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Abstract
Realistic fine-grained traffic traces are valuable to numer-
ous applications in both academia and industry. However,
obtaining them directly from devices is significantly challeng-
ing, while coarse-grained counters are readily available on
almost all network devices. None of existing work can restore
fine-grained traffic traces from counters, which we call net-
work traffic super-resolution (TSR). To this end, we propose
ZOOMSYNTH, the first TSR system that can achieve packet-
level trace synthesis with counter traces as input. Following
the basic structure of the TSR task, we design the Granular
Traffic Transformer (GTT) model and the Composable Large
Traffic Model (CLTM). CLTM is a tree of GTT models, and
the GTT models in each layer perform upscaling on a par-
ticular granularity, which allows each GTT model to capture
the traffic characteristics at this resolution. Using CLTM, we
synthesize fine-grained traces from counters. We also lever-
age a rule-following model to comprehend counter rules (e.g.
ACLs) when available, guiding the generations of fine-grained
traces. We implement ZOOMSYNTH and perform extensive
evaluations. Results show that, with only second-level counter
traces, ZOOMSYNTH achieves synthesis quality comparable
to existing solutions that takes packet-level traces as input.
CLTM can also be fine-tuned to support downstream tasks.
For example, ZOOMSYNTH with fine-tuned CLTM outper-
forms the existing solution by 27.5% and 9.8% in anomaly
detection and service recognition tasks, respectively. To pro-
mote future research, we release the pre-trained CLTM-1.8B
model weights along with its source code.

1 Introduction
Fine-grained traffic traces are valuable to numerous applica-
tions in both academia and industry. Packet-level traces can
benefit performance evaluation of systems and algorithms in
all layers of the networking stack, from packet scheduling
to congestion control. Realistic traffic traces are also useful
in optimizing various tasks, such as traffic engineering [48],
network telemetry [53, 54], anomaly detection [75], and ser-
vice recognition [27]. However, obtaining fine-grained traffic
traces from devices is challenging due to factors such as busi-
ness confidentiality, device processing/capacity limits, and

Figure 1: CLTM is a tree of Granular Traffic Transformers
(GTTs).

privacy constraints [77].
Meanwhile, counters are readily available on almost all net-

work devices and can be collected by network management
systems (NMSs) [26, 43] (§2.2). On any network interface,
we can easily find counters that accumulate byte-count or
packet-count statistics. Counters are usually deeply embed-
ded in the chip registers of the networking hardware; thus,
they are high-performance, accurate, and reliable. Networking
engineers frequently use them to monitor network behaviors
or diagnose failures. But the problem with counters is that they
are coarse–grained — the frequency at which NMSs collect
them is typically in tens of seconds or even minutes. Without
involving deep modification using SDK of the networking
chip, a typical operating system of a networking device can
only report counters on the scale of seconds. This is far from
enough for the collection of packet-level fine-grained traces.

Given the abundance of counter statistics in NMSs and the
scarcity of fine-grained traffic traces, we seek to answer a
natural research question: Can we restore fine-grained traffic
traces from coarse-grained counters? Although there have
been continuous efforts in the synthesis of packet traces [28,
42, 50, 51, 71, 74, 77], none of them can recreate packet-level
traffic from coarse-grained counter statistics.

Recent advances in generative artificial intelligence give us
hope: for computer vision, image super-resolution (ISR) is a
similar and well-studied task [35, 49]. ISR is the task of recre-
ating high-resolution images (e.g. 1080p) from low-resolution
ones (e.g. 360p), and it has many existing algorithms and mod-
els that achieve high-quality results [78, 79].

However, our experiments show that ISR algorithms and
models cannot be applied directly to network traffic super-
resolution (TSR) (§2.3). We summarize the unique challenges
of TSR:

C1 Input Format: ISR and TSR work on different domains
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of data. A TSR system should take in a time-series (coun-
ters), and output a time-series (packets), while an ISR
system deals with images (grids of pixels).

C2 Extreme Upscaling Ratio: The required upscaling ratio
of TSR is many orders of magnitude larger than that
of ISR. Packet-level traces have timestamps at resolu-
tions of nanoseconds. To recreate a packet trace from
a per-second counter trace, the upscaling ratio is 109.
In contrast, the maximum ISR upscaling ratio of the
popular Stable Diffusion model is only 16 [21].

C3 Generality: Network traffic in different network envi-
ronments, such as the Internet, data centers, and access
networks, exhibits diverse characteristics. For TSR, even
when the coarse-grained traffic statistics remain consis-
tent, the features of the corresponding fine-grained traffic
should be different.

In addition, we define three more design requirements that
serve to broaden our scope of application.

R1 Multi-scale Synthesis: Some downstream tasks do not
require nanosecond-level timestamps, and a coarser-
grained trace would suffice. For example, traffic engi-
neering systems do not need traces with granularity of
nanoseconds but will benefit if we can upscale a trace’s
resolution from 1 hour to 1 minute. Thus, we intend to
generate traces with different upscaling ratios.

R2 Understanding Counter Rules: Due to the finite num-
ber of registers in network devices, operators often use
user-defined rules (e.g. ACL) to specify which flows
to track. Understanding the semantic meaning of these
rules can guide the TSR to generate traces adhering to
the rules. The rules can be accessed by operators from
their configuration databases or network devices [76],
and shared with researchers anonymously [72].

R3 Real-time Synthesis: Recreating high-resolution traf-
fic from counters in real time can enable various down-
stream tasks such as network telemetry, failure diagnosis,
and network digital twins [25].

Clearly, tackling these challenges and requirements simul-
taneously is ambitious, and an added difficulty is that we also
need to design a new base model architecture for TSR, given
that the existing models for ISR are unsatisfactory. We draw
inspiration from the basic structure of the problem: A coarse-
grained trace is the summary of many fine-grained traces. For
example, the trace of a second-level counter is the summary
of ten 100ms-level counters. This summarizing relationship
forms a tree structure (Fig. 1), and we design the base model
for TSR in the same way, which we name the Composable
Large Traffic Model (CLTM).

The core of CLTM is a tree of Granular Traffic Transform-
ers (GTTs). Each layer of the tree consists of the same GTT

modules only look at the traffic characteristics at this partic-
ular granularity. Concentrating on a particular scaling phase
(e.g. 1s to 100ms) better captures the characteristics of traffic
at this granularity. For instance, with the same 10× upscaling
factor, ten 100ms-level counters generated from a second-
level counter may have relatively average values, whereas the
subsequent 10ms-level counters may show a more uneven
distribution.

With CLTM, we design and implement ZOOMSYNTH,
the first network traffic synthesis system that supports TSR.
ZOOMSYNTH effectively tackles the aforementioned chal-
lenges and meets the specified requirements through a strate-
gic combination of innovative ideas in addition to CLTM.
Firstly, the tree of GTTs in CLTM addresses C1, C2, and R1,
simultaneously. For C3, to adapt to new synthesis scenarios,
we incorporate the Low-Rank Adaptation Model (LoRA) [40].
This adaptation model borrows the concept from domain adap-
tation in large language models (LLMs). Furthermore, we de-
velop a rule-following model based on Contrastive Language-
Image Pre-training (CLIP) [59], linking counter rules with the
generation of traffic traces, to understand counter rules (R2).
Finally, to achieve real-time generation (R3), we introduce
pipeline-parallelism to accelerate CLTM’s inference.

In summary, we make the following contributions.
• We illustrate the practical need for TSR and the availability

of counters, underscoring the importance of resolving fine-
grained traces from coarse-grained counters (§2).

• We design and implement ZOOMSYNTH1, the first TSR
system that facilitates multi-scale TSR based on counters,
with counter rules available as optional input (§3, §6).

• We propose CLTM, a novel base model architecture for
TSR, which breaks down the TSR process into multiple
phases, each employing a GTT tailored to the specific up-
scaling stage (§4).

• We evaluate ZOOMSYNTH with extensive testbed experi-
ments (§7) and confirm it meets the design goals. Notably,
across all distributional metrics and traces [6, 7, 9, 22, 31,
55, 57, 63], ZOOMSYNTH achieves packet trace synthe-
sis with up to 25.8% JSD and 20.1% EMD improvements
compared to the state-of-the-art schemes [46, 77]. ZOOM-
SYNTH can also achieve real-time generation with over
one billion packets per second with pipelined inference.
This work raises no ethical concerns. All traces used in this

paper contain no personally identifiable information (PII).

2 Background and Motivations

In this section, we first introduce the applications of TSR
(§2.1). Then, we demonstrate the wide availability of counters
(§2.2) and show that existing approaches cannot be applied
to TSR (§2.3). Finally, we motivate the design choices of
ZOOMSYNTH for TSR (§2.4).

1https://github.com/wxzisk/ZoomSynth_NSDI2025
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2.1 Applications of TSR
We believe that any application that requires realistic fine-
grained traffic traces can benefit from TSR, because TSR
can turn counter traces into fine-grained packet traces, and
counter traces are much easier to collect. Previous works [44,
50, 71, 74, 77] have explored a range of applications, includ-
ing telemetry algorithms, the evaluation of machine learning
models [77], and service recognition [46].

Accurate and real-time TSR can also enable new applica-
tions. One example is failure diagnosis using counters. Pre-
viously, counters could only offer operators a low-resolution
view of network state. With TSR, operators can expand the
counter trace into a high-likelihood packet trace, which can
help understand and diagnose network events. TSR is also
a potential enabling technology for network digital twins
(NDTs) [25]. A major roadblock for NDT is the large amount
of data that needs to be transferred from the physical network
to the NDT system to realistically recreate the traffic in the
digital twin, especially when physical networks today have
interfaces ≥100Gbps. Using TSR, NDT systems can collect
only the coarse-grained data from the physical network, and
restore high-resolution traffic.

2.2 Availability of Counters
Counters are almost available on all network devices and net-
work operating systems (NOS) and software. We conclude
this by surveying the device configuration manuals of Cisco,
one of the mainstream vendors, and widely used open-source
NOS and software, such as software for open networking in
the cloud (SONiC) [20], Linux kernel, and data plane devel-
opment kit (DPDK) [10].

In the survey, we find 41 out of 42 categories of router
products of Cisco listed at its official site [5] exactly declare
supporting packet counters in their configuration manuals.
Only the virtual router emulator states that some hardware
counters are not supported by it [8]. We summarize the router
products, configuration commands to display counters, and
the corresponding online configuration manuals, in Table 6
in appendix §.5. Also, the vendor NOS, such as Cisco IOS
XR [1, 2] and Cisco IOS XE [3, 4], that these routers run sup-
port the standard management protocols, such as SNMP [43]
and NetFlow [26], which is commonly used to collect coun-
ters by the network management systems.

Besides, existing open-source NOS and software [10, 12,
20] support multiple types of counters as well. Taking SONiC
as an example, its switch abstraction interface (SAI) defines
eight types of counters [17] in its router interface API [19],
which include the ingress or egress byte counters, ingress or
egress packet counters, byte or packet counters for packets
having errors on router ingress, and byte or packet counters
for packets having errors on router egress. And Linux kernel
implements 25 types of counters including packet and byte
counters [12], while DPDK supports packet and byte counters
in its packet framework library [15, 18].

Figure 2: NetDiffusion’s performance for TSR to achieve
109 end-to-end upscaling.

2.3 Applicability of ISR to TSR
Recent advances in ISR [35, 49] address a similar research
question to TSR, aiming to restore high-resolution images
(e.g., 1080p) from low-resolution images (e.g., 360p). Many
ISR algorithms and models have achieved high-quality re-
sults [78, 79]. This prompts us to investigate whether existing
ISR algorithms and models can be applied directly to TSR.

We notice a recent pioneering work that applies ISR to
traffic synthesis [45]. NetDiffusion utilizes Stable Diffusion
1.5 [65] as the base model, which is recognized as one of
the state-of-the-art ISR models. We deploy the open-source
implementation of NetDiffusion [13] and evaluate its perfor-
mance for TSR, i.e., synthesizing packet-level traces from
counters. To ensure consistency, we download the model and
follow the same fine-tuning process as NetDiffusion, while
employing the same datasets as those used by ZOOMSYNTH.
Fig. 2 illustrates the experimental results in terms of Jensen-

Shannon Divergence (JSD) [56] and Earth Mover’s Distance
(EMD) [66], and we also show the performance of ZOOM-
SYNTH. For these two metrics, lower is better, and we observe
that NetDiffusion has worse performance than ZOOMSYNTH.

We dive into the implementation of NetDiffusion and iden-
tify two primary reasons. First, there is a mismatch between
input formats (or data representation) required by the Sta-
ble Diffusion model and the inherent nature of traffic data,
which is naturally represented as time series. NetDiffusion
needs to fold the time series into matrices, which may induce
the ISR model to capture unwanted or non-existent relation-
ship between data points. Second, NetDiffusion directly uses
the pre-trained model based on image datasets as the basic
model and only fine-tunes it for traffic synthesis. Thus, the
direct application of an ISR model for TSR, without sufficient
customization to the characteristics of traffic data, results in
unsatisfactory performance.

2.4 ZOOMSYNTH Design Motivations
We first summarize the challenges and requirements in §1 into
five design goals, and then we motivate the design choices of
ZOOMSYNTH to achieve these goals.

Design goals. Based on §1, we summarize the goals for
ZOOMSYNTH.

G1 Counter-to-packet Synthesis: This goal ensures prac-
tical applicability, given that many downstream tasks
necessitate packet-level traces and coarse-grained coun-
ters are widely available.

G2 Multi-scale Synthesis: In addition to packet traces
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(nanosecond trace), ZOOMSYNTH should generate traf-
fic traces with varying upscaling ratios.

G3 Counter-rule-based Synthesis: ZOOMSYNTH should
comprehend the semantic meaning of these rules, such
as ACL policies, and generate traces that adhere to them.

G4 Generality: Traffic traces in different network envi-
ronments have different characteristics. ZOOMSYNTH
should adapt to the features of these varying environ-
ments and generate traces with user-defined granularity.

G5 Real-time Synthesis: Real-time synthesis enables
ZOOMSYNTH to be used in real-time tasks. We define
real-time synthesis as follows: for a counter collected
every n seconds (n≥1), ZOOMSYNTH should generate
the corresponding packet-level trace within n seconds.

To achieve the goals, our five design choices for ZOOM-
SYNTH are as follows:

1. GTT-based TSR: With the unsatisfactory performance of
ISR models for TSR, we seek a model which is more suitable
to handle time-series data. We choose Transformer [70] for
ZOOMSYNTH (§4.1), because Transformer can capture long-
range dependencies in time-series sequences, and is well-
suited for modeling time-series traffic traces where temporal
dependencies span over extended periods [67, 68].

We do not use a single Transformer model for TSR: each
Transformer model is responsible for only one upscaling gran-
ularity (e.g., 1s to 100ms), and it captures the characteristics
of traffic at this particular granularity. We name this type of
models the Granular Traffic Transformer (GTT). We use GTT
k
δ

to denote a GTT with upscaling factor k and generation
resolution δ. For example, a GTT 10

100ms can transform a trace
with 1s resolution to one with 100ms resolution.

2. Tree-structured CLTM Model: A coarse-grained counter
summarizes the underlying fine-grained counters, forming a
classic tree structure at different granularities, as illustrated
in Fig. 1(a). With this observation, we then compose GTTs at
different granularities into a tree, which we name the Com-
posable Large Traffic Model (CLTM).

CLTM can achieve high upscaling ratios (G1). CLTM con-
tains a tree of GTTs, illustrated in Fig. 1(b). This hierarchical
structure allows the upscaling ratios to be multiplied across
GTTs in distinct layers of CLTM. Consequently, CLTM can
achieve exponential increases in upscaling ratios by incorpo-
rating additional layers of GTTs. This enables CLTM to attain
high upscaling ratios.

CLTM supports multi-scale traffic synthesis (G2). Within
the CLTM tree, each layer of GTTs is dedicated to a specific
granularity. Each layer can generate traffic traces with the
targeted granularity, enabling multi-scale traffic synthesis.

3. Counter Rule Understanding with CLIP: G3 requires
us to use counter rules (e.g., text strings of ACL policies) to
guide the generation of traffic traces, which is a multimodality

Figure 3: ZOOMSYNTH end-to-end workflow (New Scenario
Adaptor and Task Adaptor only run in the training phase).
Note that counter rules are not mandatory input but optional.

task of two domains: text and time-series. We learn from
mainstream multimodal models [32, 52], and use CLIP [59]
to develop a conversion model to link counter rules with traffic
traces. This ensures that synthetic traffic aligns with specified
rules in every layer of the CLTM (§4.2).

4. Generality with a LoRA-based Approach: To generalize
ZOOMSYNTH, we seek a method that allows users to use their
own data to fine-tune CLTM, since it is impossible to collect
data in all scenarios. Thus, for G4, we leverage a LoRA-
based approach, borrowing from the LLM literature [40], to
facilitate lightweight fine-tuning of CLTM for adapting to
new scenarios (appendix §.1.5).

5. Pipeline-parallel Inference: To achieve G5, we introduce
pipeline paralellism and execute GTTs in different layers of
CLTM concurrently. We dynamically allocate computational
resources to different layers by scheduling GTTs automati-
cally to ensure efficient inference. We also develop a prefetch-
ing technique to further improve the performance (§4.3).

3 ZOOMSYNTH Overview
We present the overview of ZOOMSYNTH in Fig. 3. ZOOM-
SYNTH is a TSR system designed for fine-grained traffic
synthesis using counter traces and counter rules.

3.1 Architecture and Components
ZOOMSYNTH has six key modules, shown in Fig. 3, and we
describe them as follows:
• SR Module: The SR Module runs the CLTM model.

It takes as input a coarse-grained counter time-series.
Through the application of the SR module, each counter
within the time series undergoes an upscaling process, re-
sulting in a more fine-grained counter time series. Users’
required upscaling ratio can be achieved by composing the
GTT models to the target number of layers. We set the
upscaling factor of each layer to a fixed value of 10 and
justify this in appendix §.1.2.

• Rule Interpreter: The Rule Interpreter runs a CLIP-based
rule-following model. It takes counter rules as input and
outputs a feature vector representing the traffic traces com-
plying with the rules. As shown in Fig. 3, the output vector
of the Rule Interpreter is fed into each layer of CLTM to
help align the time-series features of counters, while in
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APIs Function
gen_pkts(counter, orig_res) Packet trace synthesis
gen_counters(counter, orig_res, upscaling_ratio) Multi-scale synthesis
gen_for_task(counter, orig_res, upscaling_ratio, task) Downstream Task

Figure 4: APIs of ZOOMSYNTH’s applications and an exam-
ple for packet trace synthesis from second-level counters us-
ing the API gen_pkts(·) of ZOOMSYNTH (TB: Total Bytes,
TNP: Total Number of Packets).

the header generation process, it is used by the Header
Assembler to constrain the scope of the packet headers.

• Header Assembler: The Header Assembler runs a GPT-2
based header generation model. As shown in Fig. 3, it takes
the outputs from both CLTM and Rule Interpreter as input
and generates packet headers to synthesize packet traces.

• Resource Scheduler: This module allocates resources to
run the above modules. We use pipeline parallelism (a type
of model parallelism) to accelerate the inference of CLTM.
For the other models, running Rule Interpreter, Header As-
sembler and Task Adapter is trivial as their model is small
and do not need model parallelism, while New Scenario
Adaptor only runs offline and does not affect the inference
performance of real-time traffic synthesis.

• Task Adaptor: This module runs task-specific model with
domain knowledge. It can take fine-grained traces with
various granularity as input, and leverages task-specific
model to align the traces to the domain of the downstream
task. Taking an ML-based anomaly detection task as an
example, the Task Adaptor uses the ML-based anomaly
detection model trained with real traffic data to align the
type labels of the fine-grained traces.

• New Scenario Adaptor: This module aims to make
ZOOMSYNTH adapt to new scenarios efficiently. It lever-
ages a LoRA-based approach to update the CLTM with a
small amount of traffic traces of the new scenarios, while
purely retraining the models of Header Assembler and Task
Adapter as they are small and quick to train. We explore
the efficiency of this module in appendix §.4.1.

3.2 Workflow
User of ZOOMSYNTH can programmatically determine their
desired resolution by configuring the CLTM. In this way,
ZOOMSYNTH supports arbitrary upscaling ratios and can also
act as base model for many downstream tasks. For each appli-
cation, ZOOMSYNTH needs to adapt its relative components
to synthesize required traces from coarse-grained counters.
ZOOMSYNTH provides APIs summarized in Fig. 4 to run the
applications. We summarize the workflow of ZOOMSYNTH
in Fig. 3 and describe its applications as follows.

Packet Trace Synthesis: The finest-grained traces that
ZOOMSYNTH can generate are packet trace synthesis with
nanosecond resolution. ZOOMSYNTH utilizes Rule Inter-
preter, SR Module, and Header Assembler to compose the
assembly line for packet trace synthesis. It takes the ❶ coun-
ters or both ❶ counters and ❷ counter rules as input, and
processes them with ❸ ❺ the Rule Interpreter, ❹ SR Module,
and ❻ Header Assembler in succession and outputs packet
traces. To run these modules, users can use the gen_pkts(·)
API, where the parameter counter is the path to the file of
counters and rules and the parameter orig_res is the granu-
larity of the input counters.

Taking Fig. 4 as an example to illustrate packet trace syn-
thesis based on second-level counters by using gen_pkts(·)
API of ZOOMSYNTH. When invoking the API, users need
to specify the input file of the coarse-grained counters with
its granularity, ZOOMSYNTH outputs the packet trace after
running the API.

Multi-scale Fine-grained Trace Synthesis: Fine-grained
counter traces are counter time-series on a finer scale than
the input counter time-series. They follow the same counter
rules and do not contain packet header information. Therefore,
ZOOMSYNTH only takes the ❶ counters or both ❶ counters
and ❷ counter rules as inputs, and adopts ❸ the Rule In-
terpreter and ❾ the SR Module to synthesize fine-grained
counter traces. Users can adopt the API gen_counters(·) to
run the application, where the parameter upscaling_ratio
is the target end-to-end upscaling ratio.

Downstream Task: Specific downstream network tasks gen-
erally require task-specific fine-grained traffic traces. Before
synthetic traces are used for a specific task, ZOOMSYNTH
leverages Task Adapter to align them to task-specific charac-
teristics with domain knowledge. Therefore, ZOOMSYNTH
takes the ❶ counters or both ❶ counters and ❷ counter
rules as inputs, and adopts ❸ Rule Interpreter, ❼ SR Mod-
ule, and ❽ Task Adapter to synthesize counter or packet
traces needed by downstream tasks. ZOOMSYNTH provides
the API gen_for_task(·) for users to specify their input
file of coarse-grained counters, counters’ original resolution,
target end-to-end upscaling ratio, and the downstream task
model. In §5.2, we implement three downstream tasks based
on ZOOMSYNTH, and evaluate their performance in §7.2.

4 Composable Large Traffic Model

CLTM is composed of GTT models and CLIP-based rule-
following model and is the key for enabling multi-scale TSR.
In CLTM, GTT is organized as a tree structure, by combining
it with the rule-following model, CLTM empowers rule-based
synthesis. CLTM supports real-time synthesis with pipelined
inference. In the following, we illustrate its design in detail.
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Figure 5: The structure of GTT.

4.1 GTT Model
GTT model consists of two key modules: a Transformer
model [70] and a bidirectional LSTM (BiLSTM) [38]. GTT
uses Transformer to learn temporal characteristics and lever-
ages BiLSTM to deal with extreme values of counter time
series. For each stage of CLTM, a GTT k

δ
make k× upscal-

ing for counters at a δ resolution. We describe more details
about the training data preparation for GTT and the mecha-
nism to determine the upscaling factor k in appendix §.1.1
and appendix §.1.2, respectively.

Handling Extreme Values: The counter time-series displays
many extreme values, which are caused by many hidden fac-
tors, such as network stack, network functions, and schedul-
ing policies. We observe that a Transformer cannot handle
extreme values efficiently, since it tends to evenly distribute
packets and byte counts, making upscaled counters tend to fa-
vor the means. To address this issue, we use a BiLSTM model
to learn the distribution of extreme values, which is borrowed
from extreme value prediction methods [33]. GTT integrates
Transformer and BiLSTM, as shown in Fig. 5, and uses BiL-
STM to learn the distribution frequency of extreme values
and their deviations from the means. Unlike Transformer,
which directly uses coarse-grained and the corresponding
fine-grained counter time-series as training data, we lever-
age the same input time-series but uses the deviations from
the mean of the fine-grained counter time-series as output to
BiLSTM in the training phase.

As shown in Fig. 5, in the inference phase, when GTT
receives the counter time-series, it feeds the input into both
the Transformer and BiLSTM, and calculates the range of the
counter time-series. GTT takes the offset ratios (δ) output by
BiLSTM to multiply by the calculated range (yrange) to obtain
the offsets (yo f f set ), and then add them with the output (y) of
Transformer to produce the final output.

In order to make GTT models learn counter time-series dis-
tributions, we adopt both Mean Square Error (MSE) and EMD
in the loss function, while guiding it to satisfy the counter
equality constraints described as follows.

Counter Equality Constraints: Clearly, the counters ob-
tained from the fine-grained counter time-series outputted by
a GTT should align with the input coarse-grained counters,
which relation we call counter equality constraints, denoted
as E(Cs−1, Ĉs).

E(Cs−1, Ĉs) = 0,

where E(Cs−1, Ĉs) = Cs−1 − F(Ĉs).

Here, Cs−1 represents the realistic input counter time-series
of upscaling stage s, and Ĉs is the corresponding counter time-

series outputted by the GTT model based on Cs−1. F is the
counter filtering function.

Loss Function of GTT: We integrate MSE and EMD into
our loss function, since MSE can make the means of GTT’s
output closely align with the target values of the ground truth,
while EMD facilitates learning the intrinsic structure of the
target distribution. By minimizing both MSE and EMD, the
loss function guides GTTs to capture the counter time-series
characteristics at each upscaling stage. Thus, the combined
loss function can be expressed as:

Lcombine = MSE(Ĉs, Cs) + λEMD(Ĉs, Cs),

where Ĉs is the output of a GTT and Cs is the corresponding
ground truth at the upscaling stage s, and λ is a hyperparame-
ter to balance MSE and EMD metrics.

Besides finding model parameters that minimize Lcombine
across the training data, GTTs also need to adhere to the
counter equality constraints. Formally, we translate it to solv-
ing an optimization problem:

min(Lcomibine),

s.t. E(Cs−1, Ĉs) = 0.
Inspired by Zoom2Net’s design for knowledge augmented

loss [37], in order to make GTTs learn and respect the
constraints during the training phase, we employ the aug-
mented Lagrangian method [34] to establish an augmented
Lagrangian loss function:

L = Lcombine + σE(Cs−1, Ĉs),

where σ is a hyperparameter to balance Lcombine and
E(Cs−1, Ĉs). Training GTTs with the loss function L enables
them to capture the consistency between the input and out-
put counter time-series, as enforced by the counter equality
constraints. Different from Zoom2Net [37], we do not need
to consider inequality constraints, since counters within the
same time-series do not have such constraints.

4.2 Composing GTTs and Rule-following Model into
CLTM

ZOOMSYNTH automatically composes GTTs in CLTM to the
target number of stages based on upscaling ratio parameter in
its API summarized in Fig. 4. For instance, when users spec-
ify the end-to-end upscaling ratio to 109 for a second-level
counter time-series, ZOOMSYNTH automatically composes
GTT 10

100ms, GTT 10
10ms, ..., and GTT 10

1ns into CLTM in a hierarchi-
cal manner. The number of GTTs increases by a factor of k
in each subsequent layer, which guarantees that each GTT
processes the same size of counter time-series.

Rule-following Model: The counters are the summarization
of traffic traces processed following specific counter rules.
Properly understanding the counter rules and applying them to
the TSR process benefits the synthesis process when restoring
fine-grained trace from counters. This is similar to text-based
image synthesis, which utilizes CLIP [59] to align the embed-
dings of images and their corresponding textural descriptions,
thereby establishing an association between them. Inspired by
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Figure 6: The pre-training process of rule-following model.

this, we employ CLIP to construct a conversion model, called
the rule-following model, that bridges counter rules and traffic
traces. The rule-following model is fine-tuned using counter
rules and traffic traces to understand their relationships in a
shared latent space.

Fig. 6 shows the pre-training process of rule-following
model. The two Transformer-based encoders with 63M pa-
rameters encode counter rules and packet trace to the vectors
T=(T1,T2,...,TN) and I=(I1,I2,...,IN), respectively, and map
them to the same latent space. Here, we set N to 256. In the
training phase, we minimize the cosine similarity of T and
I and obtain a similarity matrix of counter rules and packet
trace. In the inference phase, we encode the counter rules
with the encoder to its vector representation T and convert T
to another vector representation using the similarity matrix.

In order to prepare the training data for the rule-following
model, we process the original pcap data with specific counter
rules and generate packet traces which adhere to them. After
finishing the training, we compose the model into CLTM
as shown in Fig. 1. We compose GTTs and the pre-trained
rule-following model into CLTM for training and inference
to achieve multi-scale synthesis based on both counters and
counter rules.

4.3 Pipelined Inference of CLTM

Fig. 7 showcases the task scheduling of ZOOMSYNTH on 4
GPUs for pipelined inference of CLTM, which is for packet
trace synthesis from second-level counters. A task is defined
as a GTT model for processing a fixed size of counter time-
series. We use a block to represent a task in Fig. 7, and the
number within the block indicates the specific GTT model
a task runs. For instance, task belongs to stage 1 of CLTM
run GTT 10

100ms. The number of tasks increases by multiplying
by the upscaling factor k along with the increase of CLTM’s
stages. Here, we assume k=10.

ZOOMSYNTH follows two simple rules to schedule tasks
on GPUs. (1) Prioritize tasks running GTT models with
coarse-grained generation resolutions, because finer-grained
tasks depend on them. (2) Prioritize tasks whose GTTs have
input data affinity with preceding tasks running on the same
GPU. As shown in Fig. 7, ZOOMSYNTH can fully utilize all
GPUs after the first stage.

Figure 7: The task scheduling of ZOOMSYNTH on 4 GPUs
for pipelined inference of CLTM. Each block represents a
task, which is a GTT model for processing a fixed size of
counter time-series. The number within each block represents
the stage of CLTM the task belongs to. The ratio for the
number of tasks between neighbouring CLTM stages is 1:10
assuming upscaling factor k=10.

5 Enabling Downstream Applications

CLTM enables downstream applications of ZOOMSYNTH,
and we describe them in this section.

5.1 Header Generation
The final step of packet traces generation is to provide headers
for the packets. Similarly to the existing work [62, 77], we
use an embedding model to encode the header fields of the
packet. Unlike previous work, the header generation model
only takes care of the synthesis of five tuples (i.e., source
IP, destination IP, source port, destination port and protocol),
since CLTM has provided the other information of packets,
such as packet timestamp and size.

Packet Header Encoding: We use an embedding model sim-
ilar to IP2Vec [62] to encode the categorical fields of the
packet header, such as IP address, port, and protocol. The
embedding is trained on packet traces collected from public
datasets. Considering that the IP, port, and protocol fields in
our datasets are finite, we utilize an embedding layer with a
vocabulary size of 50000 and embedding dimension of 128
to serve as our header encoder. Users can retrain it to cover
any additional fields with their new datasets.

Header Generation Model: Building upon the success of pre-
vious studies [30, 58] that utilize GPT-2 [60] for packet header
generation, we adopt this model to reconstruct packet headers
using the finest-grained counter time series from CLTM. We
retrain the model using public packet traces. We detail the
model training process in appendix §.2.

During the inference phase, the header generation model
populates the header fields of packets using the information
extracted from the raw training packet traces, alongside the
timestamps and sizes derived from the synthesized finest-
grained counter time-series. This ensures that the generated
packet headers adhere to the traffic semantics and preserve
the traffic distribution characteristics. However, this approach
has limitations with respect to the generalization of packet
headers, which we discuss in §9.
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5.2 Task Adaptor
The Task Adaptor fine-tunes CLTM for downstream tasks,
allowing the end-to-end upscaling model to be trained with
a loss function that is more conducive to downstream tasks.
This is similar to fine-tuning in the LLM literature [41]. As
for most downstream tasks, packet header traces are needed,
since the discrete nature of packet header information guaran-
tees that the Task Adaptor does not entail predicting extreme
values when synthesizing header fields. As a result, we do not
need BiLSTM here. We use a Transformer model for Task
Adaptor.

The effectiveness of synthetic traffic used for downstream
tasks is the key criterion for evaluating the Task Adaptor. For
this, we implement three classic downstream tasks like Net-
Share [77], including anomaly detection, sketch-based teleme-
try, and service recognition, and we use the same machine
learning (ML) model as NetShare [77].

Anomaly Detection: Existing ML models for this task re-
quire packet traces with fields that include packet arrival
time, packet size, and five tuples. Based on ZOOMSYNTH,
we use five models [77] for anomaly detection: Decision Tree
(DT), Logistic Regression (LR), Random Forest (RF), Gradi-
ent Boosting (GB), and Multi-layer Perceptron (MLP).

Sketch-based Telemetry: We implement a Count-Min Sketch
(CMS) [53] and use it to estimate the proportion of heavy-
hitters within the traffic. Sketch-based telemetry commonly
uses traffic synthesis as a precursor task, producing a large
volume of traffic with consistent characteristics.

Service Recognition: The service recognition task is a more
complex ML-based task, different from the above two cate-
gories of tasks. It relies on more deep features of traffic to
recognize services, instead of looking at IP addresses, port
numbers, and protocol types. We adopt the same five mod-
els for anomaly detection for this task, and utilize data from
CIDDS to train them for service recognition. The services are
categorized into three types: email, file copying, and others.

6 Implementation
We implement a prototype of ZOOMSYNTH in Python 3.10.
We use PyTorch [16] library to implement all the models in
∼950 lines of code (LOC), except for the header generation
model, which we implement using the codes from Hugging
Face. And for parsing datasets into packets and multi-scale
counters, we implement scripts in ∼230 LOC. Table 5 in ap-
pendix §.3.1 lists the hyper-parameter setups of ZOOMSYNTH
for each model. Specifically, besides the APIs summarized
in Fig. 4, we also implement 6 APIs to support operations
of CLTM. Based on these APIs, users can adjust the num-
ber of GTTs in each stage of CLTM by considering their
hardware and TSR tasks. For the three downstream tasks, we
also utilize the PyTorch library to implement the models for
anomaly detection and service recognition in ∼420 LOC and
implement CMS for sketch-based telemetry in ∼170 LOC.

We implement the Resource Scheduler in ∼130 LOC, which
adopts nvidia-smi (provided by the GPU driver) to monitor
GPU resources and schedule tasks to GPUs.

Datasets: We aggregate seven open-source datasets avail-
able online, namely TON (IoT traffic data) [57], CA (data
of a cyber defense competition) [6], CIDDS (enterprise traf-
fic) [7], DC (data center traffic) [9], UGR16 (traffic data from
Spanish ISP) [55], CAIDA (anonymized trace on backbone
network) [22], and MAWI (packet traces from WIDE back-
bone) [31]. The resulting dataset have a combined size of
16GB, and MAWI and CAIDA predominantly constitute this
hybrid dataset, with each accounting for 45% of the data. We
obtain counter traces of varying resolutions from this dataset,
and the counter traces has a total size of >1.7TB.

Model Size: With k=10, input resolution 1s, and output reso-
lution 1ns (packet-level), the required CLTM has 1.8 billion
parameters. We call this model CLTM-1.8B, and release a
pre-trained version1 using the above datasets, accompanied
with the source code for its training. We use this model in the
evaluations, unless otherwise specified.

7 Evaluation
In this section, we seek to understand: 1) With only counter
traces, can ZOOMSYNTH achieve a similar performance in
traffic generation as existing traffic synthesizers that take
packet-level trace as input? 2) Can the synthesized ZOOM-
SYNTH traces satisfy the requirements of downstream tasks?
3) Can ZOOMSYNTH achieve real-time synthesis? 4) How
does the counter based on the counting bloom filter (CBF)
affect TSR? 5) How does each model in ZOOMSYNTH con-
tribute to its performance? We answer the first four questions
positively. We summarize the evaluation results below.

Summary of Results:
• For packet-level trace synthesis, ZOOMSYNTH, using only

counters, achieves a similar performance as NetShare that
takes packet-level trace as input. ZOOMSYNTH achieves
up to 25.8% and 20.1% improvements in terms of JSD and
EMD, respectively. And across all four datasets, ZOOM-
SYNTH achieves only 30.6% reduction in JSD.

• ZOOMSYNTH relaxes the requirements for data collection
for downstream tasks. With only counter traces, ZOOM-
SYNTH with fine-tuned CLTM outperforms NetShare by
27.5% and 9.8% in anomaly detection and service recogni-
tion tasks, respectively.

• For a CLTM-1.8B on a server with 8× A100 GPUs, for
a per-second counter trace, ZOOMSYNTH can generate
at most 109 packets in 0.966 second. This exceeds the
maximum forwarding capacity of modern core network
devices [8, 23, 24], proving its real-time synthesis capacity.

• We observe that CBF-based counters have negative im-
pact on TSR performance, and find that ZOOMSYNTH still
outperforms NetDiffusion and Zoom2Net, achieving im-
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Figure 8: Earth Mover’s Distance (EMD) between real and synthetic distributions on UGR16, TON, CIDDS, and MAWI, where
the end-to-end upscaling ratio is 109.

Figure 9: Jensen-Shannon Divergence (JSD) between real and synthetic distributions on UGR16, TON, CIDDS, and MAWI,
where the end-to-end upscaling ratio is 109.

provements in EMD by 58.3% and 76.0%, and in JSD by
52.3% and 80.1%, respectively.

• We confirm the effectiveness of the header generation and
rule-following models in ZOOMSYNTH.

Testbed: We use a machine equipped with 8× NVIDIA A100
GPUs, 2× 64-core 2.90GHz Intel Xeon Platinum CPUs, and
2TB DDR4 RAM. The machine runs Ubuntu 22.04 LTS and
PyTorch 2.1.0.

Comparison Targets: We compare ZOOMSYNTH to three ex-
isting traffic synthesizers, each of which is the state-of-the-art
work in their application scenarios. (1) NetDiffusion [45]: This
scheme originally uses a stable diffusion model [65] to synthe-
size the traffic trace from text, such as generating TCP traffic.
In the TSR scenario, we use it to synthesize traffic trace from
counters. (2) NetShare [77]: This system must take packet
traces as input, and uses the DoppelGANger model [50] with
domain-specific insights to generate packet traces. It can-
not take counter traces as input. (3) Zoom2Net: We extend
Zoom2Net [37] for TSR. Following [37], this scheme uses
a single Transformer model [70] to complete all tasks for
TSR including up-scaling and packet header generation. In
addition, we use the same loss function as ZOOMSYNTH to
incorporate the domain knowledge in Zoom2Net. Compar-
ison of ZOOMSYNTH with Zoom2Net can demonstrate the
performance benefit of ZOOMSYNTH’s other design choices.
The hyperparameters of Zoom2Net are the same as GTT.

Metrics: We evaluate the fidelity of synthetic traffic traces
by computing distance metrics between real and synthetic
distributions of packet header fields. Following the common
practice in prior work [74, 77], we utilize Earth Mover’s Dis-
tance (EMD) (also called Wasserstein-1 distance) for continu-
ous fields, such as packet length and timestamp, and Jensen-
Shannon Divergence (JSD) for discrete fields, such as source
address (SA), destination address (DA), source port (SP), des-
tination port (DP), and protocol (PR).

7.1 Counter-to-Packet Synthesis

Accuracy. To assess the generation quality of timestamp field
and packet length field, we employ EMD to compare the
generated packet traces with the actual ones, with smaller
values indicating closer resemblance. Fig. 8 presents the
EMD metrics across four datasets. With only second-level
counters, ZOOMSYNTH achieves performance comparable
to NetShare (using packet-level traces as input), and signifi-
cantly outperforms Zoom2Net and NetDiffusion. Specifically,
ZOOMSYNTH achieves EMD reductions of 69.5% and 48.
4% in the four datasets on average compared to Zoom2Net
and NetDiffusion, respectively. In TON, CIDDS, and MAWI
datasets, our method surpasses NetShare in terms of packet
length’s EMD. We further look at the percentiles of devia-
tions for the 1st and 99th synthetic packet lengths generated
by ZOOMSYNTH and NetShare in appendix §.4.2, and find
that NetShare tries to fit the extreme values, making it per-
form well in generating packet lengths around the extreme
values and also causing it to tend to overfit the variations of
the packet length time-series, and thus leading to worse EMD.

For categorical fields such as IP address/port num-
ber/protocol in packet headers, we use JSD, a metric that
assesses the distribution characteristics of discrete data within
the whole set, and a smaller JSD is better. Similarly, we calcu-
late the JSD between the synthetic data and the real data for
each scheme, which is shown in Fig. 9. We can see ZOOM-
SYNTH achieves 49.6% and 35.6% JSD reductions compared
to Zoom2Net and NetDiffusion, respectively, and it is slightly
inferior to the NetShare scheme, which uses packet-level
traces as input.

Error Accumulation. To show how errors accumulate in the
multi-level TSR process of ZOOMSYNTH, we assess the re-
sults generated at multiple granularities. Counter-level results
encompass three dimensions of information: time interval,
byte count, and packet count. Since the time interval at the
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Table 1: Performance comparison of ZOOMSYNTH, NetShare, NetDiffusion, and Zoom2Net on three downstream tasks.

Downstream Task Anomaly Detection Sketch-based Telemetry Service Recognition
MLP DT RF GB LR TON_SA TON_DP CAIDA_SP MLP DT RF GB LR

Real Traces 0.99 1.0 1.0 1.0 0.8 - - - 1.0 1.0 1.0 1.0 0.87
ZOOMSYNTH 0.88 0.91 0.81 0.87 0.78 0.22 0.64 0.57 0.87 0.89 0.84 0.84 0.75

NetShare 0.58 0.78 0.64 0.77 0.60 0.14 0.62 0.53 0.83 0.79 0.85 0.78 0.60
NetDiffusion 0.43 0.49 0.43 0.51 0.36 0.29 0.78 0.73 0.60 0.59 0.63 0.55 0.49
Zoom2Net 0.31 0.42 0.32 0.35 0.32 0.41 0.94 0.82 0.58 0.54 0.61 0.49 0.43

Figure 10: Error accumulation on counters of packets and
bytes as the TSR processes.

counter level is fixed that represents the sampling period, we
just calculate the EMD for the byte and packet counts. Due to
how the EMD is calculated, there are magnitude differences in
the EMD across different granularities. Therefore, when com-
paring the EMD values horizontally, it is necessary to perform
normalization. Fig. 10 shows the normalized results. When
generating microsecond counters from millisecond counters
in the TON dataset, it is evident that even when the EMD val-
ues for millisecond data are divided by a thousand (reflecting
the granularity difference), they are still significantly lower
than the EMD for the microsecond-level results. A similar
pattern is observed when nanosecond counters are generated
from microsecond counters.

We conclude that, although errors accumulate in multi-level
generation, the growth of accumulated error is slow, which has
limited impact on overall accuracy, as we observe in Figs. 8
and 9.

7.2 Downstream Task Performance
We evaluate the performance of the three downstream tasks
manufactured by ZOOMSYNTH in the following.

Anomaly Detection: We train DT, LR, RF, GB, and MLP
with both real and synthetic traces and compare their accu-
racy with real traces. Table 1 shows that models trained using
ZOOMSYNTH’s synthetic traces achieve superior accuracy
compared to NetShare, especially for DT model, its accuracy
is 27.5% higher than that of NetShare, while they improve
93.2% and 149.2% on average accuracy compared to NetDif-
fusion and Zoom2Net, respectively.

Sketch-based Telemetry: We use Ereal and Esyn to represent
the number of errors in identifying heavy-hitters using CMS
for real and synthetic data, respectively. If the features of the
generated data are closer to those of the real data, these two
values are also closer. Therefore, we use the relative error ratio
|Ereal−Esyn|

Ereal
to evaluate the similarity between real data and

synthetic data, and a lower value means better performance.
We calculate the relative error of the heavy-hitters using TON
and CAIDA datasets. Table 1 shows that the synthetic traces
from ZOOMSYNTH have a performance similar to that of

Table 2: The inference time of ZOOMSYNTH for achieving
different end-to-end upscaling ratios from second-level coun-
ters. The upscaling factor k=10 and the results are obtained
using TON dataset.

End-to-end
Upscaling Ratio 10 102 103 105 109

Inference Time
(Seconds) 0.855 0.938 0.951 0.965 0.966

NetShare, with only 23.6% higher average relative error, and
reduce the average relative errors with 21.3% and 49.6%,
respectively, compared to NetDiffusion and Zoom2Net.

Service Recognition: We compare the trained service recogni-
tion models using data from the real dataset and the synthetic
ones of the compared schemes. Table 1 presents the results
that the synthetic traces of ZOOMSYNTH better represent
the characteristics of the real ones. For instance, the mod-
els trained with the data from ZOOMSYNTH achieve 9.8%,
46.9%, and 59.7% higher accuracy on average than the models
trained with the synthetic data from NetShare, NetDiffusion,
and Zoom2Net, respectively.

7.3 Real-time Synthesis
To assess whether ZOOMSYNTH can empower real-time
downstream tasks, such as NDT [25], we measure the in-
ference time under various end-to-end upscaling ratios. And
to avoid measuring errors that result from inference with in-
sufficient counter time series data, we employ counters of
1-second duration to generate packets and test whether the
inference time exceeds 1 second. For example, when evaluat-
ing with an upscaling factor of 106, we use 1000× ms-level
counters and record the end-to-end inference time. We con-
duct the experiments using CLTM-1.8B and 8× A100 GPUs.
Table 2 shows that ZOOMSYNTH can achieve the target up-
scaling performance goal from second-level counters within
1 second for any end-to-end upscaling ratios, demonstrating
that ZOOMSYNTH achieves real-time synthesis for various
upscaling ratios.

7.4 Using CBF-based Counters
Due to limited memory and computing resources, many net-
work devices adopt Counting Bloom Filters (CBF) [36] to
implement packet or byte counters for obtaining approximate
results. To see its impact on TSR performance, we implement
a CBF-based counter with an array size of 300 and 2 hash
functions, while using packet length as the hash key. Subse-
quently, we use the CBF-based counter to process the packet
traces to obtain the counter time-series data, and then we use
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Figure 11: Normalized EMD and JSD between real and syn-
thetic packet traces on UGR dataset using real counters and
CBF counters as input, respectively.

Figure 12: Performance comparison for packet header gener-
ation between NetShare and ZOOMSYNTH.

the data to train GTTs. Fig. 11 shows normalized EMD and
JSD between real and synthetic packet traces on UGR dataset
using real counters and CBF counters as input, respectively.
Note that the packet and byte counters obtained using CBF
on UGR dataset exceed the actual values by 7% and 12%,
respectively. We can see ZOOMSYNTH outperforms NetDif-
fusion and Zoom2Net, improving EMD by 58.3% and 76.0%,
and JSD by 52.3% and 80.1%, respectively. Besides, both
ZOOMSYNTH and NetDiffusion have a significant increase in
EMD for timestamp (53.8% for ZOOMSYNTH and 80.0% for
NetDiffusion) and packet length (26.7% for ZOOMSYNTH
and 41.4% for NetDiffusion), indicating that they are more
sensitive to the accuracy of CBF.

7.5 Header Generation Model
To solely evaluate the quality of header generation, we use
real nanosecond-level counter information as input, as this
represents the packet prototype stripped of its header infor-
mation. Fig. 12 provides an assessment of the capability of
the header generation model. Our approach demonstrates an
order of magnitude lower JSD values across various fields,
proving that our header generation model significantly outper-
forms NetShare. This also underscores that the effectiveness
of header generation is greatly dependent on the TSR results
of the counters. We do not compare ZOOMSYNTH against
NetDiffusion and Zoom2Net, since they do not have dedicated
header generation modules.

7.6 Rule-following Model
We investigate the impact of counter rules on CLTM’s header
generation process. To do this, we construct multi-scale
counter time-series and packet traces by filtering the orig-
inal traffic traces using the ACL rules and use these data to
train CLTM. Subsequently, we gather the packet outputs of
ZOOMSYNTH with and without counter rules as input, re-
spectively. Then we quantify the percentage of packets that
adhere to the counter rules among all synthetic packets. For
instance, when considering a rule like “Deny TCP”, if counter
rule is absent from the input, ZOOMSYNTH would use CLTM
to recreate counters and use the header generation model to
generate packet headers purely following the characteristics

Figure 13: Comparison for the proportion of traffic which
adheres to the counter rules with and without them as input.

Table 3: Summary of existing work.
Existing Work Input Output Generality

DYNAMO [28], NS-2 [14] Config Para. Packets ✗

Swing [71], Tmix [73], LitGen [64] Model Para. Packets ✗

STAN [74] - Flows ✓

Redzovic et al. [61] -
Sizes,
Times ✓

DoppelGANger [50], NetShare [77] Packets Packets ✓

NetDiffusion [44, 46], PAC-GPT [47] Prompts Packets ✓

ZOOMSYNTH
Counters,

Counter Rules
Packets, or
Counters ✓

of the overall traffic flow.
We conduct this experiment on the CAIDA dataset, and use

six counter rules as input to generate packet traces, respec-
tively. Fig. 13 shows the comparison results for the proportion
of traffic which adheres to the counter rules with and with-
out counter rules as input. The results demonstrate that using
counter rules as input can significantly benefit packet trace
synthesis. For example, when the counter rule representing
“Deny TCP” is not fed into the model, yet the counters repre-
sent traffic filtered by the rules, the proportion of TCP traffic in
the final packet trace reaches 42%. In contrast, when we incor-
porate the “Deny TCP” rule into the packet header generation
process, the final packet trace only has 3% TCP traffic. We
can filter out the remaining 3% directly in the post-processing
process without affecting the whole packet trace, because the
proportion of the remaining TCP traffic among all traffic is
small enough.

8 Related Work
There has been a large amount of work on traffic synthesis. In
Table 3, we compare ZOOMSYNTH against them across three
dimensions.

Traffic Synthesis Input: Existing work varies in their inputs.
Simulation-/emulation-driven approaches demand detailed
configurations, such as workloads and clients, to simulate net-
work traffic in virtual environments. Model-driven approaches
require distribution parameters derived from realistic traffic
to establish statistical or structural models. ML-based mod-
els have diverse needs: some, like STAN [74] and Redzovic
et al. [61], require no input, whereas others, such as Doppel-
GANger [50] and NetShare [77], need packet-level traffic data.
In contrast, NetDiffusion [44, 46] and PAC-GPT [47] accept
text prompts. Unlike these approaches, ZOOMSYNTH lever-
ages counters to generate fine-grained traffic traces, achieving
TSR not natively supported by them.

Traffic Synthesis Output: In addition to the inputs, the
outputs of existing approaches also vary. Most approaches
can produce packet-level traces, but some of them differ in
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the fields generated from the packet headers. Specifically,
simulation-/emulation-driven approaches acquire packets via
direct packet capture within their environments. STAN [74]
is limited to generating flow-level traffic, while Redzovic et
al. [61] can only produce the header fields of packet sizes
and interarrival times. Besides producing packet-level traces,
ZOOMSYNTH further enables multi-scale synthesis of fine-
grained counters directly from coarse-grained ones, offering
flexibility for supporting various network applications.

Generality: In this regard, simulation-/emulation-driven and
model-driven approaches are easy to analyze: they both rely
on extracting specific features from realistic traffic to config-
ure simulators, emulators, or models manually, making them
inherently tied to specific workloads and thus limiting their
adaptability for generalization. To overcome the issue, ZOOM-
SYNTH supports fast new scenario adaptation.

Cross-Domain Techniques: ZOOMSYNTH applies some
techniques from other domains to traffic synthesis. ZOOM-
SYNTH adapts CLIP [59], a model used to align image and
text embeddings in image synthesis, to understand the rela-
tionship between counter rules and packet traces. LoRA [40],
originally used to fine-tune LLMs for new scenarios, is em-
ployed in training GTT layers of CLTM, tailored for the traffic
synthesis domain. Moreover, ZOOMSYNTH chooses GPT-2
[11] as the header generation model, considering its genera-
tion efficiency.

9 Limitations and Future Work
Although ZOOMSYNTH boosts many network applications by
enabling TSR, it faces several limitations that require further
investigation. We discuss these limitations in the following.

Lowering Device Fingerprinting Risks: Sharing raw
counter datasets from devices can increase the risks of device
fingerprinting. Counters vary in type, with some accumulating
values over time and others resetting at regular intervals. Pub-
lic access to these counters could allow adversaries to identify
devices according to their types. To reduce risk, operators can
process counter data into a uniform format, thereby obscuring
the original types.

Extending ZOOMSYNTH to Cases Needing Diverse Inputs:
ZOOMSYNTH has limitations in accurately synthesizing traf-
fic for cases that require more than just counters as input. For
example, generating traffic for video or audio applications,
using only counters may not ensure that the traffic aligns with
the specific characteristics of these applications. Future re-
search could explore methods to synthesize traces that capture
the characteristics of specific applications, incorporating more
inputs such as application descriptions along with counters.

Mitigating Adversarial Misuse Risks: There is a potential
for adversaries to exploit ZOOMSYNTH for malicious pur-
poses, such as using synthesized normal traffic patterns to
evade detection by security devices like IDS and IPS. Al-
though ZOOMSYNTH focuses on TSR, the potential for mis-

use presents a significant challenge. This highlights the need
for future research on preventing adversarial use.

Reducing Adversarial Effects in Traffic Synthesis: ML-
based traffic synthesizers are vulnerable to adversarial traf-
fic [29], which can lead to inaccurate output. Adversaries may
tamper with training data, introducing deceptive patterns that
result in unrealistic traces. To protect against this, the train-
ing datasets for GTTs should be carefully filtered to exclude
adversarial samples. Identifying adversarial traffic is a well-
established research area [39, 69] and is beyond the scope of
our work.

Enhancing Support for More Downstream Tasks: ZOOM-
SYNTH currently has limited support for downstream tasks
requiring precise stateful protocol behaviors, such as con-
gestion control and switch buffer monitoring, in line with
existing work [45, 47, 50, 74, 77]. Future work will focus on
enhancing packet generation with advanced stateful features
(e.g. sequence numbers) and improving inter-arrival sequence
modeling through better protocol and application behavior
understanding.

Enhancing Generalization in Header Generation: ZOOM-
SYNTH has generalization issue in header generation, as it
limits header field values to those found in the training data.
This reduces diversity compared to realistic traffic. To en-
hance generality while maintaining semantic conformity, fu-
ture research could involve training a packet header model
with domain-specific semantic knowledge.

10 Conclusion

We present ZOOMSYNTH, the first TSR system to restore
fine-grained traffic traces from coarse-grained counters. We
design GTTs to capture traffic characteristics at particular
granularities, and compose CLTM as a combination of a tree
of GTTs and a rule-following model. ZOOMSYNTH uses
CLTM and a header generation model to achieve packet-trace
synthesis, and can be adapted to new scenarios with LoRA.
We prototype ZOOMSYNTH with PyTorch and evaluate it on
a real testbed using public datasets. ZOOMSYNTH can satisfy
the requirements for three downstream tasks. Compared to
NetShare that takes packet-level trace as input, ZOOMSYNTH
can achieve comparable accuracy in terms of JSD and EMD,
while obtaining more than 42.1% accuracy improvements
compared to NetDiffusion.
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Appendix
The appendix describes additional details that we could not
fit into the main paper.

.1 Additional Details of CLTM

.1.1 Training Data Preparation for GTT Models
We need traffic data with various resolutions to train GTT k

δ

models. To obtain them, we aggregate raw pcap data from
public datasets into counter time-series at various granulari-
ties, according to k. We have introduced all the public datasets
we use in §6. The number of needed training data couple is θ

k ,
where the overall end-to-end upscaling raito for CLTM is θ.
Taking packet synthesis from second-level counters (overall
end-to-end upscaling ratio is 109) and k=10 as an example,
a total nine couples of counter time-series at different gran-
ularities are needed, including (1s, 100ms), (100ms, 10ms),
..., and (10ns, 1ns). These counter time-series is structured
as pandas.DataFrame with the following columns: time,
packet count, and byte count. Moreover, CLTM increases
GTTs within each stage by k to process different partitions
of counter time-series to improve scalability, as the data size
increases by k along with the upscaling stages. Considering
the temporal dependency between the neighbouring partitions,
we intentionally introduce overlap between them, which en-
hances the ability of GTTs to capture long-term time-series
characteristics.

.1.2 Choosing Upscaling Factor k
As analyzed in §2.4, each GTT concentrates on a particular
upscaling stage with a fixed upscaling factor k, which is im-
portant for the tradeoff between end-to-end traffic synthesis
accuracy and model training cost. A GTT with small k can
achieve satisfactory end-to-end synthesis accuracy, yet may
incur extra training costs as involving more GTTs for more
upscaling steps.

The choices of k are different across different datasets. Gen-
erally, a GTT having smaller upscaling factor can have better
TSR performance. For example, GTT 10

1ms outperforms GTT
100
1ms. For a fixed end-to-end upscaling ratio, however, smaller k
would increase CLTM stages. Each stage may have a degree
of synthesis errors, which may accumulate along with upscal-
ing stages. In addition, the performance gains obtained by
choosing GTT 10

1ms over GTT 100
1ms are not consistent across the

datasets, since they exhibit various characteristics at different
granularities. Therefore, we employ experimental methods to
determine the value of k.

We use TON [57] and CIDDS [7] datasets as an example to
show how we experimentally choose the value of k. We restore
packet trace from second-level counters and make k equal to 5,
10, 102, and 103, respectively. These choices of k are enough
for us to determine the k values for the two datasets. For each
k value, we calculate the normalized EMD and JSD between
real and synthetic packet traces. Fig. 14 shows the results.
We can see, for the two datasets, the normalized EMD and
JSD results have different trends along with the increase of

k. For TON dataset, the normalized EMD and JSD results
increase along with k, and they are similar for k=5 and k=10,
and increase significantly when k>10. However, for CIDDS
dataset, from k=5 to k=102, both EMD and JSD results of
the most packet header fields decrease along with k, and then
they increase largely when k=103, compared to k=102.

Table 4 shows the corresponding end-to-end model training
time for different values of k. The measurements are done on
the testbed described in §7. We only show the training time
using TON dataset, since it is consistent for all the datasets
that more CLTM stages with more GTT models would lead to
longer training time. Taking accuracy and training time into
account, we recommend to set k as 10 and 102 for the TON
and CIDDS datasets, respectively. Other datasets adopt the
same method to choose their k.

Figure 14: Normalized EMD and JSD between real and syn-
thetic packet traces for different choices of k on TON and
CIDDS datasets (SA: source address, DA: destination ad-
dress, SP: source port, DP: destination port, PR: protocol).

Table 4: The end-to-end training time of ZOOMSYNTH for
different values of k using TON dataset.

k 5 10 102 103

Training Time
(GPU Hours) 99.15 61.91 6.77 6.31

.1.3 Training CLTM
In the training phase of CLTM, we combine the output vector
of pre-trained rule-following model and the vector of counter
time-series at a particular granularity and feed their combina-
tions into GTT to train it. Specifically, when no counter rules
are available, its input to GTT is a zero vector. To combine
them, we directly copy and extend the output vector of pre-
trained rule-following model into 2 dimensions, ensuring that
the two vectors are of same shape before concatenating them.

.1.4 Handling Sparsity with Early Stopping
We observe some intermediate fine-grained counter time-
series exhibit sparsity. For instance, when upscaling a counter
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Table 5: Hyperparameters of ZOOMSYNTH models.
Models Param. Value

GTT

Transformer Layers 15
Multi-Headers 4
Hidden Size 256

Dropout 0.1
Learn Ratio 0.001 - 0.01 (vary with iterations)
Batch Size 10 - 64 (vary with data volumes)

λ in Loss Func. 0.1 - 1.5 (vary with iterations)
σ in Loss Func. 0 - 1 (vary with iterations)

Header
Gen. Model

Vocab Size 50000
Embedding Dim. 128
Generation Model GPT2-Small

Rule-following
Model

Text Encoder Transformer-63M
Similarity Matrix 256*256

Downstream
Task Adaptor

Header Generation Transformer-38M
Task-specific Model 3-layers DT or MLP

Figure 15: EMD and JSD between real and synthetic distri-
butions on CIDDS using four kind of models: specific model
trained on CIDDS, general model trained on combined dataset,
LoRA on general model, re-training general model.

time-series from 10ms to 1ms, there are 8 upscaled 1ms-
counters whose values are 0; during the inference phase, for
these counters, ZOOMSYNTH will stop the upscaling process
of the subsequent GTT models in CLTM. In addition, if both
the packet count of the other 2 1ms-counters are 1, this repre-
sents the 1ms-counter has reached the finest granularity and
its byte count is the packet size, we can stop its upscaling pro-
cess as well. By classifying the sparsity of counter time-series
during the upscaling process, ZOOMSYNTH accelerates the
inference of CLTM with an early stop mechanism, avoiding
useless upscalings.

.1.5 Fast New Scenario Adaptation
CLTM is designed to be a general foundation model for TSR
and we train it using the common traffic traces, which pre-
vents it from overfitting to the specific features of any specific
dataset, while directing the model to focus on the underly-
ing and universal traffic features across various scenarios.
However, we also admit that traffic characteristics can vary
significantly for different scenarios, and can also change over
time. Therefore, we design an approach for adapting CLTM
to the new scenarios with low overhead.

We leverage the LoRA-based approach to empower CLTM
to adapt to new scenarios quickly. This is a systematic applica-
tion of LoRA [40] for traffic synthesis building on its success
in fine-tuning of LLMs. The core of LoRA is training the
low-rank parameter matrices of the whole model with a small
amount of data from new scenarios during the re-training
phase. After finishing the training, it injects the re-trained
parameters to the original model and replaces the correspond-

ing ones. We use the same approach to train the low-rank
parameter matrices of CLTM.

We only choose the GTT model layer of CLTM for finer-
grained counter synthesis to perform re-training with LoRA
approach, which further accelerates the adaptation process.
We observe that across various scenarios, coarse-grained traf-
fic statistics remain consistent, the features of the correspond-
ing fine-grained traffic are different. Therefore, as shown in
Fig. 1, for GTTs within the upper layers of CLTM, they are
similar to perform uniform upscalings, while GTTs within the
lower layer vary in capturing the traffic fine-grained features.
Based on the observation and analysis, we should re-train
GTTs for finer-grained counter synthesis. For instance, we
choose GTT 10

10ns and GTT 10
1ns in the last two stages of CLTM

to be retrained for packet synthesis from second-level counter
time-series.

.2 Training Header Generation Model
For preparing the training dataset, we process the raw packet
trace to the same granularity of counter time series. We use
the processed counter time series and packet trace to train the
header generation model. The training method is that we mask
header fields randomly and use the model to regenerate the
relative fields. We retrain the header generation model on our
hybrid dataset, with the training process taking approximately
8 days.

.3 Implementation Details of ZOOMSYNTH

.3.1 Hyperparameters of ZOOMSYNTH Models
Table 5 lists the hyper-parameter setups of ZOOMSYNTH for
each model.

.3.2 Operation APIs of CLTM
The six APIs to support operations of CLTM introduced in §6
include def_TSR_ratio(·) for defining the end-to-end up-
scaling ratio, def_GTT_factor(·) for choosing the factor
k of the GTT, def_GTT_num(·) for deciding the number of
GTTs in CLTM, def_GTT_model(·) for configuring model
hyperparameters, def_training_iter(·) for setting model
training parameters.

.4 Additional Experimental Results

.4.1 Adapting to New Scenarios
To simulate adapting to a new scenario, we design two
datasets: the D0 dataset combines UGR16, TON and MAWI
datasets; and the D+ dataset which contains only the CIDDS
dataset whose size is 5% of that of D0. We then train three
models: 1) the General Model is a CLTM trained on D0; 2)
with the General Model as base, we train the LoRA layers
on D+, which is our recommended procedure to adapt CLTM
to new scenarios; we denote the combined model of General
Model and LoRA layers as LoRA; 3) Using the General Model
as a starting point, we run 50 iterations of training using D+,
and we call the resulting model Re-train Model.

Fig. 15 shows the results. We observe that the Re-train
Model achieves the best performance, and LoRA can greatly
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Figure 16: Proportions of deviations for synthetic packet lengths at the 1st and 99th percentile generated by ZOOMSYNTH
and NetShare on the UGR16, TON, CIDDS, and MAWI datasets (PDSPL: Proportions of Deviations for the Synthetic Packet
Lengths).
improve the General Model’s performance in the new sce-
nario. LoRA can improve the generation quality of timestamps
and packet lengths by 4.3% and 15%, respectively. For header
generation, LoRA achieves roughly the same performance as
the Re-train Model. Since re-training the complete CLTM
model takes up significantly more resource and time than
training a few LoRA layers, we believe adapting to new sce-
narios with LoRA is an attractive alternative for users with
limited time, data, and resources.

.4.2 Deviation Proportions of Synthetic Packet Lengths
To further explore the generation performance of ZOOM-
SYNTH and NetShare in synthesizing packet lengths, we look
at the proportions of deviation between the synthetic and real-
istic packet lengths. This metric, referred to as the proportion
of deviations for synthetic packet lengths (PDSPL), is defined
as follows:

PDSPLi =
|PLsyn

i − PLreal
i |

PLreal
i

× 100%.

Here, PLreal
i denotes the packet length at the ith percentile of

the sorted realistic packet length time-series, arranged from
smallest to largest, while PLsyn

i represents the corresponding
value of the sorted synthetic packet length time-series. This
metric measures how closely the synthetic packet lengths
match the realistic ones across different percentiles.

Fig. 16 shows the proportions of deviations for the 1st
and 99th percentile synthetic packet lengths generated by
ZOOMSYNTH and NetShare on the UGR16, TON, CIDDS,
and MAWI datasets. We can see NetShare exhibits lower
deviations at both the 1st and 99th percentiles, except for
the 1st percentile packet length on the MAWI dataset. We
analyze that this is because GAN-based models are sensitive
to fluctuations and extreme values in time-series data [46],
making NetShare perform better in generating packet lengths
around extreme values. However, this sensitivity also causes
NetShare to tend to overfit the variations of the packet length
time-series, leading to worse EMD performance compared to
ZOOMSYNTH, as we observe in Fig. 8.

.5 Cisco Router Products Supporting Counters
Table 6 shows Cisco’s router products which support counters,
their configuration commands to display counters, and the cor-
responding online configuration manuals. These routers are
the 41 out of 42 ones from 500 series to 12000 series listed at
Cisco’s official site [5]. Their configuration manuals state that
they support counters, which can be obtained via command
line interface (CLI) with the corresponding configuration com-

mands. The router product which does not appear in Table 6
is 8000 series virtual router emulator, whose data sheet intro-
duces that some hardware counters are not supported by it [8].
It is not that it does not support counters at all.

We list the links of the online configuration manuals refer-
enced in Table 6 below.

[1] https://www.cisco.com/c/en/us/support/
routers/500-series-wpan-industrial-routers/
series.html

[2] https://www.cisco.com/c/en/us/td/docs/
routers/ncs5xx/ncs520/configuration/guide/
CE/17-1-1/b-ce-xe-17-1-1-ncs520/using-
ethernet-operations-administration-and-
maintenance.html

[3] https://www.cisco.com/c/en/us/td/docs/
iosxr/ncs5xx/interfaces/24xx/b-interfaces-
hardware-component-cg-24xx-ncs540/config-
ethernet-interfaces.html

[4] https://www.cisco.com/c/en/us/td/docs/
iosxr/ncs560/interfaces/24xx/b-interfaces-
hardware-component-cg-24xx-ncs560/
configuring_ethernet_interfaces.html

[5] https://www.cisco.com/c/en/us/td/
docs/routers/access/800/829/software/
configuration/guide/b_IR800config/
b_cellular.html

[6] https://www.cisco.com/c/en/us/td/docs/
routers/access/800M/software/800MSCG/
routconf.html

[7] https://www.cisco.com/c/en/us/td/docs/
routers/access/900/software/configuration/
guide/900SCG/routconf.html

[8] https://www.cisco.com/c/en/us/td/docs/
routers/asr903/software/guide/chassis/
17-1-1/b-config-guide-xe-17-1-1-asr900/
configuring_ethernet_interfaces.html

[9] https://www.cisco.com/c/en/us/td/
docs/wireless/asr_901/Configuration/
Guide/b_asr901-scg/b_asr901-
scg_chapter_01010.html
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Table 6: Cisco router products which support counters, their configuration commands to display counters, and the corresponding
online manuals.

No. Router Products Config Commands Config Manuals
1 500 Series WPAN Industrial Routers show wpan packet-count [1]
2 Network Convergence System 500 Series Routers show ethernet oam statistics [2]
3 Network Convergence System 540 Series Routers

show interface [name]

[3]
4 Network Convergence System 560 Series Routers [4]
5 800 Series Industrial Integrated Services Routers [5]
6 800 Series Routers [6]
7 900 Series Integrated Services Routers [7]
8 ASR 900 Series Aggregation Services Routers [8]
9 ASR 901 10G Series Aggregation Services Routers [9]10 ASR 901 Series Aggregation Services Routers
11 ASR 920 Series Aggregation Services Router [10]
12 1000 Series Connected Grid Routers [11]
13 Cisco 1000 Series Integrated Services Routers [12]
14 ASR 1000 Series Aggregation Services Routers [13]
15 Cloud Services Router 1000V Series show platform packet-trace statistics [14]
16 Catalyst IR1100 Rugged Series Routers

show interface [name]

[15]
17 Catalyst IR1800 Rugged Series Routers [16]
18 1900 Series Integrated Services Routers [17]
19 2000 Series Connected Grid Routers [18]
20 2900 Series Integrated Services Routers [17]21 3900 Series Integrated Services Routers
22 3000 Series Industrial Compute Gateways show iox detail [19]
23 4000 Series Integrated Services Routers show interface [name] [20]
24 5000 Series Enterprise Network Compute System show ip traffic interface [name] [21]
25 Network Convergence System 5000 Series

show interface [name]

[22]
26 Network Convergence System 5500 Series [23]
27 Network Convergence System 5700 Series [24]
28 5900 Series Embedded Services Routers [25]
29 Network Convergence System 6000 Series Routers [26]
30 ESR6300 Embedded Series Routers [27]
31 8000 Series Routers sh int [name] [28]
32 Catalyst 8000V Edge Software show platform packet-trace statistics [29]
33 Cisco Catalyst 8200 Series Edge Platforms

show interface [name]
[30]34 Cisco Catalyst 8300 Series Edge Platforms

35 Cisco Catalyst 8200 Series Edge uCPE [31]36 Cisco Catalyst 8300 Series Edge uCPE
37 Catalyst 8500 Series Edge Platforms show platform packet-trace statistics [32]38 Catalyst 8500L Series Edge Platforms
39 ASR 9000 Series Aggregation Services Routers show interface [name] [33]
40 IOS XRv 9000 Router show controller dpa statistics global [34]
41 XR 12000 Series Router show interface [name] [35]

[10] https://www.cisco.com/c/en/us/td/docs/
routers/asr920/configuration/guide/chassis/
17-1-1/b-Chassis-Guide-xe-17-1-asr920/m-
eth_im_config-asr920.html

[11] https://www.cisco.com/c/en/us/td/docs/
routers/connectedgrid/cgr1000/1_0/software/
configuration/guide/wifi/WiFi_Book/
wifi_interface.html

[12] https://www.cisco.com/c/en/us/td/
docs/routers/access/isr1100/software/
configuration/xe-17/isr1100-sw-config-

xe-17/troubleshooting.html

[13] https://www.cisco.com/c/en/us/td/docs/
routers/asr1000/configuration/guide/
chassis/asr1000-software-config-guide/
bdi-asr.html

[14] https://www.cisco.com/c/en/us/td/docs/
routers/csr1000/software/configuration/
b_CSR1000v_Configuration_Guide/
packet_trace.html

[15] https://www.cisco.com/c/en/us/td/docs/
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routers/access/1101/software/configuration/
guide/b-cisco-ir1101-scg/m-basic-router-
cli-configuration.html

[16] https://www.cisco.com/c/en/us/td/docs/
routers/access/IR1800/software/b-cisco-
ir1800-scg/m-basic-router-cli-config.html

[17] https://www.cisco.com/c/en/us/td/docs/
routers/access/1900/software/configuration/
guide/Software_Configuration/routconf.html

[18] https://www.cisco.com/c/en/us/td/docs/
routers/access/2000/CGR2010/software/
configuration/guide/CGR_2010/routconf.html

[19] https://www.cisco.com/c/en/us/td/
docs/routers/ic3000/deployment/
guide/b_IC3000_deployment_guide/
b_IC3000_deployment_guide_chapter_0100.html

[20] https://www.cisco.com/c/en/us/td/docs/
routers/access/4400/software/configuration/
xe-16-6/isr4400swcfg-xe-16-6-book/
basicconfg.html

[21] https://www.cisco.com/c/en/us/td/docs/
routers/sdwan/configuration/system-
interface/ios-xe-17/systems-interfaces-
book-xe-sdwan/configure-interfaces.html

[22] https://www.cisco.com/c/en/us/td/docs/iosxr/
ncs5000/interfaces/711x/configuration/
guide/b-interfaces-hardware-component-
cg-ncs5000-711x/advanced-configuration-
modification-of-management-ethernet-
interface.html

[23] https://www.cisco.com/c/en/us/td/docs/iosxr/
ncs5500/interfaces/24xx/configuration/
guide/b-interfaces-hardware-component-
cg-ncs5500-24xx/configuring-ethernet-
interfaces.html

[24] https://www.cisco.com/c/en/us/products/
collateral/routers/network-convergence-
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