
to prove that each batch produces the same execution results.
Note that within a batch, transactions are ordered by their
indices. We give the following three lemmas.

Lemma 1. If nodes i and j execute batch b according to the
same world state and tx is re-executed on node i, then tx is
re-executed on node j.

Proof. Within b, every transaction is executed based on the
same world state and no one updates any key until they all
complete execution. If tx is re-executed on node i, then tx
must change its read/write sets (Line 8 in Algorithm 2) or
read/write a new key key′ ∈ all_keys (Line 5 in Algorithm 3).
Then obviously node j should also re-execute tx because
the read/write sets of each transaction are obtained during
speculation and agreed upon by consensus.

With Lemma 1, in the following we only consider the trans-
actions that are not re-executed. We discuss the cases without
and with an improved replay strategy, respectively.

Lemma 2. (With a simple re-execution strategy in Algo-
rithm 2) The execution results of each batch are equivalent to
the same serial order on every node.

Proof. For any two transactions tx and tx′ in the same batch,
they should not have WAW dependency, nor should they have
both WAR and RAW dependencies (Line 34 in Algorithm 1).
Without loss of generality, we assume the serial order of trans-
actions in the batch is: · · · → tx′→ ··· → tx→ ··· . We then
discuss three cases:
Case 1: If they are non-conflicting, they are serializable. And
we determine their order based on the order of their indices.
Case 2: If tx WAR-depends on tx′, then since the result of
execution will only be committed after all transactions in the
batch finish execution, tx′ cannot read the value written by
tx, they are serialized as tx′ happens before tx, the assumed
serial order is satisfied.
Case 3: If tx RAW-depends on tx′, their execution is equiv-
alent to tx happens before tx′ (i.e., re-ordering), so the seri-
alized order can be changed to · · · → tx→ ·· · → tx′ → ·· · .
Also note that tx in this case must have no WAR dependency
with any other transaction, so no dependency circle will be
generated in the same batch.

In all cases, the execution results of all the transactions
within each batch are equivalent to a certain serial order. It
is also trivial to see that every node proceeds based on the
same world state and consensus-provided information. So
their execution results should be equivalent,

Lemma 3. (With an improved strategy in Algorithm 3) The
execution results of each batch are equivalent to the same
serial order on every node.

Proof. With the proof of Lemma 2, we only need to discuss
the following three cases.
Case 1: Neither tx nor tx′ reads a new key that is (newly)
written by some transaction. In this case, both tx and tx′

are committed by following the serial order extracted from
DAG (Line 14 in Algorithm 3). Even if tx and tx′ newly
write the same key key′, there is no RAW-dependency be-
tween them, so their execution results are still equivalent to
the serial order.
Case 2: tx reads a new key key′ that is also (newly) written
by some transaction, while tx′ does not. In this case, tx′ gets
committed before tx (Line 14), while tx is executed again and
committed (Line 16). Even if tx′ also writes key′, tx can read
the update of key′ if necessary. Anyway, tx′ is executed before
tx in the serial order.
Case 3: both tx and tx′ read some new keys, say key′ and key′′,
that are also written by some transactions. In this case, both
tx and tx′ are executed (sequentially) again and committed.
Without loss of generality, tx is executed before tx′ in the
serial order.

With Lemma 1, every node re-executes the same set of
transactions sequentially. With Lemma 2, Lemma 3 and every
node executes batches one after another, the execution results
of all transactions are equivalent to the same serial order.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 811

	Introduction
	Background and Related Work
	System Model
	Smart Contracts
	Leader-Based vs. Leaderless Consensus
	Parallel Execution

	The Speculate-Order-Replay Framework
	Vegeta
	Speculation
	Replay
	Reducing Re-Execution Rate
	Further Discussion

	Implementation
	Evaluation
	Correctness Validation
	Single-Node Performance
	Multi-Node Performance
	Performance under Byzantine Faults

	Conclusion
	Correctness proof of Vegeta

