é} usenix
4 THE ADVANCED

' 4

COMPUTING SYSTEMS
ASSOCIATION

Or1iIRebuck: Resilient and Tail-Optimal AllReduce
for Distributed Deep Learning in the Cloud

Ertza Warraich, Purdue University; Omer Shabtai and Khalid Manaa, Nvidia;
Shay Vargaftik, VMware Research; Yonatan Piasetzky and Matty Kadosh, Nvidia;
Lalith Suresh, Feldera; Muhammad Shahbaz, University of Michigan

https://www.usenix.org/conference/nsdi25/presentation/warraich

This paper is included in the
Proceedings of the 22nd USENIX Symposium on
Networked Systems Design and Implementation.
April 28-30, 2025 - Philadelphia, PA, USA
978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllauc Ellall aealy

D &yisillg pglal
'g King Abdullah University of

Science and Technology

OPTIREDUCE: Resilient and Tail-Optimal AlIReduce for
Distributed Deep Learning in the Cloud

Ertza Warraich, Omer Shabtai’, Khalid Manaa', Shay Vargaftiki,
Yonatan PiasetzkyT, Matty Kadosh', Lalith Suresh®, Muhammad Shahbaz*
Purdue University "Nvidia *VMware Research SFeldera *University of Michigan

Abstract

We present OPTIREDUCE, a new collective-communication
system for the cloud with bounded, predictable completion
times for deep-learning jobs in the presence of varying compu-
tation (stragglers) and communication (congestion and gradi-
ent drops) variabilities. OPTIREDUCE exploits the inherent re-
siliency and the stochastic nature of distributed deep-learning
(DDL) training and fine-tuning to work with approximated (or
lost) gradients—providing an efficient balance between tail
performance and the resulting accuracy of the trained models.

Exploiting this domain-specific characteristic of DDL,
OPTIREDUCE introduces (1) mechanisms (e.g., unreliable
bounded transport with adaptive timeout) to improve the DDL
jobs’ tail execution time, and (2) strategies (e.g., Transpose
AllReduce and Hadamard Transform) to mitigate the impact
of dropped gradient entries on model accuracy. Our evaluation
shows that OPTIREDUCE achieves 70% and 30% faster time-
to-accuracy (TTA), on average, when operating in shared,
cloud environments (e.g., CloudLab) compared to Gloo and
NCCL, respectively.

1 Introduction

Synchronous distributed data-parallel training [175] is now
the de-facto standard for training and fine-tuning large-
scale deep-learning models (comprising billions or even
trillions of parameters) and datasets (comprising terabytes
of data) that form the backbone of many mainstream en-
terprise applications, including computer vision [64, 74, 96,
161], natural-language processing and large-language mod-
els [53,63, 110, 167], recommendation and prediction sys-
tems [70,71, 84,86, 130], and healthcare [93,112, 125, 169].
Under this scheme, the training occurs in rounds (or epochs).
Workers locally train a copy of the model on a fragment of
data and then share the model updates (i.e., gradients) among
themselves over the network to compute an aggregated result.
The aggregate is then used to update the model locally for
the next round of training. Distributed deep-learning (DDL)
is, therefore, inherently a computation- and communication-
intensive workload and is becoming even more so with the
growing model sizes (e.g., Bart [101], GPT-2/3 [53, 126],
LLaMA [65, 146]), and datasets [38, 135, 143].

To train and fine-tune such large models, extensive efforts
are underway in reducing both the computation and commu-
nication time of DDL jobs, albeit in isolation. On the one
hand, we have GPUs [141] and emerging hardware accel-

erators, like Tensor Processing Units (TPUs) [90], that are
drastically bringing down the computation time—reducing
it by 62x over the last decade [136]. While, on the other
hand, we have recent proposals based on programmable swit-
ches [157] that aim at reducing the communication time by
2-5x (via in-network aggregation) [136]. Yet, when seen
together, both these efforts mainly help in improving the
average completion time of a deep-learning job (either by
accelerating computation or communication). The vast ar-
ray of system-level variabilities (e.g., device failures, OS and
hypervisor scheduling, and resource contention) and network-
level delays (e.g., congestion and retransmissions) still lead
to long tails; hence, resulting in poor overall performance
for these training jobs—with tail reaching as high as 4x
the mean latency in shared environments (e.g., public cloud
providers)' [72,77,99, 106,118,153, 166].

In this paper, we make the case for OPTIREDUCE, a
collective-communication system for the cloud tenants that
ensures bounded, predictable completion times for deep-
learning jobs in the presence of myriad computation and
communication variabilities. Public clouds are becoming in-
creasingly appealing for training, and more specifically fine-
tuning, large foundation models [50], for enterprises and indi-
viduals lacking resources to set their own in-house distributed
training clusters [14,16,17,20,21,28,33,36,37]. OPTIRE-
DUCE exploits the inherent resiliency and the stochastic na-
ture of deep-learning systems to work with approximated
or lost gradients and provides an efficient balance between
tail performance and the resulting accuracy of the trained
models. Others are already utilizing this characteristic of
deep learning to optimize DDL hardware design (e.g., chip
area [134,171]), minimize traffic overhead [68, 103,109, 154],
or offload certain DDL tasks to the network switches [99,
136, 153,157, 160]. For instance, to reduce communication
time, ATP [99] and SwitchML [136] leverage fixed-point
arithmetic for gradient aggregation in programmable switches
with acceptable approximation loss, whereas MLT [153] pri-
oritizes and drops packets inside switches based on model
layers and gradient magnitudes to limit loss in accuracy.
Various gradient-compression schemes [68, 103, 109, 154]
employ lossy compression to reduce network traffic over-

!Cloud providers typically do not offer preferential treatment to small
tenants, but even large tenants with dedicated racks face long tails when com-
municating across racks in the provider’s network. Private communication
with a hyperscaler.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 685

waiting for GAs to complete
1 g p : . .
I 1 .

e8¢
o0

Workers are idle; <<< Backpropagation

Worker W,
model = DDP(model)

. . for e in epochs:
3 for b in batches:
o0 .(_ # forward pass
. . forward = model(b.data)

! |

GA Bo

\ GA Bn

loss function

loss = (forward.prediction
GA B, ~ b.label)
| # backward pass

Completion time for a single backward pass

1 loss.backward

4 Stages of a single Gradient Aggregation (GA) per bucket (B)

[3. Bcast/Receive Bi 2. Aggregate Bi=2(AB) 1.Send/Receive AB; |

Figure 1: A backpropagation pass in distributed data-parallel (DDP) training. Multiple gradient aggregation (GA) runs
share a bucket (B;) worth of gradient entries among worker nodes (W,), in parallel. The two send(bcast)/receive stages (1,
3) in GA incur the most time—contributing to the tail latency and stalling workers.

head (e.g., total bytes transferred) while limiting deviation
from the achievable model accuracy. Similarly, hardware de-
signers are incorporating approximate operations (e.g., ap-
prox. multipliers [134, 171]) in their architectures to mini-
mize resource and energy usage—to scale to ever-increasing
DDL models. However, these solutions are still suscepti-
ble to tail effects (e.g., slow workers and network variabil-
ities) [47, 61,78, 108, 127, 140, 153, 170, 173], and are not
optimized for cloud environments, often times requiring di-
rect access to the provider’s network infrastructure.

In OPTIREDUCE, we exploit this resiliency and replace
the (tail-prone) deterministic, run-to-completion stages of an
AllReduce collective in DDL, with best-effort, time-bounded
implementations.

OPTIREDUCE introduces a Transpose-Allreduce Collective
(TAR) to reduce the impact of lost gradient entries by estab-
lishing direct peer-to-peer communication among nodes in
each round, rather than propagating the entries through all
nodes as in Ring [121].

It also implements an Unreliable Bounded Transport (UBT)
to maximize the number of gradient entries received during
each window. UBT introduces the notion of adaptive time-
out to restrict the time a deep-learning job spends doing
computation (aggregation) and communication (gradient
sharing). Furthermore, it adds support for dynamic incast
to dynamically adjust the number of concurrent senders per
receiver in each round, thus optimizing communication by
reducing the total rounds required for gradient aggregation.

Lastly, to minimize the impact of missed or dropped gradi-
ent entries, OPTIREDUCE employs the Hadamard Trans-
form (HT) [124] to ensure, for any drop pattern (e.g., tail
drops), a receiver still obtains an unbiased estimate of the
model’s gradients resulting in a minimal loss in accuracy.

We implement OPTIREDUCE as a new AllReduce scheme
inside Gloo [13],” a popular collective-communication library.

2We pick Gloo for its ability to use both GPUs and CPUs (more suitable
for a cloud environment), but OPTIREDUCE can operate with other libraries

Doing so makes OPTIREDUCE immediately compatible with
existing DDL frameworks (e.g., PyTorch) without modifi-
cations. We run our experiments on various popular large
deep-learning models (including BART [101], OpenAI’s GPT-
2 [126], and Meta’s Llama 3.2) and evaluate OPTIREDUCE on
CloudLab [66]—a public cloud facility for researchers—as
well as under different shared environment settings using a lo-
cal virtualized cluster, with varying tail-to-median latency
ratios. We have made our complete OPTIREDUCE proto-
type [29] publicly available at https://optireduce.github.io.

Our evaluation demonstrates that OPTIREDUCE achieves,
on average, 57% and 25% faster time-to-accuracy (TTA) on
CloudLab compared to Gloo [13] and NCCL [87], respec-
tively. These performance gains are even more pronounced in
environments with larger tail-to-median latency differences,
where OPTIREDUCE outperforms Gloo by 91% and NCCL
by 35% (§5). We observe that it is the latency of the gradi-
ent aggregation (GA) step (Figure 1) that inflates three folds
when operating under tail-heavy environments (e.g., public
clouds), hence strengthening the need for a new collective
like OPTIREDUCE. We also perform a deeper analysis of the
various components of OPTIREDUCE. For example, in our
evaluation, enabling Hadamard Transform mitigates the im-
pact of tail-drops and improves TTA by 1.8 x even when up
to 10% of gradient entries are lost.

We begin with a background on distributed deep-learning
(DDL) training—more specifically, distributed data-parallel
(DDP) training—and the impact of stragglers on performance
(§2). We then make a case for and present a design (§3)
and implementation (§4) of a new communication-collective
system, OPTIREDUCE, and evaluate how it exploits DDL’s
resiliency against gradient loss to improve performance (§5).

2 Background & Motivation

2.1 Distributed Deep Learning & Stragglers

Distributed deep learning (DDL) helps scale (and speedup)
model training by utilizing an increasing number of hardware

as well (e.g., NCCL [87] or MSCCL [24]).

686 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Servers

Ring AR/> W, \/

W; W,

W, W, W, Ws &
W,

Workers

a. Parameter Server (PS) b. AllReduce (AR)
Figure 2: Architectures for gradient aggregation: Param-
eter Server (PS) and AllReduce (AR).

accelerators, e.g., GPUs [141] and TPUs [90], across server
nodes [39, 55, 116]. To do so, it employs two approaches: (i)
distributed data parallelism (DDP) [175] to run batches® on
multiple accelerators in parallel, and (ii) distributed model
parallelism (DMP) [91] to deploy larger models that fail to fit
on a single accelerator. These approaches are orthogonal and
can be used in conjunction. We focus on DDP in this paper to
highlight our contributions (§3).

In distributed data parallelism (DDP), multiple worker
nodes run the same deep-learning model on their portion of
a training dataset, distributed evenly across nodes. Each por-
tion is further subdivided into batches, which are processed
sequentially (i.e., forward pass, loss function, and backward
pass) in each epoch, Figure 1. During the forward pass, the
model (e.g., a neural network) operates on a batch and gen-
erates a prediction, which is then compared with the ground
truth (e.g., label) to calculate the model’s loss. Next, the back-
ward pass computes gradients using a loss function, which
is used by an optimization algorithm (e.g., Stochastic Gradi-
ent Descent, SGD [52,94]) to update the model parameters.
Finally, to ensure all workers learn from what others have
learned from their portion of the dataset, these gradients are
averaged (reduced) and shared across all nodes, after each
backward pass.

The process of accumulating, reducing, and sharing gradi-
ents back with worker nodes is referred to as gradient aggrega-
tion (or reduction) [62]. Originally, reduction used to happen
strictly after the backward pass; however, more recently, to
hide communication latency, modern frameworks (like Py-
Torch [106]) overlap it with the backward pass (Figure 1).
As soon as a bucket (B) worth of gradient entries becomes
available on a node, it is sent for reduction.”

Two common architectures for gradient aggregation are:
Parameter Server (PS) [105] and AllReduce (AR) [59]. In
the PS architecture (Figure 2a), a central server (or group
of servers) receives (gathers) gradients from participating
workers, aggregates (reduces) them, and broadcasts them back
to all nodes. In AR (Figure 2b), instead of having separate
servers, we distribute the aggregation task across workers,
each reducing a subset of gradients and distributing them
among themselves (e.g., Ring [121]). Both these architectures
have their pros and cons. PS operates well in environments

3A batch is a set of training data used in a given forward/backward pass.
4PyTorch limits these simultaneous reduction operations to two [106].

1.00- 1 999 1.00- 1 599
K075 5o ! L 075" 5oy
3 0.50- | 8 o.50-
M 0.25- | 1Ax W 0.25- 1.7

0.00- | o - 0.00-, |

4 5 6 7 8 i 2 3 4

(a) CloudLab (b) Hyperstack

1.00- | oo 1.00- | S5
W 075 g, | W 075" goo, |
8 o.50- 85 o50-
M 0.25- | 25x W 0.25- | 3.2x
0.00- I I . 000; I

2 4 6 0 5 10 15 20
(c) AWS EC2 (d) Runpod
Figure 3: The latency ECDF (in milliseconds) showing
tail-to-median ratio (Pgg/s50) observed across leading Al
cloud platforms.

with less powerful worker machines but is bandwidth hungry—
increasing linearly with the number of worker nodes. AR,
especially Ring, is bandwidth-optimal but leads to longer
execution delays that inflate with the number of worker nodes.

Impact of Stragglers on Performance. As shown in Fig-
ure 1, during each backward pass, all DDP worker nodes wait
for the gradient aggregation (GA) operations to complete be-
fore processing the next batch of data. The forward and back-
ward passes computation mostly takes place on a machine-
learning (ML) accelerator (e.g., GPU or TPU)—a highly par-
allel and pipelined architecture with predictable and bounded
execution time [69, 156]. Therefore, it is typically the GA op-
erations that lead to long tails and GPU stalls (taking as much
as 50% of the overall DDP processing time) [136, 137]. Our
measurements across major Al cloud platforms—including
AWS EC2 [3], Hyperstack [17], CloudLab [8], and RunPod
Al [34]—quantify network tail latencies in a distributed train-
ing environment. Using the Gloo benchmark [12] with 2K
gradients on eight nodes, we observe tail-to-median (Pog,50)
latency ratios reaching up to 3.2 x (Figure 3).

Various factors can contribute to this slowdown in gradi-
ent aggregation, including slow workers, transmission delays,
incast effects, packet loss and retransmissions, network con-
gestion, and more. For example, even in the PS architecture,
each node sends a complete set of gradients to the parameter
server, which can result in excessive drops and retransmis-
sions, due to high incast at the ToR switch [104, 172]—hence,
increasing the time to process gradients. Similarly, in Ring,
a single slow worker (or a buggy link) can cause significant
delays, because all nodes participate in the aggregation opera-
tion in the form of a ring.

2.2 Straggler Mitigation & Gradient Loss

Mitigating stragglers in distributed systems (as well as dis-
tributed deep learning) is an active area of research [48, 54,
60,61,81,92,132, 145,158, 164]. One direction focuses on
treating stragglers as black boxes and employs schemes, such
as redundant task execution [73, 159] or skipping slow work-
ers [57,67,164], to mitigate the delays due to network conges-
tion or heterogeneous hardware, for example. They either em-
ploy backup workers and select the output of the fastest ones,

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 687

T | PS, |

ranspose

AIIRele W, \
[Ps, | [PS, |
W, Wy

A
PS Unreliable
3 Bounded Transport

AB ‘Gw G, G3 G4Gs GGy Gg ‘

Input Bucket

\L Hadamard Encode AB' [H; HyHs HyHs HgH; Hg |

Create Shards | Sy, 5=[S3y| S31 Ssp | S3]

Rotate Shard Resp. r=r++ % 4

Send /Receive | S3yo123-n1 / Spar

Adaptive

Timeout Aggregate | 5= 3(So.3)
Bcast / Receive | S, ! Syon.231n
Concat Shards [Sor S10 52, S5l

B’ ‘H1 H2H3H4H5H5H7Hs‘
B [G1G,Gs G,Gs GGy Gg |

Hadamard Decode

Output Bucket

Figure 4: The OPTIREDUCE design: Transpose AllReduce
with colocated parameter servers, Unreliable Bounded
Transport, and Hadamard Transform.

or simply skip the slow workers altogether. However, the for-
mer can significantly increase the operational expense (in dol-
lars). For example, training a GPT-3 model consisting of 175
billion parameters over 355 GPU-years (on a V100) [5, 53]
can cost an additional $1 Million ($5.6 Million total) on the
AWS instance, p3.16xlarge, [27] with only 16% backup
nodes (i.e., 2 backups for every 10 worker nodes). This cost
can further inflate by about 10x when using more powerful
GPUs (e.g., A100 and H100) [6, 7], higher link speeds (e.g.,
40/100 Gbps), and RDMA-enabled NICs [4]. Whereas ignor-
ing worker nodes entirely, in the latter case, can lead to slower
convergence rates and poor accuracies [57, 164]. The other
direction is to replace commodity servers with specialized
hardware (e.g., powerful machines with predictable perfor-
mance [163, 174]) and dedicated (lossless) communication
fabric [47,95,123]. Despite their success in HPC-like environ-
ments [117,120, 122, 162], these solutions are not applicable
in a cloud environment with myriads of tenants, all sharing
the resources of the underlying data centers.

Instead of treating them as black boxes or specialized de-
vices, we argue to replace the (tail-prone) deterministic, run-
to-completion workers with their best-effort, time-bounded
implementations. The idea is to restrict the processing time
of a slow worker and utilize its partial output (gradients) in
the next training phase, rather than skipping it entirely.

Resilience to Gradient Loss vs. Performance and Accu-
racy. Unlike traditional distributed systems (e.g., file shar-
ing and web serving), the stochastic nature of distributed

deep-learning systems provides an interesting trade-off be-
tween gradient loss (approximation or drops), performance,
and accuracy. These systems (based on SGD-based optimiza-
tion) [52] are shown to be resilient against estimation inaccu-
racies in stochastic gradients under different settings [79,153].
For example, various gradient sparsification [68,131,154] and
quantization [44, 109, 155] schemes employ this fact to re-
duce network traffic overhead. ATP [99] and SwitchML [136]
utilize fixed-point arithmetic to execute gradient aggregation
in programmable switches with acceptable approximation
loss. Hardware designers incorporate approximate operations
(e.g., approx. multipliers [134, 171]) to minimize chip area
and energy usage. More recently, MLT [153] demonstrated
that these deep-learning models (e.g., CNNs and LMs) are
also resilient to a certain degree of gradient drops—sustaining
high accuracy up to 1% of gradient loss. Additionally, the
impact of gradient loss further diminishes as the number of
worker nodes increases [168].

3 Design of OPTIREDUCE

We present OPTIREDUCE, a robust AllReduce communica-
tion collective system optimized to mitigate tail-latency by
exploiting the unique characteristics of distributed-deep learn-
ing (DDL)—i.e., resiliency to gradient loss—to quickly reach
the convergence accuracies of traditional architectures (e.g.,
PS and Ring) while mitigating the impact of stragglers and
network variabilities.

Overview. Figure 4 shows the various components of OP-
TIREDUCE. Transpose AllReduce (TAR) (§3.1) implements
a peer-to-peer collective-communication fabric, where each
node also serves as a parameter server (PS)—a colocated PS
architecture [68, 88]. Unreliable Bounded Transport (UBT)
(§3.2) allows these nodes to connect with each other in a
best-effort but controlled manner, and bounds the time spent
by the two send(bcast)/receive stages during the AllReduce
phase. The PS nodes encode (and decode) gradients in the
input bucket (B), using Hadamard Transform (HT) (§3.3) to
disperse the effect of gradient loss, before creating shards
(S;;) of gradients to be sent to other nodes for reduction. They
iteratively rotate shard responsibility among themselves by
maintaining a global index (r). Finally, OPTIREDUCE em-
ploys mechanisms (i.e., snapshots and selective skipping) to
protect against excessive gradient loss due to transient errors
or failures (§3.4); these safeguards ensure robustness and
help maintain accuracy under unstable conditions. All these
components operate in tandem to optimize for three compet-
ing objectives in OPTIREDUCE: maximizing performance,
minimizing gradient drops, and sustaining accuracy.

3.1 Transpose AllReduce (TAR)

We begin with Transpose AllReduce (TAR), which imple-
ments a hierarchical peer-to-peer gradient-sharing strategy to
limit the impact of lost gradient entries when applying the
other design optimizations, discussed later. TAR operates by

688 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Scatter-Reduce

Ring AR
=2(N-1)*T
All-Gather

(a) Ring AllReduce (AR) latency is dominated by the no. of rounds, 2(N — 1), and the time (T) of the slowest path
(node pair) in each round. For example, with N = 16, total latency is 30 * T.

Bcast/Receive

t
B Aggregate

Send/Receive

OPTIREDUCE
TAR+UBT(I = 1)+HT

Times:
TAR+UBT(I = 2)+HT T with stalls
= 2% tg,wherety = [(N—1)/I]*t t without stalls
tp bounded

(b) OPTIREDUCE improves latency by reducing the no. of rounds to 2 [#] with incast parameter (I) and bounds the path delay to
tp using Transpose AllReduce (TAR), Unreliable Bounded Transport (UBT), and Hadamard Transform (HT). For example,
with N = 16,1 = 2, the total latency is within 2 + t5 = 16 + t, where t < T.

Figure 5: A comparison of Ring versus OPTIREDUCE.

having each node send its gradient entries directly to all other
nodes during an AllReduce phase for aggregation; hence, a
lost entry would only impact the aggregated results of a given
node-pair in that phase. Whereas, in Ring [121], the impact
is accumulated and propagated through a ring until it reaches
the intended destination nodes. For instance, in our micro-
benchmarks (§5.3), the Mean Squared Error (MSE) between
the expected gradients and those of Ring in the presence of
loss is 6x that of TAR.

3.1.1 TAR Algorithm: A Colocated PS-inspired Collec-
tive. TAR combines the key features of traditional AllReduce
(i.e., P2P communication) [59,102] and Ring (i.e., minimizing
bandwidth using shards and avoiding incast via rounds) [121].

In TAR, each node acts as a worker as well as a param-
eter server (PS), connected together over a P2P collective-
communication fabric (Figure 4). The i'" PS node (PS;) re-
ceives a bucket of gradient entries (AB) as input from the
worker process (W;) and divides it into N shards (Sj..n—1]),

equal to the number of nodes. Keeping the r* shard it is
responsible for aggregating (S;,), the node PS; sends the re-
maining shards (S;i1o..n—1}-,) to the neighboring nodes. At
the same time, PS; waits for its shards (Sjjo..y—1}-,) and
aggregates (i.e., averages) them with S;, into a single shard S,.
Next, PS; broadcasts S, to all nodes and receives the aggre-
gated shards from them, Sigo._n—1}—,]- Finally, these shards
are concatenated into a bucket (B) and forwarded to the worker
(W;) to process the next batch of data. When r = i, the whole
operation appears like a row-wise sum of the transpose of
the shard matrix S, as shown in Figure 6; hence, the name
Transpose AllReduce.

In P2P, each PS node communicates directly with the other
nodes (instead of forming a ring). When sharing gradients,
they all interact with each other twice: once sending/receiv-
ing shards to the other node and then broadcasting/receiving
aggregated shards, hence limiting the impact of accumulated

Send/Receive

PSo | r=0 Swo Soi Sz Sus Sw S Sxn S

r=1 Sw Sun S Ss - So Su Sau Si
r=2 Sx Sa S» S» Sz Sz S Sa
r=3 Sx Sy Su Sx S Sz Sz S3;

So= Sw *+ Sio + Sy + Sxu S 8§ S S
§$:= St + S + Sy + Sy - S S S S
$;= S + S+ 5, + S5, S S0 S, S
S:= Sz + Sz + S5 + Sy S S S S
Aggregate Bcast/Receive

Figure 6: Transpose AllReduce algorithm: PS nodes
send/receive shards S;;, aggregate them, and bcast/receive
to other nodes (all acquiring the same copy).

gradient loss. Sharding also alleviates the load on the PS
nodes, where each node only aggregates a bucket (B) worth
of gradients (rather than N x B).” Moreover, TAR utilizes the
same bandwidth as Ring by sending B * (N — 1) bytes over
the network during the two send(bcast)/receive stages. Lastly,
to mitigate incast, TAR splits the communication between PS
nodes over multiple rounds, where—unlike Ring with fixed
node-pairs (Figure 5a)—nodes communicate with each other
using a round-robin strategy, ensuring a given node-pair never
repeats across rounds (Figure 5b).

3.1.2 Hierarchical 2D TAR: Scaling to Larger Node Clus-
ters. TAR scales efficiently using a hierarchical design similar
to the 2D Ring [22, 147]. By grouping nodes, it first performs
intra-group communication, in parallel, to locally aggregate
gradients, followed by inter-group communication for global
aggregation. Doing so reduces the number of rounds from
2(N —1) in traditional TAR to 2(N/G — 1) + (G — 1), where

SPyTorch and TesnorFlow typically use a bucket size of 25 MB [106,133].

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 689

9 Bytes
| Ether| IP [UDP | OpTIREDUCE | Payload (Gradients) |

| Bucket ID | Byte Offset | Timeout | Incast |-|--»-~Last%i|e
0 16 48 64 72

Figure 7: OPTIREDUCE’s header format

N is the total number of nodes and G is the number of groups.
For example, with N = 64 and G = 16, traditional TAR re-
quires an order of magnitude more rounds than 2D TAR—126
compared to just 21. We provide more details in Appendix A.

Summary: TAR functions similarly to Ring, yet it reduces
the impact of lost gradients by establishing P2P communica-
tion among all nodes in each round, avoiding the propagation
of losses via aggregation through intermediate nodes.

3.2 Unreliable Bounded Transport (UBT)

One of the primary causes affecting tail latency in DDL
is the variability in the network behavior due to conges-
tion [61, 153]. Current transport protocols (like TCP) further
exacerbate these effects by demanding reliable, in-order deliv-
ery of packets (gradients) between training nodes—if packets
are dropped or received out-of-order, TCP will stall until all
gradients are received over the affected path.

However, simply replacing TCP with message-based pro-
tocols (like UDP) would not work. While UDP is faster, as it
avoids packet retransmission and reordering, it lacks conges-
tion control, which can lead to network congestion collapse.
Moreover, UDP sends data at full link speed (e.g., 100 Gbps),
causing excessive drops (loss of gradients) beyond what DDL
models can tolerate.

To address this, we enhance UDP with adaptive timeouts,
dynamic incast, and minimal rate control to create a new
Unreliable Bounded Transport (UBT) protocol, which lim-
its computation and communication time while maximizing
gradient delivery in each round. It adds a new 9-byte header,
OptiReduce (Figure 7), to commit arriving packets (with gra-
dients) to the right bucket and offset using the header fields,
Bucket ID and Byte Offset, respectively. These fields en-
sure that gradients reach the correct bucket, irrespective of
the ordering of the incoming packets when multiple GA oper-
ations are running in parallel (Figure 1).

3.2.1 Adaptive Timeout. @ UBT implements adaptive
timeouts to bound the tail communication time of the
send(bcast)/receive stages of the GA operations to 7z (Fig-
ure 5b). By restricting the time to 75, we can control the worst-
case execution of these stages—allowing GA operations to
finish within a bounded time.

However, there are a couple of challenges with this ap-
proach. (1) How to select the value of #5? Too small will lead
to undue loss, and too high will cause unnecessary delays.
Moreover, the value will vary with environmental settings
(e.g., GPU type, CPU clock, vCPUs, and interface speed) and
parameters (e.g., no. of nodes, bucket sizes, and incast). (2)
A single lost packet, which is likely in UBT, would cause the

t t
Time — ‘\‘q Y 3
ontime |[s H s J{ s 1 S] ~__
Timed out | | S s H s | H sl
. (5] ¢
Lasttple | (ST HTS - Mg g |

wait %tc[—1]

Figure 8: Different timeout strategies in OPTIREDUCE.

GA operation to always take tg (worst-case) time to finish.
TCP, on the other hand, can perform better in some instances
where communication may finish faster than waiting for the
full timeout (7g), even with retransmissions.

Selecting the Timeout Value (#3). As shown in Figure 1,
during backpropagation, multiple GA operations execute in
parallel on buckets of varying sizes. For selecting 75, during
the initialization phase, we run GA with TAR and TCP, using
the largest bucket, for a couple of iterations to collect comple-
tion times for both send(bcast)/receive stages. PS nodes share
these values with each other using the Timeout field in the
OPTIREDUCE header (Figure 7).

We then form a list of these times and set ¢z to the 95th %ile
of that list. In §5, we show that using 20 iterations and the
95th %ile value allows OPTIREDUCE to sustain full model
accuracies while finishing up to 2x faster.

Progressing Quickly via Early Timeout. To avoid ap-
proaching tp every time a loss happens, we introduce an early
timeout scheme, which causes GA’s receive stages to expire
whenever there are no remaining gradient entries to read (i.e.,
the buffer is empty). For each bucket, we track a moving av-
erage (fc) of completion times; we keep separate averages for
both the receive stages in GA (Figure 5). The sender PS node
tags the last 99th %ile packets by setting the Last%ile field
in the header. When the buffer is empty, the receiver node
checks if some of the last %ile packets have been received
from all nodes. If so, it waits for an x% of ¢c time before
expiring (Figure 8).

The value of x% is dynamically adjusted based on the per-
centage of gradient entries dropped from the previous round.
Starting at 10%, the goal is to maintain gradient losses be-
tween 0.01% and 0.1%. If losses exceed this range, x% is
doubled until they return within the limit. If losses drop below
0.01%, x% is decreased by 1 until the desired range is reached.
(The maximum x% is capped at 50%.) If gradient losses ex-
ceed 2% at any point, we activate Hadamard Transform (§3.3)
to mitigate the effects of dropped gradients on convergence
accuracy. °

We calculate #¢ in the following steps. First, we compute
the (expected) completion time of a given receive stage: (1) if
on time, then we set ¢ to the current time spent, (2) if timed
out, then 7¢ = tg, and (3) if last %ile received, then ¢ is set to
the expected time needed to receive all data (e.g., fc = current
time spent X total / received data). Next, we pick the median

5The 2% threshold is set based on prior work [153] and our evalua-
tions §5.3.

690 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Random Tail
AB Key Drops B
1.0 1 1.0 5 5 1 5 0.9
1.5 -1 -1.5 -13 -13 -1 13 1.4
2.0 1 2.0 -5 -5 1 -5 21
— HT — HT
2.5 1 2.5 5 5 1 5 2.4
*t—= =
3.0 -1 -3.0 3 3 -1 -3 29
3.5 1 3.5 17 17 1 17 3.4
40] 40 5 5 -1 5 4.1
45 1 45 1 El 0 46

Hadamard Encode Hadamard Decode

Figure 9: Dispersing the effect of lost gradients (e.g., due
to tail drops) using Hadamard Transform (HT).

tc from the values computed by the N PS nodes (shared over
the Timeout field in the header). Finally, we calculate the
moving average: fc = 0xfc + (1 —) xtc[—1].

3.2.2 Dynamic Incast. UBT further introduces a notion of
dynamic incast (Figure 5b). The TAR’s P2P communication
model lets OPTIREDUCE alter the number of senders (/) a
PS node can receive gradients from in a given round. For
example, setting I = 1 (a single sender) would cause TAR to
take the same number of rounds as Ring, 2(N — 1); however,
increasing I = 2 would quickly reduce these rounds by about
half, 2[(N —1)/2]; and so on.

The incast parameter (/) can be configured either statically
at boot time, based on the available network and node capacity
(e.g., modern datacenters can handle hundreds of thousands
of incast packets without degrading performance [80,115]), or
dynamically adjusted based on runtime metrics (like through-
put, latency, or loss rate). In UBT, receivers dynamically mod-
ify the incast factor in response to current loss and timeout
events. If the loss rate increases, the factor is reduced to al-
leviate congestion; conversely, if the loss rate remains low
(indicating timely packet reception with no timeouts), the in-
cast factor is increased. Receivers communicate their incast
factor, I, by updating the Incast field in the OPTIREDUCE
header (Figure 7), and the sender then selects the smallest
reported value of / for that round.

3.2.3 Minimal Rate Control. Since OPTIREDUCE is re-
silient to loss, we only require a minimal scheme for rate
control to prevent congestion collapse. For that, UBT em-
ploys a basic TIMELY-like rate-control mechanism [114],
where the sender adjusts flow rates based on RTT feedback
derived from timestamps returned by the receiver at regular
intervals (every 10th packet) over a separate control channel.
If the RTT (or its gradient) is below Tj,,,, the sender increases
the rate by o, and if the RTT exceeds T}, the rate is re-
duced by (1 —B- (1 — Tjign/RTT)). In our experiments, we
set Tjoy = 25us, Thigh = 250us, o = 50 Mbps, and = 0.5,
when running in a shared environment [114, 153].

Summary: UBT, in conjunction with TAR, improves tail la-
tency by minimizing the impact of network congestion; adap-
tive timeouts bound the latency of the send(bcast)/receive
stages, while dynamic incast reduces the number of commu-
nication rounds.

3.3 Dispersing Gradient Loss

Finally, to make OPTIREDUCE resilient against drop pat-
terns (e.g., tail drop) in the network, we employ randomized
Hadamard Transform (HT) [144, 148, 149], which spreads the
effect of a dropped gradient over the entire bucket. For exam-
ple, in Figure 9, HT encodes a bucket (AB) and sends it over
the network. Upon reception, the last gradient (in red) was
lost; however, HT preserves the lost information by slightly
perturbing the values of other gradients in the decoded bucket
(B). The Mean Squared Error (MSE) between the decoded
and received (without HT) bucket, compared to the origi-
nal one, is 0.01 and 2.53, respectively. That is why, when
combined with rotating shard responsibility between nodes
(Figure 4), HT lets OPTIREDUCE be more aggressive with
the timeout value () while still reaching high model conver-
gence accuracies (§5).

Summary: HT, together with TAR+UBT, limits the effect of
dropped gradients by spreading it across the entire bucket,
thus preserving the lost information. Additionally, it allows
OPTIREDUCE to operate faster, with stringent ¢p values, with-
out affecting convergence accuracies (§5).

3.4 Safeguards against Excessive Loss

OPTIREDUCE continuously monitors gradient loss during
each AllReduce phase, and if the loss exceeds a predefined
threshold, it can either skip the gradient update for that round
or automatically halt the training, prompting user interven-
tion. Skipping an update helps minimize potential harm to
the overall training process by discarding transient high-loss
updates without impacting long-term model accuracy or com-
pletion time. This mechanism helps prevent major disrup-
tions in the training process, ensuring users are notified of
any accuracy concerns and can make necessary adjustments.
Similar techniques are routinely integrated into modern deep-
learning pipelines to monitor, track, and recover model accu-
racy [1,2,32,119].

4 Implementation

We develop OPTIREDUCE as a new collective-
communication scheme inside the Gloo library (v0.5.0) [13]
and integrate it with PyTorch Distributed (v1.12) [106],
a widely used deep-learning framework—allowing OP-
TIREDUCE to work without modification with a large
body of deep-learning models (e.g., CNNs [82, 98, 138],
RNNs [56, 85, 113], and Transformers [53, 63, 150]). We
pick Gloo due to its simpler design and our familiarity with
the codebase; however, we expect OPTIREDUCE will yield
similar benefits when operating with other popular libraries
(e.g., NCCL [87] or MSCCL [24]).

We extend the C++ implementation of Gloo to support our
Transpose AllReduce (TAR) collective and provide support
for both reliable transport (over TCP) and our best-effort trans-
port (over UBT). We prototype UBT as a userspace transport

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 691

1.00- 1.00-
W 075
8 0.50-

w 0.25-

W 075"
8 0.50-
W o 25-

0.00- 0.00-

6 4 8 12 16
Latency (ms)
(b) Pgg/so =3

Figure 10: Our local cluster with tail-to-median latency
ratio (Pgyg /50) of 1.5 (a) and 3 (b).

2

4
Latency (ms)
(@) Pgg/so = 1.5

layered on UDP, including rate control, using Nvidia DPDK
API (v20.11) [11].

We further add support for communication hiding in Op-
TIREDUCE, i.e., running two AllReduce operations in parallel
with backpropagation.’ The sender maintains separate layer-3
port numbers to tag gradients for the two parallel AllReduce
operations. On the receive side, two PMD threads poll in-
coming traffic (gradients) in their local receive queues. An
Nvidia Connectx-6 NIC routes traffic to the respective queues
based on the port numbers; we install rules in the NIC using
DPDK’s rte_flow API [10]. We also install rules to route
non-OPTIREDUCE traffic to the kernel using DPDK’s Flow
Bifurcation mechanism [9].% Doing so ensures that Gloo’s
kernel stack remains unaffected and other network operations,
e.g., rendezvous in PyTorch DDP [106], continue uninter-
rupted.

To include support for adaptive timeouts, we use C++
STL library’s wait_for () function [89], which is a block-
ing call that returns either when a given condition is met
(such as received all gradients) or a timeout occurs. For
the timeout, we pair the wait_for () function with Chrono
library’s high_resolution_clock () [89] to operate at
nanosecond clock granularity. For Hadamard Transform, we
apply a widely-used C++/CUDA implementation by HazyRe-
search [15], which uses GPUs to perform this operation. We
use PyTorch DDP’s communication hook [31] to register
Hadamard’s encode/decode callbacks for processing gradient
buckets before and after reduction, respectively.

5 Evaluation

In this section, we provide an end-to-end comparison of
OPTIREDUCE with state-of-the-art solutions (§5.2), and mi-
crobenchmark the utility of its design components (§5.3).

5.1 Experimental Setup

5.1.1 Test Environments. We evaluate OPTIREDUCE in
both our local virtualized cluster and a real-world environment
using CloudLab [66].

a) Local Virtualized Cluster. Our local testbed is a collec-
tion of four servers configured as a virtualized cluster [30].
Each machine has a 32-core AMD EPYC 7542 CPU @
2.90 GHz, 512 GB RAM, two Nvidia Tesla V100 GPUs, and

This is consistent with existing parallelism approaches that allow for
two concurrent AllReduce operations (e.g., PyTorch [106]).

8Flow Bifurcation is a mechanism that lets hardware-capable NICs for-
ward traffic directly to the userspace (DPDK thread) or the Linux kernel.

a ConnectX-5 dual-port NIC. In total, there are eight V100
GPUs, one per VM in the cluster. The VMs communicate
over the network using a dedicated NIC port with Nvidia’s
OFED device drivers (v24.04). Both GPU and NIC interfaces
are exposed to the VMs via Intel’s VT-d PCle passthrough
technology [41]—allowing direct (dedicated) access to the
physical functions. A programmable switch (Tofinol [18])
connects the servers and VMs over a 25 Gbps network. Addi-
tionally, it facilitates in-network aggregation for SwitchML
benchmarks (§5.3).

Recent studies from Microsoft [137], Amazon [91], and
Google [61, 62] show that the tail-to-median ratio (Pog,50)
for distributed workloads, including deep-learning training,
ranges from 1.5x to 4 x in large cloud data centers [40, 61,
106].° To emulate these environments and their tail charac-
teristics in our testbed, we follow the approach of previous
studies [42,45,46,151,165] by running background workloads
on random nodes and links. Varying the number of concurrent
workloads allows us to adjust the tail-to-median latency ratio
within the network. We validate the fidelity of our scheme
using the Gloo benchmark utility [12] with 2K gradients. As
shown in Figure 10, our method accurately preserves the ex-
pected latency distributions, maintaining the Pyg 5o = 1.5,3
ratios.

b) Public Cloud: CloudLab. We configured our real environ-
ment on CloudLab [66], a public research cloud widely shared
by researchers and academics for computing and distributed
systems experimentation. We provisioned eight d7525 in-
stances [8], each equipped with an Nvidia Ampere A30 GPU
and a ConnectX-6 DX dual-port NIC, all connected via a
10 Gbps network.

5.1.2 Baselines, Workloads, and Parameter Settings. We
evaluate OPTIREDUCE against the following baseline sys-
tems: Gloo (Ring [121] and BCube [76]), NCCL (Ring [121]
and Tree [22]) with TCP, as well as a reliable version of our
Transpose AllReduce (TAR) with TCP (TAR+TCP). Addi-
tionally, we evaluate BytePS and three popular compression
algorithms: Top-K [142], TernGrad [155], and THC [103]. To
provide further insights, we also microbenchmark OPTIRE-
DUCE against in-network systems such as SwitchML [136],
despite their reliance on switch-level access within the
provider’s network, which makes them inapplicable for cloud
environments.

We train a variety of language models (LMs), including
BERT-base/large [63] and RoBERTa-base/large [111] on the
SQuAD 2.0 dataset [129], as well as BART-base/large [101]
and OpenAl GPT-2-base/large [126] on the GLUE bench-
mark [152] for the SST2 (Stanford Sentiment Treebank)
task [139]. We further evaluate OPTIREDUCE on additional
models and tasks, which we discuss in Appendix B and C.
Specifically, we train the Llama-3.2 1B model [65] on three

9Even CloudLab, a relatively small-scale cloud compared to commercial
ones, exhibits a Pog 59 ratio of around 1.45.

692 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Gloo Ring Gloo BCube
100- 100-
= 95 = 95
[} [
© ©
5 5
3 90 3 90
Qo Q
< <
85- ‘ ‘ ‘ 85- ‘
50 100 150 50

Elapsed Time (minutes)
(a) Local Cluster: Pog 50 = 1.5

Elapsed Time (minutes)
(b) Local Cluster: Pgg 50 =3

NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce

100-

©
(9]

Accuracy (%)
©
o

o]
o

150 200 25 50 75 100
Elapsed Time (minutes)
(¢) CloudLab

Figure 11: Time-to-accuracy (TTA) comparison for the OpenAI GPT-2 model with eight worker nodes.

Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === QOptiReduce

_ 20 _ 20 _ 20
[[[
3 215 3 215 3 215
o ofr Qo
3 o 1.0- 3 o 1.0- 3 o 1.0-
B3 838 28
26 0s- H H H 20 0s- 2G0s-
n n n

0.0- 0.0- 0.0-

BERT RoBERTa BART GPT-2 GPT-2
—large -large -large —large

(a) Local Cluster: Pgg 50 = 1.5

BERT RoBERTa BART GPT-2 GPT-2
—large -large -large —large

(b) Local Cluster: Pgg/50 =3

BERT RoBERTa BART GPT-2 GPT-2
—large -large -large —large

(c¢) CloudLab

Figure 12: Training throughput comparison for large language models (LLMs) with eight worker nodes.

standard downstream tasks: SQuAD (extractive question an-
swering) [129], ARC (science reasoning) [58], and MATH
(symbolic mathematics) [83] (Appendix B). Additionally,
we evaluate and microbenchmark OPTIREDUCE on network-
intensive models (VGG-16/19) [138] using the CIFAR-
100 dataset [97] and compute-intensive models (ResNet-
50/101/152) [82] with the ImageNet dataset [135] (Ap-
pendix C).

We compute the OPTIREDUCE'’s timeout value (75) for each
model using 20 iterations; we set & = 0.95 when calculating
the moving average (f¢). We use the incast parameter of / = 1,
unless stated otherwise.

5.2 End-to-End Evaluation

We conduct end-to-end evaluations in two environments:
(1) our local virtualized cluster, with tail-to-median ratios
Pyg/s0 = 1.5 (low variability) and 3 (high variability), and
(2) a real public cloud, CloudLab. We compare OPTIRE-
DUCE against the baseline systems Gloo (Ring and BCube),
NCCL (Ring and Tree), and TAR+TCP; and measure time-
to-accuracy (TTA), throughput, gradient drop percentage (in
bytes), and the achieved training accuracy.

Our results show that OPTIREDUCE consistently outper-
forms the baselines. On our local cluster, we observe time-to-
accuracy (TTA) reductions of up to (82%, 98%) compared
to Gloo (Ring, BCube), and (44%, 25%) compared to NCCL
(Ring, Tree), respectively. These improvements extend to
CloudLab, where we see average TTA reductions of up to
(47%, 67%) over Gloo (Ring, BCube), and (18%, 32%) over
NCCL (Ring, Tree). Furthermore, OPTIREDUCE achieves the
same convergence accuracy as the baselines while limiting
gradient entry losses to less than 0.1% of the total traffic.

e TTA and Throughput. Figure 11 illustrates how TTA
for the five baselines and OPTIREDUCE varies under differ-
ent environments—Local cluster (Pyg/50 = 1.5 and 3) and
CloudLab—for the OpenAl GPT-2 model. Across all runs,
OPTIREDUCE maintains a lower TTA from the onset.'” For
example, on our local cluster with Pog /5o = 1.5 (Figure 11a),
OPTIREDUCE converges in 96 minutes, while NCCL Tree
takes 105 minutes, and the next best, NCCL Ring, taking 118
minutes. With Pog /50 = 3, the TTA differences become more
pronounced (Figure | 1b). OPTIREDUCE remains unaffected
by the increased variability, maintaining its lead in TTA with
a 98% accuracy and finishing in about 97 minutes. In contrast,
the baselines experience significant slowdowns, with their
TTA inflating by 1.41-2.18 x compared to OPTIREDUCE.

We see the same trend on CloudLab (Figure 11c), Op-
TIREDUCE reaches the convergence accuracy in 60 minutes,
whereas it is 71 minutes for NCCL Ring. Other baselines con-
tinue to trail behind OPTIREDUCE, with NCCL Tree having
the next-best TTA of 79 minutes.

We observe similar speedups for OPTIREDUCE when train-
ing other models, including BERT-large, RoBERTa-large,
BART-large, and GPT-2-large (Figure 12).

e Gradient Drops and Convergence Time. We further eval-
uate the drops in gradient entries and their impact on conver-
gence time (Table 1). In our local cluster with Pyg /50 = 1.5, a
small percentage of gradient entries is lost (i.e., 0.07%) due
to OPTIREDUCE’s adaptive timeouts in UBT, causing the
system to progress without waiting on stragglers. These time-
outs manifest as dropped gradients in OPTIREDUCE; whereas

10We observe that under ideal conditions, with Pyg /50 = 1 (no variability),
all systems perform similarly (not shown).

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 693

. Gloo NCCL . Dropped Gradients
Test Environment Ring { BCube | Ring { Tree TAR+TCP ‘ OPTIREDUCE: (%Entries)
Local Cluster: Pog /50 = 1.5 | 154 172 118 105 148 96 0.07
Local Cluster: Pyg /50 =3.0 | 186 210 159 135 166 97 0.18
CloudLab | 88 100 | 71 79 | 90 | 60 0.05

Table 1: Comparing the end-to-end convergence time (in minutes) of baseline systems vs. OPTIREDUCE for OpenAl
GPT-2 (total gradients, 40 TB). TAR+UDP suffers excessive drops, losing up to 30% of gradients, and fails to converge.

baseline systems stall on these stragglers. Still, OPTIREDUCE
achieves the same convergence accuracy (98% for GPT-2)
as the baselines but in under 96 minutes, compared to 105
minutes for the next best, NCCL Tree. When Py /5 increases
to 3, increased congestion in the network and stragglers cause
more gradient entries to be lost, but only slightly (0.18%),
and does not impact OPTIREDUCE’s training accuracy and
convergence time, whereas it inflates NCCL Tree’s time to
135 minutes.

Similarly, in CloudLab, OPTIREDUCE sees a 0.05% drop
in gradient entries, which allows it to reach the convergence
accuracy in 60 minutes, compared to its next best, NCCL
Ring, taking 18% longer.

5.3 Microbenchmarks

We now evaluate the effectiveness of the individual design
components in OPTIREDUCE. We run the VGG-19 model
on the CIFAR-100 dataset for these measurements using our
local cluster.

e OPTIREDUCE’s TAR topology leads to minimum
dropped gradients when using a best-effort transport. We
compare the number of gradients lost across different AllRe-
duce topologies using our Unreliable Bounded Transport
(UBT). We measure Mean Squared Error (MSE) to gauge the
difference between the original gradients and those received
over these topologies for three different schemes on our local
cluster with Pyg/50 = 1.5: Ring topology in Ring-AllReduce,
P2P in PS, and P2P with rounds in TAR, using a 500 M ten-
sor. Ring-AllReduce has the worst MSE (14.55)—an order
of magnitude greater than TAR (2.47). The presence of fixed
node pairs in Ring-AllReduce (§3.1) propagates losses, result-
ing in a higher deviation from the original gradients. PS also
has a high MSE (9.92) due to excessive incast when all nodes
send gradients to the parameter server (PS) simultaneously. In
contrast, TAR avoids this by distributing P2P communication
over multiple rounds.

o UBT’s dynamic incast improves OPTIREDUCE’s latency
without overloading the receiver nodes. We measure the
effects of UBT’s dynamic incast feature on OPTIREDUCE’s
training latency. Figure 13 compares two configurations: one
where we fix I = 1, and the other with dynamically managed
incast. The results show that OPTIREDUCE’s senders can
leverage buffer occupancy at receivers to increase I, thus re-
ducing average latency by about 21% compared to always

1200

— ﬁ%‘\

g | T
N 900 21% reduction in
2 600 average latency
g

— 300

I=1 I= Dynamic
Figure 13: Latency distribution of OPTIREDUCE with
static (/ = 1) vs. dynamic incast feature in UBT, using a
synthetic 500 M-gradient AllReduce workload.

sending to a single receiver. This ability to dynamically con-
trol the incast parameter (/) allows OPTIREDUCE to adapt
itself based on the capacity of the receivers’ resources, which
is not the case with PS (all workers send to parameter server)
or Ring-AllReduce (a receiver interacts with a single sender).

e OPTIREDUCE’s early timeout strategy enables faster
progress towards TTA. We evaluate the effectiveness of the
early timeout strategy (f¢) in OPTIREDUCE. We disable #¢ and
only keep the timeout value 73 and measure its effect on train-
ing accuracy, time, and dropped gradients. We find that when
training VGG-19 with Pyg /5o = 1.5, OPTIREDUCE takes 130
minutes to reach convergence accuracy in 200 epochs while
incurring 0.02% of gradient drops. Enabling early timeout
brings this training time down by about 16% (to 112 minutes)
with a similar drop rate (0.02%). By adapting #c, OPTIRE-
DUCE sustains the same drop rate and finishes quickly, rather
than waiting for the higher ¢p value each time. We notice that
with early timeout enabled, OPTIREDUCE triggers tc 95%
more often than #g; hence, resulting in faster TTAs.

e OPTIREDUCE’s Hadamard Transform (HT) allows it
to reach convergence accuracies even under higher per-
centages of dropped gradients. Figure 14 shows the train-
ing accuracy of VGG-19 model with and without Hadamard
enabled. When considering TTA, we see that Hadamard in-
troduces some computational overhead when operating with
only 1% of dropped gradient entries (Figure 14a). It takes
Hadamard more time to reach convergence accuracies (around
97 minutes) compared to when it is disabled (90 minutes).
However, as drops increase (5% or more), it starts to outper-
form the non-Hadamard instance with much faster TTAs (Fig-
ure 14b,c). Looking closely, we notice that across all dropped
percentages, Hadamard is able to sustain the same TTA (=~ 97
minutes)—showing its resilience to drops. In contrast, the
non-Hadamard case quickly degrades and fails to achieve

694 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

— No Hadamard — Hadamard

— No Hadamard — Hadamard

— No Hadamard — Hadamard

~100- ~—1.00- 1,00

o~ o~ o=

< 75 <0.75- <0.75-

oy oy oy

g s0 8 0.50- 8 0.50-

3 25 B3 0.25- B3 0.25-

o o [}

< o ‘ ‘ ‘ < 0.00- ; ‘ ‘ < 0.00- | ‘ ‘ ‘
0 30 60 90 0 60 90 0 30 60 90

Elapsed Time (minutes)
(a) 1% gradient drops

30
Elapsed Time (minutes)
(b) 5% gradient drops

Elapsed Time (minutes)
(¢) 10% gradient drops

Figure 14: Training accuracy of VGG-19 with/without Hadamard Transform (HT) in OPTIREDUCE.

o 30 o 30-
[s)NeY [0 TAR+TCP M Ring [l BCube G o

3 52.5- S 52.5-

3 33

i 32.0 o 32,_2.0

8w B! 15

o ﬂ I o "

S o HHE m

144

(a) Local Cluster. P99/50 = 1.5 (b) Sim: P99/50 =1.5

8.0 8.0
Q
_g_gz g_gz.s—
[0}
T $20- £ 820
= = Q
5% il i 5. Il m
1.0-
0 72 144

(c) Local Cluster. P99/50 = 3 (@) Sim: Pgg /50 =3
Figure 15: OPTIREDUCE speedup over baseline systems
(TAR+TCP, Ring, BCube) with increasing #workers using
a synthetic 500 M-gradient AllReduce workload.

convergence accuracy even under 10% drops. The percentage
drops include both drops incurred due to network variabilities
(e.g., congestion and retransmissions) and gradients that a
slow worker could not send due to timeouts.

e OPTIREDUCE scales with increasing number of worker
nodes, consistently maintaining high speedups. To demon-
strate OPTIREDUCE’s performance at scale, we first run tests

using CPU-based worker nodes on our local cluster. We com-
pare OPTIREDUCE with TAR+TCP and Gloo (Ring and
BCube) on a synthetic AllReduce workload, aggregating

500 M gradient entries across 6-24 nodes (Figure 15a, c).'!

Next, we conduct simulations with larger clusters (72 and 144
nodes), similar in sizes to prior works [43, 100, 107, 153]—
using latencies sampled from the local cluster and scaled for
higher node counts (Figure 15b, d). Across all tests, OPTIRE-
DUCE consistently delivers high speedups, achieving 2x im-
provements over Ring and BCube in high-tail environments,
P99/50 =3 (Figure 15¢c, d)

e Unlike OPTIREDUCE, lossy/compression schemes are
vulnerable to tail effects in shared environments. Though
OPTIREDUCE is orthogonal to sparsification and quantization
techniques, our comparison (Figure 16) shows that lossy/com-
pression schemes (e.g., Top-K, TernGrad, and THC) fail to
effectively address tail effects. While these schemes reduce
the volume of gradient entries shared, they rely on a static
evaluation of how much data to compress (or drop) a priori
before transmission. In contrast, OPTIREDUCE handles loss

1we exclude NCCL from this comparison as it relies on GPUs.

98.45% Pgg o [15 W 3
g 150- Accqracy
£5 .f
c 100- 92.40% 90.21% 98.58% v
c I I 98.61%
- Ul NN mE ol mm

BytePS Top-K TernGrad THC OptiReduce
Figure 16: OPTIREDUCE comparison with lossy/compres-
sion schemes (BytePS, Top-K, TernGrad, & THC), show-
ing TTA and their convergence accuracy.

in real-time, dynamically adapting to network conditions and
minimizing tail latency. For instance, THC matches OPTIRE-
DUCE in convergence accuracy but takes 4% and 18% longer
to complete under Pyg/so = 1.5 and 3, respectively. Other
schemes perform even worse, either requiring 2x more time
to converge or stalling at lower accuracies due to their lossy
compression, failing to improve end-to-end TTA even with
additional training epochs [103, 153].

o In-network aggregation (INA) approaches struggle with
tail effects, while OPTIREDUCE remains unaffected. In-
network aggregation (INA) methods, such as SwitchML [136],
reduce network latency through hardware-accelerated aggre-
gation within the network. However, they remain vulnerable
to tail effects—significantly inflating their completion times
as the tail-to-median ratio increases. For instance, in a low-tail
environment (Pog /50 = 1.5), SwitchML performs 52% faster
than OPTIREDUCE. However, as the tail-to-median ratio in-
creases from Pyg 50 = 1.5 to 3, its completion time rises by
about 2.1, even surpassing OPTIREDUCE by 28%. In con-
trast, OPTIREDUCE remains unaffected by this change while
reaching convergence. By bypassing stragglers and proceed-
ing without waiting for all gradients, OPTIREDUCE is better
suited for shared and high-tail environments. Moreover, OP-
TIREDUCE’s design can be extended to incorporate INA, po-
tentially achieving similar speedups in low-tail environments—
an avenue we plan to explore in future work.

6 Limitations & Future Work

In the current AllReduce design, there are two primary bottle-
necks: (a) in the computation (or reduction) phase and (b) in
the communication phase. We explore potential solutions for
both bottlenecks in the subsequent sections.

a) Accelerators for Reduction. In OPTIREDUCE, we primar-

ily focus on bounding the execution time of the two send/re-
ceive stages in AllReduce (Figure 1). The reduction stage, i.e.,

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 695

the process of averaging gradients together, still happens on
CPUs. However, as models grow and gradient sizes increase,
the reduction stage can become a bottleneck. Rather than opt-
ing for the most extreme case of offloading all of AllReduce
to network switches [99,136], we can instead consider offload-
ing the reduction operation on the end-host server (similar
to how we accelerate GEMMs using GPUs) [141]. Modern
SmartNICs [19,25,26], with onboard FPGAs and ML accel-
erators, can present a promising opportunity for accelerating
reduction. But, doing so requires rethinking and redesigning
the application interface (API) between OPTIREDUCE and
SmartNICs. We hope OPTIREDUCE to serve as a stepping
stone for research in this direction.

b) Accelerators for Network Transport. As with reduc-
tion, network transport can also become a bottleneck with
link/interface speeds reaching 400 Gbps+. Existing offloads,
like RDMA [77], provide high-bandwidth communication
between nodes by moving data to/from the main memory
and the network without engaging the host CPU. However,
these implementations are still susceptible to tail effects in the
network (e.g., packet drops and retransmissions). We hope
OPTIREDUCE’s transport design can offer guidance in build-
ing new offloads for network transport, particularly with sup-
port for unreliable bounded protocols. As a next step, we
could explore offloading OPTIREDUCE’s transport onto hard-
ware using RDMA’s Unreliable Connected (UC) or Unreliable
Datagram (UD) queue pairs [49]. However, these implemen-
tations currently suffer from excessive packet drops when
packets arrive out of order [23]. We plan to address these
challenges in future work.

7 Related Work

Lossy Architectures for Accelerating Allreduce Collec-
tives. THC [103] presents compression-aware gradient syn-
chronization architectures for DNN training, introducing ho-
momorphic compression to reduce bandwidth through quanti-
zation. OmniReduce [68] introduces the concept of a stream-
ing aggregation, which exploits parameter sparsity to maxi-
mize effective bandwidth use by sending only non-zero data
blocks. MLT [153] configures network switches to prioritize
and drop packets based on model layers and gradient magni-
tudes, leveraging inter-packet order-independency to balance
load. In contrast, OPTIREDUCE exploits DDL’s resiliency
to gradient drops in mitigating tail effects while sustaining
convergence accuracies in the cloud without requiring access
to the provider’s network. It could apply techniques like Om-
niReduce to reduce network usage for models with sparse
gradients or use quantization methods similar to THC.

Accelerating Deep Learning using In-Network Comput-
ing. SHATrP [75] is a hierarchical aggregation protocol and
architecture in Nvidia Switches (e.g., IB-2 [35]), which builds
an overlay reduction tree for aggregating data flowing through
the switch. SwitchML [136] accelerates distributed train-
ing by using a programmable data-plane device (e.g., Intel

Tofino [18,51]) to aggregate the model updates from multi-
ple workers in the network. To overcome the switch memory
and computational constraints, they co-design the in-switch
processing with end-host protocols (e.g., sliding window of
parameters) for handling drops. ATP [99] is an in-network ag-
gregation solution similar to SwitchML, but for deep learning,
and is designed to provide a dynamic, best-effort in-network
aggregation service for multi-tenant multi-switch clusters.
Unlike these solutions, OPTIREDUCE does not require spe-
cialized hardware or access to the provider’s network.

Optimizing Deep Learning for Enterprise and HPC Envi-
ronments. Cassini [128] is a network-aware job scheduler
for ML clusters in HPC environments that optimizes network
resource usage by interleaving communication patterns of
ML jobs, reducing congestion and improving cluster perfor-
mance. Meta’s recent paper [72] presents a custom backend
for distributed deep-learning training targeting enterprise data
centers. It optimizes network topology, job scheduling, place-
ment, and data transport to improve training performance,
efficiency, and scalability. On the other hand, OPTIREDUCE
offers a resilient and tail-optimal solution for deep-learning
training in the cloud.

8 Conclusion

OPTIREDUCE leverages distributed-deep learning’s (DDL) re-
siliency to lost gradients and achieves speedups of up to (70%,
30%), on average, over existing frameworks (Gloo, NCCL),
in shared environments (e.g., public clouds). OPTIREDUCE
implements a domain-specific Transpose Allreduce collective
algorithm with unreliable bounded transport (UBT) featuring
adaptive timeouts, while mitigating the impact of gradient
loss using Hadamard Transform. It delivers higher tail perfor-
mance (e.g., TTA and training throughput) while preserving
DDL models’ convergence accuracy and limiting gradient
drops to under 0.1%. Looking forward, we hope OPTIRE-
DUCE inspires further exploration of the tradeoff between tail
performance and training accuracy in processing contempo-
rary deep-learning models.

Acknowledgements

We sincerely appreciate the guidance of our shepherd,
Changhoon Kim, as well as Ashwin Murthy, Roop Mukherjee,
Leo Liu, Minlan Yu, Tushar Krishna, Ajay Brahmakshatriya,
and the anonymous reviewers for their valuable feedback in
strengthening this paper. We also thank Roop Mukherjee, Leo
Liu, Ali Imran, and Ali Aqdas for helping with the artifact
and initial background studies on tail behavior in distributed
training environments, conducted on Nvidia’s internal shared
clusters and AWS EC2 instances. This work was supported in
part by ACE, one of the seven centers in JUMP 2.0, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA; by NSF awards CAREER-2338034 and CNS-
2211381; and through a Google Research Scholar Award.
Support also came in part via a generous gift from Nvidia.

696 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

[2]

[3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Collaborative Al Platform. https://www.evidentlyai.com. Last ac-
cessed: 01/2025.

neptune.ai AI Experiment Tracker. https://neptune.ai. Last accessed:
01/2025.

Amazon AWS EC2. https://aws.amazon.com/ec2. Last accessed:
01/2025.

Amazon AWS EC2 Elastic Fabric Adapter (EFA). https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html. Last ac-
cessed: 01/2025.

Amazon EC2 P3 Instance. https://aws.amazon.com/ec2/instance-
types/p3. Last accessed: 01/2025.

Amazon EC2 P4 Instance. https://aws.amazon.com/ec2/instance-
types/p4. Last accessed: 01/2025.

Amazon EC2 P5 Instance. https://aws.amazon.com/ec2/instance-
types/pS. Last accessed: 01/2025.

CloudLab Hardware. https://docs.cloudlab.us/hardware.html. Last
accessed: 08/2024.

DPDK Flow Bifurcation Guide. https://doc.dpdk.org/guides-
20.11/howto/flow_bifurcation.html. Last accessed: 01/2025.

DPDK Generic Flow API Docs. https://doc.dpdk.org/guides-
20.11/prog_guide/rte_flow.html. Last accessed: 01/2025.

DPDK v20.11. https://doc.dpdk.org/guides-20.11. Last accessed:
01/2025.

Gloo Benchmarking Utility. https://github.com/facebookincubator/gloo
?tab=readme-ov-file#benchmark. Last accessed: 01/2025.

Gloo Collective-Communication Library.
facebookincubator/gloo. Last accessed: 01/2025.

Grand View Research: Cloud AI Market Report. https:/
www.grandviewresearch.com/industry-analysis/cloud-ai-market-
report. Last accessed: 01/2025.

https://github.com/

HazyResearch’s Open Source Hadamard CUDA Implementation.
https://github.com/HazyResearch/structured-nets. Last accessed:
01/2025.

How Cloud Computing Revolutionized Business Operations.
https://www.forbes.com/sites/emilsayegh/2023/11/28/how-cloud-
computing-revolutionized-business-operations-and-what-lies-ahead.
Last accessed: 01/2025.

Hyperstack: Complete Guide to Machine Learning for Cloud
2024. https://www.hyperstack.cloud/blog/case-study/complete-guide-
to-machine-learning-for-cloud-2024. Last accessed: 01/2025.

Intel Tofino P4 Switch. https://www.intel.com/content/www/us/en/
products/details/network-io/programmable-ethernet-switch/tofino-
series.html. Last accessed: 01/2025.

Intel® FPGA SmartNIC. https://www.intel.com/content/www/us/en/
products/details/fpga/platforms/smartnic.html. Last accessed:
01/2025.

Machine Learning in the Cloud. https://www.run.ai/guides/machine-
learning-in-the-cloud. Last accessed: 01/2025.

Machine Learning in the Cloud: What Are the Benefits.
https://symphony-solutions.com/insights/machine-learning-in-
the-cloud-what-are-the-benefits. Last accessed: 01/2025.

Massively Scale Your Deep Learning Training with NCCL
2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4. Last accessed: 01/2025.

Mellanox Support for Out-of-order Packets Data Placement.
https://docs.nvidia.com/networking/display/mlnxofedv543100/out-
of-order+(ooo)+data+placement. Last accessed: 01/2025.

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Microsoft Collective-Communication Library. https://github.com/
microsoft/msccl. Last accessed: 01/2025.

napa:tech; SmartNICs. https://www.napatech.com/products. Last
accessed: 01/2025.

NVIDIA ConnectX Series SmartNIC. https://www.nvidia.com/en-us/
networking/ethernet-adapters. Last accessed: 01/2025.

OpenAl's GPT-3 Language Model: A Technical Overview.
https://lambdalabs.com/blog/demystifying-gpt-3. Last accessed:
01/2025.

Optimizing Artificial Intelligence and Machine Learning with Cloud
Computing. https://www.orange-business.com/en/blogs/optimizing-
artificial-intelligence-machine-learning-cloud-computing. Last ac-
cessed: 01/2025.

OptiReduce Public Artifact. https://github.com/OptiReduce.

Proxmox VM Environment. https://pve.proxmox.com/wiki/Main_Page.
Last accessed: 01/2025.

PyTorch DDP Communication Hook. https://pytorch.org/docs/
stable/ddp_comm_hooks.html. Last accessed: 01/2025.

PyTorch TorchFT: Per-step Fault Tolerance. https://github.com/

pytorch/torchft. Last accessed: 01/2025.

Redress Compliance: Exploring Cloud-Based Machine Learning
Platforms. https://redresscompliance.com/exploring-cloud-based-
machine-learning-platforms. Last accessed: 01/2025.

RunPod - The Cloud Built for AI. https://www.runpod.io. Last
accessed: 01/2025.

Switch-IB™ 2 EDR. https://network.nvidia.com/files/doc-2020/pb-
switchib2-edr-switch-silicon.pdf. Last accessed: 01/2025.

The Power of Machine Learning in the Cloud: Transforming Busi-
ness Operations. https://mentormate.com/blog/the-power-of-machine-
learning-in-the-cloud-transforming-business-operations. ~ Last ac-
cessed: 01/2025.

The Rise of Cloud Machine Learning. https://encapture.com/the-rise-
of-cloud-machine-learning. Last accessed: 01/2025.

Criteo: Terabyte Click Logs Dataset. https://labs.criteo.com/2013/
12/download-terabyte-click-logs, 2013.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaogiang Zheng. Tensorflow: Large-scale Machine Learning on
Heterogeneous Distributed Systems. arXiv:1603.04467, 2016.

Sepehr Abbasi, Shiva Ketabi, Ali Munir, Mahmoud Bahnasy, and
Yashar Ganjali. DWTCP: Ultra Low Latency Congestion Control
Protocol for Data Centers. arXiv:2207.05624, 2022.

Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger,
Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Bal-
aji Vembu, and John Wiegert. Intel Virtualization Technology for
Directed I/O. Intel technology journal, 10(3), 2006.

Vamsi Addanki, Oliver Michel, and Stefan Schmid. PowerTCP: Push-
ing the Performance Limits of Datacenter Networks. In USENIX
NSDI, 2022.

Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David Shmoys, and
Amin Vahdat. Harmony: A Congestion-free Datacenter Architecture.
In USENIX NSDI, 2024.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

697

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan
Vojnovic. QSGD: Communication-efficient SGD via Gradient Quan-
tization and Encoding. NeurIPS, 2017.

Mohammad Alizadeh and Tom Edsall. On the Data Path Performance
of Leaf-spine Datacenter Fabrics. In High-Performance Interconnects.
IEEE, 2013.

Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, and George Varghese. CONGA:
Distributed Congestion-aware Load Balancing for Datacenters. In
ACM SIGCOMM, 2014.

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data Center TCP (DCTCP). In ACM SIGCOMM, 2010.

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.
Effective Straggler Mitigation: Attack of the Clones. In USENIX
NSDI, 2013.

Dotan Barak. RDMA Aware Networks Programming User Manual.
NVIDIA Docs, 2015.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman,
Simran Arora, Sydney von Arx, Michael S. Bernstein, Jeannette
Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-
mal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie
Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris
Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Gross-
man, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti,
Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir
Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Car-
los Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel
Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren,
Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher
Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih,
Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas,
Florian Tramer, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu,
Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You,
Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the Oppor-
tunities and Risks of Foundation Models. arXiv:2108.07258, 2021.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forward-
ing Metamorphosis: Fast Programmable Match-action Processing in
Hardware for SDN. ACM SIGCOMM CCR, 2013.

Léon Bottou. Stochastic gradient descent tricks. Neural Networks:
Tricks of the Trade: Second Edition, 2012.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models Are Few-shot Learn-
ers. NeurlPS, 2020.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and

Rafal Jozefowicz. Revisiting Distributed Synchronous SGD.
arXiv:1604.00981, 2016.

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A
Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv:1512.01274, 2015.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning Phrase Representations Using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv:1406.1078, 2014.

James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R
Ganger, Garth Gibson, Kimberly Keeton, and Eric P Xing. Solving
the straggler problem with bounded staleness. White paper, Carnegie
Mellon University, 2013.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Carissa Schoenick, and Oyvind Tafjord. Think You Have
Solved Question Answering? Try ARC, The AI2 Reasoning Chal-
lenge. arXiv:1803.05457, 2018.

Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI Mes-
sage Passing Interface Standard. In Programming Environments for
Massively Parallel Distributed Systems, Springer, 1994.

Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. Clipper: A Low-Latency On-
line Prediction Serving System. In USENIX NSDI, 2017.

Jetfrey Dean and Luiz André Barroso. The Tail at Scale. Communi-
cations of the ACM, 56(2), 2013.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, Quoc Le, and Andrew Ng. Large Scale Distributed Deep
Networks. NeurIPS, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805, 2018.

Xianzhi Du, Mostafa El-Khamy, Jungwon Lee, and Larry Davis.
Fused DNN: A Deep Neural Network Fusion Approach to Fast and
Robust Pedestrian Detection. In IEEE winter conference on applica-
tions of computer vision (WACV), 2017.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Amy Yang, Angela Fan, et al. The Llama 3 Herd of Models.
arXiv:2407.21783, 2024.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of
CloudLab. In USENIX ATC, 2019.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and
Priya Nagpurkar. Slow and Stale Gradients Can Win The Race: Error-
runtime Trade-offs in Distributed SGD. In International conference
on artificial intelligence and statistics, 2018.

Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo
Sapio. Efficient Sparse Collective Communication and its Application
to Accelerate Distributed Deep Learning. In ACM SIGCOMM, 2021.

Xu Fei, Xu Jianian, Chen Jiabin, Chen Li, Shang Ruitao, Zhou Zhi, and
Liu Fangming. iGniter: Interference-Aware GPU Resource Provision-
ing for Predictable DNN Inference in the Cloud. arXiv:2211.01713,
2022.

Shuo Feng, Huiyu Zhou, and Hongbiao Dong. Using Deep Neural
Network with Small Dataset to Predict Material Defects. Materials &
Design, 162, 2019.

Mingsheng Fu, Hong Qu, Zhang Yi, Li Lu, and Yongsheng Liu. A
Novel Deep Learning-based Collaborative Filtering Model for Rec-
ommendation System. [EEE transactions on cybernetics, 49(3), 2018.

698 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Rif-
tadi, Ashmitha Jeevaraj Shetty, Jingyi Yang, Shuqiang Zhang,
Mikel Jimenez Fernandez, Shashidhar Gandham, and Hongyi Zeng.
RDMA over Ethernet for Distributed Training at Meta Scale. In ACM
SIGCOMM, 2024.

James Salamy Ayush Sharma Manya Ghobadi and Muriel Médard.
FlexEnt: Entropy Coding to Curb Stragglers in Large-Scale Dis-
tributed Machine Learning. Workshop on Al Systems at SOSP, 2019.

Abhinav Goel, Caleb Tung, Yung-Hsiang Lu, and George K Thiru-
vathukal. A Survey of Methods for Low-power Deep Learning and
Computer Vision. In IEEE 6th World Forum on Internet of Things
(WEF-IoT), 2020.

Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gi-
lad Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchu-
bievsky, Vladimir Koushnir, Lion Levi, Alex Margolin, Tamir Ronen,
Alexander Shpiner, Oded Wertheim, and Eitan Zahavi. Scalable Hi-
erarchical Aggregation Protocol (SHArP): A Hardware Architecture
for Efficient Data Reduction. In IEEE International Workshop on
Communication Optimizations in HPC (COMHPC), 2016.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-
feng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A
High Performance, Server-Centric Network Architecture for Modular
Data Centers. In ACM SIGCOMM, 2009.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. RDMA over Commodity Ethernet
at Scale. In ACM SIGCOMM, 2016.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A Large-scale System
for Data Center Network Latency Measurement and Analysis. In
ACM SIGCOMM, 2015.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep Learning with Limited Numerical Precision. In
ICML, 2015.

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wdjcik. Re-
architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In ACM SIGCOMM, 2017.

Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R
Ganger, Phillip B Gibbons, Garth A Gibson, and Eric P Xing. Ad-
dressing the Straggler Problem for Iterative Xonvergent Parallel ML.
In ACM Symposium on Cloud Computing, 2016.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In /JEEE CCVPR, 2016.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven
Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring
Mathematical Problem Solving with the MATH Dataset. NeurlIPS,
2021.

Brian Heredia, Joseph D Prusa, and Taghi M Khoshgoftaar. Social
Media for Polling and Predicting United States Election Outcome.
Social Network Analysis and Mining, 8(1), 2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory.
Neural computation, 9(8), 1997.

Zhenhua Huang, Guangxu Shan, Jiujun Cheng, and Jian Sun. TRec:
An Efficient Recommendation System for Hunting Passengers with
Deep Neural Networks. Neural Computing and Applications, 31(1),
2019.

Sylvain Jeaugey. NCCL 2.0. In GPU Technology Conference (GTC),
2017.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A Unified Architecture for Accelerating Distributed DNN
Training in Heterogeneous GPU/CPU Clusters. In USENIX OSDI,
2020.

Nicolai M Josuttis. The C++ Standard Library: A Tutorial and Refer-
ence. Addison-Wesley, 2012.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gul-
land, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar,
Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary,
Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,
Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In
ISCA, 2017.

Can Karakus, Rahul Huilgol, Fei Wu, Anirudh Subramanian, Cade
Daniel, Derya Cavdar, Teng Xu, Haohan Chen, Arash Rahnama, and
Luis Quintela. Amazon Sagemaker Model Parallelism: A General and
Flexible Framework for Large Model Training. arXiv:2111.05972,
2021.

Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Strag-
gler Mitigation in Distributed Optimization through Data Encoding.
NeurlIPS, 2017.

Asif Igbal Khan, Junaid Latief Shah, and Mohammad Mudasir Bhat.
CoroNet: A Deep Neural Network for Detection and Diagnosis of
COVID-19 from Chest X-Ray Images. Computer methods and pro-
grams in biomedicine, 196, 2020.

Jack Kiefer and Jacob Wolfowitz. Stochastic Estimation of The Maxi-
mum of a Regression Function. The Annals of Mathematical Statistics,
1952.

Michael Ko, Daniel Eisenhauer, and Renato Recio. A Case for Conver-
gence Enhanced Ethernet: Requirements and Applications. In /EEE
International Conference on Communications, 2008.

Michat Koziarski and Bogustaw Cyganek. Image Recognition with
Deep Neural Networks in Presence of Noise-Dealing with and Taking
Advantage of Distortions. Integrated Computer-Aided Engineering,
24(4), 2017.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. White paper, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
Classification with Deep Convolutional Neural Networks. Communi-
cations of the ACM, 60(6), 2017.

ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael M Swift. ATP: In-network Aggregation
for Multi-tenant Learning. In USENIX NSDI, 2021.

Jason Lei and Vishal Shrivastav. Seer: Enabling Future-Aware Online
Caching in Networked Systems. In USENIX NSDI, 2024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Ab-
delrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettle-
moyer. Bart: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension.
arXiv:1910.13461, 2019.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

699

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Hao Li, Asim Kadav, Erik Kruus, and Cristian Ungureanu. Malt: Dis-
tributed Data-Parallelism for Existing ML Applications. In European
Conference on Computer systems, 2015.

Minghao Li, Ran Ben Basat, Shay Vargaftik, ChonLam Lao, Kevin
Xu, Michael Mitzenmacher, and Minlan Yu. THC: Accelerating
Distributed Deep Learning Using Tensor Homomorphic Compression.
In USENIX NSDI, 2024.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Commu-
nication Efficient Distributed Machine Learning with the Parameter
Server. NeurlPS, 27, 2014.

Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen,
and Alexander Smola. Parameter Server for Distributed Machine
Learning. In Big learning NIPS workshop, 2013.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,
Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania,
and Soumith Chintala. Pytorch Distributed: Experiences on Acceler-
ating Data Parallel Training. arXiv:2006.15704, 2020.

Wenxin Li, Xin He, Yuan Liu, Keqiu Li, Kai Chen, Zhao Ge, Zewei
Guan, Heng Qi, Song Zhang, and Guyue Liu. Flow Scheduling with
Imprecise Knowledge. In USENIX NSDI, 2024.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. LossRadar:
Fast Detection of Lost Packets in Data Center Networks. In ACM
CoNEXT, 2016.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep
Gradient Compression: Reducing the Communication Bandwidth for
Distributed Training. arXiv:1712.01887, 2017.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-
task Deep Neural Networks for Natural Language Understanding.
arXiv:1901.11504, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692, 2019.

Pradeep Kumar Mallick, Seuc Ho Ryu, Sandeep Kumar Satapathy,
Shruti Mishra, Gia Nhu Nguyen, and Prayag Tiwari. Brain MRI Image
Classification for Cancer Detection using Deep Wavelet Autoencoder-
Based Deep Neural Network. IEEE Access, 7, 2019.

Tomas Mikolov, Martin Karafiit, Lukas Burget, Jan Cernocky, and
Sanjeev Khudanpur. Recurrent Neural Network based Language
Model. In Interspeech, 2010.

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. TIMELY: RTT-based Congestion Control
for the Datacenter. ACM SIGCOMM CCR, 2015.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A Receiver-driven Low-latency Transport Protocol using
Network Priorities. In ACM SIGCOMM, 2018.

Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan.
Sparknet: Training Deep Networks in Spark. arXiv:1511.06051,2015.

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, and Martin Abadi. Naiad: A timely Dataflow System.
In ACM SOSP, 2013.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. PipeDream: Generalized Pipeline Parallelism for DNN Train-
ing. In ACM SOSP, 2019.

David Nigenda, Zohar Karnin, Muhammad Bilal Zafar, Raghu Rame-
sha, Alan Tan, Michele Donini, and Krishnaram Kenthapadi. Amazon
Sagemaker Model Monitor: A System for Real-time Insights into
Deployed Machine Learning Models. In ACM SIGKDD, 2022.

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Xue Ouyang, Changjian Wang, and Jie Xu. Mitigating Stragglers to
Avoid QoS Violation for Time-critical Applications through Dynamic
Server Blacklisting. Future Generation Computer Systems, 101, 2019.

Pitch Patarasuk and Xin Yuan. Bandwidth Optimal All-reduce Al-
gorithms for Clusters of Workstations. Journal of Parallel and Dis-
tributed Computing, 69(2), 2009.

Fabrizio Petrini, Darren J Kerbyson, and Scott Pakin. The Case of
the Missing Supercomputer Performance: Achieving Optimal Perfor-
mance on the 8,192 Processors of ASCI Q. In ACM/IEEE Conference
on Supercomputing, 2003.

Gregory F Pfister. An Introduction to the Infiniband Architecture.
High performance mass storage and parallel I/0, 42(617-632), 2001.

William K Pratt, Julius Kane, and Harry C Andrews. Hadamard
Transform Image Coding. Proceedings of the IEEE, 1969.

Yanxing Qi, Yi Guo, and Yuanyuan Wang. Image Quality Enhance-
ment using a Deep Neural Network for Plane Wave Medical Ultra-
sound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language Models Are Unsupervised Multitask
Learners. OpenAl blog, 2019.

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Green-
halgh, Damon Wischik, and Mark Handley. Improving datacenter
performance and robustness with multipath TCP. ACM SIGCOMM
CCR, 2011.

Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella.
CASSINI: Network-Aware Job Scheduling in Machine Learning Clus-
ters. In USENIX NSDI, 2024.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
Squad: 100,000+ Questions for Machine Comprehension of Text.
arXiv:1606.05250, 2016.

S Ramesh, C Yaashuwanth, K Prathibanandhi, Adam Raja Basha, and
T Jayasankar. An Optimized Deep Neural Network based DoS Attack
Detection in Wireless Video Sensor Network. Journal of Ambient
Intelligence and Humanized Computing, 2021.

Cedric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh,
and Torsten Hoefler. Sparcml: High-performance Sparse Communi-
cation for Machine Learning. In International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019.

Alessandro Rigazzi. DC-S3GD: Delay-Compensated Stale-
Synchronous SGD for Large-Scale Decentralized Neural Network
Training. In ACM/IEEE Third Workshop on Deep Learning on Super-
computers (DLS), 2019.

Joshua Romero, Junqgi Yin, Nouamane Laanait, Bing Xie, M Todd
Young, Sean Treichler, Vitalii Starchenko, Albina Borisevich, Alex
Sergeev, and Michael Matheson. Accelerating Collective Communi-
cation in Data Parallel Training across Deep Learning Frameworks.
In USENIX NSDI, 2022.

Alexander Rucker, Muhammad Shahbaz, and Kunle Olukotun. Chop-
ping off the Tail: Bounded Non-Determinism for Real-Time Acceler-
ators. IEEE Computer Architecture Letters (CAL), 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander Berg, and Li Fei-Fei. Imagenet Large
Scale Visual Recognition Challenge. International Journal of Com-
puter Vision, 2015.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos
Kalnis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref,
Dan Ports, and Peter Richtdrik. Scaling Distributed Machine Learning
with In-Network Aggregation. In USENIX NSDI, 2021.

700

22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi,
and Rachee Singh. TACCL: Guiding Collective Algorithm Synthesis
using Communication Sketches. In USENIX NSDI, 2023.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-scale Image Recognition. arXiv:1409.1556,2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-
pher D Manning, Andrew Y Ng, and Christopher Potts. Recursive
Deep Models for Semantic Compositionality Over A Sentiment Tree-
bank. In Empirical Methods in Natural Language Processing, 2013.

Akshitha Sriraman, Sihang Liu, Sinan Gunbay, Shan Su, and Thomas F
Wenisch. Deconstructing the Tail at Scale Effect Across Network
Protocols. arXiv:1701.03100, 2017.

Dave Steinkraus, Ian Buck, and PY Simard. Using GPUs for Machine
Learning Algorithms. In IEEE ICDAR, 2005.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Spar-
sified SGD with Memory. NeurIPS, 2018.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta.
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era.
In [EEE ICCV, 2017.

Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan
McMahan. Distributed Mean Estimation with Limited Communica-
tion. In ICML, 2017.

Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karam-
patziakis. Gradient Coding: Avoiding Stragglers in Distributed Learn-
ing. In ICML, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Roziere, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and
Efficient Foundation Language Models. arXiv:2302.13971, 2023.

Yuichiro Ueno and Rio Yokota. Exhaustive Study of Hierarchical
Allreduce Patterns for Large Messages between GPUs. In IEEE/ACM
CCGRID, 2019.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson,
Yaniv Ben Itzhak, and Michael Mitzenmacher. Eden: Communication-
efficient and Robust Distributed Mean Estimation for Federated Learn-
ing. In ICML, 2022.

Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv
Ben-Itzhak, and Michael Mitzenmacher. Drive: One-bit Distributed
Mean Estimation. NeurIPS, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is All You Need. NeurlIPS, 2017.

Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating Dis-
tributed Systems: Does Background Traffic Matter? In USENIX ATC,
2008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. GLUE: A Multi-task Benchmark and Analy-
sis Platform for Natural Language Understanding. arXiv:1804.07461,
2018.

Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
Towards Domain-Specific Network Transport for Distributed DNN
Training. In USENIX NSDI, 2024.

Jiangiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient
Sparsification for Communication-efficient Distributed Optimization.
arXiv:1710.09854, 2017.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. Terngrad: Ternary Gradients to Reduce Communi-
cation in Distributed Deep Learning. NeurIPS, 2017.

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An Insightful Visual Performance Model for Multicore Architectures.
Communications of the ACM, 52(4), 2009.

Bruno Missi Xavier, Rafael Silva Guimarées, Giovanni Comarela,
and Magnos Martinello. Programmable Switches for In-Networking
Classification. In IEEE INFOCOM, 2021.

Jiacheng Xia, Gaoxiong Zeng, Junxue Zhang, Weiyan Wang, Wei Bai,
Junchen Jiang, and Kai Chen. Rethinking Transport Layer Design for
Distributed Machine Learning. In APNet, 2019.

Guojun Xiong, Gang Yan, Rahul Singh, and Jian Li. Straggler-
resilient Distributed Machine Learning with Dynamic Backup Work-
ers. arXiv:2102.06280, 2021.

Zhaoqi Xiong and Noa Zilberman. Do Switches Dream of Machine
Learning? Toward In-Network Classification. In ACM HotNets, 2019.

Cheng Xu, Duo Chai, Jie He, Xiaotong Zhang, and Shihong Duan.
InnoHAR: A Deep Neural Network for Complex Human Activity
Recognition. /EEE Access, 7,2019.

Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey.
Bobtail: Avoiding Long Tails in the Cloud. In USENIX NSDI, 2013.

Neeraja J Yadwadkar and Wontae Choi. Proactive Straggler Avoidance
using Machine Learning. White paper, University of Berkeley, 2012.

Yauhen Yakimenka, Chung-Wei Weng, Hsuan-Yin Lin, Eirik Rosnes,
and Jorg Kliewer. Straggler-Resilient Differentially-Private Decen-
tralized Learning. In IEEE Information Theory Workshop (ITW),
2022.

Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben Xia, Derui Liu,
and Weishan Deng. ACC: Automatic ECN Tuning for High-speed
Datacenter Networks. In ACM SIGCOMM, 2021.

Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie,
Swamy Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya
Ghobadi. Using Trio: Juniper Networks’ Programmable Chipset for
Emerging In-network Applications. In ACM SIGCOMM, 2022.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schiitze. Com-
parative Study of CNN and RNN for Natural Language Processing.
arXiv:1702.01923, 2017.

Chen Yu, Hanlin Tang, Cedric Renggli, Simon Kassing, Ankit Singla,
Dan Alistarh, Ce Zhang, and Ji Liu. Distributed Learning over Unreli-
able Networks. In ICML, 2019.

Xin Yuan, Weite Li, Kui Lin, and Jinglu Hu. A Deep Neural Network
Based Hierarchical Multi-Label Classifier for Protein Function Pre-
diction. In International Conference on Computer, Information and
Telecommunication Systems (CITS), 2019.

David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and
Randy Katz. DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In ACM SIGCOMM, 2012.

Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Ger-
stlauer, Sri Parameswaran, and Jorg Henkel. Approximate Computing
for ML: State-of-the-Art, Challenges and Visions. In ACM ASPDAC,
2021.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. Posei-
don: An Efficient Communication Architecture for Distributed Deep
Learning on GPU Clusters. In USENIX ATC, 2017.

Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Tread-
mill: Attributing the Source of Tail Latency through Precise Load
Testing and Statistical Inference. ACM SIGARCH, 2016.

Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie
Xu. Fuxi: A Fault-tolerant Resource Management and Job Scheduling
System at Internet Scale. In VLDB Endowment, 2014.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Par-
allelized Stochastic Gradient Descent. NeurIPS, 2010.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

701

=ﬁ=v¢=i‘€\ FX ﬁ e
0 &
y — — — I,l._—4\ /;_’“\\/m
={ i A i N i ‘_-N"" N\ A/ mim P\ /‘—“ e N e B i
e~ N\ RN e
7 N a0 &
| — — — 3 1/ X N & f- — — —
et e W Ot o — //___/\w __/\ — == —
19 iy&=+’0<—=i"é'\}§?\?<_//0020‘\\—_?4/\\§{‘:’~ __b’ﬂ__:i —
122 g N -—/ - - \—- g N —
<t ’——/\:/\:/ e i W i —
R S = = e e == e
Send/Receive Aggregate Send/Receive Aggregate Bcast/Receive
per Group per Group Global Global per Group
Figure 17: Hierarchical 2D TAR Algorithm.
. Gloo NCCL OPTIREDUCE:
Environment | Benchmark Ring | BCube | Ring | Tree TAR+TCP Time Accuracy Test Acc.
ARC 84 113 77 75 76 61 60.45 [+0.45] 39.97 [-0.47]
Pog /50 = 1.5 MATH 195 254 180 171 175 130 30.56 [+0.18] 30.29 [+0.23]
SQuAD 4072 5402 3391 3464 3723 3182 46.77 [-0.21] 38.64 [+0.08]
ARC 155 161 128 120 86 61 60.44 [+0.44] 39.91 [-0.53]
Pog /50 =3.0 MATH 308 390 299 243 189 131 30.14 [-0.24] 30.09 [+0.03]
SQuAD 5793 8057 5677 5243 4120 3220 46.45 [-0.53] 38.57 [+0.01]

Table 2: Comparing convergence time (in minutes) and accuracy (% [A]), as well as test accuracy (% [A]) for the Llama-3.2
1B model across various tasks and environments; [A] reports deviation from the baseline accuracy (e.g., Gloo and NCCL).

A Hierarchical 2D TAR Algorithm: Scaling to
Larger Node Clusters

In the hierarchical TAR design (Figure 17), nodes are grouped
to optimize both intra-group and inter-group communication,
reducing the total number of rounds and connections required
for AllReduce. For example, with N = 64 total nodes divided
into G = 16 groups, each node communicates only with its
corresponding rank across the groups. The number of rounds
reduces from 2(N — 1) = 126 in traditional TAR to 2(N/G —
1)+ (G — 1) = 21 rounds. The algorithm works in three steps:

Intra-group Communication: Nodes within each group
perform send/receive operations followed by aggregation,
in parallel, resulting in the locally aggregated shard for their
rank—taking (N/G — 1) rounds.

Inter-group Communication: Corresponding ranks across
groups then perform send/receive operations, followed by
aggregation, to get the globally aggregated shard for their
rank—adding another (G — 1) rounds.

Broadcast Phase: Finally, nodes within the group broad-
cast their aggregated shards, which are concatenated to
form the globally aggregated gradient bucket—an addi-
tional (N/G — 1) rounds.

This hierarchical design significantly reduces communica-
tion overhead, improving scalability and efficiency for large-
scale distributed training.

B Benchmarking Llama-3.2 1B Model

Using our local testbed (§5.1), we evaluate OPTIREDUCE
with the Llama-3.2 1B model [65] on three well-known down-
stream tasks: SQuAD (extractive question answering) [129],
ARC (science reasoning) [58], and MATH (symbolic mathe-
matics) [83], across both low-tail (Pyg 50 = 1.5) and high-tail
(Pyg /50 = 3.0) environments. Table 2 provides a detailed com-
parison of training times across all schemes. OPTIREDUCE
consistently demonstrates performance improvements across
all tasks. Compared to NCCL, it achieves speedups of 1.35x
on MATH, 1.25x on ARC, and 1.08x on SQuAD, averaging
a 1.24x improvement. The gains are even more pronounced
against Gloo, with speedups of 1.73x, 1.61x, and 1.49x
respectively, averaging 1.61 x. These improvements scale fur-
ther under high-tail conditions, reaching speedups of up to
2.1x while preserving baseline model convergence and test
accuracies.

C Network and Compute Intensive Models &
Base LMs

In this section, we present time-to-accuracy (TTA) plots for
additional models, including computer vision models (ResNet-
50/101/152, VGG-16/19) and base LMs (BERT, RoBERTa,
BART, and GPT-2). The experiments use the same local
testbed setup described in §5.1, but with six worker nodes
(VMs). We compare results across two environment configu-
rations, characterized by tail-to-median ratios (Pyg,s0) of 1.5

702 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === OptiReduce

100 —====mmrrrrrmrrre==g = —~100-. ~100-,

g_.; 99.6% & 9\..; 90-

> 95- 5- =

3 8 so-

3 90 0- 3 70

(8] (8]

< g5 5- < 60-

100 200 300 400 40 80 120 160 100 200
Elapsed Time (minutes) Elapsed Time (minutes) Elapsed Time (minutes)

(a) VGG-16 (b) VGG-19 (¢) BERT

—~100- _100-

X X

3 90- 3 95-

g g

S 80 =1

8 8 90-

< 70- <
100 200 100 200 300 400 100 200 300 400

Elapsed Time (minutes) Elapsed Time (minutes) Elapsed Time (minutes)

(d) RoBERTa (e) BART (f) GPT-2

Figure 18: Time-to-accuracy (TTA) of baseline systems vs OPTIREDUCE with tail-to-median ratio: Pyg/50 = 1.5.

Gloo Ring Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === OptiReduce
,@100 ,@100 . ,@100
o o
> 95- 5- 5 90
3 8 o
3 % 0- 3 70-
(8] (8]
< g5 5- < 60-
100 200 300 400 500 50 100 150 200 100 200 300
Elapsed Time (minutes) Elapsed Time (minutes) Elapsed Time (minutes)
(a) VGG-16 (b) VGG-19 (¢) BERT
—~100- _100-
X X
3 90- 3 95-
© ©
5 80 5
8 g o
< 70- <
100 200 300 200 400 600 100 200 300 400 500
Elapsed Time (minutes) Elapsed Time (minutes) Elapsed Time (minutes)
(d) RoBERTa (e) BART (f) GPT-2

Figure 19: Time-to-accuracy (TTA) of baseline systems vs OPTIREDUCE with tail-to-median ratio: Pyg /50 = 3.

(lOW Variability) and 3 (h1gh Variability), Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === OptiReduce
C.1 Time-to-accuracy (TTA) 5

We observe similar gains for these network-intensive models E_ ;:2311 5-

(VGG-16/19) and base LMs, with up to (66%, 75%) and (50%, 3 o1o0-

51%) reductions in TTA, on average, compared to Gloo (Ring, §§

BCube) and NCCL (Ring, Tree), respectively—Figure 18 2 D

(P99/50 = 15) and Figure 19 (P99/50 = 3) OPTIREDUCE

achieves the same convergence accuracy as the baselines ResNet 50 ResNet 101 ResNet 152
while limiting lost gradients to less than 1.5%, on average, of (@) Pygso = 1.5

the communicated traffic.

C.2 Training Throughput (Speedup)

N
o

-
U'I

While compute-intensive models like ResNets [82] typically

do not gain significant advantages from optimized commu-
nication [103, 153], their performance can be impacted in
shared environments (such as public clouds) due to long-tail

latencies. Our evaluations reflect this, where OPTIREDUCE

. . ResNet 50 ResNet 101 ResNet 152
demonstrates notable improvements over baseline systems, (b) P -3
achieving average speedups of 22% over NCCL and 53% 99/50 =

over Gloo for three ResNet models (50/101/152) across both -Figure.: 20: Training throughput for computationally-
environment configurations (Figure 20). intensive ResNet models on the ImageNet dataset.

Speedup over
Gloo Ring
5

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 703

