
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

AutoCCL: Automated Collective Communication Tuning
for Accelerating Distributed and Parallel DNN Training

Guanbin Xu, Zhihao Le, Yinhe Chen, Zhiqi Lin, and Zewen Jin, University of Science
and Technology of China; Youshan Miao, Microsoft Research; Cheng Li, University of

Science and Technology of China; Anhui Province Key Laboratory of Biomedical Imaging
and Intelligent Processing; Institute of Artificial Intelligence,

Hefei Comprehensive National Science Center

https://www.usenix.org/conference/nsdi25/presentation/xu-guanbin

AutoCCL: Automated Collective Communication Tuning for Accelerating
Distributed and Parallel DNN Training

Guanbin Xu† Zhihao Le† Yinhe Chen† Zhiqi Lin† Zewen Jin† Youshan Miao‡

Cheng Li†,◦
†University of Science and Technology of China, ‡Microsoft Research

◦Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing
Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

Abstract
The collective communication libraries are pivotal in optimiz-
ing the performance of distributed and parallel deep neural
network (DNN) training. Most network optimizations are un-
der the assumption that these libraries are well-tuned, ignoring
their low-level parameter selection. In this paper, we present
a novel automated tuning method AutoCCL that significantly
improves communication performance without incurring ad-
ditional costs. One of the primary challenges we tackle is the
state explosion in searching for the optimal configuration. To
overcome this, we decouple implementation-related parame-
ters from those sensitive to the search space size and propose
a divide-and-conquer algorithm, minimizing the requirement
for exhaustive trials. We further propose an online tuning
approach that accounts for communication-computation inter-
ference to enhance accuracy in finding optimal configurations,
while hiding tuning overhead within early iterations of train-
ing jobs. We implement AutoCCL atop NCCL, a leading and
widely-used communication library provided by NVIDIA.
Our evaluation on both a 2-node cluster (16 A40 GPUs, intra-
node NVLink, inter-node 2× 400Gbps InfiniBand) and a
4-node cluster (32 A40 GPUs, intra-node PCIe, inter-node
100Gbps InfiniBand) demonstrates that AutoCCL achieves
1.24-1.29× and 1.15-1.22× speedups on microbenchmarks
compared to NCCL and another SOTA NCCL tuner, respec-
tively, and up to 1.80× and 1.49× with concurrent computa-
tion. End-to-end evaluations on three large language models
and one vision model show 1.07-1.32× improvements in per-
iteration training time.

1 Introduction
Training contemporary DNN models often distributes com-
putation over a cluster of GPUs and relies on collective com-
munication primitives to frequently exchange model data in a
group-wise manner. However, many studies have pointed out
that communication is a well-known bottleneck that throttles
training performance [14, 26, 27, 33, 34, 36].

Communication optimization has become a research
This research project began in June 2023.

hotspot, garnering growing interest including communication-
computation overlapping [13, 19, 22, 23, 31, 43, 46, 50, 59, 60,
67], message compression [9, 53, 56, 62], and new collective
algorithm design [10, 12, 15, 16, 27–29, 32, 35, 42, 47, 57].
These proposals assume the off-the-shelf communication li-
braries such as NCCL [5] to be already well-tuned. Some
works [12, 47] have attempted to provide empirical guidance,
but in Section 3.1, we have found that the guidance is not al-
ways correct in practice. Besides, our study highlights that col-
lective communication tasks can be further improved, e.g., up
to 35% higher bandwidth, by tuning low-level performance-
sensitive parameters. Unfortunately, these libraries are often
used as black boxes, and the potential for tuning them across
different hardware and communication tasks is overlooked.

In this paper, we propose AutoCCL, a tool for automatically
tuning collective communication with accelerated end-to-end
training performance. Compared to existing communication
optimizations, AutoCCL aims to provide a free lunch and trans-
parently support upper-level training jobs, maintaining model
accuracy without requiring additional hardware investment.
However, AutoCCL’s design faces the following challenges:

First, existing work lacks a comprehensive analysis of the
mainstream collective communication libraries to identify
key performance-sensitive parameters as tuning candidates,
understand the joint impact of these parameters, and establish
practical tuning guidelines. Second, computation and commu-
nication are executed concurrently during training. Therefore,
tuning for communication also necessitates accounting for
computational interference. This understanding needs to be
further adapted to different hardware, as well as the dynamics
in the concurrent combination of computation and communi-
cation due to runtime scheduling.

To address the above challenges, we propose the follow-
ing innovations. First, we conduct a comprehensive tuning
study (Section 2.3 and Section 3) to identify six low-level
NCCL parameters that are performance-sensitive, forming
a very large search space. Then, we experimentally analyze
and theoretically model these parameters and the relation-
ships among them and make some important and instructive

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 667

observations. For example, the parameters can be classified
into two categories, one defining the implementation method
of communication primitives and the other determining the
resource allocations. The former is a prerequisite for the latter,
and the former has a small range of values while the latter has
a large range of values. In addition, we analyze the resource
parameters using the control variable method and find that
their combination is characterized by a unimodal function on
the communication bandwidth. These findings are far beyond
a recent preliminary study [64].

Second, guided by the aforementioned analysis, we de-
sign an efficient tuning algorithm (Section 4) that avoids a
brute-force search within the parameter space. This algorithm
handles implementation parameters and resource parameters
separately. Since the combinations of the former are relatively
few and the analysis of resource parameters must begin with
the determination of the communication task, the tuning al-
gorithm first divides the implementation parameters into sev-
eral subspaces, each representing an independent search task.
Within any given subspace, we employ a coordinate descent
method to search for the optimal combination of resource
parameters. This approach is feasible because the character-
istics of unimodal functions indicate that their combination
to the communication bandwidth curve will initially increase,
then reach a peak, and subsequently decrease gradually until
reaching a steady state (at which point bandwidth becomes
the bottleneck).

Finally, we propose an online tuning method (Section 5)
that co-runs with training. We exploit the iterative nature of
DNN training (where identical communication tasks are re-
peated throughout the training process) to integrate the tuning
process into the initial training iterations. Once the optimal
configuration is obtained, it is updated via atomic broadcast
to all nodes participating in collective communication for con-
sistent future usage. The advantage of this online approach is
that we can directly capture the performance of communica-
tion primitives under the influence of computational interfer-
ence and scheduling dynamics. After integrating this into the
tuning algorithm, the performance analysis achieves higher
accuracy, thus eliminating the need to model uncertain factors
directly, such as hardware capabilities and the concurrency of
tasks in the real training environment.

We implemented the tuning tool AutoCCL on top of NCCL,
a leading and widely adopted collective communication li-
brary. AutoCCL maintains compatibility with the NCCL inter-
face, allowing it to seamlessly integrate with training frame-
works like PyTorch and transparently support any DNN model
training task. We’ve made it open-source AutoCCL [2]. We
conducted extensive testing on a 4-node cluster with 32 A40
GPUs and a 100Gbps network, as well as a 2-node cluster
with 16 A40 GPUs and two 400Gbps links. Pure communi-
cation experiments with different communication primitives
show that, compared to NCCL and AFNFA [64] (the most
recent NCCL tuner), our communication bandwidth speedups

are 1.24-1.29× and 1.15-1.22× higher, respectively. In mi-
crobenchmark experiments with computational interference,
the results show that AutoCCL achieves even greater average
gains, with improvements of 24.1% and 20.7%, respectively.
Additionally, we conduct end-to-end training tests on three
popular large-scale models and one computer vision model.
Compared to NCCL and AFNFA, AutoCCL achieves aver-
age training speed improvements of 16.7% and 14.5%, re-
spectively, with gains of up to 32% on some large models.
Note that the training gains have taken tuning overhead into
account, and since AutoCCL converges quickly, the tuning
overhead is negligible.

In summary, we make the following contributions:

• A comprehensive study that uncovers the tuning guide-
lines of low-level performance parameters of collective
communication primitives in NCCL, a leading commu-
nication library;

• An online tuning method that implements the parameter
subspace division and intra-subspace coordinate descent
search algorithms and leverages training iterativeness
for accurately modeling the impacts of parameter assign-
ment in the context of computational interference;

• The AutoCCL tuner that incorporates this tuning method
and transparently supports training jobs;

• An in-depth evaluation of AutoCCL compared to NCCL
and another state-of-the-art tuner on communication
micro-benchmarks and representative training jobs.

2 Background
2.1 Distributed and Parallel DNN Training
It has been a common practice to distribute and parallelize
DNN training jobs over a cluster of GPUs for fast model pa-
rameter updating [17, 20, 24, 25, 30, 37–39, 44, 45, 48, 49, 51,
55,58,66]. For instance, as shown in Table 1, when the model
size does not exceed a single GPU’s memory budget, data
parallelism is often employed to let GPUs consume disjoint
data partitions for collective model training. This requires
GPUs to frequently synchronize gradients, with the trans-
mission volume equal-sized with model parameters. When
a model’s memory consumption exceeds the GPU capacity,
in addition to data parallelism, AI participants employ either
tensor parallelism or pipeline parallelism to partition a model
into smaller computational units, which are distributed across
various GPUs. This results in more complex communication
patterns among GPUs, which are often on the critical path of
the training pipeline, compared to data parallelism. Recently,
various studies have already proved that communication is
the major bottleneck that limits the scalability of distributed
and parallel DNN training [14, 26, 27, 33, 34, 36].

A wide range of optimizations aim to address communi-
cation bottlenecks, including scheduling [13, 19, 22, 23, 31,

668 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: The parallelism and collective communication primitives used by training 4 DNN models on a cluster of 32 GPUs
(four machines). B stands for billion model parameters. TP, DP, and PP stand for tensor parallelism [48], data parallelism [32],
and pipeline parallelism [20], respectively. The numbers in parentheses following these parallelism approaches represent the
corresponding number of GPU participants. For each collective communication primitive, its (x_y_z) value represents that an
x-sized message is exchanged among a y-sized communication group for z times per training iteration.

Model Phi-2-2B Llama-3.1-8B Yi-1.5-34B VGG-19-0.14B

Parallelism1 TP (8) + DP (4) TP (8) + DP (4) TP (8) + PP (4) DP (32)

AllGather (80 MB_8_3,120) (128 MB_8_6,240), (857 MB_4_1) (56 MB_8_61,440) —
ReduceScatter (80 MB_8_2,064) (128 MB_8_4,128), (1,710 MB_4_1) (56 MB_8_93,184) —

AllReduce (632 MB_4_1) — — (15-392 MB_32_6)

46, 50, 59, 60, 67], data compression [8, 9, 53, 56, 62, 63], spar-
sity exploration [10, 28], and topology-based algorithm de-
sign [12,15,16,27,29,32,35,42,42,47,57]. The vast majority
of these approaches focus on improving communication per-
formance based on the assumption that the underlying com-
munication library is well-tuned and will effectively deliver
their improvements. However, we have experimentally vali-
dated that the communication tuning matters a lot in Section 3
with significant bandwidth benefits.

2.2 Collective Communication
Distributed and parallel DNN training introduces a distinct
class of communication patterns, known as collective com-
munication, where data is aggregated or disseminated across
multiple GPUs. The NVIDIA Collective Communication Li-
brary (NCCL) is designed to optimize multi-GPU and multi-
node communication for NVIDIA GPUs and networking
systems [5]. It offers high-performance primitives like Re-
duceScatter, AllGather, AllReduce, and so on. These APIs are
optimized to provide high bandwidth and low latency com-
munication over PCIe and NVLink interconnects within a
single node, as well as over networks across multiple nodes.
In addition, RCCL (ROCm Collective Communication Li-
brary) [1] is AMD’s counterpart to NCCL. In this paper, we
focus on NCCL since it is the most widely used and its design
philosophy has influenced followers such as RCCL.

Table 1 summarizes the training parallelisms for the four
deep neural network training tasks, including three large lan-
guage models and a computer vision model, with typical mes-
sage sizes and the collective communication primitives used.
The detailed hardware and workload configurations can be
found in Table 8. Of the four model training tasks, the VGG-
19 model is the smallest, necessitating the use of only data
parallelism. VGG-19 employs 32-way data parallelism, so
every GPU needs to exchange its six bucketed gradients (15-
392 MB in size) with any other GPU within the 32-GPU
communication group via AllReduce in each iteration.

Unlike VGG-19, the other three large language models uti-
lize a complex hybrid parallelism, combining 8-way tensor
parallelism and 4-way data parallelism or 4-way pipeline par-
allelism. In such a configuration, for example, Yi-1.5-34B

Table 2: Primitive configuration parameters of NCCL
Parameter Value Range

Algorithm (A) Tree, Ring
Protocol (P) LL, LL128, Simple
Transport (T) peer-to-peer (P2P), shared memory (SHM)
Nchannel (NC) 1≤ n≤ 128, n ∈ N
Nthread (NT) n = 32× i, i ∈ {1,2,3, . . . ,20}
Chunk size (C) n = 256× i, i ∈ {1,2,3, . . . ,8K}

executes AllGather 61,440 times in a single training iteration,
each time transferring 56 MB of activation data among eight
GPUs within a single machine. It also executes ReduceScat-
ter 93,184 times, each time passing 56MB of activation data
between eight GPUs to each other within a single machine.
Phi-2-2B and Llama-3.1-8B transfer more data each iteration,
up to 1,710 MB, as it also requires transferring the model
gradient along the data-parallel dimension between four GPU
servers with AllGather, ReduceScatter, and AllReduce, respec-
tively, due to their four-way data parallelism.

In summary, multiple types of collective communication
primitives are frequently used in distributed DNN training,
with message sizes ranging from tens of MB to a few GB,
varying communication group sizes, and hardware setups.
Therefore, it is crucial to efficiently execute communication
tasks despite their complexity and variety.

2.3 Low-Level Primitive Configurations
We conduct a systematic and comprehensive study of NCCL’s
parameter space, analyzing all 158 parameters, including 93
undocumented ones. Our findings reveal that NCCL has 28
performance-sensitive parameters, categorized as follows: 1
for algorithm (A), 3 for protocol (P), 3 for transport (T), 11
for nchannel (NC), 3 for nthread (NT), and 7 for chunk size
(C). Other parameters will be discussed in Section 8. When
users call a communication primitive, NCCL runtime will
create a corresponding collective communication task, and
assign it a configuration in the form of < A, P, T, NC, NT,
C >. As shown in Table 2, the parameter A determines how
data is distributed, combined, or aggregated across GPUs and
has several possible values like ring or tree. Specifically, when
a ring algorithm is used for the allreduce primitive, data is
transferred sequentially between nodes in a ring-like fash-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 669

Table 3: Various configurations of AllGather (80MB) on the
8-GPU node with intra-node PCIe w.r.t. varied NCCL config-
urations. CP0 refers to the default NCCL configuration.

Config A P T NC NT C

CP0
* Ring Simple SHM 2 256 2 MB

CP1 Ring Simple P2P 2 96 32 KB
CP2 Ring Simple P2P 8 256 32 KB
CP3 Ring Simple P2P 8 96 32 KB

ion for both reduction and broadcast phases. P defines how
data is moved across GPU memory hierarchies and managed
within the GPUs, such as loading data into the GPU cores
(SMs) and performing necessary operations (like reductions).
Among its options, LL stands for the Low-Latency protocol,
optimized for small message sizes to minimize latency. T
refers to the mechanism used for physically transferring data
between GPUs, either within the same machine or across dif-
ferent machines. For instance, its P2P (Peer-to-Peer) option
defines a direct connection between GPUs bypassing CPU,
typically using NVLink or PCIe. SHM refers to enabling data
transmission between certain GPUs via shared memory.

The remaining three parameters correspond to the alloca-
tion of resources or the degree of parallelism during communi-
cation. First, for a large message, NCCL will decompose data
into NC partitions, with each partition bonded to a threadblock
for independent transmission and processing. Each thread-
block consists of a certain number of threads, defined by NT.
In addition, each data partition can be further decomposed
into several chunks, with the size defined by C. Therefore, NC
threadblocks are transmitted chunks concurrently, and each
threadblock processes its chunks sequentially.

3 NCCL Tuning Opportunities
However, we find that the default configuration of NCCL
is often not optimal, and tuning the parameter values of the
configuration can have a huge impact on communication per-
formance during the DNN model training. Therefore, here, we
will show the improvement of communication performance,
as well as the positive impact during training performance
through several examples.

3.1 Stand-alone Communication
Here, we consider communication tasks running alone with-
out any interference. First, we take the < AllGather,80M,8−
A40−PCIe > communication task from the Phi-2-2B model
in Table 1, i.e., AllGather aggregates 80MB data among 8
A40 GPUs in a single machine. Table 3 lists four primitive
configurations that are used in the test. Figure 1 reports the
communication bandwidth (higher is better). The best con-
figuration CP3 achieves 2.69× the bandwidth of the worst
configuration CP1. The difference is that CP3 splits the mes-
sage into more data partitions (larger NC), which are split into
smaller chunks (smaller C), while adjusting the number of
threads (NT) to align with the transmission granularity (C).

CP0 CP1 CP2 CP3
NCCL Config

0

10

20

Ba
nd

wi
dt

h
(G

B/
s)

1.23x

(a) PCIe

CN0 CN1 CN2 CN3
NCCL Config

0

20

40 1.28x

(b) NVLink
Figure 1: Bandwidth comparison of using various NCCL
configurations for <AllGather, 80M, 8-A40-*>

Table 4: Various configurations of AllGather (80MB) on the
8-GPU node with intra-node NVLink w.r.t. varied NCCL
configurations. CN0 refers to the default NCCL configuration.

Config A P T NC NT C

CN0
* Ring Simple P2P 8 512 2 MB

CN1 Ring Simple P2P 64 512 108 KB
CN2 Ring Simple SHM 8 512 108 KB
CN3 Ring Simple SHM 64 512 108 KB

Table 5: Various configurations of AllReduce on the 8-GPU
node with intra-node PCIe. Each task is shown in the format
x,y, where x indicates the message size and y represents the
communication group size. P and T are omitted as they are
set to Simple and SHM, respectively, across all configurations.
C0 refers to the default NCCL configuration.

Task Config A NC NT C Bwd (GB/s)

64 MB, 16 C0
* Ring 2 256 512KB 4.0

64 MB, 16 C1 Tree 2 256 512KB 5.4
64 MB, 16 C2 Tree 8 160 59 KB 8.9
15 MB, 8 C3 Tree 8 160 59 KB 8.1
15 MB, 8 C4 Ring 10 128 27 KB 8.8

All these parameters are set to utilize the parallel comput-
ing power of GPUs and the network transmission bandwidth.
Compared to CP3, CP1 uses a smaller concurrency count NC,
leading to significant performance degradation. The perfor-
mance of CP2 is lower than CP3, even with an increase in the
number of threads. It is worth noting that CP0, the NCCL de-
fault configuration determined by NCCL’s built-in cost model,
is not optimal; its bandwidth is only 81.2% of that of CP3.

Second, we run the aforementioned AllGather task in a new
hardware environment with GPUs interconnected via NVLink
instead of PCIe. As shown in Table 4, we test 4 configurations,
namely, CN0 to CN3. Figure 1 shows that the best configuration
CN3 reaches 1.28× the bandwidth of the worst configuration
CN0. By comparing CN0 (the default configuration selected
by NCCL) with CN3, we observe that T plays a significant
role, as CN3 employs share-memory (SHM) communication
with better performance. By comparing CN3 with the second
best performing CN2, using more channels leads to better
parallel performance, consistent with our observation in the
PCIe experiment. Also, comparing CN1, CN0 and CN3, we can
find that increasing NC plays the exact opposite role when
setting the T parameter as P2P.

670 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 6: Bandwidth of AllGather (80MB) on the 8-NVLink-
GPU node w.r.t. varied computational interference levels

Interference level NCCL Bwd Tuned Bwd

Communication-only 30.08 GB/s 38.62 GB/s
Light computation 26.21 GB/s 35.14 GB/s
Heavy computation 18.26 GB/s 32.44 GB/s

Finally, we investigate the joint effect of different commu-
nication tasks, different hardware environments, and different
configuration parameter choices. To this end, we take the
AllReduce-64MB and AllReduce-15MB communication tasks
from the VGG19 model, as listed in Table 1, running on a
single machine with 8 A40 GPUs and two machines with 16
A40 GPUs, with PCIe for intra-node network and 100 Gbps
InfiniBand for inter-node network. We test five configura-
tions, with performance shown in Table 5. Comparing C0 and
C1, we find that the algorithm parameter A becomes the key
factor to performance as NCCL’s default algorithm misjudg-
ing that the Ring algorithm better fits current hardware, but
Tree is better in practice. Besides, if applying the best con-
figuration C2 for task < AllReduce,64MB,16 > to the task
< AllReduce,15MB,8 > as C3, it will be approximately 10%
lower than the performance reached by C4, indicating that con-
figuration rediscovery is needed, even for very similar tasks.
Comparing C3 and C4, we find that Ring algorithm is a better
choice, and increasing the degree of parallelism (NC) can
indeed enhance performance. In addition, we need to shrink
both the minimum granularity of the transmission C and the
number of threads NT.

According to all the experiments above, we observe that
the default configurations determined by NCCL are often not
optimal, leaving significant performance potential to NCCL
parameter tuning. Our experiments in Section 6 prove that this
problem also exists in multiple nodes. For various tasks on the
same hardware or even the same task on different hardware,
different optimal configurations are also needed. Also, it is
not clear whether there is a certain pattern in the selection
of parameters and the interactions between those parameters.
Therefore, one needs to add an auto-tuning function so that the
training task running above NCCL freely enjoys the optimized
fast communication.

3.2 Concurrent Computational Interference
Communication and computation tasks without data depen-
dencies are usually executed concurrently, and it is infrequent
for communication to occupy resources exclusively. The com-
petition between computation and communication for GPU
resources, especially SM, cache, and global bandwidth, will
cause the performance of each to degrade. Therefore, to better
study the configuration tuning of NCCL communication tasks,
especially in the presence of resource contention caused by
computation tasks, we design the following NCCL tuning
experiments with computational interference.

256KB 1MB 4MB 16MB 64MB 256MB 1GB
Message Size

0
1
2
3
4
5

Nu
m

be
r (

1e
6) AllGather

ReduceScatter
AllReduce

Figure 2: Combinations number of different communication

We introduce extra computational tasks over the AllGather
communication task from Table 4, and take default configura-
tion of NCCL as a baseline. The computational task we used
is GEMM [4], which computes matrix multiplication A[m,
k] × B[k, n] operation followed by a sigmoid [7] operation.
Here, we choose different values of m, k, n in GEMM to rep-
resent the light and heavy computations. Table 6 shows that
computational interference brings a significant communica-
tion performance degradation, even with light computation.
For example, the AllGather bandwidth drops by 12.8% with
interference by light computation and up to 39.3% by heavy
computation. However, with carefully primitive configura-
tion tuning, AllGather’s bandwidth has been improved by
34-78% for all settings. It’s worth noting that, after configura-
tion tuning, the cases with computational interference can be
7.8-16.8% faster than default NCCL without interference.

3.3 Challenges in NCCL Tuning

Tuning NCCL primitive configurations presents challenges
that require addressing the following two questions.

How to quickly find the performant configuration in a
large space? For specific communication types, message
sizes, and communication group sizes, the configuration tun-
ing space is huge. As shown in Figure 2, the number of possi-
ble combinations can reach up to millions. Traversing such a
space and comparing the latencies and bandwidths of candi-
dates is time-consuming. For example, testing all parameter
combinations for AllGather with 80MB takes several hours
on a single machine with 8 A40 GPUs connected by PCIe.
With the increase of message size and communication group
size, the time overhead expands significantly.

How to model computational interference w.r.t the train-
ing runtime dynamics? For parallel training tasks of a
model, there are usually highly variable operators, dimensions
of operator partitioning, and inputs to the operators, and con-
sequently a diverse range of computational tasks are executed
on the GPU. Modeling computational tasks and their impact
on communication further increases the space of NCCL con-
figuration. In addition, training frameworks add scheduling
optimizations to the runtime, and introduce dynamics that can
make the concurrent execution of computation and communi-
cation tasks unpredictable in advance. Exploring all potential
combinations of these factors simultaneously results in an
impractical search cost.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 671

4 Communication Tuning Method
Next, we will design a unified, simple, and efficient configura-
tion parameter tuning tool, AutoCCL, for collective communi-
cation primitives. We first consider communication modeling
and tuning in an ideal state without computational interfer-
ence. Recall that Table 2 presents six parameters that make up
each configuration, and the selection of these parameter val-
ues forms a large search space. To address this challenge, we
analyze NCCL’s parameters and make several observations.
First, we categorize the six parameters and apply different
approaches to different types of parameters. We divide the
parameters into two categories: those related to the implemen-
tation of primitives and those related to resource allocation,
with a detailed analysis provided in Section 4.1.

Second, we find that resource allocation parameters are
the primary cause of the large search space, and there are
some patterns in the interactions between these parameters.
By examining these interactions and their joint effects on
performance, we propose a theoretical model to predict the
performance of parameter combinations, thus avoiding ex-
haustive search in the vast parameter space (see Section 4.2).
Finally, we integrate all these observations into a tuning algo-
rithm, which is detailed in Section 4.3.

4.1 Parameter Division
First, algorithm, protocol, and transport are implementation-
related and together determine the topology of the algorithm
execution logic, the method of data transmission, and the soft-
ware stack calls required to complete the primitive semantics.
These parameters are crucial, but the search space is relatively
small. For example, there are only two options for algorithm,
three for protocol, and two for transport.

Some prior works have provided useful guidelines for se-
lecting these implementation parameters [12,16,47]. However,
in practice, we find that these guidelines are not always reli-
able. For instance, some works assume that bandwidth and la-
tency between GPUs are fixed, allowing the time cost for Tree
and Ring topology to be estimated as log2N and 2× (N−1),
respectively. However, in reality, bandwidth is affected by
many factors, such as message size, cluster topology, conges-
tion, and concurrency, which makes the cost model inaccurate.
As a direct consequence, in the experiment corresponding to
Table 5, NCCL incorrectly selected the algorithm.

Second, the parameters NC, NT, and C correspond to re-
source allocation. It is well-known that communication tasks
during model training require both data transmission over
the network and GPU cores for operations like accumulation
and averaging. These three parameters jointly determine how
to utilize the network bandwidth and GPU computational
power. The search space for these parameters is relatively
large, with options such as 8,192 for Chunk Size and 128 for
Nchannel. We further observe that analyzing their impact on
performance must be based on a prior selection of the above
three implementation parameters. In other words, the choice

Table 7: Notation table

Notation Description

M Message size
αi Initialization cost of phase i
βi Peak bandwidth of phase i
βi Bandwidth of phase i
γ(NC,NT,C) Congestion of all phases

of the first three parameters provides the foundation for mod-
eling the analysis of the latter three. Although the first three
parameters can be explored exhaustively, it is practically in-
feasible to search through the combinations of the latter three
exhaustively. Therefore, we must build a performance model
for these resource-related parameters.

In summary, based on the classification of these parameters,
we propose a subspace-based tuning method. First, we divide
the entire search space into different subspaces < A,P,T >,
each of which corresponds to a specific combination of algo-
rithm, protocol, and transport. Then, within each subspace,
we use a unified performance model for NC, NT, and C to
determine the optimal combination of these parameters for
that subspace. Finally, we compare the optimal combinations
from all subspaces to identify the global optimal configura-
tion. This approach mitigates the search space explosion for
resource parameters while eliminating reliance on heuristic
rules for the implementation parameters.

4.2 Modeling Resource Parameters
Given a subspace, we need to model three additional resource
parameters. The notations required for modeling are provided
in the table 7. Here, we evaluate the impact of resource pa-
rameter choices on communication bandwidth, denoted by
β(NC,NT,C). We provide qualitative analysis while avoid-
ing difficult-to-achieve quantitative modeling. The execution
of a collective primitive can be divided into two phases. In
phase 0, the transport step is responsible for reading data from
other GPUs and transferring it to the local buffer. Then, in
phase 1, the protocol loads the data from the buffer to the
SM, performs the reduction, and stores it back to the buffer.
The bandwidths of these two phases are denoted as β0 and β1,
respectively. Since the execution of the transport and protocol
stages has data dependencies and is serial, as shown in Equa-
tion 1, β(NC,NT,C) is equal to the minimum of the transport
and protocol bandwidths.

β(NC,NT,C) = min(β0(NC,C),β1(NC,NT)) (1)

Next, we introduce the derivation process for the transport
bandwidth formula in phase 0. The performance of transport
depends on chunk size C and the number of concurrent mes-
sages NC, but not on NT since the transport does not include
computation. We first compute the time t0 required to transfer
a message of size M across GPUs, as shown in Equation 2.

M
NC×C represents how many serial steps the message will be

672 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 4 16 64
Nchannel

10

20

30

Ba
nd

wi
dt

h
(G

B/
s)

C=120KB,NT=96
C=240KB,NT=96

C=120KB,NT=192
C=240KB,NT=192

(a) Varied NC

96 160 256 384 640
Nthread

NC=2,C=120KB
NC=2,C=240KB

NC=4,C=120KB
NC=4,C=240KB

(b) Varied NT

6KB 198KB 390KB 582KB
Chunk Size

10

20

30

Ba
nd

wi
dt

h
(G

B/
s)

NC=2,NT=96 NC=2,NT=192 NC=16,NT=96 NC=16,NT=192

(c) Varied C
Figure 3: The trend of <AllGather, 80M, 8> bandwidth on a
node with 8 A40 GPUs connected via NVLink

divided into, where each step consists of NC parallel transmis-
sion tasks, each of size C. The term in parentheses on the right
side of the equation represents the time cost of one step. This
cost consists of the initial latency α0 and the transmission
time for a step of size NC×C, where β0× γ represents the
bandwidth under the current congestion. γ is the congestion
coefficient, which increases with the increase of NC, NT , and
C. We only analyze it qualitatively here. Equation 3 defines
bandwidth as the message size divided by the time. By solv-
ing Equations 2 and 3, we obtain the bandwidth formula for
phase 0 as Equation 4.

Similar to the bandwidth derivation for phase 0, we can
also obtain the estimated bandwidth formula for phase 1, as
shown in Equation 5. The protocol already determines the
data granularity and cache pattern, so processing performance
is related to NC and NT , not to C. Due to space limitations,
we omit the derivation process. According to the model, when
any two parameters among NC, NT , and C are fixed and the
third parameter is gradually increased, βi will monotonically
increase, approach its physical bandwidth upper limit βi, and
then stabilize, or even fall, thereby affecting the overall band-
width β(NC,NT,C).

t0(NC,C) =
M

NC×C
× (α0 +

NC×C

β0× γ
) (2)

β0(NC,C) =
M

t0(NC,C)
(3)

β0(NC,C) =
NC×C

α0 +
NC×C
β0×γ

(4)

β1(NC,NT) =
NC×NT

α1 +
NC×NT

β1×γ

(5)

To validate the aforementioned model and its character-
istics, we designed a set of communication primitive exper-
iments. By using a controlled variable method, we varied
the values of different resource parameters and observed

Algorithm 1: Subspace-Directed Tuning
Input: Task (w).

1 optimum← nil
2 for subspace s ∈ [A×P×T] do
3 config← CoordinateDescentSearch(s)
4 if config.BwDelta(optimum) > 0 then
5 optimum← config
6 return optimum

the changes in bandwidth of < AllGather,80M,8−A40−
NV Link >. As expected, as shown in Figure 3, when any
two parameters are fixed, the bandwidth increases first, then
decreases or stabilizes as the third parameter increases. Fur-
thermore, when the first two parameters change, the band-
width peak (sweet point) corresponding to the third parameter
also shifts accordingly. Figure 3a depicts that the optimal
values of NC are 4 and 16 when C = 80KB,NT = 96 and
C = 20KB,NT = 96, respectively, since a larger C results in a
higher congestion factor γ, reducing the number of NC values
required to reach the optimal point. Similarly, as shown in
Figure 3b, the optimal values of NT are 320 and 196 when
NC = 2,C = 120KB and NC = 4,C = 120KB, respectively,
since increasing either NC or NT increases γ, and with a larger
NC, the NT curve reaches the sweet point earlier. Similar pat-
terns are observed again in Figure 3c.

In summary, we find that the joint impact of NC, NT , and
C on performance is not monotonic but exhibits the charac-
teristics of a unimodal function with a sweet point. Based
on this feature, we can naturally use the coordinate descent
method [3] to search the resource parameter combination
space. By abstracting NC, NT , and C as the three dimen-
sions of the coordinate descent method, we can find the maxi-
mum value by continuously moving in the ascending direction
along each dimension (see Section 4.3 for details).

4.3 Tuning Algorithm
Based on the parameter classification, resource-related param-
eter modeling, and subspace search method described above,
we design an NCCL parameter tuning approach, which con-
sists of Algorithm 1 and Algorithm 2.
Subspace-directed Tuning. The algorithm 1 uses a divide-
and-conquer strategy to separately search each subspace for
every communication task w. Specifically, we iterate through
all the subspaces (lines 2-5). In line 3, we invoke the coor-
dinate descent search (Algorithm 2) for subspace s to obtain
the optimal configuration within that subspace. If the opti-
mal configuration of subspace s outperforms the current best
configuration, we update the best configuration (lines 4-5).
Coordinate descent search. For the input subspace s, Algo-
rithm 2 sets M as the total number of resource parameters,
representing the dimensions of tunable parameters within the
subspace s (line 1). In our case, M is 3. Next, a configuration
p is randomly generated, where the implementation parame-
ters of p are determined by subspace s, and the values of the

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 673

Algorithm 2: Coordinate Descent Search
Input: Subspace (s).

1 M← Number of resource parameters.
2 Randomly generate a config p from subspace s.
3 optimum← p
4 dim, tuned_dim, lr← 0, 0, 0.01
5 while tuned_dim ≤M do
6 p.ProfileBw()
7 if p.BwDelta(optimum) > 0 then
8 lr← p.BwDelta(optimum)

p.Bw()

9 optimum, tuned_dim← p, 0
10 else
11 tuned_dim← tuned_dim + 1
12 dim, lr← dim + 1, 0.01
13 p← optimum
14 p[dim]← p[dim] + lr
15 return optimum

other resource parameters are randomly selected from their
respective ranges (line 2). Line 4 initializes the index of the
dimension to be tuned, the number of tuned dimensions, and
the learning rate. Lines 5-14 execute a gradient descent search
loop until all dimensions have been tuned (i.e., the number
of tuned dimensions equals the total number of tunable di-
mensions). In line 6, configuration p is executed to profile
its bandwidth. In line 7, the bandwidth of p is compared to
the current optimum. Following this, two scenarios must be
considered:

If p achieves higher bandwidth, then the configuration
should be updated along the current tuning dimension. Line 8
calculates the percentage improvement in the bandwidth of p
compared to the current optimum, using this percentage as the
learning rate lr. Line 9 updates optimum to p and resets the
tuned dimension counter, tuned_dim. If p does not improve
bandwidth, then a new tuning dimension should be selected.
Line 11 increments tuned_dim, and line 12 selects the next
dimension to tune and resets the learning rate lr.

After analyzing p, lines 13 and 14 update the tuning di-
mension dim in the optimal configuration based on lr. If
all dimensions have been tuned, line 15 returns the optimal
configuration found within the subspace s.

5 AutoCCL: Design and Implementation
Next, we present the design and implementation details of the
automated tuner, AutoCCL, focusing on how AutoCCL gath-
ers the performance profiling data required for tuning from
the training tasks and selects new configurations. To avoid
the complexity of modeling computational interference and
dynamic scheduling, we propose an online tuning approach.
This approach leverages repetitive patterns of computation
and communication cycles during the training process, using
the tuning algorithm introduced in Section 4.3 for the same
communication task until tuning is completed. It enables the

Communication Group

Peer

Peer

Executor

communicate

Communication Group

Leader

Executor

Task (<type, size, group>)

communicate

Optimizer Coordinator

lookup

Executor
lookup

Task Default Config Tuned Config
task1 xx xx
task2 xx xx

lookup

Worker

Executor
Task Default Config Tuned Config
task1 xx xx
task2 xx xx

lookup

update

Task Default Config
task1 xx
task2 xx

Task Default Config
task1 xx
task2 xx

send metrics

notify config

1

1

1

1

2

2

Task (<type, size, group>)

(a) NCCL

Communication Group

Leader

Executor

Task (<type, size, group>)

communicate

Optimizer Coordinator

Tuned ConfigDefault ConfigTask
xxxxtask1
xxxxtask2

lookup

Worker
Executor

Tuned ConfigDefault ConfigTask
xxxxtask1
xxxxtask2

lookup

update

send metrics

notify config

1

1

2

(b) AutoCCL
Figure 4: The architecture of NCCL and AutoCCL

0 1 k N

0 1 2 N

0 1 k N

Time

w/ NCCL

w/ Ours
Leader

Worker
config optimum

...

...

...

...

...

...

Tuning iterations
k (k << N)

Beneficial iterations
N - k

3Peer

k+1

k+1

E2E
Speedup

Figure 5: Online tuning workflow with AutoCCL (bottom).
Rectangles with numbers represent training iterations.

collection of communication performance data affected by
interference during the training process. This data is then
incorporated into the tuning algorithm to capture accurately
the impact of co-running computational tasks on communica-
tion. It could also amortise the cost of tuning over the early
iterations.

5.1 Overall Architecture
Figure 4 illustrates the architecture of AutoCCL and its com-
parison with NCCL. Although AutoCCL evolved from NCCL,
it exhibits significant differences from NCCL in several as-
pects. First, AutoCCL does not follow NCCL’s peer-to-peer de-
sign. In NCCL, within each communication group executing
a collective communication task, all GPUs are identical Peers,
and each Peer independently generates a default configuration
for the same communication task based on a deterministic cost
model. Unlike this, in AutoCCL, one GPU is designated as the
Leader, responsible for running the tuning algorithm, identify-
ing the performant configuration, and updating the results to

674 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WorkerLeader

Optimizer

b2. update 14ms

b1. (task2,config1) :14ms

a1. task2=<AllGather, 40MB, 2>

b5. broadcast config2b3. task2 history

a2. execute config1

Coordinator

a1. task2

a2. execute config1

History Table

Ring, LL, SHM, 8, 16, 2MB

Task A, P, T, NC, NT, C Time

16ms

Ring, LL, SHM, 8, 32, 2MB

task2

?

Config Table

Ring, LL, SHM, 8, 32, 2MB

Task A, P, T, NC, NT, C

Ring, LL, SHM, 8, 64, 2MB

task2

Config Table

Ring, LL, SHM, 8, 32, 2MB

Task A, P, T, NC, NT, C

Ring, LL, SHM, 8, 64, 2MB

task2

b5. broadcast config2

b4. config2 = Ring, LL, SHM, 8, 64, 2MB

Executor Executor

Figure 6: The online tuning workflow of AutoCCL. Colors distinguish different configurations.

the other GPUs, referred as Workers. Each AutoCCL Worker
acts similarly as a Peer in NCCL, maintaining a configuration
table. For any task, this table stores a default configuration
(generated by NCCL’s cost model) as well as a tuned con-
figuration generated by the Leader. When a communication
task is received, the Worker’s Executor checks the configu-
ration table and selects the tuned configuration if available;
otherwise, it uses the default configuration.

In contrast to the simple design of Workers, the logic of
the Leader is more complex. The Leader introduces two addi-
tional system components: the Optimizer and the Coordinator.
Optimizer collects performance profiling data from the Ex-
ecutor, determines whether tuning is necessary, and initiates
the tuning process. Without requiring coordination with other
nodes, it independently searches the performant configuration
and decides whether to replace the current one. Notified by
Optimizer, Coordinator then broadcasts the updated configu-
ration to all nodes in the communication group, updating their
tuned configuration. Upon success, all subsequent identical
communication tasks will use the updated configuration.

5.2 Iterative Online Tuning
As shown in Figure 5, by placing the communication tuning
process in the iterations of the pre-training period, we could
cope with the diversity of workloads and hide tuning time
cost.

We adapt the tuning algorithm for each subspace to the
same communication task across the iterations. As shown in
Table 1, due to the iterative nature of training and the use of
microbatches, the same communication task is executed many
times in each iteration. When performing a communication
task, we run one step of the coordinate descent algorithm for
the corresponding subspace. Upon completion, if the subspace
has not reached its optimum, we save the corresponding state
to facilitate the next search. Otherwise, we stop and switch
to the next subspace. When the performant solution is found,
the Coordinator broadcasts it to each node within the commu-
nication group, which guarantees the atomicity of the update
and avoids the inconsistent state of the same communication

task using different versions of the configuration.
Note that tuning introduces a slight overhead, which may

extend the duration of each iteration. However, since the tun-
ing process is highly efficient and the tuned iteration signifi-
cantly improves performance, the end-to-end training acceler-
ation remains substantial.

5.3 New Workflow
Here, we provide a walking-through example of the aforemen-
tioned online tuning method, illustrating the new workflow of
AutoCCL, as shown in Figure 6. On the Leader, an additional
History Table records the execution times of various tasks
under different configurations, which the Optimizer uses to
generate new configurations for tuning. Initially, the Config
Table contains only the red config_1 (<Ring, LL, SHM, 8,
32, 2MB>) for task_2, without green config_2, which will be
generated during the tuning process of this example. a1 and
a2 show the process of fetching and executing the current
optimal configuration for the communication task, while b1
to b5 illustrate the online tuning and configuration update
process.

Next, supposing both the Leader and Worker receive a new
communication task with the same communication primitive,
message size, and communication group members as the pre-
viously recorded task_2, the task is an AllGather operation
with a message size of 40MB and a communication group
size of 2. Both the Leader and Worker first need to query
the Config Table for the target configuration (step a1). Since
the Config Table is fully replicated between the Leader and
Worker, both will retrieve the red config_1 and submit task_2
to the runtime for execution using config_1 (step a2).

After a certain period, task_2 completes execution, and the
Executor on the Leader returns the execution time (14ms) to
the Optimizer (step b1). The Optimizer updates the execu-
tion time in the History Table (step b2). The Optimizer then
retrieves the historical execution times for task_2 and initi-
ates a new round of tuning (step b3). The Optimizer observes
that increasing NT from 16 to 32 reduces the communica-
tion time from 16 ms to 14 ms. According to the coordinate

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 675

Table 8: DNN model statistics

Model MBS GBS TP PP DP

Phi-2-2B 8 512 8 1 1-4
Llama-3.1-8B 2 256 8 1 1-4

Yi-1.5-34B 1 1,024 8 4 1
VGG-19-0.14B 32 32×[8,16,32] 1 1 8-32

descent method, the next attempt will also increase NT. There-
fore, it selects NT = 64, generating config_2, and notifies the
co-existed Coordinator (step b4). The Coordinator uses a
broadcast operation with synchronous semantics to update
config_2 in both the Leader and Worker’s Config Table, re-
placing the original config_1 (step b5). Subsequent task_2
executions will use config_2, and the online tuning process
will continue until the optimal configuration is found.

5.4 Implementation Details
AutoCCL is implemented based on NCCL 2.18.3, with 9,176
lines of C++ code, supporting collective communication prim-
itives such as AllGather, Allreduce, and ReduceScatter. We
modified NCCL’s configuration generation module and trans-
port initialization module to allow more flexible use of various
configurations. For any communication group, AutoCCL au-
tomatically launches an additional thread as the Leader on
one node to perform communication task tuning. Due to the
asynchronous execution characteristics of CUDA kernels, we
start an additional thread to measure execution time.
AutoCCL is implemented based on the C++ standard li-

brary, the Coordinator is implemented based on Linux sock-
ets, and no additional libraries are required. Thereby, users can
seamlessly migrate from NCCL to AutoCCL by preloading
the dynamic library without requiring any code modification.
Since AutoCCL and NCCL share identical interfaces, training
frameworks such as PyTorch [41] and MegatronLM [51] can
directly integrate AutoCCL without modification, and train-
ing tasks running on these frameworks are unaware of the
underlying switch. Our code is open-sourced at [2].

6 Evaluation
6.1 Experimental Setup
Cluster setup. We use two clusters to demonstrate the gener-
ality of our tuner. Cluster A has 2 nodes, interconnected via 2
pairs of 400 Gbps InfiniBand-PCIe 5.0 NIC. Each node has 8
NVIDIA Ampere A40 GPUs (48 GB GDDR6, PCIe 4.0), an
AMD EPYC 9654 CPU, and 64GB of host memory. The 8
GPUs within a single node are divided into 4 pairs, with each
pair of GPUs connected via 400 Gbps NVLink interconnects.
Cluster B contains 4 machines in a single rack, connected via
a 100 Gbps InfiniBand network. Each machine has 8 NVIDIA
Ampere A40 GPUs (the intra-node GPUs are connected via
PCIe 4.0), an Intel Xeon Gold 5320 CPU, and 504 GB of
host memory. In Cluster B, due to hardware limitations, peer-
to-peer communication is not available between some GPUs.
Both clusters operate under the same environment with CUDA

1MB 32MB 1GB
Message Size

PCIe-8GPU

1.0

1.5

2.0

Sp
ee

du
p

AFNFA Ours

1MB 32MB 1GB
Message Size
NVLink-8GPU

(a) AllGather

1MB 32MB 1GB
Message Size

PCIe-8GPU

1.0

1.5

2.0

Sp
ee

du
p

AFNFA Ours

1MB 32MB 1GB
Message Size
NVLink-8GPU

(b) ReduceScatter
Figure 7: Bandwidth speedups for the AllGather and Re-
duceScatter communication of different A40 clusters

v12.1 and NVIDIA driver v470.63.01.
DNN training jobs. We evaluate four models from different
application scenarios, including Phi-2-2B [21], Llama-3.1-
8B [54], Yi-1.5-34B [65], and VGG-19 [52] shown in Table 8,
where three are large language models with up to 32 billion
parameters and one computer vision model. Model training is
conducted using PyTorch version 2.1.0. Various parallelisms
are managed by MegatronLM. Due to limited GPU memory,
Llama-3.1-8B combines distributed optimizer [45] along with
data parallelism. We set the micro-batch size as large as pos-
sible under the GPU memory limitation for better hardware
utilization. The global batch size follows the setting of the
GPT series with a similar model scale [11].
Baseline systems. We compare against NCCL v2.18.3-1, al-
most the latest version provided by NVIDIA, and internally
performing tuning to some extent. We always enable its tuning
function. We also include an academic collective communica-
tion tuning system, AFNFA [64]. We use the random forest
algorithm to train 1% of the offline sampled data and use
environment variables to set the configuration for different
communication to reproduce the results of AFNFA. All data
represent the average results from multiple experiments.

6.2 Communication Micro-Benchmarks
We explore how AutoCCL improves different collective com-
munication primitives, considering various hardware setups
and message transmission sizes. We first evaluate the com-
munication performance without computational interference,
followed by experiments with interference.
Communication without computational interference. We
first consider AllGather and ReduceScatter primitives, which
are heavily used in Tensor Parallelism. We test them with
8 GPUs within a single machine, connected via PCIe 4.0 or
NVLink. Figure 7 summarizes the bandwidth speedups of
AutoCCL and AFNFA over the native NCCL.

For A40-PCIe, AFNFA’s results are almost identical

676 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1MB 32MB 1GB
Message Size

PCIe-8GPU

0.7
1.0
1.3
1.6

Sp
ee

du
p AFNFA Ours

1MB 32MB 1GB
Message Size
PCIe-16GPU

0.7
1.0
1.3
1.6

1MB 32MB 1GB
Message Size
PCIe-32GPU

0.7
1.0
1.3
1.6

1MB 32MB 1GB
Message Size
NVLink-8GPU

1.0
1.5
2.0

1MB 32MB 1GB
Message Size
NVLink-16GPU

1.0
1.5
2.0

Figure 8: Bandwidth speedups for the AllReduce communication of A40 clusters with different setups

AG AG+I RS RS+I AR AR+I

20

30

40

Ba
nd

wi
dt

h
(G

B/
s)

1.00x

1.04x
1.00x

1.07x

1.04x 1.02x

1.29x
1.54x 1.28x 1.50x

1.32x 1.38x

NCCL
AFNFA
Ours

Figure 9: Comparison of bandwidth with and without compu-
tation interference for different communication. The message
size is 128 MB. ‘+I’ refers to the communication that inter-
fered with computation. The speedup numbers are annotated
in the figure. AG, RS and AR stand for AllGather, ReduceScat-
ter and AllReduce respectively.

1MB 32MB 1GB
Message Size

AllGather

1.0

1.5

2.0

Sp
ee

du
p AFNFA Ours

1MB 32MB 1GB
Message Size
ReduceScatter

1MB 32MB 1GB
Message Size

AllReduce
Figure 10: Bandwidth speedups with increasing message sizes
and computation interference for different communication
types of a cluster with 8 A40 connected with NVLink

to NCCL, offering little optimization. However, AutoCCL
achieved an average bandwidth improvement of 22.66% and
27.52% for AllGather and ReduceScatter, respectively, com-
pared to NCCL. This is especially evident for larger message
sizes, where AutoCCL outperforms both baselines.

It is widely acknowledged that NVLink is highly efficient,
and NCCL has been heavily optimized for it. Despite this,
AutoCCL demonstrates even greater advantages on NVLink
compared to PCIe. For instance, for various message sizes,
the average bandwidth speedups are 1.38× and 1.39×, re-
spectively. In contrast, AFNFA shows far fewer benefits, par-
ticularly for large message sizes, where its tuning results still
align with those of NCCL since it uses global configuration
and cannot adapt to different message sizes.

We observe that in a few cases, AutoCCL’s tuning results
align with those of NCCL. This occurs because, for these
particular message sizes, NCCL’s configuration is already
optimal. In other words, its standard α-β network model can
accurately predict performance at these points, although this
model does not generalize to all cases.

Next, we analyze AllReduce, which is commonly used in
data parallelism to exchange gradient information. As shown
in Figure 8, similar to the results above, AutoCCL achieved
average bandwidth speedups of 1.28× and 1.15× compared to

NCCL and AFNFA, respectively. In the PCIe-32GPU cluster,
where AFNFA even results in negative optimization, AutoCCL
slightly outperforms NCCL since the default configuration
of NCCL is effective. However, NCCL becomes less suitable
under computational interference.
Communication with computational interference. We test
the behavior of AutoCCL when communication and computa-
tion are co-executed. We evaluate the above three primitives
with a GEMM operation running concurrently alongside each
primitive. The matrices of GEMM are A[m, k] and B[k, n],
where m, k, and n are 3,456, 128, and 3,456. Figure 9 com-
pares the bandwidth of these primitives with and without
computational interference for a fixed message size.

Similar to previous studies, the bandwidth of the three prim-
itives decreases significantly under computational interfer-
ence. With AutoCCL tuning, the bandwidth speedups com-
pared to NCCL are 1.29×, 1.50×, and 1.38×, respectively.
In contrast, AFNFA demonstrates poor performance, show-
ing no improvements for AllGather and ReduceScatter and
merely a 1.02× improvement for AllReduce. Interestingly, af-
ter AutoCCL tuning, the optimal bandwidth under interference
closely approximates the optimal bandwidth without inter-
ference. This indicates that AutoCCL can accurately predict
performance even with interference.

Figure 10 differs from Figure 9 by increasing the message
size for primitives while simultaneously scaling up the corre-
sponding co-executed GEMM to simulate varying degrees of
resource sharing and interference.

For AllGather and AllReduce, AFNFA only shows tuning
benefits for message sizes below 16 MB, compared to NCCL.
In contrast, AutoCCL not only matches or slightly outperforms
AFNFA for small message sizes, but also achieves significant
bandwidth improvements of 1.11-1.76× and 1.16-1.39× for
larger message sizes (e.g., those exceeding 32 MB) compared
to NCCL, respectively. For ReduceScatter, AFNFA either per-
forms on par with NCCL or results in negative optimization.
This indicates that in more competitive scenarios, both NCCL
and AFNFA fail to deliver satisfactory performance, as their
modeling approaches are insufficient to handle complex envi-
ronments and dynamic changes. In contrast, AutoCCL shows
a distinct performance advantage in these situations.

6.3 End-to-End Performance
To show how AutoCCL accelerates the training progress for
real-world models, we conduct experiments to train models

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 677

PCIe
8GPU

PCIe
16GPU

PCIe
32GPU

NVLink
8GPU

NVLink
16GPU

50

100

150

200

Ite
ra

tio
n

Ti
m

e
(s

)

1.00x

1.00x

1.00x

1.07x

1.07x

1.14x

1.32x

1.32x

1.10x

1.10x

NCCL
AFNFA
Ours

(a) Phi-2-2B

PCIe
8GPU

PCIe
16GPU

PCIe
32GPU

NVLink
8GPU

NVLink
16GPU

200

400

600 0.99x

1.00x

1.00x

1.06x

1.06x

1.18x

1.18x

1.08x

1.07x

1.07x

(b) Llama-3.1-8B

PCIe
32GPU

1000

1250

1500 1.00x

1.25x

(c) Yi-1.5-34B

PCIe
8GPU

PCIe
16GPU

PCIe
32GPU

150

200

250

Ite
ra

tio
n

Ti
m

e
(m

s)

1.00x
1.18x

0.95x

1.02x 1.20x
1.11x

(d) VGG-19-0.14B
Figure 11: Training iteration time for different models between NCCL, AFNFA, and AutoCCL, with speedup annotated

1 4 7 10
Iterations

0

100

200

Ite
ra

tio
n

Ti
m

e
(s

)

PCIe-8GPU
PCIe-16GPU
PCIe-32GPU

NVLink-8GPU
NVLink-16GPU

(a) Phi-2-2B

1 4 7 10
Iterations

0

200

400

600

(b) Llama-3.1-8B
Figure 12: Rapid convergence of AutoCCL tuning at early
iterations of end-to-end LLM training

on different communication systems under various hardware
setups. Figure 11 shows the training iteration time of differ-
ent models. Among all the hardware setups, AutoCCL out-
performs both NCCL and AFNFA in training these models,
while AFNFA is slower than NCCL in some cases as its
offline-tuned configurations degrade performance under com-
putational interference. On the PCIe machine, we observed a
greater performance improvement compared to microbench-
mark results because our online tuner exhibits stronger re-
silience to such interference than NCCL and AFNFA, whose
performances are significantly degraded. The end-to-end
gains on NVLink machines are modest because in scenarios
where communication overlaps with computation and compu-
tation is dominant, excessive optimization of communication
can slow down computation and reduce overall performance.
For best cases, AutoCCL can improve the training iteration
time by more than 32% compared to both NCCL and AFNFA.

6.4 Efficiency of Iterative Online Tuning

To show the efficiency of the AutoCCL to find the performant
configuration with iterative online tuning, we measure how
the iteration time changes when training the models, as shown
in Figure 12. As noted in Table 1, because of the repetition of
layers in the model and the large number of repeated micro
batch sizes in each global batch size, the Transformer models
like Llama-3.1-8B, Phi-2-2B, and Yi-1.5-34B can generate
thousands to tens of thousands of repetitive communication
operations per iteration. For these models, only several iter-
ations are required for AutoCCL to find the performant con-
figurations. For smaller models like VGG-19, although less
repetitive communication operations are involved in each iter-
ation, the time consumed per iteration is relatively short, e.g.,
150-200 ms per iteration for VGG-19 in Figure 11d, which is
around 1,000 times shorter than that of Llama-3.1-8B. In our

evaluation, it only takes no more than 10 minutes for AutoCCL
to find the performant configuration in VGG-19. In summary,
for these four models of different areas, AutoCCL can rapidly
identify a sufficiently performant configuration within just a
few iterations or minutes through online tuning, highlighting
its ability to adapt quickly to new environments, which is
infeasible for offline tuning strategies.

7 Related Work
Computation-communication scheduling. At the applica-
tion level, many studies [13, 19, 22, 23, 31, 46, 50, 59, 60, 67]
aim to reduce communication overhead by overlapping com-
putation and communication, thereby enhancing training effi-
ciency. For example, Horovod [46] overlaps all-reduce com-
munication with backward computation to improve perfor-
mance. AutoCCL complements these methods by addition-
ally considering the interference between computation and
communication during the tuning process, making it more
effective for tasks with specific scheduling requirements.
Communication compression. Other approaches [8, 9, 53,
56, 62, 63] improve communication efficiency by exploiting
data sparsity. HiPress [9] introduces a framework to effi-
ciently compress gradient data in AllReduce, reducing latency.
ZeRO++ [56] combines quantization with collectives of AllRe-
duce and AllGather in the ZeRO optimization to improve
efficiency. AutoCCL is complementary to them, as it can be
used to further enhance the performance of underlying com-
munication collectives for these compression algorithms.
Collective algorithm generation. At the algorithm level,
several studies focus on developing topology-aware [12, 15,
16, 27, 29, 32, 35, 42, 42, 47, 57] or sparse-aware [10, 28] com-
munication algorithms. For instance, Swing [16] proposes
a new AllReduce algorithm to minimize hops in torus net-
works, while MCCLang [15] offers a domain-specific pro-
gramming interface and efficient compiler for easier algorithm
customization. Unlike these works, AutoCCL does not intro-
duce new algorithms but treats the algorithm choice as a tun-
able parameter. In the future, AutoCCL can be integrated with
these approaches to further enhance runtime performance.
Network tuning. At the hardware level, to achieve higher net-
work communication bandwidth, NCCL [5] uses the Alpha-
Beta model to predict communication efficiency based on
hardware topology and bandwidth. AFNFA [64] improves
this prediction using machine learning with offline profiling.

678 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

However, all these approaches share a global configuration
(i.e., through NCCL environment variables [6]) and do not
consider computational interference in real-world workloads.
In contrast, AutoCCL employs online profiling to capture the
interference effects and dynamically selects a performant
configuration for each collective communication operation,
improving performance across diverse workloads.

8 Discussion
8.1 Parameter Selection and Extensibility
Once the implementation-wise parameter T is determined,
NCCL allows further optimization of transport-specific pa-
rameters, including Ethernet, IB, COLL_SHARP, NVLS, SHM,
and P2P. AFNFA considers NCCL_SOCKET_NTHREADS
for Ethernet transport and NCCL_NET_GDR_LEVEL for
IB transport. However, our study does not include
these parameters, as they introduce a risk of fail-
ures while providing limited performance gains (Sec-
tion 8.2). AFNFA attempts to optimize NCCL in-
cluding NCCL_ALGO for A, NCCL_SHM_DISABLE and
NCCL_P2P_LEVEL for T, NCCL_MAX/MIN_NCHANNEL
for NC, and NCCL_BUFFSIZE for C. These tunable combina-
tions are incorporated into our search space. Our search space
also includes P and NT, whose importance is demonstrated in
Section 3.1.

The subspace coordinate descent method is inherently scal-
able, allowing users to optimize transport-specific parameters.
Introducing transport-specific parameters only increases the
number of implementation-wise parameter combinations, ef-
fectively subdividing the existing subspaces into finer-grained
subspaces. The scalability of the subspace coordinate descent
method enables users to further optimize transport-specific
parameters as needed.

Our findings suggest that using default or fixed val-
ues for transport-specific parameters already yields ro-
bust performance. For example, we attempted to op-
timize IB-specific parameters and found that the de-
fault values of NCCL_IB_SPLIT_DATA_ON_QPS and
NCCL_IB_QPS_PER_CONNECTION are already optimal.
Similarly, the optimal value for NCCL_NET_GDR_LEVEL
is typically determined based on the NIC and GPU topology,
making it effective across different communication workloads.
Since the optimal values for transport-specific parameters are
often hardware-dependent, further exploration of their opti-
mization is left for future work.

8.2 Task Failures and Valid Configurations
Tuning NCCL parameters can potentially lead to training
task failures. This issue has been reported in related studies
[40, 64] and confirmed by our experiments. As previously
mentioned, once an implement-wise parameter such as T is
determined, collective communication will employ a specific
transport mechanism, such as P2P transport. NCCL allows fur-
ther optimizations for specific transport mechanisms—for in-

stance, enabling P2P_USE_CUDA_MEMCPY for P2P trans-
port can improve bandwidth. However, in end-to-end training
tasks, this setting may result in deadlocks. Additionally, we
observed another type of failure: for resource-allocation pa-
rameters such as NC, NT, and C, excessively large values
can lead to resource saturation, ultimately causing program
crashes.

Nevertheless, failures induced by tuning have minimal im-
pact on our system for two reasons. First, transport-specific
optimizations are beyond our scope; therefore, we inherently
avoid failures associated with them. In the future, we may
explore further optimizations under failure recovery support.
Second, for NC, NT, and C, due to the unimodal nature of the
performance function, excessively large values do not yield
performance gains. Therefore, we can impose upper bounds
on resource usage without sacrificing performance, effectively
preventing failures.

Besides, if a failure occurs, online tuning introduces addi-
tional overhead for loading checkpoints compared to offline
tuning. However, given the numerous recent optimizations
in checkpointing [18, 26, 61], this overhead has been signifi-
cantly reduced and is negligible. The dominant cost of failure
recovery remains container rebooting, which is required for
both offline and online tuning.

Finally, failure handling and recovery are orthogonal to
tuning. We can explore this topic in future work.

9 Conclusion
AutoCCL is an automated tuning tool that optimizes low-level
NCCL parameter selection. By decoupling implementation-
related parameters from those that inflate the search space,
our divide-and-conquer approach reduces the necessity for
extensive trial runs. Furthermore, its online tuning strategy
efficiently handles communication-computation interference.
Evaluation across multiple clusters and models demonstrates
that AutoCCL significantly enhances both communication and
end-to-end training performance compared to NCCL and an-
other SOTA tuner.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Rui
Miao, for their insightful comments. This work is supported
in part by the Strategic Priority Research Program of the
Chinese Academy of Sciences, Grant No.: XDB0660101,
XDB0660000, and XDB0660100, the National Key R&D Pro-
gram of China under Grant No. 2024YFB4505701, and the
University Synergy Innovation Program of Anhui Province
under Grant No. 2024YFB4505701. We thank the computing
resources and technical support from Institute of Artificial
Intelligence, Hefei Comprehensive National Science Center.
We thank the computing resources and technical support from
China Telecom Co., Ltd. Hefei Branch. Cheng Li is the corre-
sponding author.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 679

References
[1] AMD. ROCm communication collectives library

(RCCL). https://github.com/ROCm/rccl, 2024.
[Accessed 19-09-2024].

[2] Automated tunable collective communication library
(AutoCCL). https://github.com/gbxu/autoccl,
2024. [Accessed 19-09-2024].

[3] Coordinate descent. https://en.wikipedia.org/w
iki/Coordinate_descent, 2024. [Accessed 19-09-
2024].

[4] General Matrix Multiplication. https://en.wikip
edia.org/wiki/Matrix_multiplication, 2024.
[Accessed 19-09-2024].

[5] NVIDIA Collective Communication Library (NCCL).
https://github.com/nvidia/nccl, 2024. [Ac-
cessed 19-09-2024].

[6] NVIDIA Collective Communication Library (NCCL)
Documentation. https://docs.nvidia.com/deeple
arning/nccl/archives/nccl_2183/user-guide
/docs/env.html, 2024. [Accessed 19-09-2024].

[7] Sigmoid Function. https://en.wikipedia.org/wik
i/Sigmoid_function, 2024. [Accessed 19-09-2024].

[8] Saurabh Agarwal, Hongyi Wang, Shivaram Venkatara-
man, and Dimitris Papailiopoulos. On the utility of
gradient compression in distributed training systems.
Proceedings of Machine Learning and Systems, 4:652–
672, 2022.

[9] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradient
compression supercharged high-performance data par-
allel dnn training. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
359–375, 2021.

[10] Charles Block, Gerasimos Gerogiannis, Charith Mendis,
Ariful Azad, and Josep Torrellas. Two-face: Combining
collective and one-sided communication for efficient
distributed spmm. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pages 1200–1217, 2024.

[11] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[12] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal
Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli
Saarikivi. Synthesizing optimal collective algorithms.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 62–75, 2021.

[13] Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan,
Peng Sun, Xingcheng Zhang, and Chao Yang. Cen-
tauri: Enabling efficient scheduling for communication-
computation overlap in large model training via commu-
nication partitioning. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, pages 178–191, 2024.

[14] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

[15] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi,
Olli Saarikivi, and Yifan Xiong. Mscclang: Microsoft
collective communication language. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 502–514, 2023.

[16] Daniele De Sensi, Tommaso Bonato, David Saam, and
Torsten Hoefler. Swing: Short-cutting rings for higher
bandwidth allreduce. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), pages 1445–1462, 2024.

[17] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, et al. Dapple: A pipelined data paral-
lel approach for training large models. In Proceedings
of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 431–445,
2021.

[18] Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Ab-
hishek Vijeev, Bhargav Gulavani, Nipun Kwatra, Ra-
machandran Ramjee, and Muthian Sivathanu. Just-
in-time checkpointing: Low cost error recovery from
deep learning training failures. In Proceedings of the
Nineteenth European Conference on Computer Systems,
pages 1110–1125, 2024.

[19] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy
Campbell. Tictac: Accelerating distributed deep learn-
ing with communication scheduling. Proceedings of
Machine Learning and Systems, 1:418–430, 2019.

680 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/ROCm/rccl
https://github.com/gbxu/autoccl
https://en.wikipedia.org/wiki/Coordinate_descent
https://en.wikipedia.org/wiki/Coordinate_descent
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Matrix_multiplication
https://github.com/nvidia/nccl
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2183/user-guide/docs/env.html
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2183/user-guide/docs/env.html
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2183/user-guide/docs/env.html
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Sigmoid_function

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[21] Alyssa Hughes. Phi-2: The surprising power of small
language models — microsoft.com. https://www.mi
crosoft.com/en-us/research/blog/phi-2-the
-surprising-power-of-small-language-model
s/. [Accessed 19-09-2024].

[22] Abhinav Jangda, Jun Huang, Guodong Liu, Amir
Hossein Nodehi Sabet, Saeed Maleki, Youshan Miao,
Madanlal Musuvathi, Todd Mytkowicz, and Olli
Saarikivi. Breaking the computation and commu-
nication abstraction barrier in distributed machine
learning workloads. In Proceedings of the 27th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’22, page 402–416, New York, NY, USA,
2022. Association for Computing Machinery.

[23] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexan-
dra Fedorova, and Gennady Pekhimenko. Priority-based
parameter propagation for distributed dnn training. Pro-
ceedings of Machine Learning and Systems, 1:132–145,
2019.

[24] Xianyan Jia, Le Jiang, Ang Wang, Jie Zhang, Xinyuan
Li, Wencong Xiao, Yong Li, Zhen Zheng, Xiaoyong Liu,
Wei Lin, et al. Whale: Scaling deep learning model train-
ing to the trillions. arXiv preprint arXiv:2011.09208,
2020.

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
Proceedings of Machine Learning and Systems, 1:1–13,
2019.

[26] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, et al. Megascale: Scaling
large language model training to more than 10,000 gpus.
In 21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 745–760,
2024.

[27] Heehoon Kim, Junyeol Ryu, and Jaejin Lee. Tccl: Dis-
covering better communication paths for pcie gpu clus-
ters. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 999–
1015, 2024.

[28] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–15, 2019.

[29] Sabuj Laskar, Pranati Majhi, Sungkeun Kim, Farabi
Mahmud, Abdullah Muzahid, and Eun Jung Kim. En-
hancing collective communication in mcm accelerators
for deep learning training. In 2024 IEEE International
Symposium on High-Performance Computer Architec-
ture (HPCA), pages 1–16. IEEE, 2024.

[30] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[31] Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and
Hong Xu. Accelerating distributed moe training and
inference with lina. In 2023 USENIX Annual Technical
Conference (USENIX ATC 23), pages 945–959, 2023.

[32] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, 2014.

[33] Shengwei Li, Kai Lu, Zhiquan Lai, Weijie Liu, Keshi
Ge, and Dongsheng Li. A multidimensional communica-
tion scheduling method for hybrid parallel dnn training.
IEEE Transactions on Parallel and Distributed Systems,
2024.

[34] Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang,
Yi Zhu, Cheng Li, Saeed Maleki, Xu Cao, Ning Shang,
Yilei Yang, et al. nnscaler: Constraint-guided paralleliza-
tion plan generation for deep learning training. In 18th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 347–363, 2024.

[35] Liang Luo, Peter West, Jacob Nelson, Arvind Krishna-
murthy, and Luis Ceze. Plink: Discovering and exploit-
ing locality for accelerated distributed training on the
public cloud. Proceedings of Machine Learning and
Systems, 2:82–97, 2020.

[36] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.
Kungfu: Making training in distributed machine learn-
ing adaptive. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
937–954, 2020.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 681

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/

[37] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[38] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie
Chen, and Matei Zaharia. Memory-efficient pipeline-
parallel dnn training. In International Conference on
Machine Learning, pages 7937–7947. PMLR, 2021.

[39] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[40] Lichen Pan, Juncheng Liu, Jinhui Yuan, Rongkai Zhang,
Pengze Li, and Zhen Xiao. Occl: a deadlock-free li-
brary for gpu collective communication. arXiv preprint
arXiv:2303.06324, 2023.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32, 2019.

[42] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. Journal
of Parallel and Distributed Computing, 69(2):117–124,
2009.

[43] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 16–
29, 2019.

[44] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:
Advancing mixture-of-experts inference and training to
power next-generation ai scale. In International confer-
ence on machine learning, pages 18332–18346. PMLR,
2022.

[45] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[46] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[47] Aashaka Shah, Vijay Chidambaram, Meghan Cowan,
Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Ja-
cob Nelson, Olli Saarikivi, and Rachee Singh. Taccl:
Guiding collective algorithm synthesis using communi-
cation sketches. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 593–612, 2023.

[48] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. Mesh-tensorflow: Deep learning for super-
computers. Advances in neural information processing
systems, 31, 2018.

[49] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[50] Shaohuai Shi, Xinglin Pan, Qiang Wang, Chengjian Liu,
Xiaozhe Ren, Zhongzhe Hu, Yu Yang, Bo Li, and Xi-
aowen Chu. Schemoe: An extensible mixture-of-experts
distributed training system with tasks scheduling. In
Proceedings of the Nineteenth European Conference on
Computer Systems, pages 236–249, 2024.

[51] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[52] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[53] Jaeyong Song, Jinkyu Yim, Jaewon Jung, Hongsun
Jang, Hyung-Jin Kim, Youngsok Kim, and Jinho Lee.
Optimus-cc: Efficient large nlp model training with 3d
parallelism aware communication compression. In Pro-
ceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 560–573, 2023.

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

682 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[55] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-
ishnaiah, Nirmal Prajapati, Pat McCormick, Jamaludin
Mohd-Yusof, et al. Unity: Accelerating dnn training
through joint optimization of algebraic transformations
and parallelization. In 16th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 22),
pages 267–284, 2022.

[56] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia
Wu, Connor Holmes, Zhewei Yao, Samyam Rajbhandari,
Olatunji Ruwase, Feng Yan, Lei Yang, et al. Zero++:
Extremely efficient collective communication for large
model training. In The Twelfth International Conference
on Learning Representations, 2023.

[57] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and generic collectives for distributed ml.
Proceedings of Machine Learning and Systems, 2:172–
186, 2020.

[58] Minjie Wang, Chien-chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–17, 2019.

[59] Shibo Wang, Jinliang Wei, Amit Sabne, Andy
Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
Karthik Srinivasa Murthy, Marcello Maggioni, Qiao
Zhang, et al. Overlap communication with dependent
computation via decomposition in large deep learning
models. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, pages
93–106, 2022.

[60] Weiyang Wang, Moein Khazraee, Zhizhen Zhong,
Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying
Zhang, and Anthony Kewitsch. Topoopt: Co-optimizing
network topology and parallelization strategy for dis-
tributed training jobs. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 739–767, 2023.

[61] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, TS Eugene Ng, and Yida Wang. Gemini: Fast
failure recovery in distributed training with in-memory
checkpoints. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 364–381, 2023.

[62] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Ng.
Espresso: Revisiting gradient compression from the
system perspective. arXiv preprint arXiv:2205.14465,
2022.

[63] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene
Ng. Hi-speed dnn training with espresso: Unleashing the
full potential of gradient compression with near-optimal
usage strategies. In Proceedings of the Eighteenth Euro-
pean Conference on Computer Systems, pages 867–882,
2023.

[64] Zibo Wang, Yuhang Zhou, Chen Tian, Xiaoliang Wang,
and Xianping Chen. Afnfa: An approach to automate
nccl configuration exploration. In Proceedings of the 7th
Asia-Pacific Workshop on Networking, pages 204–205,
2023.

[65] Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, et al. Yi: Open founda-
tion models by 01.ai, 2024.

[66] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez,
et al. Alpa: Automating inter-and intra-operator par-
allelism for distributed deep learning. arXiv preprint
arXiv:2201.12023, 2022.

[67] Yonghao Zhuang, Lianmin Zheng, Zhuohan Li, Eric
Xing, Qirong Ho, Joseph Gonzalez, Ion Stoica, Hao
Zhang, and Hexu Zhao. On optimizing the commu-
nication of model parallelism. Proceedings of Machine
Learning and Systems, 5, 2023.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 683

	Introduction
	Background
	Distributed and Parallel DNN Training
	Collective Communication
	Low-Level Primitive Configurations

	NCCL Tuning Opportunities
	Stand-alone Communication
	Concurrent Computational Interference
	Challenges in NCCL Tuning

	Communication Tuning Method
	Parameter Division
	Modeling Resource Parameters
	Tuning Algorithm

	AutoCCL: Design and Implementation
	Overall Architecture
	Iterative Online Tuning
	New Workflow
	Implementation Details

	Evaluation
	Experimental Setup
	Communication Micro-Benchmarks
	End-to-End Performance
	Efficiency of Iterative Online Tuning

	Related Work
	Discussion
	Parameter Selection and Extensibility
	Task Failures and Valid Configurations

	Conclusion

