é} usenix
8 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

GREEN: Carbon-efficient Resource Scheduling
for Machine Learning Clusters

Kaigiang Xu and Decang Sun, iSING Lab, Hong Kong University of Science and
Technology; Han Tian, USTC; Junxue Zhang and Kai Chen, iSING Lab, Hong Kong
University of Science and Technology

https://www.usenix.org/conference/nsdi25/presentation/xu-kaigiang

This paper is included in the
Proceedings of the 22nd USENIX Symposium on
Networked Systems Design and Implementation.
April 28-30, 2025 - Philadelphia, PA, USA
978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ g ;EE,- . =y :,, e

GREEN: Carbon-efficient Resource Scheduling for Machine Learning Clusters

Kaigiang Xu!, Decang Sun!, Han Tian?, Junxue Zhangl, Kai Chen!
iSING Lab, Hong Kong University of Science and Technology *USTC

Abstract

This paper explores the problem of scheduling machine Learn-
ing (ML) jobs while also taking into account the reduction
of carbon emissions in the cluster. Traditional cluster sched-
ulers for ML jobs mainly focus on optimizing job completion
time (JCT), but do not consider the environmental impact of
their decisions, resulting in a suboptimal carbon footprint.
To address this issue, we propose GREEN, an ML cluster
scheduler that is both time-efficient and carbon-efficient. At
its core, GREEN uses a unique carbon-aware scheduling al-
gorithm that reduces carbon footprint with minimized impact
on JCT. Additionally, it leverages the temporal flexibility of
ML jobs to reduce carbon emissions by shifting workloads
to less carbon-intensive times, while still maintaining overall
daily capacity. Our experiments using real ML jobs workload
demonstrate that GREEN can achieve up to 41.2% reduc-
tion in cluster-wide carbon footprint and 12% reduction in
peak power consumption, while incurring 3.6%-5.9% time
efficiency tradeoff compared to existing methods.

1 Introduction

Machine Learning (ML) workloads currently constitute 8%
of the 54 GW global data center demand and are projected
to increase to 15-20% by 2028 [3]. Current production clus-
ters handle a large volume of ML jobs, supported by fast
parallel computing infrastructures using GPU devices. These
setups, termed ML-as-a-Service (MLaaS) clusters, enhance
utilization and reduce costs by allowing multiple users to
share resources [33]. Given the rising concern about AI’s en-
vironmental impact, there is a pressing need for a new cluster
resource management strategy to mitigate the environmental
footprint of ML processing, especially in the pursuit of global
carbon neutrality [1, 26].

Existing cluster resource schedulers for ML jobs primarily
focus on optimizing metrics related to job completion time
(JCT) for time efficiency. However, their optimization prac-
tices may result in inefficient energy usage [39]. For example,
schedulers like Pollux [20], Optimus [19], and Themis [14]
optimize throughput by dynamically adjusting GPU allocation
and job hyperparameters but neglect variations in jobs’ power
consumption during scaling and reconfiguration. Zeus [39]
balances the tradeoff between energy consumption and time
efficiency, but it lacks consideration for resource allocation
among multiple jobs with different energy characteristics.

More importantly, energy usage is not the only factor that
contributes to the carbon footprint. Carbon intensity, repre-
senting carbon emissions per unit of energy consumed, can
vary significantly over time [18] and considering this tempo-
ral variation is crucial in reducing the carbon footprint of ML
clusters [34]. ML training jobs often span days or weeks, dur-
ing which they are intermittently paused and resumed based
on their priority [33]. Therefore, these jobs have a level of tem-
poral flexibility — the timing of job execution can be shifted
as long as the total allocated resources are preserved within
a specified time frame (e.g., 24 hours). By exploiting this
flexibility, schedulers can align job power consumption with
carbon intensity fluctuations, effectively reducing the overall
carbon footprint. However, existing energy-aware optimiza-
tions [23, 39] overlooked carbon intensity and job flexibility’s
combined effect on cluster-wide environmental impact.

This paper presents GREEN, a novel carbon-efficient cluster
scheduler that aims to reduce the overall carbon footprint
of the cluster while achieving comparable time efficiency
performance to prior work. GREEN utilizes a carbon-aware
scheduling algorithm that balances the cluster-wide JCT and
carbon footprint by considering various carbon-related factors,
including the energy efficiency of each job, which derives from
how effectively energy usage contributes to a job’s training
progress. Additionally, the algorithms exploit the temporal
flexibility of ML jobs to reduce grid carbon emissions by
automatically shifting workloads to greener hours with lower
carbon intensity while still maintaining overall daily capacity.

GREEN makes carbon-aware decisions on scheduling
by taking into account carbon-related factors. Specifically,
GREEN employs a carbon tracker (§4) to monitor the energy
consumption and other runtime metrics of ML jobs through-
out their execution, and uses a factor model to compute the
energy efficiency (the change in energy usage as the job pro-
gresses) for each job and carbon footprint (the accumulated
carbon emissions based on energy usage).

GREEN proposes two optimizers (§5) for optimizing en-
ergy efficiency and reducing carbon footprint in ML clusters.
The Energy Efficiency Optimizer scales resources allocated to
jobs, taking into account the scalability demonstrated by the
amount of energy consumption for a job when scaling, while
the Carbon Footprint Optimizer dynamically rearranges job
priorities for peak load shifting, minimizing cluster-wide car-
bon emissions while ensuring fairness in resource allocation.

To enable the co-optimization of these two optimizers,
GREEN’s scheduling algorithm (§6) incorporates a Multi-

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 999

level Feedback Queue (MLFQ) mechanism. The upper queue,
guided by the Energy Efficiency Optimizer, emphasizes energy
efficiency by scaling out jobs that achieve greater progress
with lower energy consumption. The lower queue retains the
progress and decisions made in the upper queue and utilizes
the Carbon Footprint Optimizer to minimize the carbon foot-
print by relocating high-power-consuming jobs to "greener"
hours with lower carbon intensity.

GREEN optimizes cluster-wide carbon footprint but has
a non-goal: GREEN avoids altering job-level configura-
tions (e.g. model hyperparameters) as in some existing ML
schedulers [20, 39]. This design choice makes GREEN non-
intrusive to the user’s ML implementation and becomes or-
thogonal to optimization techniques that are provided in ML
frameworks at the single-job level, such as adaptive hyper-
parameters and learning rate decay, which would otherwise
conflict with job-level optimizations in cluster schedulers.

We evaluate GREEN using two types of workloads: (1) a
production ML cluster used by a research institution with
over 500 active academic users, and (2) a real-world machine
learning workload trace from Alibaba [33]. We compare the
performance of GREEN to state-of-the-art cluster schedulers
under these workloads, and report on time metrics including
JCT and makespan, as well as energy metrics including car-
bon footprint and peak power usage. Our results show that
GREEN achieves significant reductions in the cluster’s carbon
footprint (up to 41.2%) and peak power draw (up to 12%),
while maintaining comparable time efficiency to prior work,
with a tradeoff of 3.6%-5.9% in average JCT.

We summarize our contributions as follows:

* We present a factor model to calculate carbon-related met-
rics and factors, including Carbon Intensity Curve (CIC),
carbon footprint, and energy efficiency, providing impor-
tant signals to the scheduler.

* We propose a carbon-efficient scheduler that scales out jobs
while ensuring energy efficiency, and moves high-power
jobs to greener hours to reduce carbon footprint without
compromising fairness in resource allocation.

* We implement and evaluate GREEN with the real workload
in a 32-node production cluster and the ML job trace from a
large-scale enterprise cloud, and results show that GREEN
can achieve up to 41.2% carbon footprint reduction, by
trading <5.9% in average JCT.

2 Background and Motivations

This section discusses related work on ML cluster schedulers
and energy-aware systems under a wider context.

2.1 ML Cluster Scheduling

A machine learning (ML) cluster is a shared environment
where multiple users can submit training jobs that compete
for limited resources. The cluster scheduler is responsible for

Schedulers E e Aware Agnonte

Gandiva / AntMan x x x x
Tiresias x X

Optimus v X x v

Pollux v x x X

Zeus x v x x

GREEN v v v v

Table 1: Characteristics of representative cluster schedulers.

managing job queues and allocating resources, with the goal
of optimizing performance metrics such as job completion
time (JCT) and resource utilization. This setup is commonly
referred to as Machine Learning-as-a-Service (MLaaS) [33].
Studies in ML job clusters explore optimization techniques
in different directions. We classify these works based on key
characteristics and present representative ones in Table 1.

@ Scale-Adaptive (or Elastic). Scale-adaptive schedulers
dynamically adjust resource allocation (i.e., number of GPUs)
for jobs based on their efficiency in speeding up tasks. Pol-
lux [20] assesses statistical efficiency in ML training, measur-
ing progress per unit of data processed. Optimus [19] builds
predictive models for job-specific system throughput to deter-
mine scalability.

In the energy-aware context, jobs have different energy
characteristics when scaling out, therefore, varying schedul-
ing decisions can lead to different outcomes in energy con-
sumption, affecting overall power consumption. This renders
some scheduling decisions less favorable than others in the
energy context. For instance, Pollux may prioritize scaling
out jobs with lower speedup potential, preventing stragglers
and enhancing average JCT. However, this approach directs
more resources to jobs with lower energy utilization.

Non-scale-adaptive schedulers overlook the scalability of
ML job performance under allocated resources. Tiresias [7]
and Gandiva [35], for instance, require users to set a fixed
number of GPUs throughout execution, limiting cluster-side
performance optimization possibilities.

2 Model-Agnostic. Some schedulers control model hyper-
parameters or require prior knowledge of a job (e.g., a specific
pattern). Pollux [20] dynamically adjusts DNN hyperparam-
eters (e.g., learning rate, per-GPU batch size) for improved
statistical efficiency. Gandiva [35] uses a time-slicing ap-
proach for a group of jobs running the same DNN model.
AntMan [36] uses a specialized framework for fine-grained
GPU-sharing. A recent work, GreenFlow [6], dynamically al-
locates GPUs and optimizes job-level configurations to reduce
average JCT under a carbon emission budget.

However, modifying job configurations introduces compat-
ibility and usability challenges. Key hyperparameters, such

1000 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

as per-GPU batch size and learning rate, are highly sensitive
in ML workloads and exhibits intricate behaviors, especially
in modern model architecture such as transformer-based mod-
els. Enforcing control over these hyperparameters not only
requires additional engineering overhead on users to integrate
with external schedulers but also conflicts with model-level
optimizations in ML frameworks. Similar concerns have been
highlighted in recent scheduler research [11].

(@ Energy-Aware. GPU power consumption, which varies
with utilization, is a key driver of ML models’ overall energy
usage. For instance, an NVIDIA H100 GPU consumes be-
tween 150W at low utilization and over 700W at peak load.
Optimizing job energy efficiency thus requires accounting for
GPU utilization. Zeus [39] optimizes the trade-off between
energy consumption and time efficiency for individual jobs
but does not address cluster-wide resource allocation across
jobs with varying energy profiles. Meanwhile, prior research
on energy-aware optimizations primarily targets generic work-
loads without leveraging ML-specific characteristics and re-
quirements, as discussed in §2.2.

Design Space of GREEN. GREEN embodies all three at-
tributes discussed above: scale-adaptive, model-agnostic, and
energy-aware. Specifically, GREEN achieves energy and time
efficiency comparable to prior work, without modifying job-
level settings such as model hyperparameters. This approach
preserves the non-intrusiveness of GREEN within the user’s
ML implementation and ensures GREEN’s compatibility with
both existing and future job-level optimization techniques in
ML frameworks (as discussed in §9).

2.2 Carbon-aware Resource Scheduling

When addressing carbon-aware scheduling, it is important
to recognize that reducing energy consumption may not be
the sole goal. In optimizing for a lower carbon footprint, the
focus shifts to carbon intensity, which measures emissions
per kWh of power consumption.

Carbon Intensity (kgCO,/kWh) signifies carbon emission
per kilowatt-hour of electricity. It can be publicly obtained
from public sources as a grid characteristic. Figure 1 il-
lustrates hourly carbon intensity averages using data from
UK [18], revealing daily variation.

The conceptual model below calculates carbon footprint.

FOOTPRINT ;e = /Power;ws, X Carbon Intensity dTime

The model tracks device power and then integrates the prod-
uct of power and carbon intensity over time. This integral is
essential as both power and carbon intensity are time-varying.

An intuition is that during low carbon intensity time, more
optimal scheduling decisions might be possible by moving
high-power jobs to these lower periods. Certain ML training
jobs exhibit flexibility for this time-shifting. This is because
ML model training can span over weeks, or even months for

gCO,/kWh — California, US — New South Wales, AU
3001
200)/ WA AN AN
1004

0

600+
400
200

0 48 96 144 192 240 288 336

Hours (h)

Figure 1: Daily pattern of historical carbon intensity, using
data from August 2023 [16]. The carbon intensity of energy
supplied by the electric grid depends on the energy sources.

large models, during which they are intermittently paused and
resumed based on their scheduling priority [33]. The timing
of job execution can be shifted as long as the total allocated
resources are preserved within a specified time frame (e.g.,
24 hours). By exploiting this flexibility, schedulers can align
job power consumption with carbon intensity fluctuations,
effectively reducing the overall carbon footprint.

Next, we briefly discuss existing work in carbon-aware
scheduling, focusing on the limitations of these approaches
in the ML cluster context.

Power and Resource Throttling. Google’s CICS [23] im-
poses a limit on cluster capacity during periods of high carbon
intensity. Some approaches [6, 39] utilize Dynamic Voltage
and Frequency Scaling (DVFES) to enforce GPU power limits,
which directly caps energy usage. However, these methods
reduce energy consumption essentially by scaling back the
work performed. In the MLaaS context, where ML clusters
often operate at high occupancy, imposing power or resource
limits reduce cluster capacity, leading to a negative impact on
overall job completion time (JCT).

Lack of Capacity Constraints. EcoVisor [28] and Wait-
AWhile [34] use scheduling strategies that do not account
for resource competition between jobs. CarbonScaler [8] re-
quires a user-specified job deadline and can scale jobs using
unlimited, on-demand cloud resources to meet the deadline.
GAIA [9] focuses on cloud environments with on-demand
resources, aiming to balance carbon footprint, time perfor-
mance, and resource cost. In contrast, the MLaaS setting in-
volves static cluster resources, leading to competition between
jobs. In this context, the scheduler must make dynamic deci-
sions on resource allocation while adhering to the cluster’s
resource constraints.

In summary, we observe that prior approaches to carbon-
aware scheduling often overlook resource constraints, ei-
ther throttling jobs during periods of high carbon inten-
sity—Ileaving resources underutilized—or elastically scaling
jobs with unconstrained on-demand capacity, disregarding
resource limitations. Meanwhile, some systems require ad-
ditional user input, such as predefined job deadlines [8] or

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1001

carbon budgets [6], which are often difficult for ML work-
loads due to their unpredictable execution characteristics.

To bridge this gap, we propose GREEN, a resource sched-
uler for ML jobs that operates strictly within available re-
source capacity. GREEN exploits characteristics of ML work-
loads to monitoring and reduce the cluster-wide carbon foot-
print while preserving time efficiency.

2.3 Motivation and Challenges

We consider the opportunities missed by existing job sched-
ulers to reduce cluster-wide carbon footprint.

Motivation 1: Available resources are not allocated in a
way that optimizes energy utilization. Prior ML cluster
schedulers focuses on JCT optimization without addressing
cluster-wide energy efficiency. As discussed in §2.2, these
approaches are either energy-unaware [7, 14, 20] or empha-
size at the single-job level [39]. Consequently, they do not
effectively optimize for clusters where jobs’ energy charac-
teristics vary and resource allocation impacts cluster-wide
energy consumption.

Opportunity: The cluster scheduler should determine the
appropriate level of resources to allocate to a job, taking into
account its scalability in both speed and energy consumption.

Motivation 2: Temporal flexibility of workload is not ex-
ploited to reduce carbon footprint. As ML models may
take days or weeks to train, ML jobs are generally not sensi-
tive to minor variations in progress during the process. This
indicates that they have a certain degree of temporal flexi-
bility. While we also observe the fact that carbon intensity
(described in §2.2) varies substantially over time of day, we
can exploit the temporal elasticity to consume energy when
the electricity grid is less carbon-intensive.

Opportunity: The cluster scheduler should apply temporal
shifting to flexible workloads, moving up or delaying them to
"greener" hours with lower carbon intensity.

Challenges: The key challenge lies in making carbon-aware
scheduling decisions without introducing significant perfor-
mance degradation. To achieve this, the scheduler must:

* Preserve cluster efficiency: New scheduling and scaling
mechanisms must maintain overall cluster efficiency, en-
suring job execution speed remains comparable to state-of-
the-art schedulers.

* Ensure resource fairness in temporal shifting: When shift-
ing flexible workloads temporally, the total resource alloca-
tion over a given period (e.g., 24 hours) must be preserved
to prevent job starvation.

3 GREEN Overview

GREEN is a GPU cluster scheduler designed to minimize the
carbon footprint of ML job execution, while preserving time
efficiency on par with existing ML job schedulers.

GPU Cluster
ageeesescnn
aseeesdcn0n
aseeee00

(" User Program - DL Job N
/" EnergyEfficiency
Optimizer

/" Carbon Footprint

Optimizer MLFQ Scheduler

Carbon Tracker

@ optimizers » Control Flow ——» Data Flow
Figure 2: An overview of GREEN’s system components
and workflow

Workflow. As depicted in Figure 2, GREEN processes user-
submitted jobs and allocates resources across them. Being
model-agnostic, GREEN makes no assumptions of user im-
plementation under specific frameworks. Similar to existing
ML cluster schedulers [7, 20, 29] in the MLaaS setting [33],
GREEN optimizes cluster-wide metrics without providing
direct SLO or deadline guarantees for individual jobs.

Carbon Tracker (§4). Carbon tracker is the essential compo-
nent for profiling. It makes GREEN carbon-aware by monitor-
ing factors including per-job energy consumption throughout
ML job execution as well as estimating the carbon footprint
using the carbon-intensity model. These factors serve as im-
portant inputs for GREEN’s carbon-related optimizers and
scheduling algorithm described below.

Optimizers (§5). We propose two optimizers employed in
GREEN: (1) the Energy Efficiency Optimizer, which allocates
resources to jobs in a way that maximizes energy efficiency in
the cluster, taking into account per-GPU energy-to-progress
efficiency, and (2) the Carbon Efficiency Optimizer, which
minimizes the cluster-wide carbon footprint by dynamically
adjusting job priorities for peak load shifting.

MLFQ Scheduler (§6). The scheduling algorithm utilized
by GREEN resembles a Multilevel Feedback Queue (MLFQ),
allowing for different scheduling strategies based on vary-
ing job states. Two scheduling queues are managed by the
aforementioned optimizers, in a synergistic manner: the up-
per queue emphasizes energy efficiency by scaling out jobs
that achieve greater progress with lower energy consumption,
while the lower queue maintains the scaling decision from
the upper queue and minimizes the carbon footprint by shift-
ing high-power-consuming jobs to greener hours with lower
carbon intensity.

4 Carbon Tracker

GREEN is carbon-aware as it monitors per-job energy con-
sumption throughout the execution of an ML job, and esti-
mates carbon footprint using a carbon-intensity model.

4.1 Modeling Power Draw

The job’s power draw Pj,,, at time ¢ can be estimated with:

Pjob (t) = ngu (t) + Pcpu_model (t) + Pstalic

1002 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

gC0O2/kWh
220

poo L /’_‘\/’\
up to 50% difference \

160 \

140 =™

180

o 6 12 18 24
Time of Day (h)

Figure 3: Carbon Intensity Curve (CIC): plotted with average
carbon intensity values for each hour of the day in a 3-month
period [18]. Y-axis is not zero-based.

We use NVML (NVIDIA Management Library) to read the
power draw of GPUs Py, in real-time. For CPU power con-
sumption, we employ the model [22] to estimate power con-
sumption Py, in kW from CPU usage. Additionally, to factor
in other devices like DRAM and motherboard, which are
less influenced by their load, we use a static value Psyatic tO
represent their power draw.

For the actual calculation, we discretized the equation into
a step function with 30-second intervals to minimize mea-
surement overhead. Notably, NVML power readings may not
always be accurate [38], but our method remains adaptable to
any measurement source, including external power meters for
direct hardware power assessment.

4.2 Estimating Carbon Footprint

Carbon Footprint refers to the cumulative amount of carbon
emissions generated since the start of a job. These emis-
sions are measured in units of kilograms of carbon diox-
ide (kgCO»).

Carbon Intensity. We introduce the Carbon Intensity Curve
(CIC) as our carbon intensity model (Figure 3).

T
FOOTPRINT;op(T) :/ Pjou() - CIC(t)dt
0

The equation above defines the carbon footprint. By calcu-
lating the integral of P;,, - CIC over time ¢, the result reflects
both power consumption and carbon intensity over time.

Carbon intensity data is publicly accessible online in many
regions [16, 31]. In our implementation, we make use of his-
torical carbon intensity data, as it usually exhibits consistent
daily pattern over a period of time. GREEN’s carbon foot-
print optimizer can adapt to any pattern of CIC (§5.2), and
recent work [28] proposes a software-based energy system to
retrieve energy usage and carbon intensity in real-time.

5 GREEN Optimizers

This section introduces two optimizers in GREEN’s schedul-
ing algorithm: Energy Efficiency Optimizer (§5.1) allocates
resources to jobs to maximize energy efficiency, taking into
account the scalability of per-GPU energy-to-progress effi-
ciency. Carbon Footprint Optimizer (§5.2) reduces the cluster-
wide carbon footprint by dynamically adjusting job priorities
to shift peak loads to greener hours.

5.1 Energy Efficiency Optimizer

The objective of GREEN’s Energy Efficiency Optimizer is
to determine the appropriate level of resources to allocate
to a given job, maximizing energy efficiency in the cluster.
This objective is motivated by the observation that a job’s
scalability measured in energy efficiency may differ from its
performance scalability (e.g., training throughput), leading to
suboptimal cluster-wide energy efficiency.

Definition. To quantify energy efficiency, we formulate it
as the derivative of job progress Progress;o, with respect to
total accumulated energy usage Wy, as shown in Equation 1.

dProgress;o(t)
EFFICIENCY;op (1) = ———3237 (1)
J b() deob(l)

This formulation enables the scheduling algorithm to lever-
age two key pieces of information:

 Jobs with higher energy efficiency are able to make more
progress with the same power consumption when compared
to jobs with lower energy efficiency.

* By allocating more computing resources to a job, GREEN
can observe changes in energy efficiency and learn about
the job’s scalability. Ideally, there would be no decrease in
energy efficiency when scaling out a job.

The unit of energy efficiency is not important, as long as it
can be considered as a unit of work done over a unit of power
consumption. This is because our focus is on observing its
relative change ratio during the job’s execution, and the unit
cancels out in the calculation.

Calculation of Energy Efficiency. In Equation 1, energy
efficiency is defined as a function of time, and to obtain this
function for an actual job run, GREEN needs to approximate it
using runtime data. There are two built-in methods for GREEN
to measure the progress of a job, depending on whether the
progress of a job can be directly obtained during its runtime.

If job progress is available, GREEN calculates the effi-
ciency function by sampling progress for a duration of time
as defined in Equation 2.

EFFICIENCY jon(1) Progress;o(t) — Progress;on(t —At)
Wion(t) —Wion(t — A1)

@

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1003

=0~ Degradation Factor

104 == Sampled En:ergy Efficiency

;
;
;
0.5 1
;
'

0 E Resource Scaled 0
0 50 100 150 1 2 3 4 5 6
Time # of GPUs
(a) Energy Efficiency (b) Degradation Factor

Figure 4: An example of energy efficiency calculation. Left:
Energy efficiency data sampled before and after resource scal-
ing, with the unit being % of progress per kWh. Right: Degra-
dation factor over the number of GPUs, obtained by averaging
efficiency data per GPU.

The variable A ¢ represents the time elapsed since the most
recent job scaling event. GREEN tracks job progress by record-
ing the number of completed epochs and finding the ratio of
completed epochs to the total epochs. This method works
well because ML training repeats in rounds and each training
epoch takes roughly the same amount of time.

If job progress cannot be directly obtained, such as
when training large models with long epoch time, GREEN
can approximate progress using the job’s training through-
put T hroughput;ep, i.¢., the number of data samples trained
over a duration of time, as shown in Equation 3.

YEMT hroughput ;o ()
EFFICIENCY jop () = —=" ghputson(t) 3)
Wion (1) —Wyon(t — A1)

When progress measurements are not available, the for-
mula represents an absolute value of the progress made (i.e.,
throughput) during that duration of time.

Figure 4a shows an example of the energy efficiency col-
lected before and after one scaling event.

We make note that retrieving job throughput is a common
practice in today’s cluster schedulers [20, 39], in practice, it
often just requires a simple log print by the job.

Job Scaling with Energy Efficiency. Dynamic job scaling
plays a crucial role in enhancing the performance of ML clus-
ter JCT [20]. GREEN employs the energy efficiency metric,
as defined earlier, to make scaling decisions.

For each job that is prepared to run, it commences with
one GPU (or the minimum number of GPUs necessary for the
job). We introduce an efficiency degradation factor, which rep-
resents the proportion of per-GPU energy efficiency decline
relative to the initial job energy efficiency:

_ EFFICIENCYjob(t)
~ EFFICIENCYjop(to)

DEGRADATION;qp(t) 4

where EFFICIENCY_job(t,) represents the job’s energy effi-
ciency with the minimum GPU required, which is profiled at
the beginning time (%) of the job’s execution.

In subsequent scheduling rounds, the job will receive an ad-
ditional GPU fif its efficiency degradation factor remains above
a threshold 7. For instance, with 7y at 0.9, it means that the
job’s energy efficiency must not decrease by more than 10%
to be eligible for scaling out. The value of y is dynamically
adjusted according to both the cluster-wide occupancy rate
and job characteristics to prevent over- or under-allocation of
resources. Additionally, A maximum resource cap prevents
well-scaled jobs from taking up all GPU resources. More
details about GREEN’s adaptive strategy can be found in §6.4.

Figure 4b demonstrates an example of the change in energy
efficiency during scaling. The unit of energy efficiency can-
cels out, as we only use its relative change in percentage as a
scheduling factor during job execution. This scaling approach
reduces the cluster’s carbon footprint by allocating more re-
sources to jobs that efficiently utilize energy for progress.

Relation with Single-job Optimizations. The design of the
Energy Efficiency Optimizer is orthogonal to previous op-
timizations on the job-level. GREEN optimizes the energy
efficiency with resource allocation strategies, while earlier
work such as [39] takes resource allocation as an input, and
investigates job-level parallelization and configurations to op-
timize efficiency. These optimizations can be combined and
utilized together to enhance overall energy efficiency.

5.2 Carbon Footprint Optimizer

The Carbon Footprint Optimizer in GREEN aims to reduce
the cluster-wide carbon footprint through peak load shifting.
This is achieved by dynamically adjusting job priorities in
scheduling.

The job priority is calculated as a combination of two fac-
tors, namely the Carbon Factor and the Shifting Factor, with
higher priority values indicating lower scheduling priorities.

FOOTPRINT;qp

PRIORITYjop = (—o
DEGRADATION

)-SHIFTINGjor (5)
An input ¢, denoting the system time, exists for all factors
defined above and is omitted for readability.

Carbon Factor. The carbon factor is calculated by di-
viding a job’s accumulated carbon footprint, denoted as
FOOTPRINT ., (§4), by its energy efficiency degradation fac-
tor represented by DEGRADATION ,, (Equation 4).

The Carbon Factor serves as the foundation for job priority
and exhibits two essential properties:

(1) It tracks the carbon emissions produced during a job’s
execution, similar to the Least-Attained-Service (LAS) algo-
rithm, while taking environmental impact into account. This
factor helps achieve fair resource allocation among all jobs.

(2) It penalizes jobs with poor energy efficiency by dividing
their carbon footprint by the degradation factor. This method
enables energy-efficient jobs that are scaled out by the Energy
Efficiency optimizer to complete earlier, thereby enhancing
overall JCT. It also helps to avoid the unnecessary occupation
of the cluster’s computing resources.

1004 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

6 n=3
SHIFTING gy if Pjop < P if Pjop > P “‘7— M
4 _ — —
ifcic, <1 Ply, 1/Pi o, / e
- N G I
ifCIC, >1 1/Pj, Ply A
m []

(a) Function for Shifting Factor
(b) P;‘ b Example

Figure 5: Left: Piecewise function for calculating Shifting
Factor. Right: Pjop (bar) and P;‘ob when u = 2 (yellow dots)
or u = 3 (red dots).

Cluster
Power Usage

, Median
Average high-power jobs T
Intensity | crc <1
< pavanplann
Pyl

GPU Power
..........
Carbon -

Intensity \ Green Hour
Curve Boundary

v

Time

Figure 6: High-power jobs have higher priority when carbon
intensity is below I, and are assigned a small shift factor
according to Table 5a to be scheduled earlier. The curve
shown in figure is pre-shifting.

Shifting Factor. Temporal job shifting follows a heuristic that
favors delaying high-power consumption jobs to "greener"
hours with low carbon intensity and prioritizing low-power-
consumption jobs during high-carbon-intensity periods.

The core idea behind the shift factor calculation is to ad-
just job priorities based on the current carbon intensity level
relative to the daily values and the job’s power consumption
level relative to all unfinished jobs.

A piecewise function is employed, as outlined in Figure 5a,
to achieve this using Pand] as boundary values, dividing the
shifting factor calculation into four quadrants:

1) Average carbon intensity, denoted by I, is calculated
using historical carbon intensity data, the hours with carbon
intensity lower than I are considered to be greener hours.

2) Median GPU power consumption, denoted by ﬁ is ob-
tained by finding the median GPU power draw over all pro-
filed or running jobs. The jobs with GPU power draw higher
than P are considered to be high-power jobs.

The piecewise function for calculating shifting factors
rescales the job’s power consumption Pjqy to [1,4], denoted
as Pjy, as defined below:

p* (Pjob_Pmin)

o = (3 _P.>><(‘u—1)+1 (6)

The parameter u (> 1) controls the scale of P}, (example
shown in Figure 5b) and hence the degree of temporal shifting,
with larger values causing more job shifting. When u = 1,

temporal shifting is essentially disabled, as the shifting factor
is always scaled to 1. Evaluations show that u = 2 effectively
balances the two factors to achieve both time and carbon
efficiency (see sensitivity experiments in §A.2).

Figure 6 depicts an example usage of the piecewise func-
tion: when the current carbon intensity is lower than I, the
high-power jobs are assigned with a small shifting factor ac-
cording to Figure 5a, resulting in higher job priority.

The optimizer can adapt to any pattern of carbon intensity
changes, as it dynamically calculates the boundary values [
and P based on given CIC and job power consumption.

Impact on Cluster-wide and Individual JCT. Deferring
high-power tasks does not necessarily lead to a delay in the
cluster-wide job completion time (JCT). This is because the
scheduler swaps the daily computation resources assigned to
high-power and low-power jobs in the temporal dimension but
preserves daily capacity for a job. Analysis in §6.4 detailed
the discussion about how GREEN avoids starvation for both
long and short jobs. Meanwhile, our evaluation in §8.2.2 also
provides empirical evidence to support the statement.

6 Putting It Together: MLFQ Scheduling

GREEN’s scheduling algorithm resembles a Multilevel Feed-
back Queue (MLFQ), which employs different scheduling
strategies based on job states (Figure 7).

6.1 Upper Queue: Online Profiling and Scaling

The upper queue utilizes the Energy Efficiency (EE) Opti-
mizer (§5.1) to determine the scale of computing resources
allocated to each job, ensuring that jobs with higher energy ef-
ficiency receive a greater share of energy. The logic is shown
in Algorithm [lines 3-11.

Upon submission to the cluster, new jobs are placed at the
end of the upper queue and profiled for potential scaling.

When a job is initially submitted for execution, it starts with
a single GPU (or the minimum number of GPUs necessary
for the job). Repeatedly for each scheduling round, GREEN
iterates through the queue in the first-come-first-serve (FCES)
order, and evaluates the energy efficiency degradation factor
to determine a job’s eligibility for further scaling (lines 4-7).
When there are multiple jobs in this queue, the additional unit
of computing resources is allocated to them in FCFS order
until the cluster reaches its maximum capacity (lines 7-8).

Queue Transition. The job will not leave the upper queue
as long as it is still eligible for scaling. Jobs transition to the
lower queue once the EE optimizer has completed the scaling
process. Transitioning between queues does not necessarily
interrupt the job’s execution, as it may remain eligible to run
based on the priority assigned in the lower queue.

6.2 Lower Queue: Peak Load Shifting

The lower queue employs the Carbon Footprint (CF) Op-
timizer (§5.2) to conduct peak load shifting by relocating

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1005

3xGPU 5 GPU Profiling and scale resource allocation
Job 2 Job 4 R . .
Goal: Optimize energy effiency

X 4xGPU Upper Queue
(JobzZGPU Job3 J pper Q

Lower Queue
(ﬁ shift >ﬂ] Shift high-power jobs to greener time
> Goal: Optimize cluster carbon footprint

»

Figure 7: MLFQ enables two optimizers to work together.
The upper queue determines the job’s spatial placement (num-
ber of GPUs), while the lower queue decides the temporal
aspect (time to run) to achieve different optimization goals.

energy-intensive jobs to greener hours with lower carbon in-
tensity, thus reducing the cluster-wide carbon footprint. The
core scheduling logic is shown in Algorithm 1 lines 12-17.

The lower queue determines job priorities using the CF
optimizer, while inheriting resource scaling decisions from
the upper queue. Partial execution from online profiling, is
considered part of the running time, and the work completed
during this phase is retained as part of the job progress.

In the lower queue, GREEN calculates each job’s priority
based on two factors (§5.2): the carbon factor, which considers
job energy consumption while ensuring fairness in resource
allocation, and the shifting factor, which moves high-energy-
consuming jobs to hours with lower carbon intensity. GREEN
sorts jobs by their priorities and schedules them for execution
in descending order.

6.3 Scheduler Workflow

The scheduling workflow consists of both active and passive
components.

Active scheduling, shown in Algorithm 1, operates in
rounds to assign job priorities and preempt lower-priority
jobs. It ranks jobs for immediate execution at the top (trigger-
ing preemption), followed by jobs in the FCFS upper queue,
and then those in the lower queue ordered by the priorities
calculated (line 12).

To limit excessive preemption, the interval between active
scheduling, known as the time quantum, is set to 30 minutes.
Our findings in §A.2 show that this interval length does not
significantly influence overall outcomes, as long as it is not
excessively short.

Passive scheduling comes into effect in the intervals be-
tween active scheduling rounds. During these periods, when a
job finishes and releases resources, the scheduler deploys the
passive strategy to avoid idling. This passive strategy starts
the next job based on its rank in the latest active scheduling
without recalculating priorities or triggering preemptions.

Job SLO and Preemptions. Similar to existing cluster
schedulers [7, 20, 29] used in MLaaS environments [33],
GREEN prioritizes global cluster efficiency rather than provid-
ing strict Service Level Objectives (SLOs) or deadline guar-
antees for individual jobs. GREEN assumes all jobs are pre-
emptible, which may not align with workloads requiring strict

Algorithm 1: Carbon-efficient MLFQ Scheduling
Input:
* Jobs in Upper and Lower Queuve: Jy, Iz € J

¢ Cluster Capacity and Upper Queue Cap: C and 6
¢ Current Timestamp: ¢
1 begin
Allocation A = {}
for Job J € Jy; ordered by DEGRADATION; do
if DEGRADATION; = AEFFICIENCY; > vy then
Scale out J with one more GPU
A=AUJ
if Capacity(A) > 0 x C then
‘ break
else
‘ Remove J from 7, and add to 7.

e 0 NS R W N

-
=]

end

_ FOOTPRINT

for Job J € J ordered by PRIORITY; do
A=AUJ
if Capacity(A) > C then
‘ break
end
Signal jobs VJ € J /A for preemption
Allocate GPUs for VJ € A

e e O . S
C % N o R W N e

20 end

execution guarantees. In real-world deployments, GREEN’s
scheduling policy may be overridden to prevent preemptions
for jobs with specific requirements.

6.4 Starvation Avoidance

Starvation Avoidance for Short Jobs. In the upper queue,
where job scaling occurs, as a job progresses and could poten-
tially be complete, it implicitly favors jobs with lower GPU
consumption. This approximates the short-job-first (SJF) strat-
egy, improving average JCT and avoiding starvation of shorter
jobs. The scaling process in the upper queue also eliminates
the need for a separate profiling stage. In the lower queue,
the carbon footprint-based factor has an LAS-like behavior,
which deprioritizes and preempts longer-running jobs over
time, making room for shorter jobs. In §8.2.2, we quantitively
evaluate the impact on cluster-wide and individual JCTs.

Starvation Avoidance for Long Jobs. To prevent starvation
of longer jobs during peaks of new job submissions (when
new jobs enter the upper queue and gain priority over existing
long jobs in the lower queue.), a knob for the capacity cap is
enforced in the upper queue. Default of 30%, this cap limits
the total cluster capacity available to jobs in the upper queue.
Upon reaching this cap, the scheduler prioritizes the jobs by
their degradation factors, skips the remaining upper queue
and considers the lower queue (Line 3-11 in Algorithm [).

1006 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

7 Implementation

We implement GREEN with Slurm [25]. Slurm is an open-
source job cluster management system widely used to manage
computing clusters. See Appendix B for our open-source plan.

Scheduler Implementation. GREEN’s scheduler workflow
is implemented as a Slurm scheduler plugin that supports
custom policies to set job priorities in Slurm’s job queue. The
scheduler plugin communicates with an external daemon pro-
cess, which stores CIC data, collects job energy statistics from
profiler agents running on each compute node, and returns
scheduling decisions to the scheduler plugin.

Energy-efficient Job Termination. We adopt the popular
checkpoint-restart methods [20] for job scaling and preemp-
tion. However, the method may lose intermediate results since
the last checkpoint, wasting computational resources. GREEN
sends a SIGTERM signal with a 120-second grace period to
ML jobs upon termination, allowing jobs to save a checkpoint
after completing the current iteration and exit gracefully. The
time for checkpointing and subsequent restart is recorded as
part of the job’s execution time.

8 Evaluation

We evaluated GREEN using time and energy metrics, compar-
ing them against five baseline schedulers under a real-world
ML workload and a trace-driven simulation workload.

8.1 Experimental Setup

Testbed. Our testbed cluster consists of 32 compute nodes.
Each node is equipped with 2 Nvidia RTX 3090 GPUs, 20
CPU cores, and 64GB RAM, interconnected with the Mel-
lanox ConnectX5 NIC. The nodes are managed by Docker,
and all run on 64-bit Ubuntu 18.04 with CUDA v11.1.

Baseline Schedulers. We compare GREEN to 5 schedulers,
representing the state-of-the-art in their respective categories,
as introduced in §2. For schedulers that are not scale-adaptive,
we preset each job’s GPU allocation to the point where
GREEN achieves the best energy efficiency.

1) Tiresias [7]. Tiresias adopts
Service (LAS) scheduling for ML clusters.

2) GAIA’s Carbon-Time [9]. GAIA’s Carbon-Time policy
schedules jobs to start at times that minimize carbon emis-
sions, allowing a maximum delay specified by parameter W.
We set W to 12 hours, as suggested by the original paper.

3) EcoVisor [28]. EcoVisor enforces carbon-aware poli-
cies for jobs. We extend and implement its policy: jobs are
queued in arrival order if the carbon intensity is higher than
the threshold (set 10th percentile of the CIC in use).

4) Pollux [20]. Pollux is the state-of-the-art ML scheduler,
jointly optimizing job hyperparameters and cluster resource al-
location. Pollux is not model-agnostic and not energy-aware.

5) Zeus [39]. Zeus adjusts model hyperparameters and GPU
power limits for individual jobs. We use Tiresias to allocate

Least-Attained-

resources across jobs in our evaluation.

ML Workload. We collected 791 jobs from real users over
a 24-hour period on a university-managed production clus-
ter [32], containing self-contained job packages (code, data,
configs). We replayed these jobs in our testbed following their
original submission timeline. Our evaluation, with 791 jobs,
is about 5 times larger than prior work (e.g., Pollux with 160
jobs [20]). The training duration of each job ranged from 1
minute to 37 hours (detailed in Table 2) and involved large ML
models for tasks such as image classification (ResNet-50 [10],
ShuffleNet [41]), speech recognition (DeepSpeech2 [2]), and
natural language processing (BERT [5], GPT-2 [21]).

Pollux and Zeus are not model-agnostic and require job-
specific configurations. Since user-submitted jobs may have
incompatible implementations, we invested 100 man-hours
to manually adjust them. Over 55% of the 791 jobs had unre-
solvable issues, such as unsupported learning rate scalers or
gradient optimizers, while about 25% were excluded due to
non-standard ML model implementations. Ultimately, we ad-
justed 150 jobs for non-model-agnostic evaluations (§8.2.3).

JCT Measurements. Typical ML cluster schedulers (as seen
in baseline schedulers) operate in multi-tenant ML clusters
where users submit jobs that run independently without dead-
line constraints. This workflow is also known as MLaaS [33].
The cluster scheduler allocates resources to optimize cluster-
wide metrics like average JCT. In our testbed evaluation, we
replayed jobs on their original timeline and calculated indi-
vidual JCTs as the time from submission to completion —
including queueing and preemption, with each job’s running
time determined by its user program.

Carbon Footprint Estimation. We tracked energy consump-
tion to estimate emissions (details in §4), following a cal-
culation method consistent with existing carbon-aware sys-
tems [8, 23, 28, 34]. In our evaluation, we used historical
hourly carbon intensity data from Electricity Maps [16] for
August 2023 across four regions: California, USA; the United
Kingdom; Sweden; and Poland. These regions represent di-
verse combinations of carbon intensity and variability. Fig-
ure § presents the 24-hour carbon intensity patterns for each
region in their respective subfigures with dotted red lines.

GREEN’s scheduling algorithm (§5) dynamically computes
boundary values for job shifting based on a given Carbon
Intensity Curve (CIC). In our evaluation, we provide a 48-hour
CIC to GREEN, representing typical carbon intensity patterns.
For the year-long simulator experiments, a new 24-hour CIC
is provided for every 24 hours to GREEN using consecutive
historical data in 2023 to evaluate GREEN’s adaptability to
long-term, seasonal changes in carbon intensity.

8.2 Testbed Experiments

GREEN reduces the cluster-wide carbon footprint by up to
41.2%, with a trade-off of up to 3.6%-5.9% in average JCT
and 5.1%-7.1% in tail JCT under a real ML workload when

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1007

X gCOzeq/kWh X

207 @ AavgicT @ TailicT @ Carbon

GREEN GREENs Tiresias EcoVisor GAIA GREEN GREEN,s Tiresias EcoVisor GAIA

(b) California, USA

(a) United Kingdom

gCO%eq/kWh
@ AvgdcT @ TaildcT (@ Carbon [300

gCO%eq/kWI X

gCO%eq/kWh
@ carbon 20 20 800

@ Avgict @ Taitact @ Carbon

@ Avgict @ TailacT

A,

GREEN GREENs Tiresias EcoVisor GAIA

(c) Sweden

GREEN GREEN,s Tiresias EcoVisor GAIA

(d) Poland

Figure 8: Cluster-wide carbon footprint and JCT were evaluated across four regions with different carbon intensity profiles. The
dotted red line shows the 24-hour carbon intensity pattern (right axis). The results are shown as ratios to GREEN (left axis).

compared to state-of-the-art cluster schedulers.

8.2.1 Cluster-wide Carbon Footprint

Figure 8 shows that GREEN reduces the cluster-wide car-
bon footprint by up to 41.2% (32.2% on average across 4
regions). When evaluating GREEN without job shifting over
time (shown as GREEN,,s, meaning "no shifting’), it achieves
an average carbon reduction of 21% across the four regions.

Performance variations across regions. Regions with high
variability in carbon intensity see more significant carbon
footprint reductions due to job shifting during greener hours,
such as the UK and Sweden (Figure 8a and 8c). As GREEN
makes dynamic adjustments of the shifting threshold based on
the carbon intensity profile, the average carbon intensity does
not substantially affect the reduction percentage. However,
we make a note that while the reduction percentage can be sig-
nificant (over 30%), the absolute carbon footprint reduction
may be minimal in areas like Sweden, where carbon intensity
is comparatively low (less than 1% relative to other regions).
In such cases, job shifting might introduce unnecessary over-
head. These practical considerations are also noticed in recent
literature [9, 30] and are further discussed in §9.

Carbon Footprint and Power Consumption. By monitoring
energy efficiency during job scaling, GREEN avoids allocat-
ing additional resources to jobs with low energy efficiency.
Figure 9a demonstrates the carbon footprint curve of GREEN,
showing how the growth rate during high carbon intensity
hours is lower than the other baselines. Figure 9b shows that
GREEN reduces the cluster-wide power consumption. Under
the UK CIC trace, GREEN achieves a 12% peak power re-
duction (from 28kW to 24.5kW) and a 25% decrease in total
energy consumption (from 966kWh to 725kWh). This result
shows another benefit of GREEN: physical clusters are typi-
cally designed and billed based on peak demand, and lower
peak power usage reduces the required power capacity.

Comparison with Carbon-aware Baselines. GREEN outper-
forms GAIA and EcoVisor by 25.2% in average JCT across
4 regions. GAIA and EcoVisor delay job starts until the esti-
mated carbon footprint is lower, often leaving resources idle
during high carbon intensity periods. In contrast, GREEN
dynamically calculates the job shifting threshold and priori-
tizes lower-power jobs during high-intensity periods, reducing

CIC (UK) — Tiresias GREEN — GREEN CIC (UK) — Tiresias
kg gC05eq/kWh kw

GREEN — GREENg

COeq/kWh
8L02¢eq 200

10 20 30 40 0 10 20 30)
Hours of Progress (h) Hours of Progress (h)

200 30

iy
o
S

25

150
20

o
=]

15 100

Cluster Power

104

Cluster Carbon Footpint

o

50

o

(a) Cluster-wide carbon footprint (b) Cluster-wide power draw

Figure 9: Cluster-wide carbon emission accumulation and
power draw over the evaluation period (the same period shown
in Figure 10). The dotted red line shows CIC on the right axis.

@ uvo LQ-low @@ LQ-High - CIC (UK)

CO,eq/kWh
gC0zeq/ 200

3 c
g 100 Starts of High-Intensity Hours 150 QS)-
o0 L

= S
< r100 =
C . 3
S 501 =
x t50 S
—

5 =
0 Lo =

10 20 30
Hours of Progress (h)

Figure 10: Job scheduling timeline showing the number of
high- and lower-power jobs (left axis) responding to carbon
intensity changes. UQ: Upper Queue; LQ-High/LQ-Low:
Lower Queue’s high/low-power jobs. The dotted red line rep-
resents the CIC and its boundary value (right axis).

power usage without leaving resources idle.

GAIA and EcoVisor exhibit higher carbon footprints be-
cause, in the multi-tenant ML cluster setting (targeted by
GREEN, Tiresia, Pollux, and similar cluster schedulers), re-
source capacity is static: when jobs are delayed to a greener
hour, idle resources still consume a baseline level of energy.

It is important to note that GAIA and EcoVisor are effec-
tive in their intended cloud environments, where resources
are requested on demand by users, and idle resources do not
incur additional costs or carbon emissions. Our evaluation ex-
tends their policies for multi-tenant ML cluster setting, where
resource competition and constraints are factors.

1008 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

JCT Increase

Job Size (% of Total Jobs)
Average Tail

Extra Small Jobs (0-9 minutes, 22%) —0.5% —0.4%
Small Jobs (10-59 minutes, 30%) 1.7% 1.2%
Medium Jobs (1 - 10 hours, 30%) 4.4% 4.8%
Large Jobs (> 10 hours, 18%) 6.9% 5.8%

Table 2: GREEN’s impact on individual JCTs compared to
Tiresia across 4 job size categories.

8.2.2 JCT Performance

Figure 8 shows that GREEN maintains comparable JCT to
baseline schedulers. Compared to the best-performing base-
line, Tiresia, GREEN shows a 3.6%-5.9% increase in average
JCT and a 5.1%-7.1% increase in tail JCT. With time-shifting
disabled (GREEN,,,), the difference is smaller at 1.7%-1.8%,
while still achieving a 21% reduction in carbon footprint.

Cluster-wide Job Timeline. Figure 10 illustrates the job
scheduling timeline in our testbed. During the transition be-
tween high and low carbon intensity hours, job priorities
are swapped — lower-power jobs take precedence in high-
intensity periods to reduce cluster power consumption. This
adjustment is also reflected in Figure 9b, where power draws
decrease during high carbon intensity hours. As shown in
the figure, not all high-power jobs are stopped during high-
intensity periods. They still run when (1) lower-power jobs
do not fully utilize available resources or (2) high-power jobs
have smaller carbon terms (§5) and gain higher priority.

Impact on Individual JCTs. Table 2 shows the evaluation of
GREEN’s impact on jobs’ individual JCTs by comparing with
Tiresia (the best JCT baseline) across 4 size categories based
on total running time. GREEN had a maximum JCT increase
of 6.9% for large jobs and a decrease of 0.5% for smaller jobs,
demonstrating its effective use of MLFQ to prioritize shorter
jobs while avoiding starvation of longer ones.

To understand the trade-off between overall JCT and carbon
consumption, we conducted sensitivity analyses to evaluate
how different extents of time shifting impact this trade-off.
The results are provided in Appendix A for interested readers.

8.2.3 Non-Model-Agnostic Baselines

Figure 11 shows that GREEN reduces the carbon footprint by
23.9% on average across four regions compared to Pollux,
with trade-offs of 17.2% in average JCT and 13.4% in tail JCT.
Given that Pollux outperforms prior model-agnostic sched-
ulers like Tiresia and Optimus by over 50% [20], this high-
lights GREEN ’s ability to balance speed and carbon efficiency
while remaining model-agnostic. GREEN also outperforms
the combined Zeus (single-job energy optimization with GPU
power limits) and Tiresia solution, achieving a 12.7% carbon
footprint reduction with a similar average JCT.

x 8C0,eq/kWh X 8C0seq/kWh
2.07 @ AvgiCT (@ TailacT @ Carbon 207 @ AvglcT @ Tailact @ Carbon 300

o

0.0- 0
GREEN GREENps Pollux Zeus+Tiresias

(b) California, US

X gCO,eq/kWh X gC0Oeq/kWh
207 @ AvgicT @ TailacT (@ Carbon 2.0 207 @ AvgicT (@ TailacT (@ Carbon [800

b 0
GREEN GREEN,s Pollux Zeus+Tiresias

(a) United Kingdom

1.5 .r15 154

q

=

0.0- 0
GREEN GREENpg Pollux Zeus+Tiresias

(d) Poland

b 0
GREEN GREEN,s Pollux Zeus+Tiresias

(c) Sweden

Figure 11: Non-model-agnostic baselines evaluated with
150 compatible testbed jobs. Results are shown as ratios to
GREEN (left axis), with CIC in dotted red lines (right axis).

8.3 Trace-Driven Simulator Experiments

We conducted a year-long simulator experiment to evaluate
GREEN’s adaptability to seasonal changes in carbon intensity.

Simulator Construction. The simulator operates as a step-
based discrete-time system with a 1-minute granularity, result-
ing in 518,400 steps for a full year. Each step performs three
tasks: (1) calculate job progress and carbon footprint based
on GPU time, progress factor (%/minute), current CIC, and
power draw; (2) check the job trace for new job arrivals and
adding them to the queue; (3) call the simulated scheduler to
adjust jobs based on scheduling policies.

For workload simulation, we sample 400 job submis-
sions from a 24-hour window in Alibaba’s cluster workload
trace [33] and repeat this process 365 times to construct a
year-long trace with 146,000 jobs. The trace provides sub-
mission times and durations but lacks model-specific details.
Following prior simulation methodologies in Pollux and Zeus,
we categorize jobs by duration and map them to training jobs
from our production workload (§8.1). To accurately model
job execution, we pre-run jobs under varying configurations
(e.g., GPU count, batch size) and record progress factors and
power consumption. This enables the simulator to infer job
progress and energy usage based on scheduling decisions.
Additionally, we track checkpoint-resume overheads for each
job category for preemptions to ensure simulation fidelity.

Performance Analysis. Figure 12 shows our simulation re-
sults. We evaluated GREEN across five regions, including
Ontario, Canada, and compared it to the best-performing base-
lines, Tiresias and Pollux. The simulator showed improvement
patterns across regions similar to our testbed results (showing
better performance in high-variance locations). Compared
to Tiresias, GREEN reduced the carbon footprint by 31.6%,
with a 5.1% increase in average JCT and 7.5% in tail JCT.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1009

@ Avgict @ TaildCcT @ Carbon

D m = B

155 @AgiT @Tatict @ cCabon g%

[l

1.0

0.5

0.0 0.0

CA, US UK SE PL ON, CA

CA, US UK SE

(b) Pollux

(a) Tiresias

Figure 12: Baselines evaluated in a year-long simulation
across 5 regions. Results are shown as ratios to GREEN.

Job Size (% of Total Jobs) JCT Increase
Average Tail
Extra Small Jobs (0-9 minutes, 16%) —0.1% —0.3%
Small Jobs (10-59 minutes, 38%) 2.4% 4.7%
Medium Jobs (1 - 10 hours, 36%) 5.5% 8.0%
Large Jobs (> 10 hours, 8%) 5.9% 6.1%

Table 3: GREEN’s impact on individual JCTs compared to
Tiresia in the simulator, breaking down by job sizes.

Compared to Pollux, GREEN achieved a 21.1% reduction in
carbon footprint with a 15% increase in both average and tail
JCT. We also report individual JCT impact in Table 3. Over-
all, the results show that GREEN adapts to seasonal carbon
intensity variations to deliver carbon and time efficiency.

9 Applicability and Limitations

We discuss the applicability of GREEN’s core designs.

Carbon Tracking and Forecasting. While GREEN effec-
tively reduces carbon emissions through optimized GPU
scheduling, several broader factors influence ML clusters’
overall carbon footprint. Notably, embodied carbon—the
emissions associated with hardware manufacturing, trans-
portation, and lifecycle—is not considered in GREEN’s model.
Additionally, GREEN does not account for data center Power
Usage Effectiveness (PUE), which captures energy overheads
from cooling, power distribution, and auxiliary infrastruc-
ture. We note that scheduling has a limited impact on carbon
emissions from these factors. Recent work has shown that
carbon-aware scheduling should not account for embodied
carbon emissions, as they represent a sunk cost [4]. Similarly,
PUE optimization is typically addressed at the data center
design level and largely independent of workload scheduling.

GREEN dynamically adjusts workload execution based on
carbon intensity forecasts, leveraging publicly available car-
bon data to estimate emissions. However, inaccuracies in
carbon intensity predictions can lead to suboptimal schedul-
ing decisions, and incorporating more accurate forecasting
methods [15] could improve scheduling effectiveness. Fur-
thermore, integrating real-time carbon intensity data directly
from data centers presents an opportunity to enhance carbon-
aware scheduling, which remains an open research challenge.

Scheduling Mechanism. GREEN’s scheduling mechanism
supports diverse ML task types and GPU heterogeneity, as its
carbon tracking methods can generalize across various ML
training regimes. However, GREEN is not well-suited for infer-
ence workloads, which are latency-sensitive as they respond
to user requests in real time. The preemption-based schedul-
ing mechanisms used by GREEN may introduce unexpected
interruptions for inference tasks.

We also identified the following cases where GREEN’s
scheduling approach may have limited effectiveness:

 Special carbon intensity patterns: In regions with consis-
tently low carbon intensity (e.g., Sweden), significant emis-
sion reductions are harder to achieve. Similarly, when car-
bon intensity remains stable, temporal job shifting may
not be effective and could cause unnecessary scheduling
overhead from frequent preemptions.

* Long job starvation: While GREEN includes starvation mit-
igation mechanisms, long-running jobs in highly congested
clusters may still experience delays due to its LAS-based
scheduling. Like Tiresias [7], a starvation threshold that
resets job priority can be used to prevent starvation.

Integration with ML Frameworks. System research in
ML is progressing quickly, with significant improvements
in frameworks and optimization methods [12, 17, 27, 40].
Previous studies [33] show that GPU usage can vary widely
across ML workloads depending on the optimization tech-
niques used, which also affect power consumption. GREEN
is designed to be non-intrusive, meaning it can schedule ML
tasks without requiring users to change their code. Therefore,
it is orthogonal to job-level optimizations, allowing it to work
with both current and future ML system improvements.

10 Conclusion

GREEN utilizes a carbon-intelligent algorithm to schedule,
scale, and shift workloads to optimize cluster-wide environ-
mental and efficiency performance. We evaluate GREEN un-
der real ML workloads in a production cluster and show that
it can achieve significant carbon footprint reductions while
maintaining time efficiency comparable to existing work.

Acknowledgments

We thank our shepherd, Noman Bashir, and the anonymous
reviewers from NSDI 2025, as well as reviewers from our
previous submissions, for their valuable feedback. GREEN
was developed and evaluated on the TACC cluster [37] at
the Hong Kong University of Science and Technology. This
work is supported in part by the Hong Kong RGC TRS T41-
603/20R, GRF 16213621, NSFC 62062005, 62402407. Han
Tian and Kai Chen are the corresponding authors.

1010 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Ki-

[2

3

[4

[5

[6

]

—_

]

]

[t}

wan Maeng, Udit Gupta, Manoj Chakkaravarthy, David
Brooks, and Carole-Jean Wu. Carbon explorer: A holis-
tic framework for designing carbon aware datacenters.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023, pages 118—
132. ACM, 2023.

Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen,
Jesse H. Engel, Linxi Fan, Christopher Fougner, Awni Y.
Hannun, Billy Jun, Tony Han, Patrick LeGresley, Xian-
gang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sher-
jil Ozair, Ryan Prenger, Sheng Qian, Jonathan Raiman,
Sanjeev Satheesh, David Seetapun, Shubho Sengupta,
Chong Wang, Yi Wang, Zhiqgian Wang, Bo Xiao, Yan
Xie, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. Deep
speech 2 : End-to-end speech recognition in english and
mandarin. In Proceedings of the 33nd International Con-
ference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 173—182.
JMLR.org, 2016.

Victor Avelar, Patrick Donovan, Paul Lin, Wendy Torell,
and Maria A Torres Arango. The Al disruption: Chal-
lenges and guidance for data center design. Schneider
Electric, 2023.

Noman Bashir, Varun Gohil, Anagha Belavadi Sub-
ramanya, Mohammad Shahrad, David E. Irwin, Elsa
Olivetti, and Christina Delimitrou. The sunk carbon fal-
lacy: Rethinking carbon footprint metrics for effective
carbon-aware scheduling. In Proceedings of the 2024
ACM Symposium on Cloud Computing, SoCC 2024, Red-
mond, WA, USA, November 20-22, 2024, pages 542-551.
ACM, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Jill
Burstein, Christy Doran, and Thamar Solorio, editors,
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 4171-4186. Association
for Computational Linguistics, 2019.

Diandian Gu, Yihao Zhao, Peng Sun, Xin Jin, and Xu-
anzhe Liu. Greenflow: A carbon-efficient scheduler for

(7]

(8]

(10]

(11]

[12]

[13]

deep learning workloads. [EEE Trans. Parallel Dis-
tributed Syst., 36(2):168—184, 2025.

Juncheng Gu, Mosharaf Chowdhury, Kang G.
Shin, Yibo Zhu, Myeongjae Jeon, Junjie Qian,
Honggiang Harry Liu, and Chuanxiong Guo. Tiresias:
A GPU cluster manager for distributed deep learning. In
16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, Boston, MA, February
26-28, 2019, pages 485-500. USENIX Association,
2019.

Walid A. Hanafy, Qianlin Liang, Noman Bashir,
David E. Irwin, and Prashant J. Shenoy. Carbonscaler:
Leveraging cloud workload elasticity for optimizing
carbon-efficiency. In Michele Garetto, Andrea Marin,
Florin Ciucu, Giulia Fanti, and Rhonda Righter, editors,
Abstracts of the 2024 ACM SIGMETRICS/IFIP PER-
FORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMET-
RICS/PERFORMANCE 2024, Venice, Italy, June 10-14,
2024, pages 49-50. ACM, 2024.

Walid A. Hanafy, Qianlin Liang, Noman Bashir, Abel
Souza, David E. Irwin, and Prashant J. Shenoy. Going
green for less green: Optimizing the cost of reducing
cloud carbon emissions. In Proceedings of the 29th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2024, La Jolla, CA, USA, 27 April
2024- 1 May 2024, pages 479-496. ACM, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-
30, 2016, pages 770-778. IEEE Computer Society, 2016.

Qinghao Hu, Meng Zhang, Peng Sun, Yonggang Wen,
and Tianwei Zhang. Lucid: A non-intrusive, scalable
and interpretable scheduler for deep learning training
jobs. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023,
Vancouver, BC, Canada, March 25-29, 2023, pages 457—
472. ACM, 2023.

Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Sol: Fast distributed com-
putation over slow networks. In Ranjita Bhagwan and
George Porter, editors, 17th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2020,
Santa Clara, CA, USA, February 25-27, 2020, pages
273-288. USENIX Association, 2020.

Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han
Tian, Zhizhen Zhong, Guyue Liu, Ying Zhang, and Kai

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

1011

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Chen. Understanding communication characteristics
of distributed training. In Proceedings of the Sth Asia-
Pacific Workshop on Networking, APNet °24, page 1-8,
New York, NY, USA, 2024. Association for Computing
Machinery.

Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 289-304. USENIX Association, 2020.

Diptyaroop Maji, Prashant J. Shenoy, and Ramesh K.
Sitaraman. Carboncast: multi-day forecasting of grid
carbon intensity. In Proceedings of the 9th ACM Interna-
tional Conference on Systems for Energy-Efficient Build-
ings, Cities, and Transportation, BuildSys 2022, Boston,
Massachusetts, November 9-10, 2022, pages 198-207.
ACM, 2022.

Electricity Map.
org/map, Accessed August 2024.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for DNN training. In Pro-
ceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, pages 1-15. ACM, 2019.

National Grid ESO, Environmental Defense Fund Eu-
rope, University of Oxford Department of Computer
Science, and WWEF. Carbon intensity API. https:
//carbonintensity.org.uk, Accessed August 2024.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, EuroSys
2018, Porto, Portugal, April 23-26, 2018, pages 3:1-3:14.
ACM, 2018.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning.
In Angela Demke Brown and Jay R. Lorch, editors, 15th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2021, July 14-16, 2021. USENIX
Association, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners. OpenAl blog,
1(8):9, 2019.

https://www.electricitymap.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Ana Radovanovic, Bokan Chen, Saurav Talukdar, Binz
Roy, Alexandre Duarte, and Mahya Shahbazi. Power
modeling for effective datacenter planning and com-
pute management. IEEE Transactions on Smart Grid,
13(2):1611-1621, 2021.

Ana Radovanovic, Ross Koningstein, Ian Schneider,
Bokan Chen, Alexandre Duarte, Binz Roy, Diyue Xiao,
Maya Haridasan, Patrick Hung, Nick Care, et al. Carbon-
aware computing for datacenters. /IEEE Transactions
on Power Systems, 38(2):1270-1280, 2022.

TACC Github Repo.
turingaicloud/.

https://github.com/

SchedMD. https://slurm.schedmd.com/
documentation.html, Accessed August 2024.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. Green Al. Communications of the ACM,
63(12):54-63, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism. CoRR, abs/1909.08053,
2019.

Abel Souza, Noman Bashir, Jorge Murillo, Walid A.
Hanafy, Qianlin Liang, David E. Irwin, and Prashant J.
Shenoy. Ecovisor: A virtual energy system for carbon-
efficient applications. In Proceedings of the 28th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, ASPLOS 2023, Vancouver, BC, Canada, March
25-29, 2023, pages 252-265. ACM, 2023.

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu
Lin, Aurick Qiao, Zhihao Jia, and Gregory R. Ganger.
Sia: Heterogeneity-aware, goodput-optimized ml-cluster
scheduling. In Jason Flinn, Margo I. Seltzer, Peter Dr-
uschel, Antoine Kaufmann, and Jonathan Mace, editors,
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP 2023, Koblenz, Germany, Octo-
ber 23-26, 2023, pages 642-657. ACM, 2023.

Thanathorn Sukprasert, Abel Souza, Noman Bashir,
David E. Irwin, and Prashant J. Shenoy. On the lim-
itations of carbon-aware temporal and spatial workload
shifting in the cloud. In Proceedings of the Nineteenth
European Conference on Computer Systems, EuroSys
2024, Athens, Greece, April 22-25, 2024, pages 924-941.
ACM, 2024.

WattTime. https://www.watttime.org/, Accessed
August 2024.

TACC Website. https://tacc.ust.hk/.

1012 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://www.electricitymap.org/map
https://www.electricitymap.org/map
https://carbonintensity.org.uk
https://carbonintensity.org.uk
https://github.com/turingaicloud/
https://github.com/turingaicloud/
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://www.watttime.org/
https://tacc.ust.hk/

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. Mlaas in the wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2022, Renton, WA, USA,
April 4-6, 2022, pages 945-960. USENIX Association,
2022.

Philipp Wiesner, Ilja Behnke, Dominik Scheinert,
Kain Kordian Gontarska, and Lauritz Thamsen. Let’s
wait awhile: how temporal workload shifting can re-
duce carbon emissions in the cloud. In Middleware
"21: 22nd International Middleware Conference, Québec
City, Canada, December 6 - 10, 2021, pages 260-272.
ACM, 2021.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In /3th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595-610. USENIX Association, 2018.

Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In /4th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020, pages 533—
548. USENIX Association, 2020.

Kaigiang Xu, Decang Sun, Hao Wang, Zhenghang Ren,
Xinchen Wan, Xudong Liao, Zilong Wang, Junxue
Zhang, and Kai Chen. Design and operation of shared
machine learning clusters on campus. In Proceedings
of the 30th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, Volume 1, ASPLOS 2025, Rotterdam,
The Netherlands, 30 March 2025 - 3 April 2025, pages
295-310. ACM, 2025.

Zeyu Yang, Karel Adamek, and Wesley Armour. Part-
time power measurements: nvidia-smi’s lack of attention.
CoRR, abs/2312.02741, 2023.

Jie You, Jae-Won Chung, and Mosharaf Chowdhury.
Zeus: Understanding and optimizing GPU energy con-
sumption of DNN training. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion, NSDI 2023, Boston, MA, April 17-19, 2023, pages
119-139. USENIX Association, 2023.

Chaoliang Zeng, Xudong Liao, Xiaodian Cheng, Han
Tian, Xinchen Wan, Hao Wang, and Kai Chen. Acceler-

[41]

ating neural recommendation training with embedding
scheduling. In Laurent Vanbever and Irene Zhang, edi-
tors, 21st USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2024, Santa Clara,
CA, April 15-17, 2024. USENIX Association, 2024.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 6848-6856. Computer Vision Foundation / IEEE
Computer Society, 2018.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

1013

A Deep Dive Experiments

In the deep dive experiments, we inspect the effectiveness of
each GREEN’s design component and also conduct a sensitiv-
ity analysis of the parameter used in the scheduling algorithm.

A.1 Understanding the Optimizers

Impact of Energy Efficiency Optimizer (§5.1). The opti-
mizer allocates more resources to jobs with higher energy
efficiency. We evaluate the impact of energy-efficiency-based
scaling by fixing the number of GPUs to 1 and 2. Our results
in Table 4 demonstrate that dynamic scaling decisions impact
both energy consumption and execution speed, as evidenced
by its worse performance in both carbon footprint and JCT.

Impact of Carbon Footprint Optimizer (§5.2). We replaced
the carbon term with an LAS factor: the number of GPU hours
consumed by the job. The results, as presented in Table 4,
indicate that the cluster-wide carbon footprint increases by
approximately 16%, as jobs with higher energy efficiency
are no longer prioritized for scaling. We then disabled the
temporal shifting by fixing the Shifting Factor to 1. While
JCT performance improves slightly, the cluster-wide carbon

Scheduler Job Completion Time Carbon
Average Tail
Energy Efficiency Optimizer
GREEN 17.56h 45.20h 15.88kg
No scaling (1 GPU) 19.91h 48.8%h 18.38kg
No scaling (2 GPU) 18.53h 46.57h 16.71kg
Carbon Footprint Optimizer
GREEN 17.56h 45.20h 15.88kg
Carbon Factor = GPU hours | 18.30h 47.15h 18.52kg
No Shifting 17.1%h 44.99h 18.93kg

Table 4: Ablation experiments of GREEN optimizers.

@ Avgict @ TaildcT @ Carbon @ AvgicT @ TailicT (@ Carbon

default=30min 10min 60 min

(a) temporal shifting (b) scheduling interval

Figure 13: Sensitivity test of u (§5.2). u controls the level
of temporal shifting. A larger u value will shift more high-
power jobs to greener hours. Sensitivity test of scheduling
interval (§6.3). 30-minute or longer interval works well be-
cause carbon intensity changes slowly, allowing less frequent
preemptions.

footprint increases by 20%, as GREEN no longer moves high-
power tasks to greener hours.

A.2 Sensitivity Analysis

Extent of Temporal Shifting (Figure 13a). In §5.2, we set
u (> 1) in controlling temporal shifting. Our tests indicate that
setting u = 2 optimizes the balance between relevant factors.
A too high u skews scheduling, prioritizing high-power jobs
unfairly due to an amplified shifting term.

Length of Scheduling Interval (Figure 13b). The interval
in MLFQ scheduling influences preemption frequency (§6.3).
Our default is 30 minutes, and sensitivity analysis reveals that
its exact length has minimal impact on outcomes. This is be-
cause carbon intensity, despite significant absolute variations,
changes slowly, allowing less frequent preemptions without
compromising overall cluster optimization.

B Artifacts

GREEN is designed and evaluated as a scheduler policy on the
TACC cluster [32] at the Hong Kong University of Science
and Technology. We will release GREEN’s source code in
TACC’s open-source repo [24], which includes the scheduler
implementation as a Slurm plugin, a daemon program, and
a profiler agent, along with scripts and traces for submitting
jobs to the scheduler. More details on our cluster operation
and analysis can be found in [13, 37].

1014 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Introduction
	Background and Motivations
	ML Cluster Scheduling
	Carbon-aware Resource Scheduling
	Motivation and Challenges

	GREEN Overview
	Carbon Tracker
	Modeling Power Draw
	Estimating Carbon Footprint

	GREEN Optimizers
	Energy Efficiency Optimizer
	Carbon Footprint Optimizer

	Putting It Together: MLFQ Scheduling
	Upper Queue: Online Profiling and Scaling
	Lower Queue: Peak Load Shifting
	Scheduler Workflow
	Starvation Avoidance

	Implementation
	Evaluation
	Experimental Setup
	Testbed Experiments
	Cluster-wide Carbon Footprint
	JCT Performance
	Non-Model-Agnostic Baselines

	Trace-Driven Simulator Experiments

	Applicability and Limitations
	Conclusion
	Deep Dive Experiments
	Understanding the Optimizers
	Sensitivity Analysis

	Artifacts

