
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Achieving Wire-Latency Storage Systems
by Exploiting Hardware ACKs

Qing Wang, Jiwu Shu, Jing Wang, and Yuhao Zhang, Tsinghua University

https://www.usenix.org/conference/nsdi25/presentation/wang-qing

Achieving Wire-Latency Storage Systems by Exploiting Hardware ACKs

Qing Wang, Jiwu Shu*, Jing Wang, and Yuhao Zhang

Tsinghua University

Abstract
We present Juneberry, a low-latency communication frame-

work for storage systems. Different from existing RPC frame-
works, Juneberry provides a fast path for storage requests:
they can be committed with a single round trip and server
CPU bypass, thus delivering extremely low latency; the exe-
cution of these requests is performed asynchronously on the
server CPU. Juneberry achieves it by relying on our proposed
Ordered Queue abstraction, which exploits NICs’ hardware
ACKs as commit signals of requests while ensuring lineariz-
ability of the whole system. Juneberry also supports dura-
bility by placing requests in persistent memory (PM). We
implement Juneberry using commodity RDMA NICs and
integrate it into two storage systems: Memcached (a widely
used in-memory caching system) and PMemKV (a PM-based
persistent key-value store). Evaluation shows that compared
with RPC, Juneberry can significantly lower their latency
under write-intensive workloads.

1 Introduction
Fast Remote Direct Memory Access (RDMA) networks are
driving us to build low-latency storage systems [1, 10, 18, 19,
42,59]. First, RDMA NICs (RNICs) offload network protocol
tasks, such as segmentation and checksum, freeing CPU cy-
cles and thus reducing software latency. Second, the RDMA
software stack bypasses the OS kernel, thus eschewing latency
overhead from context switch and data copying. Finally, the la-
tency can be further reduced by leveraging RDMA one-sided
verbs (i.e., RDMA WRITE/READ) to access remote memory di-
rectly; it bypasses the remote CPU, thus detaching the remote
CPU’s software overhead from the critical path.

Protocol offloads and kernel bypass can bring latency re-
duction for every storage request. However, this is not the case
for remote CPU bypass: it is non-trivial to commit a request
using one-sided verbs without increasing the number of round
trips. For simplicity, we term the latency of a single round trip
with remote CPU bypass as wire latency. Currently, only two
use cases can achieve wire latency: simple data access and
data replication. In the first case, clients use one-sided verbs to
read/write a data block whose remote address is known [18].
However, due to the limited semantics of one-sided verbs,
this approach cannot be extended to complex scenarios, such
as those containing index traversal and concurrency control,
since it will induce excessive round trips [53, 55], offsetting

*Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn)

the latency benefits of bypassing remote CPUs. In the data
replication case, the leader appends replication requests to
followers’ replication logs via RDMA WRITE, and commits
upon the completion of RDMA WRITE [9, 18, 58]. Followers
execute replication requests lazily in the background. By do-
ing so, the software overhead of followers is removed from
the replication critical path.

In this paper, we explore how to achieve wire latency for
more general storage requests (beyond simple data access
and data replication mentioned before). We begin by identify-
ing what types of storage requests semantically support wire
latency. By analyzing, we find that nil-externalizing (nilext)
requests defined by recent work [21] can meet the requirement
of wire latency. Nilext requests do not return execution results
or execution errors, i.e., they do not externalize its effects or
system state. Hence, the execution of nilext requests can be
deferred, making it possible to commit them with server CPU
bypass (one requirement of wire latency). Nilext requests
are common: for example, set requests in Memcached, and
put/delete/merge requests in RocksDB [21]. So our goal
becomes to make nilext requests wire-latency.

The challenge of achieving wire-latency nilext requests is
maintaining linearizability in the presence of multiple clients.
Specifically, we need to order (nilext and non-nilext) requests
issued by different clients for linearizability, and ensure that
nilext requests are committed with server CPU bypass. How-
ever, RDMA one-sided verbs lack the ability of inter-client
coordination, since clients must specify the destination ad-
dresses of sent data. This restricts RDMA WRITE to achieve
wire latency only for single-client scenarios (e.g., replication
case where only one leader writes log entries to followers).

We propose Ordered Queue (OQ) abstraction to address
the challenge. It is based on our new insight: the property
of remote CPU bypass results from the ability of RNICs to
generate hardware ACKs, independent of the type of RDMA
verbs. Specifically, as long as the RNIC supports reliable data
transfer, it will generate hardware ACKs, which we can use
as the commit signals of nilext requests, to achieve remote
CPU bypass. Inspired by the insight, OQ abstraction leverages
receive queue, a key structure of RDMA two-sided verbs, to
achieve wire-latency nilext requests. It specifies how the CPU
and RNIC separately interact with the receive queue using
two rules : 1) NIC rule: the server-side RNIC allocates buffers
from the receive queue in order, accommodating incoming
requests, as well as generates hardware ACKs; 2) CPU rule:
the server CPU executes requests in the receive queue in order

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1085

and returns software responses for non-nilext requests. By
using the OQ abstraction, storage systems will generate a
linearizable history that follows the positions of buffers in the
receive queue, while enabling wire-latency nilext requests.

We build Juneberry, a communication framework that im-
plements the OQ abstraction using commodity RDMA NICs.
In Juneberry, clients can mark a request as nilext and use
the hardware ACK from server-side RNIC as its commit sig-
nal, to make nilext requests wire-latency. The OQ abstraction
in Juneberry is centered on an RDMA hardware compo-
nent called shared receive queue (SRQ) [12]. SRQ inherently
enforces the NIC rule: RNICs place requests from differ-
ent clients in an SRQ in order [12]. To enforce the CPU
rule and support multiple CPU cores, Juneberry adopts a
bitmap-assisted, in-order execution mechanism, and partitions
requests into multiple SRQs according to data affinity.

The implementation of the OQ in Juneberry brings two
performance issues. First, work queue elements or WQEs
(i.e., descriptors) in an SRQ are connected using a link list,
not as an array as in a standard receive queue. As a result, the
RNIC must fetch them in a pointer-chasing manner, inducing
excessive DMA operations. Second, the Juneberry server
creates a large number of connections and the RNIC cannot
cache their states due to its size-limited SRAM, thus leading to
performance degradation. To address the first issue, Juneberry
allows a single buffer to accommodate multiple requests by
leveraging the multi-packet features in RNICs [56]. Hence,
a WQE fetched by one DMA operation can serve multiple
requests. To address the second issue, we design a client-
side delegation mechanism that supports connection sharing
between client threads, reducing the number of connections.

To enable Juneberry to be integrated into storage systems
that are crash-consistent, we further add durability support for
Juneberry. This is achieved by leveraging emerging persistent
memory (PM) technologies. Specifically, Juneberry places
SRQ buffers in PM and makes the hardware ACK have persis-
tence guarantees. Moreover, we design a recovery procedure
that scans PM-resident SRQs to identify valid requests and
then restores storage systems to a consistent state.

We augment two storage systems with Juneberry: Mem-
cached [6], a widely used in-memory caching system, and
PMemKV [7], a PM-based persistent key-value store. We
evaluate them in a cluster of 9 machines. For Memcached,
we run representative traces from Twitter’s workloads [63].
Compared with RPC, Juneberry reduces median latency and
P99 latency by up to 90.70% and 45.65%, respectively. We
also compare Juneberry with a software approach that returns
responses of nilext requests before execution: Juneberry still
reduces median/P99 latency by 83.77%/42.86%. This is be-
cause by leveraging hardware ACKs, Juneberry eliminates
any server-side software delay from the critical path of nilext
requests, including software queueing. For PMemKV, we run
YCSB-like workloads. Under write-intensive workloads (i.e.,
50% put), Juneberry reduces median latency by 40.83%. Un-

der read-intensive workloads (i.e., 5% put), Juneberry has
1.19× (1.6µs) higher median latency, which results from the
overhead of supporting durability, including disabled DDIO
and PM-resident SRQs (Optane PM [5] in our evaluation).

In summary, we make the following contributions.
• Ordered Queue (OQ) abstraction, which leverages RNIC

hardware ACKs to enable wire-latency nilext requests
while maintaining linearizability.
• Juneberry, a communication framework that implements

the OQ abstraction with commodity RNICs, optimizes per-
formance using hardware/software techniques, and sup-
ports durability with persistent memory.
• A set of evaluations on Memcached and PMemKV that

demonstrate the performance benefits of Juneberry.

2 Background
In this section, we first provide the background of RDMA
(§2.1). Then, we show how existing work utilizes RDMA
one-sided verbs to achieve extremely low latency (i.e., wire
latency) for storage systems (§2.2).

2.1 RDMA
As the CPU performance stagnates but the network bandwidth
continues to grow, it is prevalent to offload network-related
processing tasks to NICs [11, 22, 46, 48, 50], freeing valuable
CPU cycles. RDMA is a typical example, which is widely
deployed in data centers due to high performance and high
CPU efficiency [1, 22, 23].

RDMA NICs (RNICs) execute RDMA protocol in hard-
ware and provide queue pair (QP) abstraction to applica-
tions. A QP consists of a send queue (SQ) and a receive
queue (RQ), each being associated with a completion queue
(CQ). A sender submits RDMA commands (verbs), i.e.,
WRITE/READ/SEND, to the SQ. WRITE and READ are one-sided,
which means that the sender can directly access remote mem-
ory without involving the receiver’s CPUs. In contrast, SEND is
two-sided, since the receiver needs to push RECV commands
to the RQ to prepare receive buffers, which accommodate
incoming SEND messages. Upon the completion of RDMA
commands, the RNIC generates completion entries (CEs) to
the associated CQs. RDMA offers several transport modes,
of which the reliable connection (RC) mode is the most com-
monly used. RC mode supports 1) reliable data transfer, 2)
one-sided READ/WRITE, and 3) larger-than-MTU message de-
livery, but it needs one-to-one QP connections.

2.2 Achieving Wire-latency via One-sided Verbs
RDMA one-sided verbs (i.e., READ/WRITE) are capable of
accessing remote memory with remote CPU bypass. This
enables extremely low-latency data transfer by avoiding the
receiver’s CPU software overhead. For simplicity, we term
the latency of a single one-sided READ/WRITE (i.e., a single
round trip with remote CPU bypass) as wire latency.

Researchers have leveraged one-sided verbs to achieve
wire-latency replication for storage systems [9, 18, 19, 58].

1086 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

For example, Mu [9] redesigns Paxos-based state machine
replication (SMR): the leader appends a log entry to followers’
replication logs via one-sided WRITE commands; once the ma-
jority of WRITE commands have been completed, the leader
can ensure the log entry is committed. Followers execute log
entries asynchronously in the background. As with the tra-
ditional RPC-based approach, Mu completes replication in
a single round trip. The difference is that Mu removes the
CPU overhead of followers from the replication critical path.
Therefore, Mu achieves wire-latency for replication requests
(i.e., 1.3µs for leader replicating small data [9]).

3 Motivation
Motivated by the one-sided replication case, we explore a
more fundamental question in this work: Can we achieve
wire latency for general storage requests (not just replication
requests)? In this section, we analyze the feasibility and locate
the associated technique challenges.
What types of storage requests semantically support wire
latency? If a storage request can be realized in a wire-latency
manner, it must meet certain requirements, such as not re-
turning an execution result. This is because a wire-latency
request is committed without waiting for the server CPU to
execute. We find the nil-externality property defined by a
recent work [21] perfectly describes the requirements.

Formally, a storage interface is nil-externalizing (nilext)
if it does not externalize its effects or system state imme-
diately [21]: it just returns an acknowledgment indicating
committed, rather than returning an execution result or error.
Nilext interfaces are common in storage systems: for example,
in Memcached, set is nilext; in RocksDB, put, delete, and
merge are nilext [21]. By exploiting nil-externality, the exe-
cution can be performed asynchronously on the server CPU,
which makes wire-latency nilext requests possible.
What are the benefits of wire-latency nilext requests? Ac-
celerating nilext requests will notably reduce overall latency
(including tail and median) that clients perceive. First, the
nilext requests are typically writes and read-modify-writes;
executing them is more complicated and thus slower than exe-
cuting read requests. For example, Memcached’s set involves
memory allocation and object eviction; LevelDB/RocksDB’s
put appends log entries to a write-ahead-log (WAL) file.
Making them wire-latency will lower the tail in latency distri-
bution. Second, according to recent studies, many workloads
have a non-negligible write ratio [15, 54, 63]. For example,
in Twitter, more than 35% cache clusters generate more than
30% set requests (nilext) [63]; in Meta’s large-scale AI/ML
services UP2X, which uses RocksDB for storage backend,
about 92.53% of request are RocksDB’s merge (nilext) [15].
Under these write-heavy workloads, wire-latency nilext re-
quests will reduce the median latency.
Can wire-latency nilext requests be achieved via RDMA
WRITE? Unfortunately, we give a negative answer by analyz-
ing the limited semantics of RDMA WRITE. To guarantee lin-

earizability [24] of storage systems (e.g., after a set(k,v1)
is committed, the subsequent get(k) can return v1), we need
to produce a linearizable order for requests from different
clients. However, RDMA WRITE cannot achieve coordination
between clients: a client must specify the destination address
of the server when issuing an RDMA WRITE. If we use an
external component like sequencer [13, 16, 38] for inter-client
coordination, i.e., obtaining an increasing address from the
sequencer before issuing WRITE and using addresses as the
linearizable order, it will induce an extra round trip [13], vio-
lating the definition of wire latency, or require programmable
switches [16, 38], hindering wide deployment. We also can-
not use the server CPU to order requests, since wire-latency
requests need to be committed with server CPU bypass. Now,
we revisit why RDMA WRITE can achieve wire latency for
replication. The reason behind it is simple: in the replication
case, the server (i.e., a follower) has only a single client (i.e.,
the leader), so the leader can easily specify the order for repli-
cation requests by generating increasing destination addresses
locally; but it does not work for the multi-sender scenario.

In summary, due to interface semantics of nilext requests,
making them wire-latency is possible. If realized, we can
obtain latency benefits for the upper storage systems. Yet, the
challenge is how to guarantee linearizability in the presence
of multiple clients, which RDMA WRITE cannot tackle.

4 Ordered Queue Abstraction
According to the analysis in §3, RDMA one-sided verbs are
incapable of realizing wire-latency nilext requests, since they
do not support inter-client coordination inherently. It seems to
be in a predicament: the common view is that only one-sided
verbs can transfer data in a remote-CPU-bypass manner, the
requirement of wire latency.

We break the common view by reexamining what it means
to bypass a remote CPU. For an RDMA WRITE, when the
client gets a completion entry (CE) by polling the CQ, it can
guarantee that the sent data will reliably reach the server mem-
ory; the entire process does not involve the server CPU. How
does the client obtain the guarantee in a remote-CPU-bypass
manner? By further looking at the hardware mechanism of
RNICs, the answer is explicit: RNICs can generate hardware
ACKs due to offloading reliability. Specifically, to support
reliable data transfer (RC mode), upon receiving a packet,
the receiver-side RNIC generates a hardware ACK to con-
firm safe delivery, or a negative ACK (NACK) to indicate
out-of-order delivery1. The sender-side RNIC handles ACKs
by generating CEs to the associated CQs; it handles NACKs
by performing go-back-N retransmission or Selective Repeat
(SR) retransmission (e.g., ConnectX-6 RNIC). This reveals
a new insight: the property of bypassing the remote CPU re-
sults from the ability of RNICs to generate hardware ACKs,
independent of the type of RDMA verbs.

1If a hardware ACK is lost, the RNIC will resend it.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1087

Inspired by the new insight, we find that it has the potential
to achieve wire-latency nilext requests by leveraging two-
sided verbs (i.e., RDMA SEND). First, RNICs also generate
hardware ACKs for RDMA SEND, which we can use as the
commit signals of nilext requests, ensuring the property of
bypassing the remote CPU. Second, unlike RDMA WRITE,
clients do not need to specify destination addresses for RDMA
SEND: the server-side RNIC writes the data into buffers in the
receive queue (RQ); this gives the server-side RNIC a chance
to order requests from different clients.

We therefore propose Ordered Queue (OQ) abstraction,
which enables wire-latency nilext requests while maintaining
linearizability of the whole storage system. In principle, in
OQ abstraction, the server-side RNIC produces a linearizable
order for requests from clients, and the server CPU executes
requests according to the order. Concretely, OQ abstraction
consists of two rules that define how the server-side RNIC
and server CPU interact with the RQ, respectively:

Rule 1 (NIC rule). The RNIC allocates receive buffers in
order: ① the RNIC always allocates receive buffers from the
head of RQ, and ② returns hardware ACKs after allocation.

Rule 2 (CPU rule). The CPU executes requests in order.
In other words, the CPU always fetches the first receive buffer
not yet executed in the RQ, executes the associated request,
and finally returns software responses for non-nilext requests.

A request is committed when the client receives hardware
ACKs (for nilext requests) or software responses (for non-
nilext requests). Using the above two rules, storage systems
will generate a linearizable order that follows the positions
of receive buffers in the RQ, even using hardware ACKs as
responses of nilext requests. Here, we prove that a request (R2)
sees the effects of any request (R1) that is committed before it
invokes. There are three cases:

Case 1: R2 is nilext. In this case, according to the definition
of nilext requests, R2 does not need to return any state of
storage systems, including effects of committed R1.

Case 2: R1 and R2 are both non-nilext. In this case, R2 is
invoked after the client receives the software response of R1.
According to Rule 2, server CPU executes R1 before returning
the software response. Thus, R2 will reflect the result of R1.

Case 3: R1 is nilext but R2 is non-nilext. In this case, R2 is
invoked after the client receives the hardware ACK of R1. Ac-
cording to Rule 1, at the server side, R1 has a more advanced
position in RQ than R2. Further, according to Rule 2, the
server CPU executes R1 before R2, so the software response
of R2 will see the effects of R1.

Here, we give an example of OQ using Figure 1. Suppose
the back-end storage system is Memcached. (a) Initially, at the
server side, the RQ is empty and the Memcached instance con-
tains a KV pair ⟨k, v0⟩. (b) Then, a nilext request set(k,v1)
arrives at the first buffer on the RQ; and the RNIC returns a
hardware ACK indicating committed, achieving wire latency.
(c) After that, a nilext request set(k,v2) experiences the

request response via HW ACK SW response

set(k,v1)

head tail

exec head

<k, v0>(b) [t1, t2)

set(k,v1)

head tail

set(k,v2)

exec head

<k, v1>

set(k,v1)

(c) [t2, t3)

set(k,v1)

head, tail

set(k,v2) get(k) <k, v2>

set(k,v2)exec head

(d) [t3, t4)

set(k,v1)

head, tail

set(k,v2) get(k) <k, v2>

get(k)
exec head

ret: v2
(e) [t4, t5)

exec head

(a) t0 <k, v0>

head tail

Receive Queue Memcached

Figure 1: Memcached example with OQ. This figure shows compo-
nents at the server side, including RNIC, receive queue, CPU, and a
Memcached instance. head points to the first buffer with no request;
exec head points to the first buffer that is not executed by the CPU.

same process with the second receive buffer; at the same time,
the CPU asynchronously executes requests in RQ in order
(i.e., executing set(k,v1) first). (d) Then, the RNIC receives
a non-nilext request get(k) and places it in the third buffer
in RQ. (e) After the CPU has finished executing the first two
requests, it executes the get(k) and returns a software re-
sponse containing v2. Receive buffers consumed by the CPU
can be pushed into the RQ again.

Comparison with the pure software solution. One may
wonder whether we can achieve the same low latency us-
ing a pure software solution that adopts deferred execution:
when the server CPU meets a nilext request, it first returns
a software ACK to commit, and then executes the request.
However, we argue that the OQ abstraction (which achieves
wire-latency nilext requests) has remarkable advantages over
the pure software approach. For nilext requests, by leverag-
ing the hardware ACKs, the OQ abstraction eliminates the
server-side software delay from the critical path, not only for
request execution but also for request responses and software
queuing. In contrast, in the software approach, when the CPU
is busy executing requests, the subsequent nilext requests in
the RQ cannot be committed immediately and suffer from
latency caused by the software queuing. We will conduct the
detailed experimental comparison in §6.

Analysis of pathological access patterns. There is a patho-
logical access pattern that makes OQ perform poorly: a client
thread sends a non-nilext request immediately after receiving
the hardware ACK of a nilext request, and both requests reach

1088 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

% of requests resulting in Tgap ⊂[0, 2s]

C
D

F

0

0.5

1.0

0 10 20 30

Figure 2: Analysis of 54 clusters in Twitter workloads. For example,
for a point (10, 0.852) in the figure, it means that 85.2% clusters out
of 54 have less than 10% requests resulting in Tgap ⊂ [0, 2s].

the same RQ. In this case, the server has no chance of hid-
ing the nilext request’s execution latency to the client thread,
making the non-nilext request suffer high latency.

For example, suppose the three requests in Figure 1 come
from the same client thread, and the thread immediately sends
a request when receiving the response of the previous one.
We assume that the network RTT is 2µs (i.e., 1µs one-way
delay), executing set needs 10µs, and executing get needs
5µs. Without the OQ, the latency of three requests are 12µs,
12µs, and 7µs, respectively. With the OQ, the latency are 2µs,
2µs, and 23µs, respectively: although the two set requests
are fast, the get request has a much higher latency.

However, we argue that the above pathological access pat-
tern is uncommon in real-world workloads. First, there are
many storage servers (and each server may have multiple RQs;
see §5.1), so two adjacent requests from a client often have
different destinations. Second, client threads need to do com-
putational tasks, e.g., webpage rendering (instead of sending
storage requests all the time), creating time intervals between
requests. As a result, client threads can easily hide the latency
of executing nilext requests. Further, we analyze production
traces from in-memory caching workloads of Twitter [63].
These traces contain unsampled requests that are sent to two
instances (i.e., servers). We chose 1 million consecutive re-
quests to measure the time intervals between a nilext request
and the next non-nilext request issued by the same clients
(called Tgap). Since the traces record timestamps in seconds,
we can only coarsely count how many requests result in Tgap
⊂ [0,2s]. Figure 2 shows the cumulative distribution across
54 clusters. In 85.2% (46) clusters, requests leading to Tgap
⊂ [0,2s] are less than 10%, which gives the OQ abstraction a
great opportunity to reduce system latency.

5 Juneberry Design
Juneberry is a communication framework that implements
the OQ abstraction using commodity RNICs. Juneberry pro-
vides a similar usage as RPC frameworks: The server registers
request handler functions, each having a unique request type;
Clients issue a request with a specified request type and pa-
rameters, to call the associated function.

Juneberry is unique in that it supports wire latency for
nilext requests. Clients can mark a request as nilext. For

such a request, the server CPU does not return a software
response, and the client treats the hardware ACK generated
by the server-side RNIC as the commit signal. In this way,
the nilext request is committed with extremely low latency,
removing the server CPU’s overhead from the critical path.

However, when designing Juneberry, there are two obsta-
cles that we must overcome:
• Correct semantic with high performance. Despite the

simplicity of OQ abstraction, mapping it to the RNIC is not
so straightforward. We need to carefully select hardware
primitives and scrutinize them for correctness (§5.1). More-
over, while ensuring correctness, we also need to achieve
high performance (§5.2).
• Durability support with crash consistency. The OQ ab-

straction lacks a description of how to handle server crashes,
which is indispensable for storage systems that contain
persistent states (e.g., RocksDB). Therefore, we need to
augment the OQ abstraction to support durability (§5.3), in-
cluding 1) making the hardware ACKs have the durability
guarantee, and 2) ensuring that storage systems can recover
correctly upon server crashes.

5.1 Implementing OQ Abstraction
Juneberry server leverages shared receive queues (SRQs) to
implement the OQ abstraction. SRQ is a standard RDMA
component supported by almost all RNICs [12]: it is pro-
posed to reduce memory footprint by supporting multiple
QPs sharing a single RQ. Juneberry exploits SRQs for an-
other purpose: by binding multiple QPs to an SRQ, requests
from different clients (i.e., QP connections) can be placed
in the same queue structure, which is a basic requirement of
the OQ abstraction. Juneberry runs in reliable connection
(RC) mode, to enable the generation of hardware ACKs. The
server pushes receive buffers to the SRQ via RDMA RECV
commands; client threads send requests to the server’s SRQ
by issuing RDMA SEND commands.

Next, we describe how Juneberry follows the two rules of
OQ (§4). In brief, SRQ naturally follows Rule 1 (i.e., NIC
rule), but Juneberry relies on some software designs to follow
Rule 2 (i.e., CPU rule).

According to RDMA specification [12], the receiver-side
RNIC always allocates receive buffers from the head of SRQ2.
However, if the RNIC returns hardware ACKs before allo-
cation due to some radical optimizations (e.g., delayed al-
location), the Rule 1 will be violated. Fortunately, by revis-
iting the hardware semantics of RDMA, we determine that
returning ACKs before allocation is impossible. Concretely,
in RDMA, all memory areas (including receive buffers) that
can be accessed by the RNIC are registered as memory re-
gions (MRs); each MR is assigned several permissions (e.g.,
remotely writable). Therefore, for an incoming SEND request,

2In Section 10.2.9.1 of [12]: “When an incoming Receive Message arrives
on any QP that is associated with an SRQ, the HCA uses the next available
SRQ WQE to receive the incoming data”.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1089

SRQ buffers

CQ

b1 b2 b3 b4 b5

tail

bitmap 00000 10000 10100 10110 11110

idx

(a)

1 2 2 2 5

time

execute b1 execute b2,b3,b4
in order

ce1 ce2 ce3 ce4

(b)

Figure 3: Juneberry enforces Rule 2. (a) The order of CEs in the CQ
may not match the order of receive buffers in the SRQ. (b) Executing
receive buffers in order with the help of the CQ and a bitmap.

the server-side RNIC must check the permissions of the desti-
nation address before returning hardware ACKs, to enforce
access control. Checking permissions indicates that the asso-
ciated receive buffers have been allocated.

In existing RPC frameworks using two-sided verbs [31],
the order of executing requests is the same as the order of
completion entries (CEs): the server-side CPU polls the CQ
to obtain CEs, then locates receive buffers using the CEs, and
finally executes requests in the receive buffers. However, such
a workflow (i.e., executing requests according to the order
of CEs) can not enforce the Rule 2. This is because RDMA
only guarantees in-order delivery for CEs generated by the
same QP [12], but in Juneberry, the SRQ’s CQ accommodates
CEs from different RC QPs. Hence, RDMA RECV commands
issued to the SRQ can be completed out-of-order; in other
words, when two CEs are generated by different QPs, their
order in the CQ may not match the order of receive buffers
(e.g., ce3 and ce4 in Figure 3(a)).

Juneberry adopts a simple solution to enforce Rule 2, mak-
ing requests in the SRQ be executed in order. As shown in
Figure 3(b), Juneberry maintains a bitmap and a variable idx
for the SRQ. The bitmap tracks which receive buffers have
requests; the idx points to the first buffer that is not executed
by the CPU. CPU executes requests with the following three
steps: ❶ Polls the CQ to obtain CEs and sets associated bits
in the bitmap; ❷ If the idx-th bit is set, executes the request
and advances idx; ❸ Repeats the step ❷ until the idx-th
bit is clear. For example, in Figure 3(b), upon obtaining ce4
from the CQ, the CPU executes the request in b2 (since idx
equals 2), and then executes the next contiguous sequence of
requests in the bitmap in order (i.e., b3 and b4).

Scaling to multiple CPU cores. Until now, we have assumed
that there is only a single SRQ at server side. However, it
is impractical when considering the multi-core architecture
of servers. First, when multiple threads operate the same
SRQ, the scalability issue happens. Second, when multiple
threads execute requests concurrently, producing the same

results as sequential execution (for Rule 2) is intricate and low-
performance: it involves dependency tracking and resolution,
thus inducing expensive cross-thread synchronization.

Juneberry uses data partitioning to support multi-core scal-
ing. Specifically, Juneberry creates multiple SRQs at the
server side, each being associated with a worker thread. Each
worker thread manages an exclusive set of datasets. Such
data partitioning is easily achieved in many storage sys-
tems [32,33,37,39] such as key-value stores, since they adopt
a shared-nothing architecture to improve performance. Clients
in Juneberry need to send requests (via RDMA SEND) to cor-
rect server-side worker threads according to partition scheme.
For example, in the Memcached case, clients hash the target
key in a set/get request, and send the request to the SRQ
managed by the i-th worker thread, where i = hash(key) %
#(worker threads).

5.2 Optimizing Performance
Juneberry materializes the OQ abstraction by leveraging
SRQ and adopting software designs (§5.1). However, it poses
two performance issues: 1) operating SRQs is inefficient for
RNIC; 2) a large number of RC QPs harm system scalability.
For each issue, this subsection first explains its causes and
negative effects, and then introduces our solutions.
5.2.1 Streamlining RNIC Prefetching on SRQ
The lifecycle of work queue elements (WQEs). When cre-
ating an RQ/SRQ, the RNIC driver allocates a contiguous
memory region that contains multiple WQEs, which can be
accessed by RNICs (via DMA). When pushing a receive
buffer to the RQ/SRQ via RECV commands, the CPU fills in a
free WQE with metadata (including the address of the receive
buffer), making it valid. A valid WQE becomes free when the
CPU obtains the associated CE from CQs, which indicates
that the WQE has been consumed by a SEND request.

The RNIC prefetches valid RECV WQEs via DMA and
caches them in its SRAM, to accelerate the processing of
incoming SEND requests. Such prefetching is efficient for
standard RQs, since logically contiguous WQEs are also
physically contiguous at memory locations, making a sin-
gle prefetch operation (i.e., a DMA operation) be capable
of fetching multiple valid WQEs at a time. For example, as
shown in Figure 4(a), receive buffers b1, b2, b3 are pushed
into the RQ in order, and three WQEs allocated for them are
memory-contiguous.

However, SRQ counteracts the benefit of RNIC prefetching
due to its structure feature. Specifically, as described in §5.1,
the valid WQEs in an SRQ can be completed out-of-order,
thus creating fragmented free WQEs like holes. Subsequent
RECV commands often fail to allocate WQEs in a memory-
contiguous manner. As a result, valid WQEs in an SRQ are
connected using a link list. For example, as shown in Fig-
ure 4(b), the SRQ organizes valid WQEs using the link list
wqe3➞ wqe1➞ wqe5. Due to the link list structure of WQEs,
the RNIC is more susceptible to cache misses (thus stalling in-

1090 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

wqe1 wqe2 wqe3 wqe4

b1 b2 b3RQ buffers

RQ WQEs

wqe1 wqe2 wqe3 wqe4

b1 b2 b3SRQ buffers

SRQ WQEs

(a) array-based WQEs

(b) list-based WQEs

valid wqe free wqe

wqe5

wqe5

Figure 4: Array-based WQEs vs. list-based WQEs. In these two
figures, receive buffers b1, b2, and b3 are pushed into the RQ/SRQ
in order, and the RNIC driver allocates WQEs for them.

coming traffic), and needs more DMA operations to prefetch
WQEs with the pointer-chasing access pattern, both degrad-
ing the network performance. We validate it using a simple
experiment, where a client launches 24 threads to send 64B
messages to a remote server. The remote server uses one CPU
core to receive messages and respond with 64B messages;
each client thread allows 4 outstanding requests. The server
can deliver 2.91Mops/s when using RQ, but the performance
drops to 2.24Mops/s when using SRQ. A recent work ob-
serves a similar performance degradation on Ethernet NIC
that adopts list-based receive (Rx) rings [49].

Juneberry improves the performance of SRQ by allowing
a single WQE to accommodate multiple messages, so that
a prefetch operation can serve multiple SEND requests. This
is achieved by exploiting the multi-packet (MP) feature in
advanced RNICs [20,56]. For an MP RQ/SRQ, multiple SEND
requests can be sequentially written to the same receive buffer,
and the address of each request is aligned to a k (e.g., 64) byte
offset, where k is pre-defined3. The MP feature is proposed
to reduce memory footprint, but Juneberry uses it to stream-
line RNIC prefetching and mitigate network traffic stall. In
addition, with MP SRQ, Juneberry server can post a large
receive buffer (e.g., 64KB) to amortize the overhead of filling
in WQEs and ringing doorbells, saving CPU cycles.
5.2.2 Reducing the Number of QPs
Recall that in Juneberry, a client thread can send requests
to the MP SRQ of any worker thread according to partition
scheme (§5.1), which indicates that there are RC connections
between every client thread and every worker thread (RC
QPs only support one-to-one connections). Concretely, the
server maintains C×Ct×St RC QPs in total, where C is the
number of client machines, Ct is the number of client threads
per client machine, and St is the number of worker threads
in the server. However, it is well-known that RNIC cannot
cache states for a large number of QPs due to its size-limited

3We set k to 64, which is the minimum value that our RNICs support,
thus reducing internal fragmentation caused by data alignment.

SRAM [18,31,45,57]. Upon cache misses, RNIC issues DMA
operations to fetch QP states from host memory, stalling the
incoming network traffic and thus degrading performance.

We reduce the number of QPs in the Juneberry server
to C×St by employing a client-side delegation mechanism.
Specifically, a client machine creates St QPs, each connecting
to a remote worker thread. Note that each QP uses a sepa-
rate context to avoid false synchronization between client
threads [58]. Each QP is managed by one client thread, which
is called owner of the QP. When a client thread is about to
send a request to a worker thread, it identifies the owner of
the target QP and publishes the request in a reserved slot. The
owner scans slots and emits associated requests (including re-
quests generated by itself) to the network using the dedicated
QP. The owner is also responsible for processing responses
from the QP and delivering these responses to initiators.
5.2.3 Alternative Optimization Techniques
We discuss alternative optimization techniques that can ad-
dress the above two performance issues.
Array-based SRQ. An alternative approach to streamlining
RNIC prefetching is to make RNIC support array-based SRQ
(by modifying the firmware of RNIC ASIC). This approach
also requires us to modify the driver of RNIC. Compared
with array-based SRQ, MP SRQ used by Juneberry has an
additional advantage: mitigating CPU overhead by reducing
the number of doorbells.
eXtended RC (XRC). XRC [4] is an Infiniband transport
service supported by Mellanox RNIC. When using XRC, an
RC QP can deliver messages to multiple SRQs in a remote
machine. If we adopt XRC in Juneberry, the number of QPs
in the server will decrease to C×Ct, the total number of client
threads in the cluster. Compared with the client-side dele-
gation mechanism (which has C×St QPs at the server side),
XRC has a scalability advantage when the server launches a
large number of threads.

5.3 Supporting Durability
Juneberry supports durability by leveraging emerging persis-
tent memory (PM) technologies. This subsection first gives a
brief background on PM, and then describes how Juneberry
uses it for durability and crash consistency. Here, we assume
that the back-end storage systems of Juneberry are crash-
consistent (unlike Memcached).

A primer on persistent memory (PM). PM is a new class of
storage devices that can guarantee persistence with DRAM-
like features. Specifically, PM can expose its storage space as
physical addresses to CPUs and other devices (e.g., RNICs).
Therefore, it can be accessed by CPUs via load/store in-
structions with low latency, or other devices via DMA engines.
There are two typical PM devices for datacenters: Intel’s Op-
tane PM [5] and Samsung’s Memory-Semantic SSD [8]. The
former sits in DIMM slots, while the latter is connected by the
CXL link. The performance of Optane PM is well-known [62]:
it can deliver 2GB/s writes and 6GB/s reads per DIMM, and

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1091

nilext request non-nilext request checksum failure

r1 r2 r3 r4 r5

ReqToExecute SRQTail

r6

Figure 5: An example of scanning an SRQ upon recovery.

it has the same write latency and 3× higher read latency com-
pared to DRAM. Memory-Semantic SSD is not currently
available. Although the CPU cache is volatile, recent CPUs
put it into the persistent domain via eADR [3,26,65] or Global
Persistent Flush (GPF) in CXL [2], which simplifies the use
of PM. With eADR or GPF, upon server crash, the data in the
CPU cache will be flushed to PM safely.

Persistent hardware ACKs. We first place SRQ receive
buffers in PM, so that requests in these buffers can survive
power outages. Recall that Juneberry uses hardware ACKs as
commit signals of the nilext requests, to achieve wire latency.
Yet, when a client receives the hardware ACK for an RDMA
SEND command, it only ensures that the SEND is allocated a
destination address in the SRQ; the DMA write operation in
the server-side RNIC may still be in progress, i.e., the SEND
data may not reach PM successfully. To make the hardware
ACK have the persistence guarantee, Juneberry drains DMA
operations of SEND commands in the server-side RNIC. It
does so by letting client threads issue an extra RDMA READ
(with 1-byte size) to the same QP after every SEND com-
mand [28, 60]: the PCIe read triggered by the RDMA READ
will flush the previous PCIe writes. In this way, the hardware
ACKs of READ ensure the persistence of nilext requests.

In addition, Juneberry performs two optimizations. First,
client threads combine the SEND command and READ com-
mand in one round trip, and remove CEs of SEND, since
the receiver-side RNIC executes these two commands in or-
der [12]. Second, the server disables Data Direct I/O (DDIO),
to let the RNIC bypass the CPU cache when performing DMA
operations. It can reduce PM write amplification caused by
granularity mismatch between a cache line (64B) and a PM
internal write (e.g., 256B in Optane PM) [28].

Recoverable SRQ. Simply putting receive buffers in PM
does not imply that we can recover requests from the SRQ
after power failure. Juneberry devises an identifiable request
format to address it. Specifically, each request begins with
a 64-bit checksum and a 32-bit size; checksum covers the
whole request and size is the request length, both being filled
by client threads. Moreover, each worker thread persistently
maintains two variables for its SRQ in PM: ReqToExecute
and SRQTail. ReqToExecute points to the first request not
yet executed: it is updated after the worker thread executes a
request. SRQTail records the last receive buffer in the SRQ;
it is updated after the worker thread issues a RECV command.

Upon recovery, the server scans SRQs to identify valid

requests. Recall that Juneberry leverages the multi-packet
feature of RNICs, so a receive buffer may contain multiple re-
quests. Each request has a start address that is aligned to
a pre-defined value (§5.2), which simplifies the scanning.
For each SRQ, a recovery thread scans receive buffers from
ReqToExecute to SRQTail. When an address results in
checksum failure, the thread jumps to the next aligned ad-
dress in the current receive buffer or the next buffer, continu-
ing to identify valid requests. Finally, as shown in Figure 5,
all valid requests (i.e., r3, r5, and r6) are marked. Among
them, nilext requests may have returned hardware ACKs as
commit signals; therefore, for crash consistency, the recovery
thread executes these nilext requests in order (i.e., r3 and r6).
Note that we do not need to execute non-nilext request r5,
because it is uncommitted and thus is concurrent with the
subsequent requests in the SRQ (i.e., r6 in this example).

There is a corner case: ReqToExecute points to a valid
request that is nilext and non-idempotent (e.g., fetch-and-add
without returning values). The recovery thread cannot deter-
mine whether this request has returned a hardware ACK. It
also cannot determine whether this request has been executed,
since executing the request and updating the ReqToExecute
are not atomic. As a result, the recovery thread cannot de-
cide whether to execute the request (may cause duplicated
execution) or skip it (may miss a committed request).

To address the above issue, we make all non-idempotent
requests software controllable (i.e., have the same workflow
as non-nilext requests): the worker thread ❶ executes a re-
quest, ❷ updates ReqToExecute, and ❸ finally returns a
software response; client threads use the software response
as the commit signal. Upon recovery, the recovery thread can
skip the non-idempotent (or non-nilext) request pointed by
ReqToExecute, since the client thread has not received the
request’s response, according to the order of ❶ ❷ ❸.

6 Evaluation
We seek to answer the following questions in our evaluation:
• How do optimization techniques proposed in §5.2 affect

Juneberry’s throughput? (§6.2)
• How does Juneberry perform when applying to in-memory

storage systems like Memcached? (§6.3)
• How does Juneberry perform when applying to persistent

storage systems like PMemKV? (§6.4)

6.1 Experimental Setup
We conduct experiments in a cluster having one server ma-
chine and 8 client machines. The server machine is equipped
with two 18-core Intel Xeon Gold 6240M CPUs, 192GB
DRAM, and 1.5TB Optane PM (three Optane DIMMs per
CPU). Each client machine is equipped with two 12-core In-
tel Xeon E5-2650 CPUs and 128GB DRAM. Each machine
installs a 100Gbps Mellanox ConnectX-5 RNIC; all RNICs
are connected to a Mellanox 100Gbps IB Switch. To avoid
the severe NUMA impacts on PM [35, 66], we only use one

1092 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

baseline +MP +MP and delegation (i.e., Juneberry)
(a) 64B w/o durability

0

5

10

15

0

10

20

30

0 1 2 3 4 5 6 7 8

(b) 1KB w/o durability

50
100
150

0

10

20

30

0 1 2 3 4 5 6 7 8

(c) 64B w/ durability

0

5

10

0

10

20

0 1 2 3 4 5 6 7 8

(d)1KB w/ durability

0

50

100

150

0

10

20

0 1 2 3 4 5 6 7 8
Number of Client Machines

Th
ro

ug
hp

ut
 (M

op
s/

s) Bandw
idth (G

bps)

Figure 6: Throughput/Bandwidth with the varying number of client machines.

CPU and the associated DRAM/PM resources in the server.
There are two versions of our system: Juneberry and

Juneberry-D. The latter supports durability (§5.3), so it places
the server-side receive buffers in PM and disables DDIO.
Without explicit mention, each MP SRQ consists of 48 re-
ceive buffers of 16KB.

Target comparisons. In §6.3 and §6.4, we will compare
Juneberry with three systems:
• RawRPC. RawRPC uses the same codebase as Juneberry,

including optimizations such as MP features and delegation
(§5.2). Like traditional RPC frameworks, in RawRPC, the
server CPU handles requests and then returns responses.
• DeferredExec. DeferredExec also uses the same code-

base as Juneberry. It optimizes nilext requests using a pure
software solution: when processing a nilext request, the
server CPU first returns a software ACK to commit and
then executes it.
• eRPC. eRPC [29] is a state-of-the-art RPC framework. It

uses unreliable datagrams for network communication and
implements retransmission and congestion in software.

6.2 Microbenchmarks
In this experiment, we use microbenchmarks to demon-
strate the efficacy of two techniques proposed to improve
Juneberry’s performance: MP features and client-side dele-
gation. Each client machine launches 24 threads: each client
thread keeps one request in flight, and sends the request to a
randomly-chosen remote worker thread. The server machine
launches 18 threads: when a worker thread receives a request,
it replies using the same size message. Figure 6 shows the sys-
tem throughput with the varying number of client machines,
under different settings (i.e., small requests vs. large requests,
w/o durability vs. durability).

Small requests without durability. We make the following
observations from Figure 6(a). First, with 8 client machines,
MP improves the throughput of 64B requests from 16.45Mop-
s/s to 24.86Mops/s (i.e., 1.51×). This is because by accom-
modating multiple requests in a single receive buffer, MP
greatly mitigates the overhead of RNIC prefetching on list-
based SRQ WQEs and thus lowers the probability of RNIC
cache misses. Second, client-side delegation further increases

throughput by 1.25×, since it reduces the number of RC QPs
from 3456 (i.e., 8×24×18) to 144 (i.e., 8×18); in this way, the
QP states become smaller, alleviating the cache thrash caused
by RNICs’ size-limited SRAM. Third, these two techniques
make Juneberry scale well; without them, Juneberry can not
scale to more than 5 client machines.

Large requests without durability. From Figure 6(b) we can
see that even with large requests (i.e., 1KB), the baseline can
only achieve 71Gbps due to inefficient RNIC prefetching
on SRQ WQEs. When using multi-packet (MP) SRQ, the
bandwidth increases to 85Gbps. What needs to be explained
here is why Juneberry does not reach the raw performance of
RNICs (i.e., 100Gbps). We suspect the cause is the hardware
limitation of the SRQ, because when we replace SRQs with
standard RQs, the bandwidth can approach 100Gbps.

Small requests with durability. We make two observations
from Figure 6(c). First, as with DRAM, the two techniques
significantly boost the throughput of small requests when us-
ing PM: in the case of 8 client machines, MP and delegation
improve throughput by 1.44× and 1.42×, respectively. Sec-
ond, supporting durability brings 36.40% throughput degra-
dation (compared with Figure 6(a)): from 31.07Mops/s to
19.76Mops/s. This is because 1) every RDMA SEND com-
mand is followed by an RDMA READ command for durability,
consuming the IOPS of the server-side RNIC; 2) handling
PM-resident requests consumes more CPU cycles, since PM
has 3× higher read latency than DRAM.

Large requests with durability. As shown in Figure 6(d), for
large requests, the limited bandwidth of PM (6GB/s for 3
Optane DIMMs) becomes the performance bottleneck.

6.3 In-Memory Caching: Memcached
In this experiment, we use Memcached (version: 1.6.19) as the
back-end storage system. We remove network-related parts in
Memcached’s codebase and produce a local library that can
be linked to Juneberry server. We spawn 24 threads per client
machine (8 client machines in total); client threads generate
requests at a given rate with Poisson arrivals. The server
machine launches 16 threads to handle requests and reserves
2 threads for background tasks (e.g., LRU maintainer).

We select four representative in-memory caching work-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1093

RawRPC
DeferredExec

eRPC
Juneberry

(a) Cluster-12
set: 80%

0

10

20

0.3 0.6 0.9 1.2

(b) Cluster-19
set: 25%

0

5

10

1 2 3 4

(c) Cluster-27
set: 15%

0

4

8

12

0 1 2 3 4

(d) Cluster-31
set: 94%

0
10
20
30

0.3 0.6 0.9 1.2
Memcached Throughput (Mops/s)

M
ed

ia
n

La
nt

ec
y

(μ
s)

Figure 7: Median latency vs. throughput. We use Memcached (ver-
sion: 1.6.19) as the back-end storage system.

ratio of set key size value size Zipf alpha
Cluster-12 80% 44B 1030B 0.3048
Cluster-19 25% 42B 101B 0.735
Cluster-27 15% 66B 8B 1.065
Cluster-31 94% 41B 15B 0

Table 1: Settings of in-memory caching workloads.

loads from Twitter [63], as shown in Table 1. Among them,
Cluster-12 and Cluster-31 are write-intensive; Cluster-19 and
Cluster-27 are read-intensive.

Figure 7 shows median latency under varying throughput.
All systems achieve the same peak throughput since the back-
end storage engine is the throughput bottleneck. We can make
the following observations.

First, under peak throughput, compared with RawRPC,
Juneberry achieves 82.30%/50.74%/32.89%/90.70% lower
median latency in Cluster-12/19/27/31 workloads. This is
because Juneberry makes nilext requests (i.e., set requests)
wire-latency by leveraging hardware ACKs as commit signals.
For workloads containing more nilext requests (e.g., Cluster-
12 and Cluster-31), the latency reduction is more pronounced.

Second, by deferring execution of nilext requests until after
returning responses, DeferredExec reduces median latency
of RawRPC. However, DeferredExec is still outperformed by
Juneberry: for example, when approaching peak throughput
under Cluster-12, DeferredExec has 3.03× higher median la-
tency compared with Juneberry. This is because when worker
threads of DeferredExec are executing requests, they can-
not immediately return software responses for nilext requests
residing in RQs. In contrast, Juneberry offloads the task of
returning nilext requests’ ACKs to the RNIC hardware, avoid-
ing software queuing caused by the busy CPU. As a result, the
median latency of Juneberry is not only low but also stable
under different degrees of loads. This demonstrates that in the
microsecond era, hardware/software co-design (e.g., the OQ
abstraction) is necessary to further realize latency reduction
for storage systems. It is also worth noting that compared to

(a) Cluster-12

RawRPC
DeferredExec

eRPC
Juneberry

set: 80%

0
50

100
150

0.3 0.6 0.9 1.2

(b) Cluster-19
set: 25%

0

50

100

1 2 3 4

(c) Cluster-27
set: 15%

0
20
40
60

0 1 2 3 4

(d) Cluster-31
set: 94%

0

100

200

0.3 0.6 0.9 1.2

P9
9

La
nt

ec
y

(μ
s)

Memcached Throughput (Mops/s)
Figure 8: P99 latency vs. throughput. We use Memcached (version:
1.6.19) as the back-end storage system.

DeferredExec, Juneberry reduces the number of network
packets used for returning responses.

Third, eRPC suffers much higher latency than Juneberry at
peak throughput, but when workloads are read-intensive and
not heavy, it median latency is slightly lower. For example,
as shown in Figure 7(c), when the throughput is less than
2.5Mops/s under Cluster-27, eRPC has 100∼400ns lower me-
dian latency than Juneberry. This is because at this point,
software queuing does not affect latency, but the client-side
delegation in Juneberry incurs extra software overhead such
as cross-thread communication.

Figure 8 shows 99th percentile (P99) tail latency under
varying throughput, from which we can make the following
observations. First, under write-intensive workloads Cluster-
12 and Cluster-31, Juneberry yields a P99 latency that is up
to 32.43% and 42.86% lower than the second best system
(i.e., DeferredExec), respectively. This is because the OQ
abstraction enables fast commit of nilext requests, which rep-
resent a large fraction of these two workloads.

Second, under read-intensive workloads Cluster-19 and
Cluster-27, the P99 latency reduction achieved by Juneberry
is limited. Take Cluster-19 for example, compared with
RawRPC, Juneberry decreases P99 latency from 10.6µs to
7.4µs with 0.5Mops/s throughput, and from 65.8µs to 61.8µs
with 4.1Mops/s throughput (peak throughput). This is because
a small fraction of get requests produce pathological access
patterns (recall §4), i.e., the time interval between them and
previous set requests from the same client threads is too
short to hide execution latency of set requests, leading to
high tail latency. Therefore, the improvement from the OQ ab-
straction is overshadowed. This also explains why Juneberry
is less effective in reducing tail latency than median latency.

6.4 Persistent KV Store: PMemKV
This experiment explores the performance of persistent stor-
age systems with Juneberry-D. We select PMemKV [7] as

1094 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RawRPC
DeferredExec

eRPC
Juneberry-D

(a) 100% put

0

5

10

15

0.4 0.8 1.2 1.6 2.0

(b) 50% put

0

5

10

1 2 3

(c) 5% put

0

4

8

12

1 2 3 4 5 6

(d) 0% put

0

5

10

2 4 6
PMemKV Throughput (Mops/s)

M
ed

ia
n

La
nt

ec
y

(μ
s)

Figure 9: Median latency vs. throughput. We use PMemKV as the
back-end storage system.

the backend; it is a persistent KV store that maintains objects
in PM. The experiment setup is the same as in §6.3, except
that the server launches 18 threads. We use YCSB-like work-
loads with four types of put/get ratio: write-only (100%
put), read-only (100% get), write-intensive (50% put and
50% get), read-intensive (5% put and 95% get). We set
the object size to 91-byte, which is the average object size
in Meta’s largest KV system, i.e., ZippyDB [15]. Workloads
follow a Zipf 0.99 access distribution.

Figure 9 depicts median latency with increasing throughput,
from which we make two observations. First, Juneberry-D
reduces median latency by 57.08%/56.33%/53.92% against
RawRPC/DeferredExec/eRPC under write-only workloads;
40.83%/40.83%/36.71% under write-intensive workloads (i.e.,
50% put). By leveraging persistent hardware ACKs along
with PM-resident recoverable SRQ, Juneberry-D can quickly
commit a nilext request without sacrificing crash consistency.

Second, Juneberry-D is inferior to other systems under
read-intensive (i.e., 5% put) and read-only workloads. Specif-
ically, compared with RawRPC, Juneberry-D has 1.19× (1.6µs)
and 1.20× (1.7µs) higher median latency. This is because
in Juneberry-D, the server ① disables DDIO, harming the
communication latency between RNICs and host memory,
and ② uses PM-resident receive buffers, leading to higher
latency spent by the CPU in fetching requests. In addition, un-
der read-only workloads, Juneberry-D has about 1.5% lower
peak throughput compared with other systems.

Figure 10 further shows P99 latency of PMemKV. Under
write-only workloads (Figure 10(a)), when the throughput
is 2.0Mops/s, Juneberry-D exhibits 94.38%/93.76%/89.61%
lower P99 latency against RawRPC/DeferredExec/eRPC.
However, when the throughput offered is slightly higher than
Juneberry-D can handle, its tail latency increases dramati-
cally. This is because when all requests are nilext, the server-
side SRQ can easily have no free buffers, causing the server-
side RNIC to generate the receive not ready (RNR) error.

RawRPC
DeferredExec

eRPC
Juneberry-D

(a) 100% put

0

50

100

150

0.4 0.8 1.2 1.6 2.0

(b) 50% put

0

20

40

60

1 2 3

(c) 5% put

0

20

40

1 2 3 4 5 6

(d) 0% put

0

20

40

2 4 6

P9
9

La
nt

ec
y

(μ
s)

PMemKV Throughput (Mops/s)

Figure 10: P99 latency vs. throughput. We use PMemKV as the
back-end storage system.

Juneberry-D
RawRPC

Th
ro

ug
hp

ut
 (M

op
s/

s)

Value Size (Bytes)

0

1

2

3

100 200 400 800 1600 3200

Figure 11: Throughput with different value size. We use PMemKV
as the back-end storage system. The put ratio is 50%.

When workloads are read-intensive (5% put) and read-only,
Juneberry-D has up to 1.28× and 1.49× higher P99 latency
due to PM receive buffers and disabled DDIO. Combining
Figure 9 and Figure 10, we can summarize that when sup-
porting durability, the OQ abstraction brings latency benefits
under write-intensive workloads, but incurs latency overhead
under read-intensive workloads.

In Juneberry-D, PM-resident receive buffers consume PM
write bandwidth, which inevitably affects the performance
of back-end storage systems using PM (recall that PM write
bandwidth is limited). We conduct an experiment to show
it. We use 8-byte keys and vary the value size; the ratio of
put requests is 50%. Figure 11 presents the result. When the
value size is small, the throughput degradation of Juneberry-
D is acceptable: only 3.0% with 100B values. However, when
values become larger, the size of put requests increases and
thus more PM write bandwidth is consumed on server-side
SRQ, reducing the available PM bandwidth for the back-end
storage system. As a result, with 3200B values, RawRPC de-
livers 1.42× higher throughput against Juneberry-D. Fortu-
nately, small objects are very common in real-world work-
loads [15,43, 63], so Juneberry-D can achieve wire-latency
nilext requests at a small cost in throughput in many cases.
In addition, if the back-end storage system uses a storage
device that is not a PM (e.g., SSD or HDD), Juneberry will
not induce throughput degradation.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1095

7 Discussion
Supporting durability without Optane PM. In our exper-
iments, we use Optane PM to store requests for durability.
However, Intel has fully killed off its Optane Memory busi-
ness. Here, we provide two alternative solutions:
• CXL-based SSD. By attaching SSD devices on CXL links,

CXL-based SSD can expose load/store interfaces to RNICs.
Thus, we can place SRQ buffers on CXL-SSD and the
RNIC will DMA requests to it, guaranteeing data durability.
Some CXL-based SSD products (e.g., Samsung’s Memory-
Semantic SSD [8]) will enter the market in the near future.
• UPS-backed DRAM. Uninterruptible power supply (UPS)

is a type of power system that makes DRAM durable.
Specifically, with the help of UPS, the contents of DRAM
will be written to SSD when the power fails [19]. Compared
with Optane PM, USP-backed DRAM will not induce extra
latency overhead to Juneberry. Moreover, since the size of
the SRQ buffers is small, the battery provisioning costs of
UPS are limited for Juneberry.

Implementing Juneberry with different technologies.
Juneberry exploits hardware ACKs generated by RNICs to
enable fast commit. It can also be implemented on other NICs
supporting hardware ACKs [46, 50], such as FlexTOE [50], a
TCP offload engine (TOE) on SmartNICs. Moreover, the idea
of fast commits can be applied to other levels of the network
stack. For example, for Linux socket-based applications, we
can return a software ACK in the Linux kernel by implement-
ing an in-kernel eBPF hook via XDP. By doing so, the latency
overhead caused by the context switch can be avoided.

8 Related Work
RDMA communication. Existing works use RDMA for
inter-server communication in two ways: 1) implementing
RPC upon RDMA verbs [27, 29–31, 52] and 2) directly ac-
cessing remote memory via one-sided verbs [9, 18, 55, 59, 64].
RPC enables complicated server-side execution (e.g., index
traversal) in one round trip. One-sided access can bypass re-
mote CPUs and thus achieve low latency, but is restricted to
simple read and write operations. Thus, retrieving data us-
ing one-sided verbs in a storage system typically involves
multiple round trips due to indexing and concurrency control
(e.g., Sherman [55] and CliqueMap [51]). Juneberry based
on the OQ abstraction provides a new way for inter-server
RDMA communication: the server CPU can execute requests
like RPC, supporting general operations within one round trip,
and nilext requests are committed with remote CPU bypass,
achieving extremely low latency.
NIC assisted systems. Recent works leverage SmartNICs
and customized NICs to accelerate system software [14,
17, 25, 34, 36, 40, 41]. Among them, RPCValet [17], Dag-
ger [36], and nanoPU [25] targets RPC systems: they offload
tasks of the RPC stack to NICs, such as request schedul-
ing and (de)serialization, and use memory interconnects (in-
stead of PCIe) for CPU-NIC communication to lower latency.

Juneberry can also be viewed as leveraging NICs to acceler-
ate RPC systems: it relies on NICs for providing a fast path
to commit nilext requests. However, different from the above
works, Juneberry does not require hardware modification; it
repurposes hardware ACKs that exist on commodity NICs
supporting reliable data transfer (e.g., RNICs).
Combining RDMA and PM. RDMA and PM can offer
low-latency data transfer and storage, respectively, so re-
searchers are actively exploring how to combine them ef-
ficiently [10,28,42,53,53,60,61]. Kalia et al. [28] and Wei et
al. [60] present a set of guidelines to optimize the interaction
between RDMA and PM. Octopus [42], Orion [61], and As-
sise [10] are distributed file systems powered by RDMA and
PM. They support one-sided RDMA access to PM-resident
file data, thus mitigating CPU overhead and avoiding unneces-
sary data copying. Clover [53] is a PM-based key-value store
that uses RDMA networks. Clients access objects in PM via
RDMA WRITE and READ, and resolve concurrent conflicts via
RDMA atomic verbs. Juneberry adopts a different approach
to combine RDMA and PM: it places receive buffers in PM to
persistently store incoming RDMA SEND requests, rather than
directly accessing PM-resident data via one-sided RDMA.
Nil-externality. Ganesan et al. identify nil-externality [21], a
property for interfaces if they do not externalize effects. By ex-
ploiting nil-externality, they propose nilext-aware replication,
which improves replication performance by lazily ordering
and executing nilext updates. The design of OQ abstraction
gets inspiration from their work. Several works on storage
systems also perform early commit and asynchronous exe-
cution. Xsyncfs [47] commits a file system operation with-
out performing disk I/O, and defers execution until exter-
nal output is generated (e.g., send data to the screen or net-
work). ScaleDB [44] commits a transaction without updating
the global range index, and introduces a concurrency con-
trol mechanism for transaction serializability. Juneberry is
designed for networked environments and can be used for
many storage systems. Moreover, Juneberry’s early commit
is achieved by exploiting hardware ACKs, thus eliminating
software delay from the critical path.

9 Conclusion
In this paper, we propose Ordered Queue (OQ) abstraction,
which accelerates nilext requests by leveraging NICs’s hard-
ware ACKs for fast commit. By doing so, a nilext request can
be committed in a single round trip with remote CPU bypass,
achieving extremely low latency. We materialize OQ abstrac-
tion by designing Juneberry, a communication framework
running on commodity RDMA NICs. Juneberry uses a set
of techniques to improve performance and incorporates per-
sistent memory to support durability. Juneberry significantly
lowers the latency of storage systems under write-intensive
workloads. This work demonstrates that making storage soft-
ware have visibility into network-level knowledge can bring
performance benefits.

1096 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgements
We sincerely thank our shepherd Mariano Scazzariello for
helping us improve the paper. We also thank the anonymous
reviewers for their feedback, Junru Li for sharing his expe-
rience on networking. This work is supported the National
Natural Science Foundation of China (U22B2023, 62472242,
62402204), Young Elite Scientists Sponsorship Program by
CAST (2023QNRC001), and Postdoctoral Fellowship Pro-
gram of CPSF (GZC20231296).

References
[1] Empowering Azure Storage with RDMA. In 20th

USENIX Symposium on Networked Systems Design and
Implementation, NSDI’23, pages 49–67, Boston, MA,
April 2023. USENIX Association.

[2] Compute Express Link: The Breakthrough
CPU-to-Device Interconnect. https://
www.computeexpresslink.org/download-the-
specification, 2024.

[3] eADR. https://www.intel.com/content/www/
us/en/developer/articles/technical/eadr-
new-opportunities-for-persistent-memory-
applications.html, 2024.

[4] eXtended Reliable Connection (XRC). https:
//downloads.openfabrics.org/Media/SC07/
2007_SC_Nov_XRC.pdf, 2024.

[5] Intel’s Optane PM. https://www.intel.com/
content/www/us/en/products/details/memory-
storage/optane-dc-persistent-memory.html,
2024.

[6] Memcached - a distributed memory object caching sys-
tem. https://memcached.org/, 2024.

[7] PMemKV - Key/Value Datastore for Persistent Memory.
https://github.com/pmem/pmemkv, 2024.

[8] Samsung’s Memory-Semantic SSD. https://
samsungmsl.com/cmmh/, 2024.

[9] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond Consensus for Microsecond
Applications. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI’20,
pages 599–616. USENIX Association, November 2020.

[10] Thomas E. Anderson, Marco Canini, Jongyul Kim, De-
jan Kostić, Youngjin Kwon, Simon Peter, Waleed Reda,
Henry N. Schuh, and Emmett Witchel. Assise: Per-
formance and Availability via Client-local NVM in a
Distributed File System. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI

20), pages 1011–1027. USENIX Association, November
2020.

[11] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling Programmable Transport Proto-
cols in High-Speed NICs. In Proceedings of the 17th
Usenix Conference on Networked Systems Design and
Implementation, NSDI’20, pages 93–110, USA, 2020.
USENIX Association.

[12] InfiniBand Trade Association et al. InfiniBandTM Ar-
chitecture Specification Volume 1 Release 1.3 (General
Specifications), 2015.

[13] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D. Davis.
CORFU: A Shared Log Design for Flash Clusters. In
9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 1–14, San Jose,
CA, April 2012. USENIX Association.

[14] Matthew Burke, Sowmya Dharanipragada, Shannon
Joyner, Adriana Szekeres, Jacob Nelson, Irene Zhang,
and Dan R. K. Ports. PRISM: Rethinking the RDMA
Interface for Distributed Systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, pages 228–242, New York, NY,
USA, 2021. ACM.

[15] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at
Facebook. In 18th USENIX Conference on File and
Storage Technologies, FAST’20, pages 209–223, Santa
Clara, CA, February 2020. USENIX Association.

[16] Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports,
and Jialin Li. Hydra: Serialization-Free Network Order-
ing for Strongly Consistent Distributed Applications. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 293–320, Boston,
MA, April 2023. USENIX Association.

[17] Alexandros Daglis, Mark Sutherland, and Babak Fal-
safi. RPCValet: NI-Driven Tail-Aware Balancing of
us-Scale RPCs. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’19, pages 35–48, New York, NY, USA, 2019.
ACM.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’14, pages 401–414,
Seattle, WA, April 2014. USENIX Association.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1097

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://downloads.openfabrics.org/Media/SC07/2007_SC_Nov_XRC.pdf
https://downloads.openfabrics.org/Media/SC07/2007_SC_Nov_XRC.pdf
https://downloads.openfabrics.org/Media/SC07/2007_SC_Nov_XRC.pdf
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/optane-dc-persistent-memory.html
https://memcached.org/
https://github.com/pmem/pmemkv
https://samsungmsl.com/cmmh/
https://samsungmsl.com/cmmh/

[19] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings
of the 25th Symposium on Operating Systems Princi-
ples, SOSP’15, pages 54–70, New York, NY, USA, 2015.
ACM.

[20] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez,
Esha Choukse, Inigo Goiri, Sameh Elnikety, Rodrigo
Fonseca, and Adam Belay. Making Kernel Bypass Prac-
tical for the Cloud with Junction. In 21st USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 24), pages 55–73, Santa Clara, CA, April
2024. USENIX Association.

[21] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Ex-
ploiting Nil-Externality for Fast Replicated Storage. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP’21, pages 440–456,
New York, NY, USA, 2021. ACM.

[22] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan Liu,
Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng
Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang,
Dennis Cai, and Jiesheng Wu. When Cloud Storage
Meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI’21,
pages 519–533. USENIX Association, April 2021.

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
over Commodity Ethernet at Scale. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM’16,
pages 202–215, New York, NY, USA, 2016. ACM.

[24] Maurice P. Herlihy and Jeannette M. Wing. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, jul
1990.

[25] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo
Jepsen, Muhammad Shahbaz, Changhoon Kim, and
Nick McKeown. The nanoPU: A Nanosecond Network
Stack for Datacenters. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 239–256. USENIX Association, July 2021.

[26] Zhicheng Ji, Kang Chen, Leping Wang, Mingxing
Zhang, and Yongwei Wu. Falcon: Fast OLTP Engine
for Persistent Cache and Non-Volatile Memory. In Pro-
ceedings of the 29th Symposium on Operating Systems

Principles, SOSP ’23, pages 531–544, New York, NY,
USA, 2023. ACM.

[27] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and
Weimin Zheng. Aurogon: Taming Aborts in All
Phases for Distributed In-Memory Transactions. In 20th
USENIX Conference on File and Storage Technologies
(FAST 22), pages 217–232, Santa Clara, CA, February
2022. USENIX Association.

[28] Anuj Kalia, David Andersen, and Michael Kaminsky.
Challenges and Solutions for Fast Remote Persistent
Memory Access. In Proceedings of the 11th ACM Sym-
posium on Cloud Computing, SoCC ’20, pages 105–119,
New York, NY, USA, 2020. ACM.

[29] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be General and Fast. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1–16, Boston, MA,
February 2019. USENIX Association.

[30] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA Efficiently for Key-Value Services.
In Proceedings of the 2014 ACM Conference on SIG-
COMM, SIGCOMM ’14, pages 295–306, New York,
NY, USA, 2014. ACM.

[31] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16,
pages 185–201, USA, 2016. USENIX Association.

[32] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-Store: A
High-Performance, Distributed Main Memory Transac-
tion Processing System. Proc. VLDB Endow., 1(2):1496–
1499, aug 2008.

[33] Rishi Kapoor, George Porter, Malveeka Tewari, Geof-
frey M. Voelker, and Amin Vahdat. Chronos: Predictable
Low Latency for Data Center Applications. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, New York, NY, USA, 2012. ACM.

[34] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient Smart-
NIC Offload of a Distributed File System with Pipeline
Parallelism. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP’21,
pages 756–771, New York, NY, USA, 2021. ACM.

1098 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[35] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
pages 424–439, New York, NY, USA, 2021. ACM.

[36] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang,
and Christina Delimitrou. Dagger: Efficient and Fast
RPCs in Cloud Microservices with near-Memory Re-
configurable NICs. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’21, pages 36–51, New York, NY, USA, 2021.
ACM.

[37] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. KVell: The Design and Implementation of
a Fast Persistent Key-Value Store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
SOSP ’19, pages 447–461, New York, NY, USA, 2019.
ACM.

[38] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 467–483,
Savannah, GA, November 2016. USENIX Association.

[39] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A Holistic Approach to
Fast In-Memory Key-Value Storage. In 11th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 429–444, Seattle, WA, April
2014. USENIX Association.

[40] Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro,
Brent E. Stephens, Hassan Wassel, and Aditya Akella.
RingLeader: Efficiently Offloading Intra-Server Orches-
tration to NICs. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 23),
pages 1293–1308, Boston, MA, April 2023. USENIX
Association.

[41] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance Programmable NIC for Multi-tenant Net-
works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 243–
259. USENIX Association, November 2020.

[42] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an RDMA-enabled Distributed Persistent Memory
File System. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 773–785, Santa Clara,
CA, July 2017. USENIX Association.

[43] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching Billions of Tiny Objects on Flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, pages 243–
262, New York, NY, USA, 2021. ACM.

[44] Syed Akbar Mehdi, Deukyeon Hwang, Simon Peter, and
Lorenzo Alvisi. ScaleDB: A Scalable, Asynchronous
In-Memory Database. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
23), pages 361–376, Boston, MA, July 2023. USENIX
Association.

[45] Sumit Kumar Monga, Sanidhya Kashyap, and Chang-
woo Min. Birds of a Feather Flock Together: Scaling
RDMA RPCs with Flock. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, SOSP ’21, pages 212–227, New York, NY, USA,
2021. ACM.

[46] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. AccelTCP: Accelerat-
ing Network Applications with Stateful TCP Offloading.
In Proceedings of the 17th Usenix Conference on Net-
worked Systems Design and Implementation, NSDI’20,
pages 77–92, USA, 2020. USENIX Association.

[47] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the sync. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI ’06, pages 1–14,
USA, 2006. USENIX Association.

[48] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC Offloads. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS’21,
pages 18–35, New York, NY, USA, 2021. ACM.

[49] Boris Pismenny, Adam Morrison, and Dan Tsafrir.
ShRing: Networking with Shared Receive Rings. In
17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pages 949–968, Boston,
MA, July 2023. USENIX Association.

[50] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann,
and Simon Peter. FlexTOE: Flexible TCP Offload with
Fine-Grained Parallelism. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion, NSDI’22, pages 87–102, Renton, WA, April 2022.
USENIX Association.

[51] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob
Cauble, Harshad Deshmukh, Dan Gibson, Milo M. K.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1099

Martin, Amanda Strominger, Thomas F. Wenisch, and
Amin Vahdat. CliqueMap: productionizing an RMA-
based distributed caching system. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, pages 93–105, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[52] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is Faster
than Server-Bypass with RDMA. In Proceedings of
the Twelfth European Conference on Computer Systems,
EuroSys ’17, pages 1–15, New York, NY, USA, 2017.
ACM.

[53] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating Persistent Memory and Controlling Them
Remotely: An Exploration of Passive Disaggregated
Key-Value Stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 33–48. USENIX
Association, July 2020.

[54] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan
Truong, Ashish Motivala, and Thierry Cruanes. Building
An Elastic Query Engine on Disaggregated Storage. In
17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’20, pages 449–462, Santa
Clara, CA, February 2020. USENIX Association.

[55] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
Write-Optimized Distributed B+Tree Index on Disag-
gregated Memory. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD
’22, pages 1033–1048, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

[56] Qing Wang, Youyou Lu, Jing Wang, and Jiwu Shu.
Replicating Persistent Memory Key-Value Stores with
Efficient RDMA Abstraction. In 17th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 23), pages 441–459, Boston, MA, July 2023.
USENIX Association.

[57] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin
Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanx-
iong Guo. SRNIC: A Scalable Architecture for RDMA
NICs. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages 1–14,
Boston, MA, April 2023. USENIX Association.

[58] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing RDMA-Enabled Distributed

Transactions: Hybrid is Better. In Proceedings of the
13th USENIX Conference on Operating Systems Design
and Implementation, OSDI’18, pages 233–251, USA,
2018. USENIX Association.

[59] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast In-Memory Transaction Processing
Using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
pages 87–104, New York, NY, USA, 2015. ACM.

[60] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and
Binyu Zang. Characterizing and Optimizing Remote
Persistent Memory with RDMA and NVM. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 523–536. USENIX Association, July 2021.

[61] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 221–234, Boston, MA, February 2019.
USENIX Association.

[62] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[63] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI’20, pages
191–208. USENIX Association, November 2020.

[64] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transactions
Can Scale. Proc. VLDB Endow., 10(6):685–696, feb
2017.

[65] Bowen Zhang, Shengan Zheng, Zhenlin Qi, and Linpeng
Huang. NBTree: A Lock-Free PM-Friendly Persistent
B+-Tree for EADR-Enabled PM Systems. Proc. VLDB
Endow., 15(6):1187–1200, feb 2022.

[66] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang,
Changwoo Min, and Sanidhya Kashyap. ODINFS: Scal-
ing PM Performance with Opportunistic Delegation. In
16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 179–193, Carls-
bad, CA, July 2022. USENIX Association.

1100 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background
	RDMA
	x

	Motivation
	Ordered Queue Abstraction
	Juneberry Design
	Implementing OQ Abstraction
	Optimizing Performance
	Streamlining RNIC Prefetching on SRQ
	Reducing the Number of QPs
	Alternative Optimization Techniques

	Supporting Durability

	Evaluation
	Experimental Setup
	Microbenchmarks
	In-Memory Caching: Memcached
	Persistent KV Store: PMemKV

	Discussion
	Related Work
	Conclusion

