
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

ODRP: On-Demand Remote Paging
with Programmable RDMA

Zixuan Wang, Xingda Wei, Jinyu Gu, Hongrui Xie, Rong Chen, and Haibo Chen,
Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

https://www.usenix.org/conference/nsdi25/presentation/wang-zixuan

ODRP: On-Demand Remote Paging with Programmable RDMA
Zixuan Wang, Xingda Wei, Jinyu Gu, Hongrui Xie, Rong Chen, Haibo Chen

Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

ABSTRACT

Memory disaggregation with OS swapping is becoming pop-
ular for next-generation datacenters. RDMA is a promising
technique for achieving this. However, RDMA does not sup-
port dynamic memory management in the data path. Current
systems rely on RDMA’s control path operations, which are
designed for coarse-grained memory management. This re-
sults in a trade-off between performance and memory uti-
lization and also requires significant CPU usage, which is a
limited resource on memory nodes.

This paper introduces On-Demand Remote Paging, the
first system that smartly chains native RDMA data path
primitives to offload all memory access and management op-
erations onto the RDMA-capable NIC (RNIC). However, ef-
ficiently implementing these operations is challenging due
to the limited capability of RNIC. ODRP leverages the se-
mantics of OS swapping and adopts a client-assisted prin-
ciple to address the efficiency and functionality challenges.
Compared to the state-of-the-art system, ODRP can achieve
significantly better memory utilization, no CPU usage while
introducing only a 0.8% to 14.6% performance overhead in
real-world applications.

1 INTRODUCTION

Memory-intensive applications [4, 6, 9, 44] have been widely
deployed in modern datacenters. However, accurately pre-
dicting their memory requirements is challenging due to fluc-
tuations over time [37, 27]. Over-provisioning memory for
host servers would significantly decrease memory utiliza-
tion. To address this issue, memory disaggregation has been
proposed [32, 19, 11, 37, 21, 22, 14, 36, 29, 18, 26, 43]. This
architecture separates the CPU and memory resources into
CPU and memory pools. Applications running on the CPU
pool (CNodes) can dynamically allocate and access memory
in the memory pool (MNodes) on demand, thereby improv-
ing overall memory utilization.

RDMA is a popular interconnect for bridging CNodes and
MNodes. It provides efficient data path primitives, namely
one-sided RDMA, which allow RNICs to directly read and
write to MNode memory without involving their CPUs. This
is particularly beneficial for memory disaggregation because
MNodes often have limited or no CPU resources to ensure
better cost efficiency [45]. Unfortunately, RDMA is not a
panacea for memory disaggregation, which requires more
than simple memory access. CNodes need to dynamically al-
locate and deallocate remote memory during runtime, which

is not supported by one-sided RDMA. Even worse, dynamic
allocation necessitates registering memory to the RNIC, an
RDMA control path operation that is not optimized for per-
formance and can only be performed by the CPU. As a re-
sult, naively performing memory (de)allocation in the data
path would significantly degrade application performance
and overwhelm the wimpy MNode CPU (§2.3).

Due to the above limitation of RDMA, previous sys-
tems [19, 11, 40, 25] have chosen to over-provision remote
memory with large memory slabs (1 GB or larger) to amor-
tize the memory (de)allocation overhead and reduce CPU us-
age on MNodes. However, using large memory slabs would
significantly reduce the memory utilization of MNodes due
to internal fragmentation. Therefore, current RDMA-based
memory disaggregation systems face a fundamental trade-off
between high remote memory utilization, no MNode CPU
usage and high performance.

This paper demonstrates that it is possible to achieve high
memory utilization, no MNode CPU usage, and high perfor-
mance on commodity RDMA hardware. It describes the de-
sign and implementation of On-Demand Remote Paging, al-
lowing CNodes to swap pages to the MNode with 4 KB allo-
cation granularity—the same as Linux swapping granularity
for ideal memory utilization. ODRP achieves fine-grained
remote memory management in the data path by efficiently
offloading memory access and (de)allocation operations to
the MNode’s RNIC, bypassing its CPU. Our key insight is to
fully exploit a less-explored chaining feature of RDMA that
allows developers to combine various one-sided primitives
to offload complex functionalities onto the RNIC (§2.4).

Although RDMA offloading has recently been proven to
be Turing complete in theory [34], meaning that it can of-
fload arbitrary programs, efficiently offloading the complex
functionalities of a swap device presents challenges due to
the following three issues: First, a function may require of-
floading multiple RDMA work requests (WRs) for imple-
mentation. However, offloading performance decreases as
the number of WRs increases. Therefore, we need to design
data structures and operations that minimize the number of
offloaded WRs. Second, RDMA primitives are primarily de-
signed for networking and have limited semantics. Conse-
quently, it is challenging or even impossible to implement
certain functions efficiently with a relatively small number
of WRs, such as the modulo operation. Finally, RNIC drains
the offloaded WRs after execution. Re-executing them re-
quires proactive refilling with the help of the MNode CPU.
However, the MNode CPU has limited processing power and

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1101

can therefore become a performance bottleneck.
To address the aforementioned issues, first, ODRP adopts

a client-assisted principle, which splits the offloaded func-
tions and shifts part of the computation to the CNode for
better performance (§4.3). Choosing how to split the func-
tions is non-trivial, because we need to minimize the compu-
tation and storage overhead added to the CNode, as well as
cope with compromised CNodes. Second, we propose uti-
lizing the novel features offered by recent RNICs to effi-
ciently implement several high-level primitives (referred to
as meta WR) (§4.2). These include modulo and endianness
conversion operators, which are critical for offloading com-
plex functions. Finally, we discover that the RNIC only “log-
ically” drains WRs, meaning that we can reactivate them by
properly updating the RNIC’s driver data structures. We are
the first to propose a method to recycle executed WRs with-
out requiring additional WRs or CPU intervention (§4.4).

We have implemented ODRP on Linux as a standard swap
backend, making it transparent to applications. Compared to
the state-of-the-art swap-based memory disaggregation sys-
tem, namely Fastswap [11], ODRP achieves 1.72× to 12×
better memory utilization with zero MNode CPU usage, and
at the cost of slight performance overhead (up to 14.2%) on
real-world applications including Quicksort, Kmeans, Mem-
cached, GAPBS, and VoltDB. Moreover, it demonstrates su-
perior performance, memory utilization, and scalability com-
pared to other RDMA alternatives.

In summary, this paper makes the following contributions:

• We identify the issues with memory utilization and
MNode CPU usage in existing RDMA alternatives for
realizing swap-based memory disaggregation. (§2).

• We present a novel system design to efficiently offload
memory management onto the RNIC, achieving better
memory utilization and zero MNode CPU usage. (§4).

• An implementation and evaluation of ODRP to demon-
strate its effectiveness and efficiency. (§5).

Although we focus on swap-based memory disaggrega-
tion, we believe that the methodology and principle sum-
marized in our work can provide guidance for future of-
floading functions onto the RNIC. ODRP is available at
https://github.com/SJTU-IPADS/ODRP.

2 BACKGROUND AND MOTIVATION

2.1 Memory Disaggregation with RDMA
Memory disaggregation is a promising paradigm to improve
overall memory utilization in datacenters [19, 11, 37, 21, 22,
14, 36, 29, 18, 26]. It separates servers into a CPU pool and a
memory pool, namely CNodes and MNodes. When CNodes
require additional memory, they can allocate it on MNodes
and access it as needed. We focus on the asymmetric archi-
tecture, in which CNodes have powerful CPUs but limited
memory, while MNodes have a large amount of memory but

limited (or no) CPU power. It is worth noting that some sys-
tems adopt a symmetric architecture (i.e., a node can be both
a CNode and an MNode at the same time). ODRP could be
extended to support this symmetric architecture.

RDMA is a popular interconnect for CNodes to access
MNode memory. One-sided primitives enable direct read,
write, compare-and-swap (CAS), and fetch-and-add (FAA)
operations on MNode memory, bypassing the MNode CPU.
Two-sided primitives (i.e., SEND and RECV) facilitate mes-
sage exchanges between CNodes and MNodes.

Our target: Swap-based memory disaggregation. We tar-
get a setup where CNodes leverage Linux’s swap subsystem
for memory disaggregation [19, 11, 28, 43, 39, 33, 40]. This
approach offers the advantage of transparency compared to
other alternatives [16, 17, 36, 21]. In this setup, if a CNode
faces memory pressure, the kernel will swap out cold pages
to the MNode. Likewise, if the application needs to read a
swapped-out page, the kernel retrieves it from the MNode.

2.2 RDMA Alternatives to Implement Swap-
based Memory Disaggregation

To support swap-based memory disaggregation, we need to
implement the following functionalities on the MNode: (1)
Read and write memory pages. (2) Verify the validity of the
page address, i.e., whether the CNode has permission to ac-
cess the page and (3) Memory allocation and deallocation.
RNIC has been optimized for (1) and (2) through its data path
one-sided primitives and memory region registration (MRR).
However, it does not have efficient native support for (3).
Specifically, MRR is a control path operation, which is inef-
ficient and requires intensive CPU involvement. Therefore,
current RDMA hardware only provides the following alter-
natives for existing systems to implement swap-based mem-
ory disaggregation.

• One-sided (Static). The MNode registers coarse-grained
memory slabs (e.g., 1 GB or the same size as the
CNode’s swap device) and allocates them to CNodes
statically [11, 19, 40, 25, 33]. CNodes can directly access
remote memory with one-sided primitives and require
few or no memory allocation operations during runtime,
making this approach highly efficient. However, this leads
to poor memory utilization on the MNode due to severe
internal fragmentation and the lack of elasticity.

• One-sided (Dynamic). To improve memory utilization and
support elasticity, the MNode can register its memory as
fine-grained (e.g., 1 MB) memory regions (MRs) in ad-
vance and dynamically allocate them to CNodes. Specifi-
cally, if a CNode requires more (or less) remote memory, it
can send an RPC message to the MNode using two-sided
primitives. The MNode then allocates (or frees) an MR
and returns its metadata (i.e., address and rkey) to the CN-
ode. Afterwards, the CNode can use one-sided primitives
to access the allocated memory like in the first approach.

1102 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: A comparison between ODRP and other RDMA
alternatives. Util: utilization.

Memory. Util No CPU Efficiency

Static Poor 4 Optimal
Dynamic Medium 8 Medium
Two-sided Good 8 Poor
ODRP Good 4 Good

Note that a freed MR must be re-registered before being
allocated to other CNode for safety.

However, determining the appropriate memory allocation
granularity is challenging due to the inefficiency of
RDMA’s control path (i.e., memory registration) and the
limited CPU power of MNodes. For example, registering
a 4 KB or 1 MB MR takes about 80µs or 600µs, respec-
tively. Using a smaller memory slab size can improve
remote memory utilization but incurs higher management
overhead on MNodes and necessitates more frequent
memory allocation requests from CNodes. Additionally,
the limited CPU power of the MNode may become a
performance bottleneck in the system.

• Two-sided. To minimize the cost of remote memory
(de)allocation, CNodes can utilize two-sided primitives in
the data path. The MNode CPU can always mediate the
memory accesses from CNodes and then manage the re-
mote memory at a fine granularity. However, this approach
suffers from poor performance as two-sided primitives are
less efficient than one-sided primitives [41] and requires
more intensive involvement of the MNode CPU.

2.3 Issues with RDMA Alternatives for Swap-
based Memory Disaggregation

This section conducts an experiment to analyze the issues of
aforementioned alternatives. Detailed setup can be found in
§5. Figure 1 shows the results of running increasing num-
bers of Quicksort tasks (each with 50% local memory) on 4
CNodes. For One-sided (dynamic), we adopt a 1 MB allo-
cation granularity. Table 1 summarizes the comparison be-
tween ODRP and other RDMA alternatives.

Poor memory utilization of One-sided (Static). Figure 1
(a) illustrates the memory utilization of different alternatives.
Memory utilization is measured as the ratio of actually used
remote memory to allocated remote memory. As expected,
One-sided (static) has the lowest utilization because MNode
memory is pre-allocated based on the CNodes’ swap space
size. While One-sided (dynamic) alleviates this problem, the
average remote memory utilization is still 24% lower than
Two-sided due to larger allocation granularity (1 MB vs.
4 KB). It is worth noting that recent RNIC provides an on-
demand-paging (ODP) MR [5] feature that provides trans-
parent dynamic memory allocation for One-sided (static).
However, this feature relies on the in-kernel driver’s page

1 4 8 12 16 20
ConcurrentTasks

0

50

100

M
e
m

o
ry

 U
ti
liz

a
ti
o
n
 (

%
)

One-sided (Static) One-sided (Dynamic) Two-sided

1 4 8 12
ConcurrentTasks

0

50

100

C
P

U
 u

s
a
g
e
 (

%
)

1 4 8 12 16 20
ConcurrentTasks

0

100

200

300

400

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Figure 1: A comparison of RDMA alternatives in terms of
(a) remote memory utilization, (b) remote CPU usage, and
(c) execution time.

fault handler for memory allocation, which is orders of mag-
nitude slower than one-sided primitives. In our experiment,
it even fails to complete the application benchmark.

High MNode CPU usage of One-sided (Dynamic) and
Two-sided. Figure 1(b) shows that as the number of running
tasks increases, CNodes send more frequent allocation and
swap requests, causing One-sided (dynamic) and Two-sided
to quickly saturate the MNode CPU. As a result, the MNode
CPU becomes the bottleneck and consequently slows down
application performance due to request queuing.

Poor application performance of One-sided (Dynamic)
and Two-sided. As shown in Figure 1(c), the average exe-
cution time for 20 Quicksort tasks in One-sided (dynamic)
and Two-sided is 1.82× and 4.18× longer than One-sided
(static), respectively. The performance degradation in One-
sided (dynamic) can be attributed to the extra latency from
waiting for memory allocation requests to complete. More-
over, Two-sided faces even more competition for the MNode
CPU as every swap request needs to be queued up.

2.4 Programmable RDMA
This section presents necessary background for how to of-
fload complex functionalities onto the RNIC.

Offloading arbitrary logic onto RNIC with WR chains.
RNICs are designed to execute simple primitives posted by
the CPU, known as work requests (WRs). These WRs can
be linked together by recording the address of the next WR
in the next field. When the RNIC executes the first WR,
it will proceed to the next one in the chain. As a result, de-
velopers can chain multiple WRs together to offload more
complex function onto the RNIC. We refer to a function of-
floaded to the RNIC as a WR chain. RDMA provides WAIT
and ENABLE WRs to control execution timing. By linking a
WAIT WR and an ENABLE WR after the first RECV WR in
a chain, the RNIC will automatically execute the WR chain
after receiving an RDMA SEND, bypassing the CPU.

An interesting property of the WR chain is its Turing com-
pleteness [34], which means we can offload arbitrary logic
onto the RNIC, bypassing the CPU. Intuitively, the CAS
WR provides branching, and the READ/WRITE WRs han-
dle state reads and writes. Finally, we can implement while
loops by reusing previously executed WR chains, i.e., after

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1103

Input x,y

res = 0

if(x == y)

 res = 1

else

 noop

WRITE(res)

CAS
NOOP/

WRITE
WRITE

WR chain executed by the RNIC

OP: CAS

old: x | NOOP

new: WRITE

dst: &WR3.op

OP: y | NOOP

data: 1

dst: &WR4.data

OP: WRITE

data: 0

dst: Client

RECV

OP: RECV

dst0: &WR2.old

dst1: &WR3.op

Pseudocode

Conditional
Data flow

Data flow

Control
flow1

2

3

4

1 2 3 4

Figure 2: An illustration of how to execute the pseudocode with
four RDMA WRs. For simplicity, we omit the WAIT and ENABLE.

RNIC finishes executing the last WR chain in the work queue
(WQ), it wraps around to execute the first one again.

Example. Figure 2 depicts how to offload a simple con-
ditional execution program onto the RNIC with a 4-WR
chain (not counting WAIT and ENABLE). The chain checks
whether x is equal to y using a CAS WR. Since the values
of x and y are arguments and unknown to the WR chain be-
fore execution, the RECV WR will receive them and fill the
old field of the CAS and the op field of the third WR with
x|NOOP and y|NOOP , respectively. Then, we can com-
pare them with CAS. If x is equal to y, the CAS changes the
third WR’s op field (i.e., opcode) from NOOP to WRITE1,
causing the first branch to execute and update the final result
(WR4.data). Otherwise, the third WR remains NOOP, and
the RNIC takes no action (the second branch). Finally, the
WRITE WR writes the result back to a client-side buffer.

3 ODRP OVERVIEW

Design goals. ODRP is a kernel-space swapping sys-
tem that can transparently swap cold pages to the MNode.
It has three main design goals: (1) Fine-grained memory
management on the MNode, allocating and deallocating re-
mote memory at page granularity to improve remote mem-
ory utilization; (2) No remote CPU usage, preventing the
wimpy MNode CPU from becoming a performance bot-
tleneck and realizing true disaggregation; (3) Good per-
formance, achieving comparable performance to existing
coarse-grained memory management solutions.

System architecture and high-level execution flow. Fig-
ure 3 presents the system components of ODRP. On the CN-
ode side, ODRP provides a Linux swap backend that faith-
fully implements the Linux frontswap [3] API (see Table 2).
On the MNode side, ODRP registers all of its provisioned
memory as a large MR at initialization. The MNode main-
tains two types of swap metadata (detailed in §4.1): (1) it
divides provisioned memory into 4 KB pages and manages
them with a free page queue; (2) it maintains a translation
table, initially unmapped, for each CNode that maps CNode
swap addresses to page addresses. During runtime, memory
1Note that for the RNIC to read the updated WR, we need an ENABLE WR
before the modified WR. For simplicity, we omit the ENABLE throughout
the paper without losing generality.

Memory Node

User

Kernel

Compute Nodes

Applications…

Linux swap system

ODRP backend (§4.3) RNIC WR chains(§4.2)

Meta data

(§4.1)

DRAM

PagesPCIe

RDMA NIC

1

3

4

5

2

Figure 3: An overview of system components of ODRP.

pages are allocated from the free page queue and mapped in
CNodes’ translation tables on demand.

When the CNode’s backend receives swap commands
from the swap system (¶), it sends these requests to the
MNode with swap addresses (·). The MNode’s RNIC then
serves these requests by executing the pre-programmed logic
(i.e., WR chains) stored in work queues (WQs) (¸). Each
type of WR chain implements a specific high-level function
(see Table 2). The WR chains leverage the swap metadata
(¹) to perform address translation (swap address to page ad-
dress), page access, and page (de)allocations (º). Since all
requests are handled by WR chains, there is no need for CPU
intervention on the MNode.

Offloading challenges and solutions overview. While
RDMA offloading presents opportunities for bypassing the
CPU in fine-grained memory management, it is challenging
to implement these logics efficiently and achieve full-fledged
programmability due to the limited RDMA WR semantics.

C#1. Efficiency. Executing a new WR requires the RNIC
to retrieve it from the work queue (WQ) in host memory via
PCIe, which is relatively slow. There are two main sources
of overhead that can degrade the performance of WR chains.
First, more complex logic requires more WRs per chain. Sec-
ond, the execution of each chain consumes all its WRs. To
serve future requests, existing work [34] necessitates addi-
tional FAA and READ WRs to reactivate the executed WRs.

To minimize the number of WRs per chain, ODRP adopts
a client-assisted principle, as detailed in §4.4. Specifically, to
eliminate the need for the WR chain to calculate the address
of the translation table entry (tt addr) corresponding to a
CNode’s swap address, the MNode shares the base address
of the CNode’ translation table (tt base) with it. Then the
CNode can calculate and directly use tt addr as an argu-
ment when invoking WR chains. To simplify the design of
the page store WR chain, we categorize it into two cases
based on whether the swap address is mapped or not (see Ta-
ble 2), and have the CNode’s backend determine which WR
chain should be invoked. Additionally, we use the CNode as
a helper to reactivate executed WR chains.

C#2. Functionality. Although RDMA offloading is theoret-
ically Turing complete, it is non-trivial to offload complex
logic onto the RNIC. First, the RNIC lacks support for the
modulo operation (%), which is critical for avoiding over-
flow during computation. Second, the RNIC’s endianness

1104 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: The CNode API and the corresponding implementation on the RNIC.
CNode frontswap API (§4.4) RNIC Implemented Functions (§4.3) Descriptions of the Implemented Functions

load(swap_addr) ->page load(swap_addr) ->page Swap in a page from the MNode with swap_addr.
store(swap_addr, page) mapped store(swap_addr, page) Swap out a page to swap_addr.

unmapped store(swap_addr, page) Allocate a page, map it to swap_addr and store the data in that page.
invalidate(swap_addr) invalidate(swap_addr) Free and unmap the page of swap_addr on the MNode.

 Per-CNode

Translation table

Memory pages . . .

swap_addr

Free

Page

Queue

Head

Tail

Free addr

F
re

e
 a

d
d

r

4KB

}

tt_base

Figure 4: An illustration of the MNode-side data structures.

mismatches that of the host, meaning that the RNIC cannot
directly use its computed value as an address to access host
memory.

To address these challenges, ODRP has implemented two
built-in chains as Meta WRs, as detailed in §4.2: one for
the modulo operation and one for endianness conversion. By
leveraging new RNIC features [2], we show that these op-
erators can be supported efficiently, greatly simplifying the
offloading of complex logic onto the RNIC.

4 DESIGN AND IMPLEMENTATION

4.1 Data Structures at the MNode

Free Page Queue. As shown in Figure 4, the MNode di-
vides its memory into 4 KB pages and organizes them with
a FIFO free page queue. During initialization, it inserts all
the free pages into that queue. The queue is implemented as
a fixed-sized ring buffer, determined by the number of pages
the MNode can provide, and has one head pointer and one
tail pointer. Each queue element is 8 bytes (8 B) in size, hold-
ing the address of a free page. When allocating a free page
to a CNode, ODRP performs a dequeue operation to obtain
a free page address, i.e., leverages the RDMA atomic FAA
WR on the queue head pointer. When a page is freed, ODRP
performs an enqueue operation, i.e., uses atomic FAA on the
queue tail pointer and stores the page address in the fetched
queue element.

This results in O(1) complexity for (de)allocation opera-
tions, making it well-suited for the WR chain. In contrast,
using other structures like bitmap to maintain free pages re-
quires a more complex WR chain, which would harm effi-
ciency. For example, allocating a page with a bitmap requires
multiple RDMA WRs to search for a free bit and a CAS WR
to update the free bit.

Translation Table (TT). ODRP provides each CNode with
a swap space and maintains a TT for it, which records the
mapping between swap addresses and allocated page ad-
dresses on the MNode. Each entry in the TT starts out empty.

*addr1:

 0x12345678

E
n

d
ia

n
S
w

a
p

*addr2:

0x7856341200000000

(a)

(b) OP: READ

src: addr1

size: 1 // 1B

dst: addr2 +7

OP: READ

src: addr1 +1

size: 1 // 1B

dst: addr2 +6

. . .
OP: READ

src: addr1 +7

size: 1 // 1B

dst: addr2

(c)

8 WRs

OP: READ

src: addr1

dst: &sge

dst0: addr2 + 7

size: 1 // 1B

…

8 sges

Figure 5: (a) An overview of EndianSwapmeta WR. (b) A naive
implementation using an 8 READ WRs. (c) ODRP utilizes 8 scat-
ter/gather entries to achieve EndianSwap with one READ WR.

Pages are allocated from the free page queue and mapped to
the TT on demand during CNode runtime. The TT is neces-
sary to ensure memory isolation, as each WR chain can ac-
cess all the MNode memory to enable fine-grained memory
management and sharing (i.e., a freed page can be allocated
and mapped to another CNode’s swap space). Moreover, we
use a single-level page table design for efficient offloading:
it requires only one READ WR for address translation (see
Figure 6). Finally, since the swap requests are initiated by
the Linux swap subsystem in a coordinated manner (i.e., a
CNode’s concurrent swap requests will not target the same
swap address), ODRP does not need to coordinate concur-
rent operations targeting the same TT entry.

4.2 Meta WRs
Before diving into the details of WR chains, we first describe
the design and implementation of two meta WRs that are es-
sential for the WR chains. Although these operations could
be performed by the MNode CPU, this approach would re-
quire an interrupt from the RNIC to the CPU, which is less
efficient. Therefore, we choose to implement these opera-
tions within the WR chains as meta WRs.

The modulo WR. The modulo (%) operation is crucial to
prevent overflow in the enqueue and dequeue operations of
ring buffer. However, without proper hardware support, it
is impossible to implement the modulo operator with just a
few WRs. Fortunately, recent RNICs provide an Enhanced
Atomic Operations [10] feature, which includes a Masked-
FAA WR that allows users to split the target value into mul-
tiple fields of selectable length for addition. By using this
feature, we can mask the upper bits of the value to imple-
ment FAA with modulo support.

The endianness conversion WR (EndianSwap). Network
protocols, including RDMA [1], traditionally use big-endian

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1105

Input tt_addr,

CN_buffer

addr = READ(tt_addr)

WRITE(CN_buffer, addr)

Load

OP: RECV

dst0: &WR2.src

dst1: &WR3.dst

OP: READ

src: 0

dst: &WR3.src

OP: WRITE

src: 0

dst: 0

Input tt_addr,page_content,

signal_addr

addr = READ(tt_addr)

WRITE(addr, page_content)

WRITE(signal_addr, 1)

Mapped Store

OP: RECV

dst0: &WR2.src

dst1: page_buf

dst2: &WR4.dst

OP: READ

src: 0

dst: &WR3.src

OP: WRITE

src: page_buf

dst: 0

OP: WRITE

data: 1

dst: 0

1

2

1

2

1

3

1 32

3

2 3

4

4

Data flow

Control

flow

Input tt_addr,page_content,

signal addr

queue_head = FAA(Head)

free_addr = READ(queue_head)

WRITE(tt_addr, free_addr)

WRITE(free_addr, page_content)

WRITE(signal_addr, 1)

Unmapped

Store

OP: RECV

dst0: &WR3.dst

dst1: page_buf

dst2: &WR6.dst

OP: FAA

val: 8

src: HEAD

dst0: &WR3.src

dst1: &WR4.src E
n

d
ia

n
S
w

a
p

1

2
3

4

5

w/ Modulo 1 2 3

OP: WRITE

src: 0

dst: 0

OP: READ

src: 0

dst: &WR5.dst

OP: WRITE

src: page_buf

dst: 0

OP: WRITE

data: 1

dst: 0
Meta WR

4 5

6

6

Figure 6: A simplified illustration of the WR chain design in ODRP. We omit fields like size and WAIT and ENABLE WRs. In the Load,
Mapped Store, and Unmapped Store WR chains, the number of omitted WAIT and ENABLE WRs is 3, 4, and 5, respectively. The WRITE
writes the memory from src to dst.

format, which differs from the little-endian format used by
most host CPUs (e.g., x86-64). This mismatch can lead to
subtle issues in RDMA offloading. For example, the FAA
WR performed on the host memory returns the result in little-
endian format (e.g., the fetched value of the queue head
pointer). However, a READ WR expects its source field in
big-endian format. As a result, the fetched value of the queue
head pointer by FAA cannot be directly used for a subsequent
READ WR without endianness conversion.

To efficiently address this issue without involving the
MNode CPU, we designed an EndianSwap WR to sim-
plify endianness conversion. A naive implementation would
involve using N READ WRs to convert an N -bytes value.
Figure 5 (b) shows an example of converting an 8-byte value
from little-endian to big-endian: the first WR moves the first
byte to the last byte, and so on. However, this approach is in-
efficient due to the excessive use of WRs. ODRP leverages
the scatter-gather entry (SGE) feature provided by RNICs to
reduce the number of WRs to just one. As presented in Fig-
ure 5 (c), the RNIC can scatter a continuous memory block
into multiple destination buffers using SGEs. By filling the
dst fields of multiple SGEs in reverse order, we can achieve
endianness conversion with just one READ WR.

4.3 MNode-side WR Chains
Figure 6 presents the pseudocode and WR chains of of-
floaded functions (see Table 2). When CNodes need to swap
in or out a page, they use RDMA SEND with arguments
to trigger these WR chains. We assume the arguments are
valid for now. Handling invalid arguments will be detailed
in §4.5. Notably, instead of directly providing the swap ad-
dress, we request CNodes to compute the TT entry address
(tt base+swap addr/PAGE SIZE) as an argument to all
WR chains. This approach eliminates the need for an addi-
tional FAA and an EndianSwap WR in the WR chain to per-
form this calculation. This optimization incurs zero memory
overhead for the CNode, as each CNode only needs to store
its own tt base.

Page load. Page load takes a TT entry address (tt addr)
(¶), looks up the page address stored in that entry (·),
and writes the page stored at that address back to the CN-

ode’s buffer—CN buffer (¸). To look up the page ad-
dress, the RECV fills the source field of the next READ with
tt addr. The READ then places the result of address trans-
lation (i.e., the page address on the MNode) in the source of
the subsequent WRITE. Finally, the WRITE writes the page
data back from the MNode memory to the destination buffer,
which has been set to CN buffer by the RECV.

Mapped page store. The WR chain receives a tt addr
and stores the received page data (page content) at the
address specified in that entry. The WRs used in this chain
are similar to page load: the RECV (¶) fills the source
field of the next READ with tt addr and places the
page content in a temporary page buffer (page buf).
Then, the READ WR looks up the page address (·) stored
in the TT entry. Subsequently, the next WRITE writes the
page content to that page from page buf (¸). Finally, we
use an additional WRITE (¹) to notify the CNode of the
completion of this request by writing a magic number to a
CNode-provided buffer (signal addr).

Unmapped page store. This is the most complicated WR
chain in ODRP, which is responsible for allocating a free
page, mapping it in the TT, and storing the received page.

At a high level, this WR chain receives a tt_addr and
allocates a page from the free page queue (·). It then maps
the allocated page address to the TT entry (¸) and stores
the received page data (page content) in the newly allo-
cated page (¹–º). To pop a free page address from the page
queue, the chain uses an atomic FAA with modulo support
to increment the head pointer by 8 (head = head+ 8). The
fetched old value of the head pointer (old head) points to the
allocated queue element that contains a free page address.

Note that the FAA retrieves old head in little-endian for-
mat, which is consistent with that of a typical host CPU (e.g.,
x86-64). However, the subsequent WRs assume that their
src or dst fields are in big-endian format. To correctly read
the allocated page address (∗old head), we use the afore-
mentioned EndianSwap WR to convert it to big-endian for-
mat. Given the free page address, it is straightforward to map
it in the TT entry (¸) and store the page content with
WRITE (¹–º). Finally, we notify the CNode with another

1106 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

WRITE (»), similar to the mapped page store WR chain.

Page invalidation. Due to space limitations, we omit this
chain in Figure 6, which is similar to the unmapped page
store WR chain. At a high level, we first read the address
of the page to be released from the TT entry. Next, we
insert the address back to the page queue by increment-
ing the tail pointer with FAA (tail = tail + 8) and us-
ing WRITE to store the freed page address to the old tail
(∗old tail = page addr). Finallyt, we unmap this page in
the CNode’s TT by setting the TT entry to zero.

Handling empty free page queue and crashed CNodes.
There are two corner cases in ODRP: all memory pages
on the MNode are allocated (i.e., the free page queue is
empty) and a CNode crashes unexpectedly. First, we use an
invalidation-based mechanism to detect the empty free page
queue and abort the allocation if necessary. Specifically, af-
ter each allocation, we clear the allocated queue element
(∗old head = 0). As a result, the first allocation attempt
on the empty queue will return a null page address, causing
the subsequent WRs to throw an RDMA protection error. To
this end, we add a WRITE WR after the fifth WRITE WR
(º) of the unmapped store chain to set the queue element to
zero. A limitation of this approach is that if such an error oc-
curs, we need to use the MNode CPU to recover the state of
the free page queue (i.e., reset the head pointer to the correct
value), as page invalidation requests may continue pushing
free pages into the corrupted page queue.

Second, when a CNode crashes unexpectedly, ODRP
needs to recycle the resources allocated to it, including mem-
ory pages and its TT. In ODRP, the MNode detects crashed
CNodes via heartbeat signals. Upon detecting a crashed CN-
ode, the MNode scans its TT and releases the pages con-
tained in the mapped TT entries. Then, the MNode releases
the crashed CNode’s TT.

4.4 CNode-side ODRP Backend
For each type of WR chain, the CNode backend has an
RDMA connection to the MNode, and the MNode-side work
queue (WQ) is pre-populated with corresponding WR chains
to handle requests.

Swap API implementation. ODRP provides a Linux
frontswap [3] backend, which operates as a swap device at
the CNode. The API implementation is as follows:
• load: The backend calculates the tt addr based on

the swap address and invoke the page load WR chain by
posting an RDMA SEND.

• store: The backend checks whether the swap address
is mapped. If it is, the mapped page store chain is called;
otherwise, the unmapped page store chain is invoked.

• invalidate: The backend invokes the page invalida-
tion chain.

In the cases of load and invalidate operations, the
swap address has a valid mapping in the TT because it must

have been previously stored. However, store lacks this in-
formation. A naive approach would be to add extra logic in
the WR chain to look up the TT and allocate a page if the
target swap address is unmapped. However, it is inefficient
due to the extra WRs per chain. Our observation is that a
CNode’s swap backend actually has full knowledge of the re-
mote allocation status: (1) the entire swap space is unmapped
initially (i.e., the whole TT starts out empty), and (2) an al-
located page can only be freed by the CNode’s page invali-
dation request, meaning the CNode controls the unmapping
operation. Therefore, each CNode can maintain a bitmap to
record the allocation state of each page in its swap space.
With this information,store can determine whether the tar-
get swap address is mapped and invoke the appropriate WR
chain (mapped page store or unmapped page store).

CNode-assisted MNode WR recycle. After a WR chain
is executed, the WRs in it are logically dequeued from the
WQ. To serve future requests, an intuitive approach is to
post new WRs with the CPU. However, this would cause un-
expected stalls in the RNIC’s processing pipeline since the
wimpy MNode CPU can only post asynchronously at a rela-
tively low rate. To bypass the MNode CPU, ODRP makes a
key observation that executed WRs are not physically erased
from the WQs. Thus, by modifying the WR metadata, which
is stored in WQs, we can reactivate executed WRs2.

More specifically, to make the RNIC wrap around to the
beginning of the WQ, we only need to modify the index field
of the RNIC’s ordering primitives, namely WAIT and EN-
ABLE. This field indicates the index of the WR affected by
these ordering primitives. Special attention needs to be paid
to the RECV WR, which serves as the triggering WR of each
WR chain. We discovered that to inform the RNIC that the
consumed RECV is ready for re-execution, it is only neces-
sary to modify the doorbell record value of the WQ.

Putting it all together, to recycle executed WRs without in-
volving the MNode CPU, a straightforward way is to inject
additional FAA and EndianSwap WRs in the chain to update
the index field [34] and the doorbell record. However, this
adds extra WRs to the WR chains and introduces a perfor-
mance penalty. To avoid using additional WRs for index cal-
culation and updating, we shift this calculation to CNodes.
To be specific, the CNode will piggyback the calculated val-
ues with other arguments when sending requests. The RECV
WR in the WR chain will use these values to update the in-
dex field and the doorbell record. As a result, no extra WR is
needed for recycling.

4.5 Correctness under Benign and Malicious CN-
odes

We define the correctness of ODRP in two aspects. First,
the TTs and the free page queue must always be consistent.

2RedN [34] proposed WQ recycling to implement unbounded loops. How-
ever, to the best of our knowledge, no one has found a solution to recycle
RECV. RedN’s open-source code also does not implement their strategy.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1107

Specifically, these data structures are consistent if and only
if (1) the free pages in the free page queue cannot be mapped
to any TTs, and (2) each allocated page can only be mapped
in exactly one TT. Second, requests from different CNodes
must be isolated; i.e., a load or store can only access the page
mapped in the CNode’s own TT, even in the presence of ma-
licious CNodes.

4.5.1 Correctness under Benign CNodes

Consistency. We informally argue that our WR chains can
ensure consistency via induction. We first initialize the
MNode to a consistent state by ensuring each page exists
exactly once in the free page queue, and leave all the TTs
empty. We then demonstrate that the execution of CNode
requests will maintain the consistency of these data struc-
tures. This is straightforward when not considering concur-
rent requests. Executing a load or a mapped store operation,
which does not modify the TT and the free page queue, natu-
rally preserves this consistency. For the unmapped store op-
eration, since it faithfully performs a dequeue operation, we
only need to ensure that the free page address popped from
the queue is consistent with the address written to the TT
entry, which is obvious under our assumption of benign CN-
odes. Finally, page invalidation is the reverse operation of an
unmapped store, so the argument is the same.

For concurrent unmapped store and invalidation opera-
tions, we use RDMA’s atomic FAA to avoid race conditions,
similar to other concurrent queues [31]. Concurrent load/-
store operations targeted on the same tt_addr are inher-
ently avoided due to the semantics of the swap subsystem.
One tricky case is when the unmapped store and invalidation
operations are executed concurrently. Ideally, there is no race
condition between them because the ummapped store oper-
ation only modifies the queue head, while the invalidation
modifies the queue tail. However, a potential race condition
emerges when the queue is empty, i.e., the queue head and
tail point to the same address. In this scenario, an unmapped
store operation may read the queue head while an invalida-
tion operation concurrently writes to this head. We require
RDMA to provide atomic 8 B read and write for correct-
ness, which is ensured by hardware with cache-aligned ac-
cesses [15, 16, 30, 42]. With this atomicity guarantee, the un-
mapped store operation will either get the latest invalidated
page or a null address. Both cases are correct.

Isolation. Since all load and store requests can only access
pages mapped in the CNode’s own TT, requests from differ-
ent CNodes are isolated as long as their TTs are consistent,
which has been demonstrated above.

4.5.2 Handling Malicious CNodes

Security model. We assume MNodes are trustworthy, while
CNodes can be compromised, the same as existing sys-
tems [11, 19, 22]. A malicious CNode might send illegal re-
quests with invalid arguments (e.g., invalid tt_addr), or

try to exhaust the memory resources of the MNode by con-
tinuously sending unmapped store requests. We show that
malicious CNodes requests will be rejected by the MNode.

Correctness under illegal requests. Such requests can be
categorized into two types: one with an illegal operand code
(e.g., an RDMA READ instead of SEND) or one with an
invalid argument. For the first one, we can configure the
RDMA connection permission such that they will be rejected
by the RNIC. For the latter, we only need to handle the in-
valid tt_addr, as the WRs manipulate TTs and the free
page queue based on it (see Figure 6). Specifically, an invalid
tt_addr can be (1) misaligned, (2) out-of-range and (3) be-
ing unmapped in a request that assumes mapped tt_addr.
For (1), we can configure the RECV WR to only use the
upper bits of the tt_addr to efficiently avoid misaligned
tt_addr. For (2), we use RDMA’s memory registration to
ensure that all the WRs in WR chains can only access the
CNode’s own TT. For (3), we ensure the unmapped TT en-
tries are zero through proper initialization and clean-up. As
a result, such an argument will cause an RDMA protect error
due to null access, which will abort execution. Additionally,
we insert a conditional check similar to the one described in
Figure 2 to rule out unmapped tt_addr in page invalida-
tion operations.

Fairness. To ensure fairness, we follow existing works [11,
19] that set a budget for the maximum allocated memory for
CNodes. If the budget is exhausted, the MNode will reject al-
location requests from the CNode to maintain fairness. The
challenge is how to keep track of each CNode’s usage. Exist-
ing systems can leverage the CPU to actively record it before
allocating memory to a CNode. However, in ODRP, we by-
pass the MNode CPU in memory allocation. To address this,
we leverage a lazy detection method to periodically check
whether a CNode exceeds its budget. Specifically, we use
one CPU core at the MNode to monitor the memory usage
of each CNode. The challenge is how to efficiently perform
this bookkeeping. A naive solution would be scanning the
TTs, which would incur significant CPU overhead. Fortu-
nately, we can leverage the RDMA hardware counters [35]
for this calculation. These counters record the completion of
WRs in the unmapped store and invalidation WR chains. By
comparing these counters, we can efficiently get the number
of allocated pages of a CNode.

5 EVALUATION

5.1 Evaluation Setup.
Testbed. Our experiments are conducted on a cluster with
one MNode and up to 8 CNodes, all connected with an Infini-
Band switch. Each node has a 12-core Intel Xeon E5-2650
CPU (hyper-threading is disabled), 128 GB DDR4 RAM,
and a 100 Gbps Mellanox ConnectX-5 RNIC. Each node
runs Mellanox OFED 4.9 and Linux 4.15. Each CNode is
configured with 12 GB swap space.

1108 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

One-sided (Static) One-sided (Dynamic) Two-sided ODRP One-sided (Dynamic/4KB)

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

75% 50%
0.0

0.5

1.0

M
e

m
o

ry
 u

ti
liz

a
ti
o

n optimal

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
0.0

0.5

1.0

C
P

U
 u

ti
liz

a
ti
o

n

0 0 0 0

upper
limit

75% 50%
In-Memory Working Set

 Quicksort

0

50

100

150

200

250

300

350

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Fail

75% 50%
In-Memory Working Set

 K-means

0

200

400

600

800

1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Fail

75% 50%
In-Memory Working Set

 Memcached

0

100

200

300

400

500

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Fail

75% 50%
In-Memory Working Set
 Betweenness Centrality

0

10

20

30

40

50

60

70

80

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Fail Fail

75% 50%
In-Memory Working Set

 Page Rank

0

40

80

120

160

200

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Fail Fail

75% 50%
In-Memory Working Set

 VoltDB

0

10

20

30

40

50

T
P

S
 (

T
h

o
u

s
a

n
d

s
)

Fail Fail

Figure 7: Remote memory utilization (higher is better), remote CPU usage (lower is better), and the execution time (throughput)
of ODRP and other four baseline systems under different workloads with 8 CNodes accessing one shared MNode.

Baselines. We compare ODRP with four baselines as de-
scribed in § 2.2: 1) One-sided (static), pre-registering 12 GB
of remote memory for each CNode; 2) One-sided (dynamic),
preparing 1 MB MRs in advance while allocating them to the
CNode on-demand; 3) Two-sided, using two-sided RDMA
operations in the data path to implement 4 KB-granularity
memory management; 4) One-sided (dynamic/4KB), same
as One-sided (dynamic) but performing 4 KB allocation. The
MNode only uses one CPU core to simulate the weak pro-
cessing power, unless otherwise specified. We implement
all the baselines based on Fastswap [11] and compare them
to ODRP, aiming to demonstrate that ODRP outperforms
baselines regarding application performance, remote mem-
ory utilization, and remote CPU usage.

Evaluated applications. We evaluate the applications used
in prior memory disaggregation studies [19, 11, 43]. 1)
Quicksort with a 4 GB working set; 2) Kmeans with a 2 GB
working set; 3) Memcached v1.4.25 with Facebook ETC
workload [12] (4 GB working set), a server thread and four
client threads; 4) Page rank (PR) and 5) betweenness cen-
trality (BC) from GAPBS [13] on a Twitter dataset [24], 4
threads and a 14 GB working set; 6) VoltDB with TPC-C [8],
8 threads and a 7 GB working set.

5.2 Application Benchmarks
We run the applications on all available hardware in our clus-
ter, which consists of 8 CNodes and one shared MNode. This
cluster setup aligns with the typical deployment of memory
disaggregation, such as in cloud environments [26].

Memory utilization. The first row of Figure 7 illustrates the
average remote memory utilization during application run-
time, which is measured as the ratio of actually used remote
memory to allocated remote memory. One-sided (static) can
only achieve up to 58.3% remote memory utilization be-

cause of its coarse-grained static allocation. One-sided (dy-
namic) can significantly improve remote memory utilization
by adopting fine-grained allocation. However, it still can-
not achieve ideal utilization because of the fragments within
1 MB memory slabs. It achieves about 95% remote mem-
ory utilization for workloads where internal fragmentation is
not significant, such as Kmeans, betweenness centrality, and
page rank. More severe internal fragmentation can lead to
worse remote memory utilization. For example, One-sided
(dynamic) can only achieve 55% remote memory utilization
in the case of Quicksort with 50% local memory.

In contrast, thanks to the page-granularity memory man-
agement, ODRP, Two-sided, and One-sided (dynamic/4KB)
can achieve ideal remote memory utilization (100%). This
results in up to 1.82× improvement over One-sided (dy-
namic) and a 1.72× to 12× enhancement compared to One-
sided (static).

Remote CPU usage. As shown in the second row of Fig-
ure 7, both One-sided (dynamic) and Two-sided reach the up-
per limit of one MNode CPU core in all workloads. The sat-
urated MNode CPU turns into a performance bottleneck, as
discussed in more detail in § 5.3. Some workloads even fail
to complete in One-sided (dynamic/4KB). If we use a single-
CNode evaluation setup, One-sided (dynamic) results in a
maximum of 67% remote CPU usage because the MNode
CPU needs to serve memory (de)allocation requests. Two-
sided requires higher remote CPU usage because it involves
the MNode CPU in every swap in/out request. In Kmeans
and graph processing workloads, which involve more fre-
quent swap operations, Two-sided leads to 86% and 99% re-
mote CPU usage, respectively.

For One-sided (dynamic/4KB), we removed the restriction
of providing only one MNode CPU core, otherwise the appli-
cations fail to complete. One-sided (dynamic/4KB) requires

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1109

1 2 3 4 5 6 7 8
CNodes

0

400

800

1200

1600

C
P

U
 u

s
a

g
e

 (
%

)

1 2 3 4 5 6 7 8
CNodes

0

100

200

300

400

500

600

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

One-sided (Static)
One-sided (Dynamic)

Two-sided
ODRP

One-sided (Dynamic)-sufficient-CPU
Two-sided-sufficient-CPU

Figure 8: The impact of increasing the number of CNodes
(each with 4 Quicksort tasks) on (a) Remote CPU usage and
(b) Execution time

the most intensive MNode CPU involvement and can use up
to 3 MNode CPU cores in the single-CNode setup. In the 8-
CNode setup, some applications even fail to complete due to
poor performance.

In contrast, One-sided (static) does not require the MNode
CPU during runtime due to its static allocation (i.e., all re-
mote memory is provisioned at initialization time). ODRP
implements all of its memory management logic through
RDMA offloading, thereby also bypassing the MNode CPU.

Performance. The third row of Figure 7 presents the ap-
plication performance (execution time or throughput). The
red line indicates the performance with 100% local mem-
ory (optimal). For Quicksort, compared to One-sided (static),
ODRP shows a modest performance overhead of 9.7%. In
contrast, One-sided (dynamic) experiences a 24.3% perfor-
mance overhead because the MNode CPU becomes satu-
rated, causing allocation requests to queue up. Two-sided
encounters substantial performance degradation, primarily
due to significantly slower remote access and swap request
queuing. resulting in a 142.4% overhead. One-sided (dynam-
ic/4KB) shows the worst performance due to frequent MR
registering. It introduces an 80.1% performance overhead
with 75% local memory, and the application fails to com-
plete with 50% local memory.

For Kmeans, reducing the in-memory working set has a
more severe impact on its execution time because it triggers
the most frequent major page faults that need swap opera-
tions in all evaluated workloads, averaging 6,400 times per
second (46.7% higher than Quicksort). Compared to One-
sided (static), ODRP experiences slightly higher swapping
latency due to more frequent swap requests, as detailed in
§ 5.4. In this swapping-intensive workload, ODRP intro-
duces a 14.2% performance overhead compared to One-
sided (static).

For Memcached, both ODRP and One-sided (dynamic)
demonstrate negligible performance overhead when local
memory is decreased, because the swap operations are less
frequent. ODRP incurs a 7.2% performance overhead com-
pared with One-sided (static). Additionally, in terms of the
query latency, the average and maximum latency increases
introduced by ODRP always remain below 2%.

For BC and PR, ODRP’s performance overhead is 6.3%

0 200 400 600 800 1000 1200 1400

Swap Throughput (kops/s)

0

100

200

300

400

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

One-sided (Static)
One-sided (Dynamic)

Two-sided
ODRP

One-sided (Dynamic)-sufficient-CPU
Two-sided-sufficient-CPU

Figure 9: The average swap throughput (i.e., the number of
swap in/out requests per second) and the application execu-
tion time increase as the number of CNodes (each running 4
Quicksort tasks) increases from 1 to 8.

and 11.5% compared to One-sided (static), respectively. It
can outperform One-sided (dynamic) by up to 15.4%. For
VoltDB, ODRP reduces throughput by 4.1% compared to
One-sided (static). Regarding transaction latency, ODRP
modestly elevates both the average and maximum latencies
by less than 1% and 4.9%, respectively.

5.3 Scalability Analysis
In this section, we analyze the scalability of ODRP by in-
creasing the number of CNodes and compare it to other
baselines. We choose Quicksort because its swap frequency
is relatively high, which can more effectively demonstrate
the sensitivity of ODRP under different scales of swap fre-
quency.

Scalability with the increasing number of CNodes. Fig-
ure 8 shows the average execution time and remote CPU us-
age as we increase the number of CNodes from 1 to 8, each
running four Quicksort tasks (50% local memory). Despite
achieving ideal remote memory utilization, Two-sided ex-
hibits the poorest performance and scalability. The MNode
CPU has been saturated with just one CNode. With 8 CN-
odes (i.e., 32 Quicksort tasks), it results in a 505% perfor-
mance overhead compared to One-sided (static). Although
One-sided (dynamic) can attain up to 77% remote memory
utilization, it also overwhelms the MNode CPU with just one
CNode and introduces a 234% performance overhead at 8
CNodes compared to One-sided (static). In contrast, ODRP
offloads all memory management operations to the RNIC
and is not limited by the wimpy MNode CPU. Consequently,
ODRP demonstrates superior performance and scalability
compared to Two-sided and One-sided (dynamic).

Throughput-latency. To demonstrate that ODRP can scale,
we measure the overall swap throughput with respect to the
application execution time. As shown in Figure 9, both One-
sided (static) and ODRP reach a saturation point for the
swap throughput at 8 CNodes, with ODRP achieving 87.3%
of the swap throughput of One-sided (static). Consequently,
ODRP incurs performance overheads of 5.7% and 14.6% at
4 and 8 CNodes, respectively. Nevertheless, ODRP signif-
icantly improves remote memory utilization, achieving 3 ×
better utilization than One-sided (static).

1110 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 4 8 12 16 20 24 28 32

CNode threads

0

2

4

6

8

10

12

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Page Load
Unmapped Page Store

Mapped Page Store
Page Load (I/O depth = 10)

One-sided (Static)

Figure 10: The throughput of different data path operations
in ODRP and One-sided (static).

Microbenchmark analysis. To further analyze the scalabil-
ity of ODRP, we evaluate the throughput of various data
path operations in ODRP and One-sided (static). As shown
in Figure 10, the throughput of page load operation with
high I/O depth reaches 92.1% of the throughput achieved
by RDMA READ/WRITE operations, i.e., data path oper-
ations in One-sided (static). The unmapped page store oper-
ation exhibits the lowest throughput because the throughput
of RDMA atomic FAA, which is required by it, is an order of
magnitude lower than that of RDMA READ/WRITE [34].

Even though ODRP introduces overhead to swap re-
quests, application performance in ODRP is still on par with
that in One-sided (static). This can be attributed to two rea-
sons. First, page load requests account for the majority of
all requests (more than 60% of the swap requests are page
load) and they are sent by the CNode’s swap backend in a
batched manner due to page prefetching, where the perfor-
mance of ODRP and One-sided (static) is similar. Mean-
while, the least efficient unmapped page store operation only
accounts for approximately 10% of the requests. Second, the
RNIC supports a high throughput of RDMA requests, such
that even applications with high swap frequency can barely
saturate it (see Figure 9).

Comparisons with baselines with sufficient MNode CPU.
We further include two baselines where enough MNode CPU
cores are provisioned to One-sided (dynamic) and Two-
sided. As shown in Figure 8, Two-sided costs up to 16
MNode CPU cores, but it still cannot achieve the throughput
of ODRP and incurs up to a 67.3% performance overhead
compared to ODRP. One-sided (dynamic), being less de-
manding on the MNode CPU, can achieve higher throughput
with up to 10 MNode CPU cores. Nevertheless, it remains
46.4% slower compared to ODRP at 8 CNodes due to addi-
tional time spent on memory (de)allocation. This is because
the (de)allocation operations are costly when executed with
the MNode CPU, and they are not rare during execution, oc-
curring on average 3,000 times per second.

5.4 Factor Analysis
Figure 11 shows the latency of various data path operations
in ODRP and baseline systems. When there is only one
worker issuing requests (without resource competition), the
one-sided RDMA READ/WRITE in One-sided (static) ex-
hibits the lowest latency, measuring at 2.9µs. In ODRP, the

550

555
1 worker 24 concurrent workers

135

140

One-sided
(Static)

Allocation
(Dynamic)

Two-sided ODRP
Load

ODRP
Store

(mapped)

ODRP
Store

(unmapped)

0

5

10

15

20

L
a

te
n

c
y
 (

u
s
)

Figure 11: Latency of various data path operations.
Allocation refers to acquiring a 1 MB memory slab (i.e.,
MR) in One-sided (dynamic).

most frequent operations, namely load and mapped store,
have latencies of 5.5µs and 4.6µs, respectively. Note that
such an increase in latency can be mitigated by the swap
system, e.g., with page prefetching and asynchronous page
store. In comparison, the data path operations in Two-sided
have significantly higher latency, 3.8× than that of the native
one-sided operations. Note that One-sided (dynamic) also
utilizes native one-sided operations in the data path, and the
latency of Allocation is not excessive. This explains why
One-sided (dynamic) does not introduce substantial perfor-
mance overhead when the MNode CPU is not overly over-
whelmed.

When there are 24 concurrent workers issuing requests,
there is an order of magnitude increase in the latency of
Allocation and Two-sided data path operations due to
the overloaded MNode CPU. This explains why both One-
sided (static) and Two-sided experience a sharp decrease in
performance as the number of CNode rises (see Figure 8).

The effect of ODRP optimizations. To quantify ODRP’s
optimizations for WR chains, we break down the execu-
tion time of the unmapped page store WR chain. The naive
unmapped page store exhibits an unacceptable latency of
35.9µs. StoreDecision (§ 4.4) splits the page store op-
eration into mapped page store and unmapped page store
to avoid an if statement in the WR chain, saving one
CAS and one WRITE and reducing the latency by 1.9µs.
CalcTTAddr (§ 4.3) avoids calculating tt_addr in the
WR chain, saving one FAA WR and one EndianSwap
WR and reducing latency the by 2.4µs. RecycleHelper
(§ 4.4) prevents the use of additional FAA and EndianSwap
WRs for reactivating WR chains, reducing the latency by
16µs. Finally, EndianSwap (§ 4.2) reduces the number of
WRs needed for the endian conversion from 8 READ to 1
READ with 8 SGEs, further reducing the latency by 6.2µs.

6 DISCUSSION

Extensibility. We implemented ODRP’s CNode backend
and the WR chain offloading (based on the RedN frame-
work [34]) with about 1,300 and 2,400 lines of C code, re-
spectively. Our prototype implementation only considers a
setup where multiple CNodes share one MNode. However,

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1111

Figure 12: Analysis of ODRP optimizations to the average
latency of unmapped store.

ODRP can be easily extended to support a multi-CNode-
multi-MNode setup. To achieve this, a CNode only needs to
partition its swap space across different MNodes and then
locates the respective MNodes accordingly during runtime.

Furthermore, ODRP supports configurable allocation and
access granularity, making it compatible for integration with
other memory disaggregation systems [36, 43, 20, 33] that
focus on optimizing CNode runtime. ODRP can improve
their remote memory utilization while preserving the ben-
efits of an optimized CNode runtime.

Memory Overhead of Translation Table. In ODRP, the
MNode maintains a TT for each CNode that connects to it.
The TT size depends on the size of the swap space provi-
sioned to CNodes. Each TT entry stores an 8 B free page
address. For a 32 GB swap space, the TT only occupies 64
MB of memory (0.2% memory overhead). Furthermore, this
memory overhead can be alleviated by registering TTs as
On-Demand-Paging MRs [5].

Suggestions to Future RNIC Vendors. Currently, the
RNIC can only fetch and execute WRs one-by-one from
the WQ in host memory if preceding WRs need to update
subsequent WRs. This hampers efficiency when offloading
complex functionalities. In the future, RNICs could incorpo-
rate a prefetching mechanism to speed up the execution of
the self-modifying WR chains. Additionally, we encourage
RNIC vendors to provide primitives with richer semantics.
We have demonstrated that implementing this would not be
overly challenging based on the current RNIC hardware. By
introducing more powerful WRs, the length of WR chain can
be reduced, and the development effort can be saved.

7 RELATED WORK

RDMA-based Remote Swapping. Previous research stud-
ies have adopted RDMA remote memory as a swap back-
end [19, 11, 33, 28, 43, 40]. Infiniswap [19] places frequently
accessed area of its swap space in remote memory to boost
performance. Fastswap [11] further improves swapping per-
formance by utilizing frontswap [3] interfaces. It makes
non-critical operations asynchronous and creates a dedicated
thread for asynchronous page reclamation. Leap [28] designs
a more efficient page prefetching policy suited for remote
memory, which is based on majority-based pattern detection.
DiLOS [43] proposes to use a single address space operat-
ing system (SASOS) to reduce kernel-user switching over-
head and improve performance with user-space semantics.

However, none of these studies fully utilize remote memory
due to their static and coarse-grained remote memory man-
agement. ODRP focuses on providing fine-grained memory
management with RDMA offloading.

Fine-grained Remote Memory Management. CoRM [38]
reduces memory fragmentation by leveraging Mellanox’s
ODP feature [5] to achieve remote memory compaction.
However, CoRM requires intensive CPU involvement to
compact memory, which is not suitable for wimpy MNode
CPU cores. Programmable hardware devices have also been
adopted to support complex computation offloading, such as
SmartNICs and FPGAs. Clio [21] relies on dedicated FP-
GAs and network to virtualize and manage remote memory
at a 4 MB granularity. TDMem [22] also utilizes specialized
FPGAs and backbone network to support fine-grained and
secure memory disaggregation. However, utilizing such spe-
cialized programmable hardware comes with higher costs,
additional maintenance burdens, and longer deployment cy-
cles [7]. ODRP aims to provide fine-grained memory man-
agement on commodity RNICs.

RDMA Offloading. Hyperloop [23] was the first to demon-
strate that offloading complex functionality to RNICs can
be achieved by combining native RDMA WRs. It lever-
ages this offloading capability to eliminate CPU’s involve-
ment from the critical path of replicated transactions in stor-
age systems. Furthermore, RedN [34] has recently proven
that RDMA is actually Turing-complete by carefully chain-
ing self-modifying and data-dependent RDMA WRs. RedN
provides a blueprint for offloading arbitrary computation
logic onto RNICs, and demonstrates its effectiveness and
efficiency with two simple use cases: hash lookup and list
traversal. ODRP utilizes RDMA offloading to provide fine-
grained and efficient remote memory management, bringing
ideal remote memory utilization.

8 CONCLUSION

ODRP demonstrates the viability of fully offloading a com-
plex system (remote swap device) to RNIC, which achieves
nearly zero remote CPU usage, high remote memory utiliza-
tion, and low performance overhead. We highlight the ad-
vantages and limitations of RDMA offloading and, more im-
portantly, we propose the use of client-assisted principle to
mitigate many of the limitations.

ACKNOWLEDGMENT

We sincerely thank all the anonymous reviewers, whose
reviews, feedbacks, and suggestions have significantly
strengthened our work. This research was supported in part
by the National Natural Science Foundation of China (No.
62202292), the National Key Research & Development Pro-
gram of China (No. 2022YFB4500700), the Fundamental
Research Funds for the Central Universities, and research
grants from Huawei Technologies and Intel. Corresponding
author: Jinyu Gu (gujinyu@sjtu.edu.cn).

1112 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

gujinyu@sjtu.edu.cn

REFERENCES

[1] Enabling the Modern Data Center – RDMA for the En-
terprise. https://www.infinibandta.org/.

[2] Extended Atomics Support. https://docs.nvidia.com/
networking/display/rdmacore50/Extended+Atomics.

[3] Frontswap. https://www.kernel.org/doc/html/v5.5/vm/
frontswap.html.

[4] memcached - a distributed memory object caching sys-
tem. https://memcached.org/.

[5] RDMA On-Demand-Paging (ODP). https:
//docs.nvidia.com/networking/display/
OFEDv501000/Optimized+Memory+Access#
OptimizedMemoryAccess-On-Demand-Paging(ODP).

[6] Redis. https://redis.io/.
[7] Shop End-to-End High-Speed Ethernet and InfiniBand

Solutions. https://store.nvidia.com/en-us/networking/.
[8] TPC-C is an On-Line Transaction Processing Bench-

mark. https://www.tpc.org/tpcc/.
[9] VoltDB. Volt Active Data. https://github.com/VoltDB/

voltdb.
[10] Advanced transport. https://docs.nvidia.com/

networking/display/OFEDv502180/Advanced+
Transport, 2023.

[11] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K. Aguilera, Au-
rojit Panda, Sylvia Ratnasamy, and Scott Shenker. Can
far memory improve job throughput? In Proceedings of
the Fifteenth European Conference on Computer Sys-
tems, EuroSys ’20, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint Interna-
tional Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Comput-
ing Machinery.

[13] Scott Beamer, Krste Asanovic, and David A. Patterson.
The GAP benchmark suite. CoRR, abs/1508.03619,
2015.

[14] Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page
79–92, New York, NY, USA, 2021. Association for
Computing Machinery.

[15] Alexandros Daglis, Dmitrii Ustiugov, Stanko No-
vakovic, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Sabres: Atomic object reads for in-memory rack-

scale computing. In 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2016,
Taipei, Taiwan, October 15-19, 2016, pages 6:1–6:13.
IEEE Computer Society, 2016.

[16] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14), pages
401–414, Seattle, WA, April 2014. USENIX Associ-
ation.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the
25th Symposium on Operating Systems Principles,
SOSP ’15, page 54–70, New York, NY, USA, 2015.
Association for Computing Machinery.

[18] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and
Myoungsoo Jung. Direct access, High-Performance
memory disaggregation with DirectCXL. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, Carlsbad, CA, July 2022.
USENIX Association.

[19] Juncheng Gu, Youngmoon Lee, Yiwen Zhang,
Mosharaf Chowdhury, and Kang G. Shin. Efficient
memory disaggregation with infiniswap. In 14th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 649–667,
Boston, MA, March 2017. USENIX Association.

[20] Zhiyuan Guo, Zijian He, and Yiying Zhang. Mira: A
program-behavior-guided far memory system. In Pro-
ceedings of the 29th Symposium on Operating Systems
Principles, SOSP ’23, page 692–708, New York, NY,
USA, 2023. Association for Computing Machinery.

[21] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong
Huang, and Yiying Zhang. Clio: A hardware-software
co-designed disaggregated memory system. In Pro-
ceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, page 417–433,
New York, NY, USA, 2022. Association for Comput-
ing Machinery.

[22] Taekyung Heo, Seunghyo Kang, Sanghyeon Lee, Soo-
jin Hwang, and Jaehyuk Huh. Hardware-assisted
trusted memory disaggregation for secure far memory.
CoRR, abs/2108.11507, 2021.

[23] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-based
nic-offloading to accelerate replicated transactions in
multi-tenant storage systems. In Proceedings of the

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1113

https://www.infinibandta.org/
https://docs.nvidia.com/networking/display/rdmacore50/Extended+Atomics
https://docs.nvidia.com/networking/display/rdmacore50/Extended+Atomics
https://www.kernel.org/doc/html/v5.5/vm/frontswap.html
https://www.kernel.org/doc/html/v5.5/vm/frontswap.html
https://memcached.org/
https://docs.nvidia.com/networking/display/OFEDv501000/Optimized+Memory+Access#OptimizedMemoryAccess-On-Demand-Paging(ODP)
https://docs.nvidia.com/networking/display/OFEDv501000/Optimized+Memory+Access#OptimizedMemoryAccess-On-Demand-Paging(ODP)
https://docs.nvidia.com/networking/display/OFEDv501000/Optimized+Memory+Access#OptimizedMemoryAccess-On-Demand-Paging(ODP)
https://docs.nvidia.com/networking/display/OFEDv501000/Optimized+Memory+Access#OptimizedMemoryAccess-On-Demand-Paging(ODP)
https://redis.io/
https://store.nvidia.com/en-us/networking/
https://www.tpc.org/tpcc/
https://github.com/VoltDB/voltdb
https://github.com/VoltDB/voltdb
https://docs.nvidia.com/networking/display/OFEDv502180/Advanced+Transport
https://docs.nvidia.com/networking/display/OFEDv502180/Advanced+Transport
https://docs.nvidia.com/networking/display/OFEDv502180/Advanced+Transport

2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, page 297–312,
New York, NY, USA, 2018. Association for Computing
Machinery.

[24] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. What is Twitter, a social network or a news
media? In WWW ’10: Proceedings of the 19th interna-
tional conference on World wide web, pages 591–600,
New York, NY, USA, 2010. ACM.

[25] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G. Shin. Hydra : Resilient
and highly available remote memory. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 181–198, Santa Clara, CA, February 2022.
USENIX Association.

[26] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel
Ernst, Pantea Zardoshti, Stanko Novakovic, Monish
Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal,
Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.
Pond: Cxl-based memory pooling systems for cloud
platforms. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
2, ASPLOS 2023, page 574–587, New York, NY, USA,
2023. Association for Computing Machinery.

[27] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong
Xu, and Tongxin Bai. Imbalance in the cloud: An anal-
ysis on alibaba cluster trace. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pages 2884–
2892, 2017.

[28] Hasan Al Maruf and Mosharaf Chowdhury. Effec-
tively prefetching remote memory with leap. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 843–857. USENIX Association, July 2020.

[29] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Jo-
hannes Weiner, Niket Agarwal, Pallab Bhattacharya,
Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. Tpp: Transparent page
placement for cxl-enabled tiered-memory. In Proceed-
ings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS 2023, page
742–755, New York, NY, USA, 2023. Association for
Computing Machinery.

[30] Jacob Nelson-Slivon, Reilly Yankovich, Ahmed Has-
san, and Roberto Palmieri. Brief announcement: Rome:
Wait-free objects for rdma. In Proceedings of the 36th
ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’24, page 371–373, New York, NY,
USA, 2024. Association for Computing Machinery.

[31] Ruslan Nikolaev. A scalable, portable, and memory-
efficient lock-free fifo queue. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

[32] Nathan Pemberton. Exploring the disaggregated mem-
ory interface design space. In Workshop on Resource
Disaggregation (WORD), 2019.

[33] Yifan Qiao, Chenxi Wang, Zhenyuan Ruan, Adam
Belay, Qingda Lu, Yiying Zhang, Miryung Kim,
and Guoqing Harry Xu. Hermit: Low-Latency,
High-Throughput, and transparent remote memory via
Feedback-Directed asynchrony. In 20th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 23), pages 181–198, Boston, MA, April
2023. USENIX Association.

[34] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. RDMA is turing complete, we just did not know
it yet! In 19th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 22), pages 71–
85, Renton, WA, April 2022. USENIX Association.

[35] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA security mechanisms. In 30th USENIX Security
Symposium (USENIX Security 21), pages 4277–4292.
USENIX Association, August 2021.

[36] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332. USENIX Asso-
ciation, November 2020.

[37] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A disseminated, distributed OS for
hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 69–87, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[38] Konstantin Taranov, Salvatore Di Girolamo, and
Torsten Hoefler. Corm: Compactable remote memory
over rdma. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21,
page 1811–1824, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[39] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li,
Zhenyuan Ruan, Khanh Nguyen, Michael D. Bond,
Ravi Netravali, Miryung Kim, and Guoqing Harry Xu.
Semeru: A Memory-Disaggregated managed runtime.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 261–280.
USENIX Association, November 2020.

[40] Chenxi Wang, Yifan Qiao, Haoran Ma, Shi Liu, Wen-
guang Chen, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Canvas: Isolated and adaptive swap-
ping for Multi-Applications on remote memory. In
20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), pages 161–179,
Boston, MA, April 2023. USENIX Association.

1114 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[41] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed trans-
actions: Hybrid is better! In 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI ’18, pages 233–251, 2018.

[42] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, page
87–104, New York, NY, USA, 2015. Association for
Computing Machinery.

[43] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and
Youngjin Kwon. Dilos: Do not trade compatibility for
performance in memory disaggregation. In Proceed-
ings of the 18th European Conference on Computer
Systems, EuroSys ’23, Rome, Italy, May 2023.

[44] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Steven D. Gribble and
Dina Katabi, editors, Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2012, San Jose, CA, USA, April 25-
27, 2012, pages 15–28. USENIX Association, 2012.

[45] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang,
and Yu Hua. One-sided rdma-conscious extendible
hashing for disaggregated memory. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages
15–29. USENIX Association, July 2021.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1115

	Introduction
	Background and Motivation
	Memory Disaggregation with RDMA
	RDMA Alternatives to Implement Swap-based Memory Disaggregation
	Issues with RDMA Alternatives for Swap-based Memory Disaggregation
	Programmable RDMA

	ODRP Overview
	Design and Implementation
	Data Structures at the MNode
	Meta WRs
	MNode-side WR Chains
	CNode-side ODRP Backend
	Correctness under Benign and Malicious CNodes
	Correctness under Benign CNodes
	Handling Malicious CNodes

	Evaluation
	Evaluation Setup.
	Application Benchmarks
	Scalability Analysis
	Factor Analysis

	Discussion
	Related Work
	Conclusion

