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Abstract

We present OPTIREDUCE, a new collective-communication
system for the cloud with bounded, predictable completion
times for deep-learning jobs in the presence of varying compu-
tation (stragglers) and communication (congestion and gradi-
ent drops) variabilities. OPTIREDUCE exploits the inherent re-
siliency and the stochastic nature of distributed deep-learning
(DDL) training and fine-tuning to work with approximated (or
lost) gradients—providing an efficient balance between tail
performance and the resulting accuracy of the trained models.

Exploiting this domain-specific characteristic of DDL,
OPTIREDUCE introduces (1) mechanisms (e.g., unreliable
bounded transport with adaptive timeout) to improve the DDL
jobs’ tail execution time, and (2) strategies (e.g., Transpose
AllReduce and Hadamard Transform) to mitigate the impact
of dropped gradient entries on model accuracy. Our evaluation
shows that OPTIREDUCE achieves 70% and 30% faster time-
to-accuracy (TTA), on average, when operating in shared,
cloud environments (e.g., CloudLab) compared to Gloo and
NCCL, respectively.

1 Introduction

Synchronous distributed data-parallel training [175] is now
the de-facto standard for training and fine-tuning large-
scale deep-learning models (comprising billions or even
trillions of parameters) and datasets (comprising terabytes
of data) that form the backbone of many mainstream en-
terprise applications, including computer vision [64, 74, 96,
161], natural-language processing and large-language mod-
els [53,63, 110, 167], recommendation and prediction sys-
tems [70,71, 84,86, 130], and healthcare [93,112, 125, 169].
Under this scheme, the training occurs in rounds (or epochs).
Workers locally train a copy of the model on a fragment of
data and then share the model updates (i.e., gradients) among
themselves over the network to compute an aggregated result.
The aggregate is then used to update the model locally for
the next round of training. Distributed deep-learning (DDL)
is, therefore, inherently a computation- and communication-
intensive workload and is becoming even more so with the
growing model sizes (e.g., Bart [101], GPT-2/3 [53, 126],
LLaMA [65, 146]), and datasets [38, 135, 143].

To train and fine-tune such large models, extensive efforts
are underway in reducing both the computation and commu-
nication time of DDL jobs, albeit in isolation. On the one
hand, we have GPUs [141] and emerging hardware accel-

erators, like Tensor Processing Units (TPUs) [90], that are
drastically bringing down the computation time—reducing
it by 62x over the last decade [136]. While, on the other
hand, we have recent proposals based on programmable swit-
ches [157] that aim at reducing the communication time by
2-5x (via in-network aggregation) [136]. Yet, when seen
together, both these efforts mainly help in improving the
average completion time of a deep-learning job (either by
accelerating computation or communication). The vast ar-
ray of system-level variabilities (e.g., device failures, OS and
hypervisor scheduling, and resource contention) and network-
level delays (e.g., congestion and retransmissions) still lead
to long tails; hence, resulting in poor overall performance
for these training jobs—with tail reaching as high as 4x
the mean latency in shared environments (e.g., public cloud
providers)' [72,77,99, 106,118,153, 166].

In this paper, we make the case for OPTIREDUCE, a
collective-communication system for the cloud tenants that
ensures bounded, predictable completion times for deep-
learning jobs in the presence of myriad computation and
communication variabilities. Public clouds are becoming in-
creasingly appealing for training, and more specifically fine-
tuning, large foundation models [50], for enterprises and indi-
viduals lacking resources to set their own in-house distributed
training clusters [14,16,17,20,21,28,33,36,37]. OPTIRE-
DUCE exploits the inherent resiliency and the stochastic na-
ture of deep-learning systems to work with approximated
or lost gradients and provides an efficient balance between
tail performance and the resulting accuracy of the trained
models. Others are already utilizing this characteristic of
deep learning to optimize DDL hardware design (e.g., chip
area [134,171]), minimize traffic overhead [68, 103,109, 154],
or offload certain DDL tasks to the network switches [99,
136, 153,157, 160]. For instance, to reduce communication
time, ATP [99] and SwitchML [136] leverage fixed-point
arithmetic for gradient aggregation in programmable switches
with acceptable approximation loss, whereas MLT [153] pri-
oritizes and drops packets inside switches based on model
layers and gradient magnitudes to limit loss in accuracy.
Various gradient-compression schemes [68, 103, 109, 154]
employ lossy compression to reduce network traffic over-

!Cloud providers typically do not offer preferential treatment to small
tenants, but even large tenants with dedicated racks face long tails when com-
municating across racks in the provider’s network. Private communication
with a hyperscaler.
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Figure 1: A backpropagation pass in distributed data-parallel (DDP) training. Multiple gradient aggregation (GA) runs
share a bucket (B;) worth of gradient entries among worker nodes (W,), in parallel. The two send(bcast)/receive stages (1,
3) in GA incur the most time—contributing to the tail latency and stalling workers.

head (e.g., total bytes transferred) while limiting deviation
from the achievable model accuracy. Similarly, hardware de-
signers are incorporating approximate operations (e.g., ap-
prox. multipliers [134, 171]) in their architectures to mini-
mize resource and energy usage—to scale to ever-increasing
DDL models. However, these solutions are still suscepti-
ble to tail effects (e.g., slow workers and network variabil-
ities) [47, 61,78, 108, 127, 140, 153, 170, 173], and are not
optimized for cloud environments, often times requiring di-
rect access to the provider’s network infrastructure.

In OPTIREDUCE, we exploit this resiliency and replace
the (tail-prone) deterministic, run-to-completion stages of an
AllReduce collective in DDL, with best-effort, time-bounded
implementations.

OPTIREDUCE introduces a Transpose-Allreduce Collective
(TAR) to reduce the impact of lost gradient entries by estab-
lishing direct peer-to-peer communication among nodes in
each round, rather than propagating the entries through all
nodes as in Ring [121].

It also implements an Unreliable Bounded Transport (UBT)
to maximize the number of gradient entries received during
each window. UBT introduces the notion of adaptive time-
out to restrict the time a deep-learning job spends doing
computation (aggregation) and communication (gradient
sharing). Furthermore, it adds support for dynamic incast
to dynamically adjust the number of concurrent senders per
receiver in each round, thus optimizing communication by
reducing the total rounds required for gradient aggregation.

Lastly, to minimize the impact of missed or dropped gradi-
ent entries, OPTIREDUCE employs the Hadamard Trans-
form (HT) [124] to ensure, for any drop pattern (e.g., tail
drops), a receiver still obtains an unbiased estimate of the
model’s gradients resulting in a minimal loss in accuracy.

We implement OPTIREDUCE as a new AllReduce scheme
inside Gloo [13],” a popular collective-communication library.

2We pick Gloo for its ability to use both GPUs and CPUs (more suitable
for a cloud environment), but OPTIREDUCE can operate with other libraries

Doing so makes OPTIREDUCE immediately compatible with
existing DDL frameworks (e.g., PyTorch) without modifi-
cations. We run our experiments on various popular large
deep-learning models (including BART [101], OpenAI’s GPT-
2 [126], and Meta’s Llama 3.2) and evaluate OPTIREDUCE on
CloudLab [66]—a public cloud facility for researchers—as
well as under different shared environment settings using a lo-
cal virtualized cluster, with varying tail-to-median latency
ratios. We have made our complete OPTIREDUCE proto-
type [29] publicly available at https://optireduce.github.io.

Our evaluation demonstrates that OPTIREDUCE achieves,
on average, 57% and 25% faster time-to-accuracy (TTA) on
CloudLab compared to Gloo [13] and NCCL [87], respec-
tively. These performance gains are even more pronounced in
environments with larger tail-to-median latency differences,
where OPTIREDUCE outperforms Gloo by 91% and NCCL
by 35% (§5). We observe that it is the latency of the gradi-
ent aggregation (GA) step (Figure 1) that inflates three folds
when operating under tail-heavy environments (e.g., public
clouds), hence strengthening the need for a new collective
like OPTIREDUCE. We also perform a deeper analysis of the
various components of OPTIREDUCE. For example, in our
evaluation, enabling Hadamard Transform mitigates the im-
pact of tail-drops and improves TTA by 1.8 x even when up
to 10% of gradient entries are lost.

We begin with a background on distributed deep-learning
(DDL) training—more specifically, distributed data-parallel
(DDP) training—and the impact of stragglers on performance
(§2). We then make a case for and present a design (§3)
and implementation (§4) of a new communication-collective
system, OPTIREDUCE, and evaluate how it exploits DDL’s
resiliency against gradient loss to improve performance (§5).

2 Background & Motivation

2.1 Distributed Deep Learning & Stragglers

Distributed deep learning (DDL) helps scale (and speedup)
model training by utilizing an increasing number of hardware

as well (e.g., NCCL [87] or MSCCL [24]).
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Figure 2: Architectures for gradient aggregation: Param-
eter Server (PS) and AllReduce (AR).

accelerators, e.g., GPUs [141] and TPUs [90], across server
nodes [39, 55, 116]. To do so, it employs two approaches: (i)
distributed data parallelism (DDP) [175] to run batches® on
multiple accelerators in parallel, and (ii) distributed model
parallelism (DMP) [91] to deploy larger models that fail to fit
on a single accelerator. These approaches are orthogonal and
can be used in conjunction. We focus on DDP in this paper to
highlight our contributions (§3).

In distributed data parallelism (DDP), multiple worker
nodes run the same deep-learning model on their portion of
a training dataset, distributed evenly across nodes. Each por-
tion is further subdivided into batches, which are processed
sequentially (i.e., forward pass, loss function, and backward
pass) in each epoch, Figure 1. During the forward pass, the
model (e.g., a neural network) operates on a batch and gen-
erates a prediction, which is then compared with the ground
truth (e.g., label) to calculate the model’s loss. Next, the back-
ward pass computes gradients using a loss function, which
is used by an optimization algorithm (e.g., Stochastic Gradi-
ent Descent, SGD [52,94]) to update the model parameters.
Finally, to ensure all workers learn from what others have
learned from their portion of the dataset, these gradients are
averaged (reduced) and shared across all nodes, after each
backward pass.

The process of accumulating, reducing, and sharing gradi-
ents back with worker nodes is referred to as gradient aggrega-
tion (or reduction) [62]. Originally, reduction used to happen
strictly after the backward pass; however, more recently, to
hide communication latency, modern frameworks (like Py-
Torch [106]) overlap it with the backward pass (Figure 1).
As soon as a bucket (B) worth of gradient entries becomes
available on a node, it is sent for reduction.”

Two common architectures for gradient aggregation are:
Parameter Server (PS) [105] and AllReduce (AR) [59]. In
the PS architecture (Figure 2a), a central server (or group
of servers) receives (gathers) gradients from participating
workers, aggregates (reduces) them, and broadcasts them back
to all nodes. In AR (Figure 2b), instead of having separate
servers, we distribute the aggregation task across workers,
each reducing a subset of gradients and distributing them
among themselves (e.g., Ring [121]). Both these architectures
have their pros and cons. PS operates well in environments

3A batch is a set of training data used in a given forward/backward pass.
4PyTorch limits these simultaneous reduction operations to two [106].
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Figure 3: The latency ECDF (in milliseconds) showing
tail-to-median ratio (Pgg/s50) observed across leading Al
cloud platforms.

with less powerful worker machines but is bandwidth hungry—
increasing linearly with the number of worker nodes. AR,
especially Ring, is bandwidth-optimal but leads to longer
execution delays that inflate with the number of worker nodes.

Impact of Stragglers on Performance. As shown in Fig-
ure 1, during each backward pass, all DDP worker nodes wait
for the gradient aggregation (GA) operations to complete be-
fore processing the next batch of data. The forward and back-
ward passes computation mostly takes place on a machine-
learning (ML) accelerator (e.g., GPU or TPU)—a highly par-
allel and pipelined architecture with predictable and bounded
execution time [69, 156]. Therefore, it is typically the GA op-
erations that lead to long tails and GPU stalls (taking as much
as 50% of the overall DDP processing time) [136, 137]. Our
measurements across major Al cloud platforms—including
AWS EC2 [3], Hyperstack [17], CloudLab [8], and RunPod
Al [34]—quantify network tail latencies in a distributed train-
ing environment. Using the Gloo benchmark [12] with 2K
gradients on eight nodes, we observe tail-to-median (Pog,50)
latency ratios reaching up to 3.2 x (Figure 3).

Various factors can contribute to this slowdown in gradi-
ent aggregation, including slow workers, transmission delays,
incast effects, packet loss and retransmissions, network con-
gestion, and more. For example, even in the PS architecture,
each node sends a complete set of gradients to the parameter
server, which can result in excessive drops and retransmis-
sions, due to high incast at the ToR switch [104, 172]—hence,
increasing the time to process gradients. Similarly, in Ring,
a single slow worker (or a buggy link) can cause significant
delays, because all nodes participate in the aggregation opera-
tion in the form of a ring.

2.2 Straggler Mitigation & Gradient Loss

Mitigating stragglers in distributed systems (as well as dis-
tributed deep learning) is an active area of research [48, 54,
60,61,81,92,132, 145,158, 164]. One direction focuses on
treating stragglers as black boxes and employs schemes, such
as redundant task execution [73, 159] or skipping slow work-
ers [57,67,164], to mitigate the delays due to network conges-
tion or heterogeneous hardware, for example. They either em-
ploy backup workers and select the output of the fastest ones,
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Figure 4: The OPTIREDUCE design: Transpose AllReduce
with colocated parameter servers, Unreliable Bounded
Transport, and Hadamard Transform.

or simply skip the slow workers altogether. However, the for-
mer can significantly increase the operational expense (in dol-
lars). For example, training a GPT-3 model consisting of 175
billion parameters over 355 GPU-years (on a V100) [5, 53]
can cost an additional $1 Million ($5.6 Million total) on the
AWS instance, p3.16xlarge, [27] with only 16% backup
nodes (i.e., 2 backups for every 10 worker nodes). This cost
can further inflate by about 10x when using more powerful
GPUs (e.g., A100 and H100) [6, 7], higher link speeds (e.g.,
40/100 Gbps), and RDMA-enabled NICs [4]. Whereas ignor-
ing worker nodes entirely, in the latter case, can lead to slower
convergence rates and poor accuracies [57, 164]. The other
direction is to replace commodity servers with specialized
hardware (e.g., powerful machines with predictable perfor-
mance [163, 174]) and dedicated (lossless) communication
fabric [47,95,123]. Despite their success in HPC-like environ-
ments [117,120, 122, 162], these solutions are not applicable
in a cloud environment with myriads of tenants, all sharing
the resources of the underlying data centers.

Instead of treating them as black boxes or specialized de-
vices, we argue to replace the (tail-prone) deterministic, run-
to-completion workers with their best-effort, time-bounded
implementations. The idea is to restrict the processing time
of a slow worker and utilize its partial output (gradients) in
the next training phase, rather than skipping it entirely.

Resilience to Gradient Loss vs. Performance and Accu-
racy. Unlike traditional distributed systems (e.g., file shar-
ing and web serving), the stochastic nature of distributed

deep-learning systems provides an interesting trade-off be-
tween gradient loss (approximation or drops), performance,
and accuracy. These systems (based on SGD-based optimiza-
tion) [52] are shown to be resilient against estimation inaccu-
racies in stochastic gradients under different settings [79,153].
For example, various gradient sparsification [68,131,154] and
quantization [44, 109, 155] schemes employ this fact to re-
duce network traffic overhead. ATP [99] and SwitchML [136]
utilize fixed-point arithmetic to execute gradient aggregation
in programmable switches with acceptable approximation
loss. Hardware designers incorporate approximate operations
(e.g., approx. multipliers [134, 171]) to minimize chip area
and energy usage. More recently, MLT [153] demonstrated
that these deep-learning models (e.g., CNNs and LMs) are
also resilient to a certain degree of gradient drops—sustaining
high accuracy up to 1% of gradient loss. Additionally, the
impact of gradient loss further diminishes as the number of
worker nodes increases [168].

3 Design of OPTIREDUCE

We present OPTIREDUCE, a robust AllReduce communica-
tion collective system optimized to mitigate tail-latency by
exploiting the unique characteristics of distributed-deep learn-
ing (DDL)—i.e., resiliency to gradient loss—to quickly reach
the convergence accuracies of traditional architectures (e.g.,
PS and Ring) while mitigating the impact of stragglers and
network variabilities.

Overview. Figure 4 shows the various components of OP-
TIREDUCE. Transpose AllReduce (TAR) (§3.1) implements
a peer-to-peer collective-communication fabric, where each
node also serves as a parameter server (PS)—a colocated PS
architecture [68, 88]. Unreliable Bounded Transport (UBT)
(§3.2) allows these nodes to connect with each other in a
best-effort but controlled manner, and bounds the time spent
by the two send(bcast)/receive stages during the AllReduce
phase. The PS nodes encode (and decode) gradients in the
input bucket (B), using Hadamard Transform (HT) (§3.3) to
disperse the effect of gradient loss, before creating shards
(S;;) of gradients to be sent to other nodes for reduction. They
iteratively rotate shard responsibility among themselves by
maintaining a global index (r). Finally, OPTIREDUCE em-
ploys mechanisms (i.e., snapshots and selective skipping) to
protect against excessive gradient loss due to transient errors
or failures (§3.4); these safeguards ensure robustness and
help maintain accuracy under unstable conditions. All these
components operate in tandem to optimize for three compet-
ing objectives in OPTIREDUCE: maximizing performance,
minimizing gradient drops, and sustaining accuracy.

3.1 Transpose AllReduce (TAR)

We begin with Transpose AllReduce (TAR), which imple-
ments a hierarchical peer-to-peer gradient-sharing strategy to
limit the impact of lost gradient entries when applying the
other design optimizations, discussed later. TAR operates by
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Figure 5: A comparison of Ring versus OPTIREDUCE.

having each node send its gradient entries directly to all other
nodes during an AllReduce phase for aggregation; hence, a
lost entry would only impact the aggregated results of a given
node-pair in that phase. Whereas, in Ring [121], the impact
is accumulated and propagated through a ring until it reaches
the intended destination nodes. For instance, in our micro-
benchmarks (§5.3), the Mean Squared Error (MSE) between
the expected gradients and those of Ring in the presence of
loss is 6x that of TAR.

3.1.1 TAR Algorithm: A Colocated PS-inspired Collec-
tive. TAR combines the key features of traditional AllReduce
(i.e., P2P communication) [59,102] and Ring (i.e., minimizing
bandwidth using shards and avoiding incast via rounds) [121].

In TAR, each node acts as a worker as well as a param-
eter server (PS), connected together over a P2P collective-
communication fabric (Figure 4). The i'" PS node (PS;) re-
ceives a bucket of gradient entries (AB) as input from the
worker process (W;) and divides it into N shards (Sj..n—1]),

equal to the number of nodes. Keeping the r* shard it is
responsible for aggregating (S;,), the node PS; sends the re-
maining shards (S;i1o..n—1}-,) to the neighboring nodes. At
the same time, PS; waits for its shards (Sjjo..y—1}-,) and
aggregates (i.e., averages) them with S;, into a single shard S,.
Next, PS; broadcasts S, to all nodes and receives the aggre-
gated shards from them, Sigo._n—1}—,]- Finally, these shards
are concatenated into a bucket (B) and forwarded to the worker
(W;) to process the next batch of data. When r = i, the whole
operation appears like a row-wise sum of the transpose of
the shard matrix S, as shown in Figure 6; hence, the name
Transpose AllReduce.

In P2P, each PS node communicates directly with the other
nodes (instead of forming a ring). When sharing gradients,
they all interact with each other twice: once sending/receiv-
ing shards to the other node and then broadcasting/receiving
aggregated shards, hence limiting the impact of accumulated

Send/Receive

PSo | r=0 Swo Soi Sz Sus Sw S Sxn S

r=1 Sw Sun S Ss - So Su Sau Si
r=2 Sx Sa S» S» Sz Sz S Sa
r=3 Sx Sy Su Sx S Sz Sz S3;

So= Sw *+ Sio + Sy + Sxu S 8§ S S
§$:= St + S + Sy + Sy - S S S S
$;= S + S+ 5, + S5, S S0 S, S
S:= Sz + Sz + S5 + Sy S S S S
Aggregate Bcast/Receive

Figure 6: Transpose AllReduce algorithm: PS nodes
send/receive shards S;;, aggregate them, and bcast/receive
to other nodes (all acquiring the same copy).

gradient loss. Sharding also alleviates the load on the PS
nodes, where each node only aggregates a bucket (B) worth
of gradients (rather than N x B).” Moreover, TAR utilizes the
same bandwidth as Ring by sending B * (N — 1) bytes over
the network during the two send(bcast)/receive stages. Lastly,
to mitigate incast, TAR splits the communication between PS
nodes over multiple rounds, where—unlike Ring with fixed
node-pairs (Figure 5a)—nodes communicate with each other
using a round-robin strategy, ensuring a given node-pair never
repeats across rounds (Figure 5b).

3.1.2 Hierarchical 2D TAR: Scaling to Larger Node Clus-
ters. TAR scales efficiently using a hierarchical design similar
to the 2D Ring [22, 147]. By grouping nodes, it first performs
intra-group communication, in parallel, to locally aggregate
gradients, followed by inter-group communication for global
aggregation. Doing so reduces the number of rounds from
2(N —1) in traditional TAR to 2(N/G — 1) + (G — 1), where

SPyTorch and TesnorFlow typically use a bucket size of 25 MB [106,133].
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N is the total number of nodes and G is the number of groups.
For example, with N = 64 and G = 16, traditional TAR re-
quires an order of magnitude more rounds than 2D TAR—126
compared to just 21. We provide more details in Appendix A.

Summary: TAR functions similarly to Ring, yet it reduces
the impact of lost gradients by establishing P2P communica-
tion among all nodes in each round, avoiding the propagation
of losses via aggregation through intermediate nodes.

3.2 Unreliable Bounded Transport (UBT)

One of the primary causes affecting tail latency in DDL
is the variability in the network behavior due to conges-
tion [61, 153]. Current transport protocols (like TCP) further
exacerbate these effects by demanding reliable, in-order deliv-
ery of packets (gradients) between training nodes—if packets
are dropped or received out-of-order, TCP will stall until all
gradients are received over the affected path.

However, simply replacing TCP with message-based pro-
tocols (like UDP) would not work. While UDP is faster, as it
avoids packet retransmission and reordering, it lacks conges-
tion control, which can lead to network congestion collapse.
Moreover, UDP sends data at full link speed (e.g., 100 Gbps),
causing excessive drops (loss of gradients) beyond what DDL
models can tolerate.

To address this, we enhance UDP with adaptive timeouts,
dynamic incast, and minimal rate control to create a new
Unreliable Bounded Transport (UBT) protocol, which lim-
its computation and communication time while maximizing
gradient delivery in each round. It adds a new 9-byte header,
OptiReduce (Figure 7), to commit arriving packets (with gra-
dients) to the right bucket and offset using the header fields,
Bucket ID and Byte Offset, respectively. These fields en-
sure that gradients reach the correct bucket, irrespective of
the ordering of the incoming packets when multiple GA oper-
ations are running in parallel (Figure 1).

3.2.1 Adaptive Timeout. @ UBT implements adaptive
timeouts to bound the tail communication time of the
send(bcast)/receive stages of the GA operations to 7z (Fig-
ure 5b). By restricting the time to 75, we can control the worst-
case execution of these stages—allowing GA operations to
finish within a bounded time.

However, there are a couple of challenges with this ap-
proach. (1) How to select the value of #5? Too small will lead
to undue loss, and too high will cause unnecessary delays.
Moreover, the value will vary with environmental settings
(e.g., GPU type, CPU clock, vCPUs, and interface speed) and
parameters (e.g., no. of nodes, bucket sizes, and incast). (2)
A single lost packet, which is likely in UBT, would cause the

t t
Time — ‘\‘q Y 3
ontime |[ s H s J{ s 1 S ] ~__
Timed out | | S s H s | H sl
. (5] ¢
Lasttple | (ST HTS - Mg g |

wait %tc[—1]

Figure 8: Different timeout strategies in OPTIREDUCE.

GA operation to always take tg (worst-case) time to finish.
TCP, on the other hand, can perform better in some instances
where communication may finish faster than waiting for the
full timeout (7g), even with retransmissions.

Selecting the Timeout Value (#3). As shown in Figure 1,
during backpropagation, multiple GA operations execute in
parallel on buckets of varying sizes. For selecting 75, during
the initialization phase, we run GA with TAR and TCP, using
the largest bucket, for a couple of iterations to collect comple-
tion times for both send(bcast)/receive stages. PS nodes share
these values with each other using the Timeout field in the
OPTIREDUCE header (Figure 7).

We then form a list of these times and set ¢z to the 95th %ile
of that list. In §5, we show that using 20 iterations and the
95th %ile value allows OPTIREDUCE to sustain full model
accuracies while finishing up to 2x faster.

Progressing Quickly via Early Timeout. To avoid ap-
proaching tp every time a loss happens, we introduce an early
timeout scheme, which causes GA’s receive stages to expire
whenever there are no remaining gradient entries to read (i.e.,
the buffer is empty). For each bucket, we track a moving av-
erage (fc) of completion times; we keep separate averages for
both the receive stages in GA (Figure 5). The sender PS node
tags the last 99th %ile packets by setting the Last%ile field
in the header. When the buffer is empty, the receiver node
checks if some of the last %ile packets have been received
from all nodes. If so, it waits for an x% of ¢c time before
expiring (Figure 8).

The value of x% is dynamically adjusted based on the per-
centage of gradient entries dropped from the previous round.
Starting at 10%, the goal is to maintain gradient losses be-
tween 0.01% and 0.1%. If losses exceed this range, x% is
doubled until they return within the limit. If losses drop below
0.01%, x% is decreased by 1 until the desired range is reached.
(The maximum x% is capped at 50%.) If gradient losses ex-
ceed 2% at any point, we activate Hadamard Transform (§3.3)
to mitigate the effects of dropped gradients on convergence
accuracy. °

We calculate #¢ in the following steps. First, we compute
the (expected) completion time of a given receive stage: (1) if
on time, then we set ¢ to the current time spent, (2) if timed
out, then 7¢ = tg, and (3) if last %ile received, then ¢ is set to
the expected time needed to receive all data (e.g., fc = current
time spent X total / received data). Next, we pick the median

5The 2% threshold is set based on prior work [153] and our evalua-
tions §5.3.
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Figure 9: Dispersing the effect of lost gradients (e.g., due
to tail drops) using Hadamard Transform (HT).

tc from the values computed by the N PS nodes (shared over
the Timeout field in the header). Finally, we calculate the
moving average: fc = 0xfc + (1 — ) xtc[—1].

3.2.2 Dynamic Incast. UBT further introduces a notion of
dynamic incast (Figure 5b). The TAR’s P2P communication
model lets OPTIREDUCE alter the number of senders (/) a
PS node can receive gradients from in a given round. For
example, setting I = 1 (a single sender) would cause TAR to
take the same number of rounds as Ring, 2(N — 1); however,
increasing I = 2 would quickly reduce these rounds by about
half, 2[ (N —1)/2]; and so on.

The incast parameter (/) can be configured either statically
at boot time, based on the available network and node capacity
(e.g., modern datacenters can handle hundreds of thousands
of incast packets without degrading performance [80,115]), or
dynamically adjusted based on runtime metrics (like through-
put, latency, or loss rate). In UBT, receivers dynamically mod-
ify the incast factor in response to current loss and timeout
events. If the loss rate increases, the factor is reduced to al-
leviate congestion; conversely, if the loss rate remains low
(indicating timely packet reception with no timeouts), the in-
cast factor is increased. Receivers communicate their incast
factor, I, by updating the Incast field in the OPTIREDUCE
header (Figure 7), and the sender then selects the smallest
reported value of / for that round.

3.2.3 Minimal Rate Control. Since OPTIREDUCE is re-
silient to loss, we only require a minimal scheme for rate
control to prevent congestion collapse. For that, UBT em-
ploys a basic TIMELY-like rate-control mechanism [114],
where the sender adjusts flow rates based on RTT feedback
derived from timestamps returned by the receiver at regular
intervals (every 10th packet) over a separate control channel.
If the RTT (or its gradient) is below Tj,,,, the sender increases
the rate by o, and if the RTT exceeds T}, the rate is re-
duced by (1 —B- (1 — Tjign/RTT)). In our experiments, we
set Tjoy = 25us, Thigh = 250us, o = 50 Mbps, and = 0.5,
when running in a shared environment [114, 153].

Summary: UBT, in conjunction with TAR, improves tail la-
tency by minimizing the impact of network congestion; adap-
tive timeouts bound the latency of the send(bcast)/receive
stages, while dynamic incast reduces the number of commu-
nication rounds.

3.3 Dispersing Gradient Loss

Finally, to make OPTIREDUCE resilient against drop pat-
terns (e.g., tail drop) in the network, we employ randomized
Hadamard Transform (HT) [144, 148, 149], which spreads the
effect of a dropped gradient over the entire bucket. For exam-
ple, in Figure 9, HT encodes a bucket (AB) and sends it over
the network. Upon reception, the last gradient (in red) was
lost; however, HT preserves the lost information by slightly
perturbing the values of other gradients in the decoded bucket
(B). The Mean Squared Error (MSE) between the decoded
and received (without HT) bucket, compared to the origi-
nal one, is 0.01 and 2.53, respectively. That is why, when
combined with rotating shard responsibility between nodes
(Figure 4), HT lets OPTIREDUCE be more aggressive with
the timeout value () while still reaching high model conver-
gence accuracies (§5).

Summary: HT, together with TAR+UBT, limits the effect of
dropped gradients by spreading it across the entire bucket,
thus preserving the lost information. Additionally, it allows
OPTIREDUCE to operate faster, with stringent ¢p values, with-
out affecting convergence accuracies (§5).

3.4 Safeguards against Excessive Loss

OPTIREDUCE continuously monitors gradient loss during
each AllReduce phase, and if the loss exceeds a predefined
threshold, it can either skip the gradient update for that round
or automatically halt the training, prompting user interven-
tion. Skipping an update helps minimize potential harm to
the overall training process by discarding transient high-loss
updates without impacting long-term model accuracy or com-
pletion time. This mechanism helps prevent major disrup-
tions in the training process, ensuring users are notified of
any accuracy concerns and can make necessary adjustments.
Similar techniques are routinely integrated into modern deep-
learning pipelines to monitor, track, and recover model accu-
racy [1,2,32,119].

4 Implementation

We develop OPTIREDUCE as a new collective-
communication scheme inside the Gloo library (v0.5.0) [13]
and integrate it with PyTorch Distributed (v1.12) [106],
a widely used deep-learning framework—allowing OP-
TIREDUCE to work without modification with a large
body of deep-learning models (e.g., CNNs [82, 98, 138],
RNNs [56, 85, 113], and Transformers [53, 63, 150]). We
pick Gloo due to its simpler design and our familiarity with
the codebase; however, we expect OPTIREDUCE will yield
similar benefits when operating with other popular libraries
(e.g., NCCL [87] or MSCCL [24]).

We extend the C++ implementation of Gloo to support our
Transpose AllReduce (TAR) collective and provide support
for both reliable transport (over TCP) and our best-effort trans-
port (over UBT). We prototype UBT as a userspace transport
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layered on UDP, including rate control, using Nvidia DPDK
API (v20.11) [11].

We further add support for communication hiding in Op-
TIREDUCE, i.e., running two AllReduce operations in parallel
with backpropagation.’ The sender maintains separate layer-3
port numbers to tag gradients for the two parallel AllReduce
operations. On the receive side, two PMD threads poll in-
coming traffic (gradients) in their local receive queues. An
Nvidia Connectx-6 NIC routes traffic to the respective queues
based on the port numbers; we install rules in the NIC using
DPDK’s rte_flow API [10]. We also install rules to route
non-OPTIREDUCE traffic to the kernel using DPDK’s Flow
Bifurcation mechanism [9].% Doing so ensures that Gloo’s
kernel stack remains unaffected and other network operations,
e.g., rendezvous in PyTorch DDP [106], continue uninter-
rupted.

To include support for adaptive timeouts, we use C++
STL library’s wait_for () function [89], which is a block-
ing call that returns either when a given condition is met
(such as received all gradients) or a timeout occurs. For
the timeout, we pair the wait_for () function with Chrono
library’s high_resolution_clock () [89] to operate at
nanosecond clock granularity. For Hadamard Transform, we
apply a widely-used C++/CUDA implementation by HazyRe-
search [15], which uses GPUs to perform this operation. We
use PyTorch DDP’s communication hook [31] to register
Hadamard’s encode/decode callbacks for processing gradient
buckets before and after reduction, respectively.

5 Evaluation

In this section, we provide an end-to-end comparison of
OPTIREDUCE with state-of-the-art solutions (§5.2), and mi-
crobenchmark the utility of its design components (§5.3).

5.1 Experimental Setup

5.1.1 Test Environments. We evaluate OPTIREDUCE in
both our local virtualized cluster and a real-world environment
using CloudLab [66].

a) Local Virtualized Cluster. Our local testbed is a collec-
tion of four servers configured as a virtualized cluster [30].
Each machine has a 32-core AMD EPYC 7542 CPU @
2.90 GHz, 512 GB RAM, two Nvidia Tesla V100 GPUs, and

This is consistent with existing parallelism approaches that allow for
two concurrent AllReduce operations (e.g., PyTorch [106]).

8Flow Bifurcation is a mechanism that lets hardware-capable NICs for-
ward traffic directly to the userspace (DPDK thread) or the Linux kernel.

a ConnectX-5 dual-port NIC. In total, there are eight V100
GPUs, one per VM in the cluster. The VMs communicate
over the network using a dedicated NIC port with Nvidia’s
OFED device drivers (v24.04). Both GPU and NIC interfaces
are exposed to the VMs via Intel’s VT-d PCle passthrough
technology [41]—allowing direct (dedicated) access to the
physical functions. A programmable switch (Tofinol [18])
connects the servers and VMs over a 25 Gbps network. Addi-
tionally, it facilitates in-network aggregation for SwitchML
benchmarks (§5.3).

Recent studies from Microsoft [137], Amazon [91], and
Google [61, 62] show that the tail-to-median ratio (Pog,50)
for distributed workloads, including deep-learning training,
ranges from 1.5x to 4 x in large cloud data centers [40, 61,
106].° To emulate these environments and their tail charac-
teristics in our testbed, we follow the approach of previous
studies [42,45,46,151,165] by running background workloads
on random nodes and links. Varying the number of concurrent
workloads allows us to adjust the tail-to-median latency ratio
within the network. We validate the fidelity of our scheme
using the Gloo benchmark utility [12] with 2K gradients. As
shown in Figure 10, our method accurately preserves the ex-
pected latency distributions, maintaining the Pyg 5o = 1.5,3
ratios.

b) Public Cloud: CloudLab. We configured our real environ-
ment on CloudLab [66], a public research cloud widely shared
by researchers and academics for computing and distributed
systems experimentation. We provisioned eight d7525 in-
stances [8], each equipped with an Nvidia Ampere A30 GPU
and a ConnectX-6 DX dual-port NIC, all connected via a
10 Gbps network.

5.1.2 Baselines, Workloads, and Parameter Settings. We
evaluate OPTIREDUCE against the following baseline sys-
tems: Gloo (Ring [121] and BCube [76]), NCCL (Ring [121]
and Tree [22]) with TCP, as well as a reliable version of our
Transpose AllReduce (TAR) with TCP (TAR+TCP). Addi-
tionally, we evaluate BytePS and three popular compression
algorithms: Top-K [142], TernGrad [155], and THC [103]. To
provide further insights, we also microbenchmark OPTIRE-
DUCE against in-network systems such as SwitchML [136],
despite their reliance on switch-level access within the
provider’s network, which makes them inapplicable for cloud
environments.

We train a variety of language models (LMs), including
BERT-base/large [63] and RoBERTa-base/large [111] on the
SQuAD 2.0 dataset [129], as well as BART-base/large [101]
and OpenAl GPT-2-base/large [126] on the GLUE bench-
mark [152] for the SST2 (Stanford Sentiment Treebank)
task [139]. We further evaluate OPTIREDUCE on additional
models and tasks, which we discuss in Appendix B and C.
Specifically, we train the Llama-3.2 1B model [65] on three

9Even CloudLab, a relatively small-scale cloud compared to commercial
ones, exhibits a Pog 59 ratio of around 1.45.
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Figure 12: Training throughput comparison for large language models (LLMs) with eight worker nodes.

standard downstream tasks: SQuAD (extractive question an-
swering) [129], ARC (science reasoning) [58], and MATH
(symbolic mathematics) [83] (Appendix B). Additionally,
we evaluate and microbenchmark OPTIREDUCE on network-
intensive models (VGG-16/19) [138] using the CIFAR-
100 dataset [97] and compute-intensive models (ResNet-
50/101/152) [82] with the ImageNet dataset [135] (Ap-
pendix C).

We compute the OPTIREDUCE'’s timeout value (75) for each
model using 20 iterations; we set & = 0.95 when calculating
the moving average (f¢). We use the incast parameter of / = 1,
unless stated otherwise.

5.2 End-to-End Evaluation

We conduct end-to-end evaluations in two environments:
(1) our local virtualized cluster, with tail-to-median ratios
Pyg/s0 = 1.5 (low variability) and 3 (high variability), and
(2) a real public cloud, CloudLab. We compare OPTIRE-
DUCE against the baseline systems Gloo (Ring and BCube),
NCCL (Ring and Tree), and TAR+TCP; and measure time-
to-accuracy (TTA), throughput, gradient drop percentage (in
bytes), and the achieved training accuracy.

Our results show that OPTIREDUCE consistently outper-
forms the baselines. On our local cluster, we observe time-to-
accuracy (TTA) reductions of up to (82%, 98%) compared
to Gloo (Ring, BCube), and (44%, 25%) compared to NCCL
(Ring, Tree), respectively. These improvements extend to
CloudLab, where we see average TTA reductions of up to
(47%, 67%) over Gloo (Ring, BCube), and (18%, 32%) over
NCCL (Ring, Tree). Furthermore, OPTIREDUCE achieves the
same convergence accuracy as the baselines while limiting
gradient entry losses to less than 0.1% of the total traffic.

e TTA and Throughput. Figure 11 illustrates how TTA
for the five baselines and OPTIREDUCE varies under differ-
ent environments—Local cluster (Pyg/50 = 1.5 and 3) and
CloudLab—for the OpenAl GPT-2 model. Across all runs,
OPTIREDUCE maintains a lower TTA from the onset.'” For
example, on our local cluster with Pog /5o = 1.5 (Figure 11a),
OPTIREDUCE converges in 96 minutes, while NCCL Tree
takes 105 minutes, and the next best, NCCL Ring, taking 118
minutes. With Pog /50 = 3, the TTA differences become more
pronounced (Figure | 1b). OPTIREDUCE remains unaffected
by the increased variability, maintaining its lead in TTA with
a 98% accuracy and finishing in about 97 minutes. In contrast,
the baselines experience significant slowdowns, with their
TTA inflating by 1.41-2.18 x compared to OPTIREDUCE.

We see the same trend on CloudLab (Figure 11c), Op-
TIREDUCE reaches the convergence accuracy in 60 minutes,
whereas it is 71 minutes for NCCL Ring. Other baselines con-
tinue to trail behind OPTIREDUCE, with NCCL Tree having
the next-best TTA of 79 minutes.

We observe similar speedups for OPTIREDUCE when train-
ing other models, including BERT-large, RoBERTa-large,
BART-large, and GPT-2-large (Figure 12).

e Gradient Drops and Convergence Time. We further eval-
uate the drops in gradient entries and their impact on conver-
gence time (Table 1). In our local cluster with Pyg /50 = 1.5, a
small percentage of gradient entries is lost (i.e., 0.07%) due
to OPTIREDUCE’s adaptive timeouts in UBT, causing the
system to progress without waiting on stragglers. These time-
outs manifest as dropped gradients in OPTIREDUCE; whereas

10We observe that under ideal conditions, with Pyg /50 = 1 (no variability),
all systems perform similarly (not shown).
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. Gloo NCCL . Dropped Gradients
Test Environment Ring { BCube | Ring { Tree TAR+TCP ‘ OPTIREDUCE: (%Entries)
Local Cluster: Pog /50 = 1.5 | 154 172 118 105 148 96 0.07
Local Cluster: Pyg /50 =3.0 | 186 210 159 135 166 97 0.18
CloudLab | 88 100 | 71 79 | 90 | 60 0.05

Table 1: Comparing the end-to-end convergence time (in minutes) of baseline systems vs. OPTIREDUCE for OpenAl
GPT-2 (total gradients, 40 TB). TAR+UDP suffers excessive drops, losing up to 30% of gradients, and fails to converge.

baseline systems stall on these stragglers. Still, OPTIREDUCE
achieves the same convergence accuracy (98% for GPT-2)
as the baselines but in under 96 minutes, compared to 105
minutes for the next best, NCCL Tree. When Py /5 increases
to 3, increased congestion in the network and stragglers cause
more gradient entries to be lost, but only slightly (0.18%),
and does not impact OPTIREDUCE’s training accuracy and
convergence time, whereas it inflates NCCL Tree’s time to
135 minutes.

Similarly, in CloudLab, OPTIREDUCE sees a 0.05% drop
in gradient entries, which allows it to reach the convergence
accuracy in 60 minutes, compared to its next best, NCCL
Ring, taking 18% longer.

5.3 Microbenchmarks

We now evaluate the effectiveness of the individual design
components in OPTIREDUCE. We run the VGG-19 model
on the CIFAR-100 dataset for these measurements using our
local cluster.

e OPTIREDUCE’s TAR topology leads to minimum
dropped gradients when using a best-effort transport. We
compare the number of gradients lost across different AllRe-
duce topologies using our Unreliable Bounded Transport
(UBT). We measure Mean Squared Error (MSE) to gauge the
difference between the original gradients and those received
over these topologies for three different schemes on our local
cluster with Pyg/50 = 1.5: Ring topology in Ring-AllReduce,
P2P in PS, and P2P with rounds in TAR, using a 500 M ten-
sor. Ring-AllReduce has the worst MSE (14.55)—an order
of magnitude greater than TAR (2.47). The presence of fixed
node pairs in Ring-AllReduce (§3.1) propagates losses, result-
ing in a higher deviation from the original gradients. PS also
has a high MSE (9.92) due to excessive incast when all nodes
send gradients to the parameter server (PS) simultaneously. In
contrast, TAR avoids this by distributing P2P communication
over multiple rounds.

o UBT’s dynamic incast improves OPTIREDUCE’s latency
without overloading the receiver nodes. We measure the
effects of UBT’s dynamic incast feature on OPTIREDUCE’s
training latency. Figure 13 compares two configurations: one
where we fix I = 1, and the other with dynamically managed
incast. The results show that OPTIREDUCE’s senders can
leverage buffer occupancy at receivers to increase I, thus re-
ducing average latency by about 21% compared to always

1200

— ﬁ%‘\

g | T
N 900 21% reduction in
2 600 average latency
g

— 300

I=1 I= Dynamic
Figure 13: Latency distribution of OPTIREDUCE with
static (/ = 1) vs. dynamic incast feature in UBT, using a
synthetic 500 M-gradient AllReduce workload.

sending to a single receiver. This ability to dynamically con-
trol the incast parameter (/) allows OPTIREDUCE to adapt
itself based on the capacity of the receivers’ resources, which
is not the case with PS (all workers send to parameter server)
or Ring-AllReduce (a receiver interacts with a single sender).

e OPTIREDUCE’s early timeout strategy enables faster
progress towards TTA. We evaluate the effectiveness of the
early timeout strategy (f¢) in OPTIREDUCE. We disable #¢ and
only keep the timeout value 73 and measure its effect on train-
ing accuracy, time, and dropped gradients. We find that when
training VGG-19 with Pyg /5o = 1.5, OPTIREDUCE takes 130
minutes to reach convergence accuracy in 200 epochs while
incurring 0.02% of gradient drops. Enabling early timeout
brings this training time down by about 16% (to 112 minutes)
with a similar drop rate (0.02%). By adapting #c, OPTIRE-
DUCE sustains the same drop rate and finishes quickly, rather
than waiting for the higher ¢p value each time. We notice that
with early timeout enabled, OPTIREDUCE triggers tc 95%
more often than #g; hence, resulting in faster TTAs.

e OPTIREDUCE’s Hadamard Transform (HT) allows it
to reach convergence accuracies even under higher per-
centages of dropped gradients. Figure 14 shows the train-
ing accuracy of VGG-19 model with and without Hadamard
enabled. When considering TTA, we see that Hadamard in-
troduces some computational overhead when operating with
only 1% of dropped gradient entries (Figure 14a). It takes
Hadamard more time to reach convergence accuracies (around
97 minutes) compared to when it is disabled (90 minutes).
However, as drops increase (5% or more), it starts to outper-
form the non-Hadamard instance with much faster TTAs (Fig-
ure 14b,c). Looking closely, we notice that across all dropped
percentages, Hadamard is able to sustain the same TTA (=~ 97
minutes)—showing its resilience to drops. In contrast, the
non-Hadamard case quickly degrades and fails to achieve
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Figure 15: OPTIREDUCE speedup over baseline systems
(TAR+TCP, Ring, BCube) with increasing #workers using
a synthetic 500 M-gradient AllReduce workload.

convergence accuracy even under 10% drops. The percentage
drops include both drops incurred due to network variabilities
(e.g., congestion and retransmissions) and gradients that a
slow worker could not send due to timeouts.

e OPTIREDUCE scales with increasing number of worker
nodes, consistently maintaining high speedups. To demon-
strate OPTIREDUCE’s performance at scale, we first run tests

using CPU-based worker nodes on our local cluster. We com-
pare OPTIREDUCE with TAR+TCP and Gloo (Ring and
BCube) on a synthetic AllReduce workload, aggregating

500 M gradient entries across 6-24 nodes (Figure 15a, c).'!

Next, we conduct simulations with larger clusters (72 and 144
nodes), similar in sizes to prior works [43, 100, 107, 153]—
using latencies sampled from the local cluster and scaled for
higher node counts (Figure 15b, d). Across all tests, OPTIRE-
DUCE consistently delivers high speedups, achieving 2x im-
provements over Ring and BCube in high-tail environments,
P99/50 =3 (Figure 15¢c, d)

e Unlike OPTIREDUCE, lossy/compression schemes are
vulnerable to tail effects in shared environments. Though
OPTIREDUCE is orthogonal to sparsification and quantization
techniques, our comparison (Figure 16) shows that lossy/com-
pression schemes (e.g., Top-K, TernGrad, and THC) fail to
effectively address tail effects. While these schemes reduce
the volume of gradient entries shared, they rely on a static
evaluation of how much data to compress (or drop) a priori
before transmission. In contrast, OPTIREDUCE handles loss

1we exclude NCCL from this comparison as it relies on GPUs.
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Figure 16: OPTIREDUCE comparison with lossy/compres-
sion schemes (BytePS, Top-K, TernGrad, & THC), show-
ing TTA and their convergence accuracy.

in real-time, dynamically adapting to network conditions and
minimizing tail latency. For instance, THC matches OPTIRE-
DUCE in convergence accuracy but takes 4% and 18% longer
to complete under Pyg/so = 1.5 and 3, respectively. Other
schemes perform even worse, either requiring 2x more time
to converge or stalling at lower accuracies due to their lossy
compression, failing to improve end-to-end TTA even with
additional training epochs [103, 153].

o In-network aggregation (INA) approaches struggle with
tail effects, while OPTIREDUCE remains unaffected. In-
network aggregation (INA) methods, such as SwitchML [136],
reduce network latency through hardware-accelerated aggre-
gation within the network. However, they remain vulnerable
to tail effects—significantly inflating their completion times
as the tail-to-median ratio increases. For instance, in a low-tail
environment (Pog /50 = 1.5), SwitchML performs 52% faster
than OPTIREDUCE. However, as the tail-to-median ratio in-
creases from Pyg 50 = 1.5 to 3, its completion time rises by
about 2.1, even surpassing OPTIREDUCE by 28%. In con-
trast, OPTIREDUCE remains unaffected by this change while
reaching convergence. By bypassing stragglers and proceed-
ing without waiting for all gradients, OPTIREDUCE is better
suited for shared and high-tail environments. Moreover, OP-
TIREDUCE’s design can be extended to incorporate INA, po-
tentially achieving similar speedups in low-tail environments—
an avenue we plan to explore in future work.

6 Limitations & Future Work

In the current AllReduce design, there are two primary bottle-
necks: (a) in the computation (or reduction) phase and (b) in
the communication phase. We explore potential solutions for
both bottlenecks in the subsequent sections.

a) Accelerators for Reduction. In OPTIREDUCE, we primar-

ily focus on bounding the execution time of the two send/re-
ceive stages in AllReduce (Figure 1). The reduction stage, i.e.,
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the process of averaging gradients together, still happens on
CPUs. However, as models grow and gradient sizes increase,
the reduction stage can become a bottleneck. Rather than opt-
ing for the most extreme case of offloading all of AllReduce
to network switches [99,136], we can instead consider offload-
ing the reduction operation on the end-host server (similar
to how we accelerate GEMMs using GPUs) [141]. Modern
SmartNICs [19,25,26], with onboard FPGAs and ML accel-
erators, can present a promising opportunity for accelerating
reduction. But, doing so requires rethinking and redesigning
the application interface (API) between OPTIREDUCE and
SmartNICs. We hope OPTIREDUCE to serve as a stepping
stone for research in this direction.

b) Accelerators for Network Transport. As with reduc-
tion, network transport can also become a bottleneck with
link/interface speeds reaching 400 Gbps+. Existing offloads,
like RDMA [77], provide high-bandwidth communication
between nodes by moving data to/from the main memory
and the network without engaging the host CPU. However,
these implementations are still susceptible to tail effects in the
network (e.g., packet drops and retransmissions). We hope
OPTIREDUCE’s transport design can offer guidance in build-
ing new offloads for network transport, particularly with sup-
port for unreliable bounded protocols. As a next step, we
could explore offloading OPTIREDUCE’s transport onto hard-
ware using RDMA’s Unreliable Connected (UC) or Unreliable
Datagram (UD) queue pairs [49]. However, these implemen-
tations currently suffer from excessive packet drops when
packets arrive out of order [23]. We plan to address these
challenges in future work.

7 Related Work

Lossy Architectures for Accelerating Allreduce Collec-
tives. THC [103] presents compression-aware gradient syn-
chronization architectures for DNN training, introducing ho-
momorphic compression to reduce bandwidth through quanti-
zation. OmniReduce [68] introduces the concept of a stream-
ing aggregation, which exploits parameter sparsity to maxi-
mize effective bandwidth use by sending only non-zero data
blocks. MLT [153] configures network switches to prioritize
and drop packets based on model layers and gradient magni-
tudes, leveraging inter-packet order-independency to balance
load. In contrast, OPTIREDUCE exploits DDL’s resiliency
to gradient drops in mitigating tail effects while sustaining
convergence accuracies in the cloud without requiring access
to the provider’s network. It could apply techniques like Om-
niReduce to reduce network usage for models with sparse
gradients or use quantization methods similar to THC.

Accelerating Deep Learning using In-Network Comput-
ing. SHATrP [75] is a hierarchical aggregation protocol and
architecture in Nvidia Switches (e.g., IB-2 [35]), which builds
an overlay reduction tree for aggregating data flowing through
the switch. SwitchML [136] accelerates distributed train-
ing by using a programmable data-plane device (e.g., Intel

Tofino [18,51]) to aggregate the model updates from multi-
ple workers in the network. To overcome the switch memory
and computational constraints, they co-design the in-switch
processing with end-host protocols (e.g., sliding window of
parameters) for handling drops. ATP [99] is an in-network ag-
gregation solution similar to SwitchML, but for deep learning,
and is designed to provide a dynamic, best-effort in-network
aggregation service for multi-tenant multi-switch clusters.
Unlike these solutions, OPTIREDUCE does not require spe-
cialized hardware or access to the provider’s network.

Optimizing Deep Learning for Enterprise and HPC Envi-
ronments. Cassini [128] is a network-aware job scheduler
for ML clusters in HPC environments that optimizes network
resource usage by interleaving communication patterns of
ML jobs, reducing congestion and improving cluster perfor-
mance. Meta’s recent paper [72] presents a custom backend
for distributed deep-learning training targeting enterprise data
centers. It optimizes network topology, job scheduling, place-
ment, and data transport to improve training performance,
efficiency, and scalability. On the other hand, OPTIREDUCE
offers a resilient and tail-optimal solution for deep-learning
training in the cloud.

8 Conclusion

OPTIREDUCE leverages distributed-deep learning’s (DDL) re-
siliency to lost gradients and achieves speedups of up to (70%,
30%), on average, over existing frameworks (Gloo, NCCL),
in shared environments (e.g., public clouds). OPTIREDUCE
implements a domain-specific Transpose Allreduce collective
algorithm with unreliable bounded transport (UBT) featuring
adaptive timeouts, while mitigating the impact of gradient
loss using Hadamard Transform. It delivers higher tail perfor-
mance (e.g., TTA and training throughput) while preserving
DDL models’ convergence accuracy and limiting gradient
drops to under 0.1%. Looking forward, we hope OPTIRE-
DUCE inspires further exploration of the tradeoff between tail
performance and training accuracy in processing contempo-
rary deep-learning models.
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Figure 17: Hierarchical 2D TAR Algorithm.
. Gloo NCCL OPTIREDUCE:
Environment | Benchmark Ring | BCube | Ring | Tree TAR+TCP Time Accuracy Test Acc.
ARC 84 113 77 75 76 61 60.45 [+0.45] 39.97 [-0.47]
Pog /50 = 1.5 MATH 195 254 180 171 175 130 30.56 [+0.18]  30.29 [+0.23]
SQuAD 4072 5402 3391 3464 3723 3182 46.77 [-0.21] 38.64 [+0.08]
ARC 155 161 128 120 86 61 60.44 [+0.44] 39.91 [-0.53]
Pog /50 =3.0 MATH 308 390 299 243 189 131 30.14 [-0.24] 30.09 [+0.03]
SQuAD 5793 8057 5677 5243 4120 3220 46.45 [-0.53] 38.57 [+0.01]

Table 2: Comparing convergence time (in minutes) and accuracy (% [A]), as well as test accuracy (% [A]) for the Llama-3.2
1B model across various tasks and environments; [A] reports deviation from the baseline accuracy (e.g., Gloo and NCCL).

A Hierarchical 2D TAR Algorithm: Scaling to
Larger Node Clusters

In the hierarchical TAR design (Figure 17), nodes are grouped
to optimize both intra-group and inter-group communication,
reducing the total number of rounds and connections required
for AllReduce. For example, with N = 64 total nodes divided
into G = 16 groups, each node communicates only with its
corresponding rank across the groups. The number of rounds
reduces from 2(N — 1) = 126 in traditional TAR to 2(N/G —
1)+ (G — 1) = 21 rounds. The algorithm works in three steps:

Intra-group Communication: Nodes within each group
perform send/receive operations followed by aggregation,
in parallel, resulting in the locally aggregated shard for their
rank—taking (N/G — 1) rounds.

Inter-group Communication: Corresponding ranks across
groups then perform send/receive operations, followed by
aggregation, to get the globally aggregated shard for their
rank—adding another (G — 1) rounds.

Broadcast Phase: Finally, nodes within the group broad-
cast their aggregated shards, which are concatenated to
form the globally aggregated gradient bucket—an addi-
tional (N/G — 1) rounds.

This hierarchical design significantly reduces communica-
tion overhead, improving scalability and efficiency for large-
scale distributed training.

B Benchmarking Llama-3.2 1B Model

Using our local testbed (§5.1), we evaluate OPTIREDUCE
with the Llama-3.2 1B model [65] on three well-known down-
stream tasks: SQuAD (extractive question answering) [129],
ARC (science reasoning) [58], and MATH (symbolic mathe-
matics) [83], across both low-tail (Pyg 50 = 1.5) and high-tail
(Pyg /50 = 3.0) environments. Table 2 provides a detailed com-
parison of training times across all schemes. OPTIREDUCE
consistently demonstrates performance improvements across
all tasks. Compared to NCCL, it achieves speedups of 1.35x
on MATH, 1.25x on ARC, and 1.08x on SQuAD, averaging
a 1.24x improvement. The gains are even more pronounced
against Gloo, with speedups of 1.73x, 1.61x, and 1.49x
respectively, averaging 1.61 x. These improvements scale fur-
ther under high-tail conditions, reaching speedups of up to
2.1x while preserving baseline model convergence and test
accuracies.

C Network and Compute Intensive Models &
Base LMs

In this section, we present time-to-accuracy (TTA) plots for
additional models, including computer vision models (ResNet-
50/101/152, VGG-16/19) and base LMs (BERT, RoBERTa,
BART, and GPT-2). The experiments use the same local
testbed setup described in §5.1, but with six worker nodes
(VMs). We compare results across two environment configu-
rations, characterized by tail-to-median ratios (Pyg,s0) of 1.5
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Figure 19: Time-to-accuracy (TTA) of baseline systems vs OPTIREDUCE with tail-to-median ratio: Pyg /50 = 3.

(lOW Variability) and 3 (h1gh Variability), Gloo BCube NCCL Ring === NCCL Tree === TAR+TCP === OptiReduce
C.1 Time-to-accuracy (TTA) 5

We observe similar gains for these network-intensive models E_ ;:2311 5-

(VGG-16/19) and base LMs, with up to (66%, 75%) and (50%, 3 o1o0-

51%) reductions in TTA, on average, compared to Gloo (Ring, §§

BCube) and NCCL (Ring, Tree), respectively—Figure 18 2 D

(P99/50 = 15) and Figure 19 (P99/50 = 3) OPTIREDUCE

achieves the same convergence accuracy as the baselines ResNet 50 ResNet 101 ResNet 152
while limiting lost gradients to less than 1.5%, on average, of (@) Pygso = 1.5

the communicated traffic.

C.2 Training Throughput (Speedup)

N
o

-
U'I

While compute-intensive models like ResNets [82] typically

do not gain significant advantages from optimized commu-
nication [103, 153], their performance can be impacted in
shared environments (such as public clouds) due to long-tail

latencies. Our evaluations reflect this, where OPTIREDUCE

. . ResNet 50 ResNet 101 ResNet 152
demonstrates notable improvements over baseline systems, (b) P -3
achieving average speedups of 22% over NCCL and 53% 99/50 =

over Gloo for three ResNet models (50/101/152) across both -Figure.: 20: Training throughput for computationally-
environment configurations (Figure 20). intensive ResNet models on the ImageNet dataset.

Speedup over
Gloo Ring
5
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