
Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

ByteCheckpoint: A Unified Checkpointing System
for Large Foundation Model Development

Borui Wan, The University of Hong Kong; Mingji Han, Yiyao Sheng, Yanghua Peng,
Haibin Lin, Mofan Zhang, Zhichao Lai, Menghan Yu, Junda Zhang, Zuquan Song,

and Xin Liu, ByteDance Inc.; Chuan Wu, The University of Hong Kong
https://www.usenix.org/conference/nsdi25/presentation/wan-borui

This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

ByteCheckpoint: A Unified Checkpointing System for Large Foundation Model
Development

Borui Wan1,∗ Mingji Han2,∗ Yiyao Sheng2 Yanghua Peng2 Haibin Lin2 Mofan Zhang2

Zhichao Lai2 Menghan Yu2 Junda Zhang2 Zuquan Song2 Xin Liu2 Chuan Wu1

1The University of Hong Kong 2ByteDance

Abstract
Checkpointing to preserve training states is crucial during
the development of Large Foundation Models (LFMs), for
training resumption upon various failures or changes in GPU
resources and parallelism configurations. In addition, saved
checkpoints are dispatched to evaluation tasks or transferred
across different training stages (e.g., from pre-training to post-
training). All these scenarios require resharding distributed
checkpoints from one parallelism to another. In production
environments, different LFMs are trained with various frame-
works and storage backends, depending on model sizes and
training scales. A high-performance checkpointing system is
needed to enable efficient checkpoint management at scale
throughout the lifecycle of LFM development.

We introduce ByteCheckpoint, an industrial-grade check-
pointing system for large-scale LFM training. ByteCheck-
point features: a parallelism-agnostic checkpoint representa-
tion that enables efficient load-time checkpoint resharding; a
generic checkpoint saving/loading workflow to accommodate
multiple training frameworks and support different storage
backends; full-stack optimizations to ensure high I/O effi-
ciency and scalability; a suite of monitoring tools to stream-
line large-scale performance analysis and bottleneck detec-
tion. Compared to existing open-source checkpointing sys-
tems [52, 58], ByteCheckpoint significantly reduces runtime
checkpoint stalls, achieving an average reduction of 54.20×.
For saving and loading times, ByteCheckpoint achieves im-
provements of up to 9.96× and 8.80×, respectively.

1 Introduction

Large Foundation Models (LFMs) in language [5, 13, 33, 43],
vision [40,44], audio [59] and other modalities are revolution-
izing today’s AI landscape, spawning a variety of downstream
applications such as conversational agents [49, 56], coding
assistants [51], painting tools [53], and video [55] generators.

∗Equal contribution.

Unlike traditional deep learning model training, LFM train-
ing is significantly more complex. It has multiple training
stages, including pre-training [9, 25] and post-training [38,
46, 67, 70]. Furthermore, evaluation tasks are integrated into
these stages to effectively assess model quality. Beyond the
complexity, the development of LFMs is notably resource-
intensive and time-consuming, largely due to immense model
sizes and massive training datasets (e.g., DeepSeek-V3 com-
prises 671 billion total parameters, and is pre-trained on 14.8
trillion tokens) [13, 33]. The scale of LFM training can even
be up to running on 12,288 GPUs [25].

As a fundamental technique for preserving training states,
checkpointing captures snapshots of these states and stores
them in persistent storage to facilitate training resuming. Ad-
ditionally, during LFM training, checkpoints are required for
concurrent evaluation tasks that continually assess model qual-
ity. Another use-case of checkpoints is dispatching those snap-
shots from pre-training to downstream post-training tasks,
such as Supervised Fine-Tuning (SFT) or reinforcement learn-
ing. The complex development pipeline, enormous scale, and
prolonged duration of LFM training present significant chal-
lenges to designing a highly efficient checkpointing system.

First, efficient and unified checkpoint management is neces-
sary throughout the life cycle of real-world LFM development.
During training, checkpoint resharding is commonly required.
This procedure transforms saved distributed checkpoints so
they can be correctly loaded into a new parallelism config-
uration that differs from the one used for their creation. In
pre-training, variations in parallelism occur when problem-
atic machines are removed, the available GPU quota fluctu-
ates [29, 72], or training configurations (e.g., context length)
and system optimization techniques [25] (e.g., kernel fusion,
computation and communication overlapping) are adjusted.
Across different stages and tasks, parallelism varies according
to the scales of resources and datasets in use. Highly efficient
checkpoint resharding is needed to minimize extra overhead
and maximize the end-to-end Effective Training Time Ratio
(ETTR, calculated as the ratio between the productive train-
ing time and the wallclock time of a job) [27]. Moreover, on

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 559

an industrial AI platform, LFM training jobs are initiated by
various internal users or cloud customers who may choose dif-
ferent training frameworks (e.g., Megatron-LM [47], PyTorch
FSDP [73], DDP [31], and others [63]) and select storage
backends such as local disk, Hadoop Distributed File Sys-
tem (HDFS), or Network-Attached Storage (NAS) for stor-
ing checkpoints according to job characteristics and personal
preferences. Crafting customized checkpointing modules and
workflows to accommodate these ad-hoc implementations
complicates system development and substantially increases
maintenance costs. It is vital to provide generic workflows for
different training frameworks and storage backends.

Second, Substantial I/O operations are involved in the
checkpointing system for saving distributed checkpoints into
persistent storage and loading them back for model training
under various scenarios. To minimize I/O blocking time and
promptly save training states to persistent storage, it is cru-
cial to expedite the I/O workloads. In addition, ensuring the
scalability of the checkpointing system is also essential since
modern LFM training typically operates at large scales.

Existing checkpointing systems [14, 19, 35, 66] assume
consistent parallelism, and fail to address the demands for
checkpoint resharding. Although some efforts from the open-
source community are devoted to developing checkpointing
systems capable of resharding, they have several limitations.
Some perform resharding in an inefficient offline manner [32],
while others only support specific training frameworks and
storage backends [52, 58]. Moreover, without customized op-
timizations and deployment experience, they suffer from sub-
optimal I/O performance and lack the scalability to support
large-scale LFM training in real-world production.

This paper presents the design, implementation, and de-
ployment experience of ByteCheckpoint, a checkpointing sys-
tem crafted for LFM development. ByteCheckpoint incorpo-
rates a unified architecture (Sec. 3.1) featuring an automatic
resharding-on-loading mechanism for distributed checkpoints
(load-time checkpoint resharding) and supports multiple train-
ing frameworks and storage backends. It integrates full-stack
I/O performance and scalability optimization techniques.

▷ ByteCheckpoint’s checkpoint representation is decou-
pled from the specific parallelism adopted during training
(Sec. 3.2), enabling efficient load-time checkpoint resharding.
For model and optimizer state representation, we separate
each tensor shard’s metadata from its numerical values and
consolidate all the metadata into one global file. The metadata
of a tensor shard includes its basic runtime, position, and stor-
age information. For the representation of dataloader states,
we divide them into replicated and sharded states, storing
sharded states in individual files while the replicated ones are
only saved by the training worker whose global rank is 0.

▷ ByteCheckpoint offers a generic workflow for LFM train-
ing tasks employing different training frameworks and various
storage backends (Sec. 3.3). It tailors a planner for each frame-
work to generate unified saving/loading plans. These plans

Failure

training

Continual pre-training

auto-eval auto-eval

SFT Reward Modeling

Pre-training Post-training

PPO

DPO
auto-eval auto-eval

training long context
training

Figure 1: An overview of the training pipeline of LFM.

are then passed to a framework and storage backend agnostic
engine to execute the I/O tasks. ByteCheckpoint’s workflow
utilizes this isolation in architecture, executing the same sav-
ing/loading steps for users with different training frameworks
and storage backends.

▷ ByteCheckpoint implements multiple optimizations
(Sec. 4) to enhance I/O performance, including balanced and
zero-redundancy plan generation, fully asynchronous execu-
tion pipelines, and efficient irregular tensor processing. We
share our engineering experience in optimizing storage sys-
tems to support massive I/O requests, optimizing collective
communications to guarantee stability, and designing moni-
toring and visualization tools for performance analysis and
bottleneck detection (Sec. 5). This full-stack approach scales
ByteCheckpoint to support the training of a 405B LFM on
8,960 GPUs while still maintaining high efficiency.

ByteCheckpoint is deployed on our industrial AI platform
with tens of thousands of GPUs for various LFM training
tasks, including pre-training and post-training of language
models, multi-modal understanding, and generation models
(e.g., for video generation). ByteCheckpoint demonstrates
significant advantages over existing open-source checkpoint-
ing systems, including PyTorch DCP [58] and Megatron
Distributed Checkpoint [52] (MCP). Compared to the base-
lines, ByteCheckpoint achieves improvements ranging from
12.13× to 161.50× in terms of checkpoint stalls reduction,
making the end-to-end checkpoint saving and loading proce-
dures 6.05× and 3.88× faster on average, respectively.

2 Background and Motivation

2.1 LFM development
Production pipeline. As depicted in Fig. 1, the develop-
ment of LFM comprises pre-training and post-training stages.
During the initial pre-training phase, The LFM is iteratively
trained on extensive data collected from multiple sources to
absorb knowledge about the world. Subsequently, continual
pre-training is employed to enhance the foundation model’s
capabilities. For instance, the pre-training of large language
models (LLMs) typically involves long-context continual
training to gradually increase the supported context length
of LLMs. Post-training is employed to align the pre-trained
model with human feedback or enhance the model’s reason-
ing capabilities [18,57]. Various task-specific labeled datasets
(e.g., multilingual, code, math, reasoning, etc.) are involved
in fine-tuning the LFMs, followed by reinforcement learning,

560 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Pre-Training

TP=2 DP=2 PP=2

LFM GPU States

Layer A Layer B

GPU 0

GPU 1

GPU 2

GPU 3

GPU 4

GPU 5

A0 A0

A1

A0

A1

A1

A2

A3

B0 B0

B1 B1

B0 B2

B1 B3

Distributed Checkpoints

CKPT 0

CKPT 1

CKPT 2

CKPT 3

CKPT 4

CKPT 5

CKPT 6

CKPT 7

Resume Pre-Training

TP=2 DP=3 PP=1

GPU 1

GPU 2

A1

A0

B0

B1

Supervised Fine-Tuning

TP=2 DP=1 PP=2

GPU 0

GPU 1

A0

A1

Auto-Evaluation

TP=1 DP=4 PP=1

B0

B1

A0 A1 B0 B1

A0 A1 B0 B1

A0 A1 B0 B1

A0 A1 B0 B1

Model states

Optimizer states

GPU 6

GPU 7

GPU 4

GPU 5

GPU 2

GPU 3

GPU 0

GPU 1

GPU 2

GPU 3

GPU 0 A0 GPU 3 A1B0A0B0

B1

B0

B1

A0

A1

A0

A1

B0

B1

A1B1

A2B2

A3B3

A4B4

A5B5

Figure 2: Checkpoint resharding scenarios in LFM training.
We only show GPU states for clarity of the figure.

typically including the reward modeling and then performing
Proximal Policy Optimization [45] (PPO), or directly con-
ducting Direct Preference Optimization [41] (DPO). Due to
the reduced size of these datasets, relatively fewer GPUs are
involved in post-training. Automatic evaluation [14, 22] is
periodically triggered to get intermediate model checkpoints
and assess the quality with diverse criteria.
Checkpointing. Training states of LFM training jobs to be
checkpointed include GPU and CPU states. GPU states are
learnable parameters in the LFM model and optimizer infor-
mation (e.g., the float32 precision replica of the model and
its momentum and variance in Adam [26]). In state-of-the-
art parallel training [28], these states are sharded and placed
across multiple GPUs. CPU states include dataloader mod-
ule, Random Number Generator (RNG) state, global training
step number, and learning-rate scheduler, all stored in CPU
memory. Our dataloader module incorporates a token buffer
to cache input samples of varying lengths read from the data
sources; when the number of accumulated tokens reaches the
context window size [13,25,69,71], the dataloader assembles
all cached samples into a batch (micro-batch). Due to the
volatile nature of GPU and CPU memory, these training states
should be periodically saved into persistent storage to tolerate
any faults and prepare for evaluation tasks.
Storage backends. In production environments, separate dis-
tributed file systems (such as Tectonic [39] for Llama 3.1
training [13]) are employed to store checkpoints [14, 20] for
formal tasks. Given that various hardware failures and soft-
ware bugs are inevitable during training [13, 22, 25], storing
checkpoints at different global training steps is necessary to
safeguard training. Distributed file systems (e.g., HDFS, NAS)
provide adequate storage capacity to accommodate multiple
checkpoints of large models.

2.2 Checkpoint Resharding Scenarios
During the life cycle of LFM development, checkpoint re-
sharding is consistently required due to changes in parallelism
under different scenarios (Fig. 2):
(1) Training Resumption. GPU quota allocated for an LFM
training job can vary due to the removal of faulty ma-

chines [22, 25], adding new machines released from com-
pleted tasks, or running on tidal resources [12, 29, 68, 72]. It
is often necessary to adjust training parallelism in response to
the resource changes, to maximize resource utilization. Addi-
tionally, at the onset of large-scale pre-training, AI engineers
often need to experiment with various model configurations
and optimization techniques [25], since conclusions from
small-scale profiling or simulations do not always translate
to optimal performance in large-scale training. In this phase,
adjusting parallelism configurations is common, resulting in
frequent training resumption. Moreover, long-context training
changes the context length, which also requires GPU quota
or parallelism adjustment. As shown in the example in Fig. 2,
8 distributed checkpoint files are initially stored, then loaded
into 6 training workers upon resuming.
(2) Cross-Stage Transition. When entering post-training , the
number of GPUs involved typically decreases due to reduced
training data in the latter. Checkpoints saved from pre-training
are frequently resharded to align with the specific workloads
of each post-training task. As depicted in Fig. 2, only 4 GPUs
are involved for a fine-tuning task in the post-training stage,
so the checkpoints are resharded accordingly.
(3) Evaluation. Evaluation tasks in both stages require load-
ing model checkpoints and conducting inference on separate
resources; their parallelism needs to be adjusted to align with
assigned GPUs used for specific datasets. Fig. 2 shows a 4-
GPU eval task reshards model checkpoints from pre-training.

We collected the number of times of checkpoint resharding
demands on our AI platform (training text, image, and video
generation models) over the past six months and identified
1,870 instances of checkpoint resharding during pre-training
resumption, 13,080 due to cross-stage reconfiguration, and
19,844 for running evaluation tasks.

2.3 LFM Checkpointing Requirements

Load-time checkpoint resharding. As a critical step in the
life cycle of LFM development, the efficiency of checkpoint
resharding is vital to minimize extra overheads. In our AI
platform, the previous common practice is to develop offline
checkpoint resharding scripts and adapt the scripts whenever
a new checkpoint resharding scenario arises. This approach
is inefficient and labor-intensive (see Appendix A for further
details). In addition to the development costs, running re-
sharding scripts leads to a substantial waste of GPU time and
resources. Table 1 presents the cost of executing resharding
jobs in various scenarios. Before training can resume or new
evaluation tasks can begin, independent jobs that execute the
resharding scripts must be submitted in advance. These jobs
download checkpoints from the storage systems, reshard dis-
tributed checkpoints to given parallelism configurations and
upload new checkpoints back to the storage systems. The tar-
geted training or evaluation jobs cannot be executed until the
completion of resharding jobs, resulting in prolonged pend-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 561

Table 1: Average completion time of executing offline reshard-
ing jobs under different scenarios.

Training Resumption Cross-Stage Transition Evaluation

1870.38s 650.34s 593.21s

Table 2: Top three training frameworks used on our platform

Framework Pre-training Post-training Average #GPUs Per Job

Megatron-LM 13727 68621 301
FSDP 16842 † 25
DDP 25393 † 6

ing time. Moreover, since checkpoints created by resharding
scripts are coupled with specific parallelism, they cannot be
reused freely, which in turn increases the storage overhead.

Instead of executing scripts in independent jobs for check-
point resharding, load-time checkpoint resharding [58] (also
known as online resharding) is preferred for LFM training.
It automatically identifies and retrieves necessary data from
existing distributed checkpoints during the loading procedure.
To achieve this, the storage representation of checkpoints
should be designed to be independent of specific parallelism.
Multiple frameworks and storage backends. On our AI
platform, a wide range of training frameworks are used, such
as Megatron-LM [47], DDP [31], FSDP [73], veScale [25,63],
etc. Table 2 lists the top three preferred training frameworks
on our platform, based on six months of trace analysis. Users
typically adopt Megatron-LM [47] for training large lan-
guage foundation models. FSDP [73] is preferred for training
tasks involving text-to-video or text-to-speech models, and
DDP [31] is commonly used to train image encoder com-
ponents of multimodal foundation models or for routine al-
gorithm testing. In addition, users can choose from various
storage backends for checkpoint persistence depending on the
scenario, ranging from local disks for debugging to HDFS
or NAS for formal training tasks. Each training framework
comes with its own checkpoint module, file format, and ad-
hoc implementation of the save/load logic. However, these
modules lack critical features for production, such as load-
time resharding, asynchronous checkpointing, and support
for remote persistent storage. Integrating these features for
each framework’s checkpoint module and tailoring optimized
implementations requires repeated engineering efforts. This
leads to inconsistent checkpointing interfaces across training
frameworks and storage backends, complicating the codebase.
Moreover, the maintenance of diverse checkpoint file formats
from different frameworks adds to the complexity of imple-
menting checkpoint transfer logic across training stages and
deploying models for evaluation and inference tasks. There-
fore, it is vital to provide generic workflows for different
training frameworks and storage backends.
Efficient and scalable I/O performance. Mainstream LFMs

step 10 D2H

ckpt 10

step 20 D2H. . . step 30 D2H. . . step 40. . . Failure Recovery

ckpt 10
Waiting

eval 0

ckpt 20

Low Checkpointing Efficiency

step 10 D2H

ckpt 10

step 20 D2H. . . step 30 D2H. . . step 40. . . Failure Recovery

ckpt 30
Waiting

eval 0

High Checkpointing Efficiency

ckpt 30ckpt 20

eval 1 eval 2

Figure 3: Checkpointing efficiency impacts failure recovery
and evaluation tasks. D2H denotes the Device-to-Host copy.

feature extensive model sizes, reaching hundreds of billions
of parameters [13]. Consequently, the size of training states
also increases significantly, imposing substantial overhead for
checkpoint saving and loading. By analyzing our previous
LFM training jobs, we observe that the average end-to-end
time required to save checkpoints of a GPT 175B model,
trained on 4096 GPUs, to HDFS can be 200 seconds. This du-
ration substantially exceeds the time required for a single train-
ing iteration. Even though this time-consuming procedure can
be partially removed from the critical path of model train-
ing by adopting asynchronous checkpointing [25, 34, 35, 65],
expediting end-to-end checkpointing remains crucial to mini-
mize training progress loss [66] caused by inevitable frequent
failures in large-scale training [25]. As depicted in Fig. 3,
although checkpointing overlaps with training, its rapid com-
pletion allows more intermediate checkpoints to be stored
before a failure occurs, enabling resumption from more re-
cent states and improving ETTR. Besides, evaluation tasks
are triggered during training, and intermediate checkpoints
are periodically pulled for these tasks. Faster checkpointing
ensures their timely execution, reducing blocking time due to
preparing these checkpoints in remote persistent storage.

Scaling the checkpointing system while maintaining the
high I/O performance is non-trivial. Sub-optimal and risky
designs, which are hard to detect in small-scale settings, can
lead to severe performance bottlenecks or even catastrophic
job failures in large-scale training. For example, massive
read/write requests for checkpoint files from the training
cluster to the storage systems (e.g., HDFS) can overload the
master node, causing delays in file metadata operations. Addi-
tionally, naive implementations of collective communications,
such as integrity-checking barriers, introduce substantial ini-
tialization and synchronization overheads. These overheads
can even result in communication timeouts, ultimately caus-
ing the entire training job to fail. Furthermore, as training
scales up, efficiently analyzing system performance and de-
tecting errors among training and I/O workers across multiple
machines becomes increasingly challenging.

Existing checkpointing systems, such as CheckFreq [35],
Check-N-Run [14], and Gemini [66], operate under the as-
sumption of consistent parallelism and do not address the

562 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

User Code

Megatron Planner

Memory

DDP Planner FSDP Planner veScale Planner

ByteCheckpoint API

User Code User Code User Code
Megatron-LM DDP FSDP veScale

Execution Engine

HDFS I/O NAS I/OMemory I/O Disk I/O

Disk HDFS NAS

Figure 4: Architecture of ByteCheckpoint.

need for checkpoint resharding. DCP [58] and MCP [58] in-
corporate checkpoint resharding capabilities but are limited in
terms of supported parallelism strategies and training frame-
works, I/O performance, and scalability. A comprehensive
discussion with related works is provided in Appendix F. In
ByteCheckpoint, we design decoupled storage representation
for efficient load-time checkpoint resharding, propose generic
saving/loading workflows to support multiple frameworks
and storage backends, integrate full-stack optimizations to en-
hance I/O performance and share our experience in scaling the
checkpointing system to support real-world LFM training.

3 System Design

Based on the above observations, we design ByteCheckpoint
according to the following key principles:
(1) Decoupling. The checkpoint representation remains inde-
pendent of specific runtime parallelism. Interfaces of training
frameworks and storage backends are separated from the core
execution engine, ensuring robust extensibility.
(2) User-friendliness. The APIs should be concise, making it
seamless for AI researchers and engineers to integrate them
into their code and runtime environments.

3.1 Unified Architecture
The architecture of ByteCheckpoint is illustrated in Fig. 4.
Each component is introduced in detail as follows:
API. ByteCheckpoint’s APIs (bytecheckpoint.save and
bytecheckpoint.load) provide a unified entrypoint for user
code across various training frameworks. For instance, to save
checkpoints, users first prepare the corresponding training
states, checkpoint path, framework name, and performance-
related options, then call bytecheckpoint.save. This high-
level entrypoint abstracts underlying system complexities,
such as sharding specification, save/reshard plan generation,
and I/O operations.
Planner. The Planner serves as the interface for training
frameworks. It receives arguments (training states, checkpoint
path, etc.) from the API layer, creates ShardMeta (Sec. 3.2) for
each tensor shard based on the worker’s rank and framework-
specific sharding specification such as Megatron ShardedTen-
sor or FSDP DTensor, and determines the tensors and other

Prepare checkpoint states

ckpt_states = {"model": model, "optimizer": optimizer, "dataloader": dataloader, "extra_states": extra_states}

Load checkpoints of Megatron-LM from HDFS with overlapping mode

bytecheckpoint.save('hdfs://demo_0/checkpoints', ckpt_states, framework='megatron', async_checkpoint=True)

import bytecheckpoint

Import the ByteCheckpoint library

Train model for several steps.

Loading and saving distributed checkpoints with ByteCheckpoint

bytecheckpoint.load('hdfs://demo_0/checkpoints', ckpt_states, framework='megatron', overlap_loading=True)

Save checkpoints of Megatron-LM to HDFS asynchronously

Figure 5: Examples of using ByteCheckpoint’s APIs.

states to save/load for each worker. Each worker leverages
the Planner to initially create local plans and subsequently
collaborates to create global plans. We implement a tailored
planner for each training framework to extract information
from these specifications and generate plans.
Execution Engine. The Engine, running on each training
worker, executes the saving/loading plans generated by the
Planner when the respective API is called. It analyzes the
given checkpoint path to determine the appropriate storage
backend, then interacts with the Storage I/O layer to execute
the actual I/O tasks specified in the plans.
Storage I/O. Analogous to the design of the Planner layer, the
Storage I/O layer encapsulates different storage backends and
manages backend-specific read/write operations and optimiza-
tions. The interface between the Engine layer and the Storage
I/O layer remains unified across different storage backends,
facilitating the seamless integration of new storage backends.
ByteCheckpoint supports multiple storage options, including
in-memory checkpoint storage [66], local disk storage, and
remote storage systems.

Fig. 5 illustrates a typical use case of ByteCheckpoint.
Initially, users define a dictionary specifying the states to
be saved or loaded, encompassing the model, optimizer, dat-
aloader, and additional states. At the outset of training resump-
tion, stage transition, or evaluation, bytecheckpoint.load
is invoked to load saved checkpoints. Checkpoint resharding
occurs automatically during loading when there are changes
in parallelism. During training, bytecheckpoint.save is
periodically invoked to save checkpoints.

3.2 Decoupled Checkpoint Representation
To achieve parallelism-agnostic checkpointing to enable auto-
matic load-time resharding, we develop a formal specification
of model and optimizer tensors in distributed training. Our
design conforms to the Distributed Tensor and Checkpoint
concepts in the PyTorch Distributed library [31].
Model and optimizer states. Each tensor is uniquely identi-
fied by a "fully qualified name" (FQN) and has a global shape,
representing its original shape before sharding. Tensors can be
either sharded or replicated across ranks (aka training work-
ers). For sharded tensors, the specific shard held by a worker
is determined by three factors: the parallelism (e.g., tensor
parallelism) applied to the tensor, the sharding dimension, and

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 563

Global Metadata File: TensorShardtoBasicByteMap, LoaderShardtoByteMap, ...

Model States Optimizer States Dataloader States Extra States

Rank 0 Rank 1

GPU States

CPU States

Storage Files

 (stride, device, requires_grad), ...

Tensor Metadata

 (fqn, nD_offsets, nD_lengths), ...

BasicMeta

ShardMeta

ByteMeta (file_name, byte_offset, byte_size), ...

 (stride, device, requires_grad), ...

Tensor Metadata

 (fqn, nD_offsets, nD_lengths), ...

BasicMeta

ShardMeta

ByteMeta (file_name, byte_offset, byte_size), ...

GPU States

CPU States

Storage Files

Figure 6: Checkpoint representation in ByteCheckpoint. The
pipeline parallelism is applied in this example.

the group rank within the corresponding parallelism group.
Based on a tensor’s FQN, global shape, and sharding speci-
fication, ByteCheckpoint creates the tensor shard metadata
(ShardMeta) for each rank, which is utilized in checkpoint
storage to represent the tensor shard, independent of paral-
lelism. More precisely, ShardMeta for a tensor shard is an
index tuple (fqn, nD_offsets, nD_lengths), where nD_offsets
and nD_lengths indicate the local shard’s offsets and lengths
along the original multi-dimensional axes in its global shape.
Dataloader and extra states. The dataloader states can be
categorized into two types: replicated states and sharded
states. Replicated states include the number of data reading
workers, paths to source datasets, and sampling ratios, and are
identical across all I/O workers (subprocesses) in different
ranks. Sharded states are unique to each I/O worker, including
the token buffer and data retrieval offsets for different data
sources. In ByteCheckpoint, sharded states are saved in in-
dividual files, while replicated states are saved only by the
I/O worker in rank 0. This reduces overall size of dataloader
states to be saved and facilitates dataloader resharding when
parallelism configurations change since the separation of data
states into distinct files simplifies states merging and redis-
tributing according to the new parallelism. For other extra
states such as the RNG state, we pack and serialize them into
one compact byte object before dumping them into storage.
Checkpoint representation. Fig. 6 illustrates the checkpoint
representation in ByteCheckpoint. Distributed checkpoints
comprise a global metadata file and multiple storage files.
Each rank generates three distinct files: a model state file, an
optimizer state file, and an extra state file. The Dataloader
state file is generated only by training workers whose ranks
for all parallelism degrees, except for DP degrees, are 0. For
tensor shards in model and optimizer states, their Metadata
consists of three parts: BasicMeta, which records essential
information of individual tensor shards such as stride and
device, critical for recovering the runtime state; ShardMeta,
as previously introduced, recording relative position infor-
mation of shards in the complete tensor; ByteMeta, which
specifies the byte start offset and length of each tensor shard
within the storage file. All tensor metadata are consolidated
into the global metadata file, and a mapping, termed Tensor-
ShardtoBasicByteMap, is established between saved tensor
shards and storage files based on the ShardMeta, BasicMeta,

A0 A0

A1 A1

B0 B0

B0 B0

B0 B0

B1 B1

B1 B1

B1 B1

C0 C0

C1 C1

TP=2 DP=2 PP=1

ZeRO DP Sharding

TP Sharding

B0 B0 B0 B0 B0 B0 C0 C0A0A0

B1 B1 B1 B1 B1 B1 C1 C1A1A1

A0 A0 fqn:"A",nD_offsets:[0, 0],nD_lengths:[1, 2]

ShardMeta Generation in Rank 0

B0 B0

B0

Optimizer Tensor Sharding

fqn:"B",nD_offsets:[0, 0],nD_lengths:[1, 2]

fqn:"C",nD_offsets:[1, 0],nD_lengths:[1, 1]

Rank 0 A0 B0

Rank 1 A1 B1

Rank 2 B0

Rank 3 B1

C0

C1

Optimizer Tensor Distribution

Figure 7: ShardMeta of irregular tensors in optimizer states.

and ByteMeta of each tensor shard, ensuring accurate data
retrieval. The global metadata file also includes a Loader-
ShardtoByteMap, which records the file index information
of sharded states in each dataloader. All storage files and
the global metadata file are stored in the specified storage
backend designated by the checkpoint path.
Decomposing irregular tensors. We define irregular tensors
as those which, when flattened before sharding, cannot be
reshaped back to their original dimensions. These tensors typ-
ically arise when applying the Zero Redundancy Optimizer
(ZeRO) [42], as implemented in Megatron-LM ZeRO2 and
FSDP ZeRO3 [73]. In these implementations, optimizer states
within a DP group are flattened, concatenated, and sharded.
Consequently, the resulting 1D tensor slices often cannot be
directly represented using n-dimensional shapes and offsets.
Fig. 7 illustrates an example of irregular tensor sharding: Un-
like tensors A and C, tensor B, with an original shape of (3, 2),
is evenly split into two shards. Each shard, containing three el-
ements, cannot be directly represented as a two-dimensional
shape with corresponding offsets. One intuitive approach
to addressing the challenge of irregular tensor shards is to
merge all tensor shards into complete tensors before saving
checkpoints, thereby simplifying the generation of Shard-
Meta. For example, to eliminate potential irregular tensors in
DCP [58], FSDP performs synchronous all-gather communi-
cation operations, interleaved with D2H copy operations for
each tensor shard, regardless of whether the shard is irregu-
larly sharded. However, this approach incurs significant com-
munication overhead and requires frequent synchronization
between GPU and CPU, substantially impeding efficiency.

To mitigate the overhead associated with merging ten-
sor shards, ByteCheckpoint employs a tensor decomposition
strategy for managing irregular tensor shards. Specifically,
ByteCheckpoint decomposes an irregular tensor into a series
of regular ones, representing each with index tuples. For ex-
ample, consider the irregular tensor shard of tensor B with
three elements on rank 0 in Fig. 7. ByteCheckpoint decom-
poses this shard into two regular tensors that can be directly
represented by nD_o f f sets and nD_lengths. This approach
allows ByteCheckpoint to use multiple ShardMeta entries
to represent a single irregular tensor shard. Although such
decomposition slightly increases the metadata size and adds
steps to the loading procedure, as reconstructing the target
tensor may require looking up multiple smaller segments of

564 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

TP=2, DP=2, PP=1
ShardMeta

 fqn: 'MLP_0'
 offsets: [0, 0]
 lengths: [256, 512]

ShardMeta
 fqn 'MLP_0'
 offsets: [256, 0]
 lengths: [256, 512]

TP=4, DP=2, PP=1

Rank 1

Rank 2

fqn: 'MLP_0'
offsets: [128, 0]
lengths: [128, 512]

fqn: 'MLP_0'
offsets: [256, 0]
lengths: [128, 512]

ByteData

ByteData

Matches Identify Details

Checkpoint 0

Checkpoint 1

Global Metadata File

Rank 1

step 2

step 3

Rank 2

Rank 0/Coordinator

step 1

step 1

step 1

step 4

step 3 step 4

Checkpoint 0

Checkpoint 1

Checkpoint 2

step 2

Checkpoint 3

step 5

step 5

Online Resharding Workflow

. . .

step 6

Figure 8: Load-time tensor resharding workflow. Checkpoint
k denotes the checkpoint saved by a previous live worker k.

irregular shards, it avoids the costly communication of tensor
shards without extra blocking time during saving.

3.3 Checkpoint Resharding Workflow

ByteCheckpoint implements a generic workflow for saving
and loading, automatically resharding checkpoints during the
loading process. Leveraging the independence between the
Engine Layer, Planner Layer, and Storage I/O Layer, we can
execute consistent saving and loading steps across different
training frameworks and storage backends. We take tensor
resharding as an example in Fig. 8, emphasizing how our
checkpoint representation enables flexible load-time reshard-
ing. The process for checkpoint saving and loading without
resharding follows a similar procedure.
Step 1. To initiate load-time checkpoint resharding, each rank
invokes the bytecheckpoint.load() API, specifying the
checkpoint path along with the model/optimizer to be restored.
All ranks then load the global metadata file from the path.
Step 2. For each tensor shard in the given model/optimizer,
each rank queries the TensorShardToBasicByteMap within
the global metadata file, identifying matching segments be-
tween the saved tensor shards and the sharding specification
of new shards. After identifying these matches, the planner
constructs a local load plan, which includes BasicMeta and
ByteMeta tailored to the specific shard. This identification
mechanism is illustrated at the bottom of Fig. 8.
Step 3. The coordinator planner, typically residing in rank 0,
initiates a gather operation to aggregate loading plans from
all ranks. It then optimizes each local plan by applying the
redundant elimination optimization (Sec. 4.1) to distribute
tensor shard loading workloads for reduced completion time.
Step 4. The coordinator initiates a scatter operation to dis-
tribute the finalized loading plan. Each rank then receives its
final loading plan from the coordinator.

TP=1 DP=1

TP=2 DP=2
Token Buffer 0

Token Buffer 1

TP=1 DP=2

Token Buffer 0

Rank 0

Rank 1

Token Buffer 1

Token Buffer 0

Token Buffer 1

Rank 2

Rank 3

TP=1 DP=4

Token Buffer 0

Rank 0

Rank 1

Token Buffer 1

Token Buffer 0

Token Buffer 1

Rank 2

Rank 3

Token Buffer 0&1

Rank 0

Copy BufferSplit Buffer

Merge Buffer

Saved Checkpoints

Figure 9: Examples of dataloader resharding. Sharded states
such as cumulative token buffers are resharded according to
the changes of parallelism configurations. We do not depict
data retrieval offsets for clarity of the figure.

Step 5. The execution engine on each rank selects the storage
backend wrapper in the Storage I/O layer based on the check-
point path and then executes the loading pipeline (Sec. 4.2).
Step 6. Upon completion of the loading pipeline, each rank
utilizes the optimized asynchronous collective barrier primi-
tive ensuring the atomicity of the distributed loading. Further
details can be found in Appendix B.
Dataloader resharding. Similar to tensor resharding in Fig 8,
ByteCheckpoint reshards the dataloader by querying the Load-
erShardtoByteMap. The illustration of dataloader reshard-
ing is depicted in Fig. 9. When parallelism configuration
changes, for the dataloader checkpoints, common items in
the dataloader checkpoints can be loaded directly, whereas
unique items such as accumulative token buffers and data
retrieval offsets require resharding. Specifically, when the DP
degree size remains constant while other parallel degrees are
altered (TP degree changes in the example of Fig. 9), the
token buffers should be copied to the destination workers for
bitwise-correct resuming. when there is a change in the DP
degree size, the token buffers must be either split or merged
accordingly to ensure that the resumed dataloaders do not
discard cached data and do not retrain data that has already
been sampled and fed. Thanks to the split storage strategy
designed for the dataloader module, ByteCheckpoint can pre-
cisely identify the unique items that require resharding and
process them efficiently.

4 Performance Optimization

We now elaborate on ByteCheckpoint’s performance opti-
mization techniques, focusing on minimizing the overhead
associated with checkpoint saving and loading.

4.1 Optimized Plan Generation
Balancing saving workload. In training scenarios employ-
ing data parallelism (DP), model states are replicated across
all DP groups, resulting in duplicated model states. Existing
checkpointing systems [52, 58] address this issue by designat-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 565

ing the first DP group to save all model states. However, this
approach leads to workload imbalance, potentially causing
training workers in the first DP group to become stragglers. To
address this challenge, we implement a workload-balancing
deduplication mechanism during the planning procedure, uti-
lizing a Worst-Fit algorithm. Specifically, the coordinator
planner distributes the saving workload based on the size of
each tensor shard, assigning the current tensor shard to the
rank with the smallest cumulative tensor shard size. This ap-
proach ensures a more equitable distribution of the saving
workload across ranks. This balances workloads across all
workers, improving saving efficiency.
Eliminating redundant loading. When loading checkpoints
into parallelism configurations that include data parallelism,
ByteCheckpoint optimizes the process by eliminating repeti-
tive tensor reading across DP groups, effectively combining
storage file reading with tensor transferring. A crucial obser-
vation is that idle inter-GPU bandwidth can be utilized to
concurrently transfer loaded tensors to peer GPUs during the
file reading process. As illustrated in Fig. 10, tensor reading
workloads across DP groups are evenly distributed among
training workers during the planning phase, thereby avoiding
duplication of reads. Subsequently, I/O threads are launched
to read the allocated tensor shards. Concurrently, in the main
thread, shards read into CPU memory are first copied into
GPU memory and then transferred to other workers that re-
quire them, utilizing all-to-all collective communication.
Plan and metadata cache. In large-scale training, the execu-
tion of the planning procedure can introduce significant com-
munication overhead, particularly when checkpoint saving
occurs frequently. For example, planning the saving proce-
dure for a 405B transformer model distributed across 8960
GPUs requires 62 seconds. However, we have observed that
both the save plans and the global metadata file, although
coupled with specific parallelism, remain constant throughout
a single training session. This allows for caching strategies to
reduce planning times and associated overheads in subsequent
checkpoint operations. We introduce plan metadata caching,
transforming the planning into a one-time cost. Once estab-
lished for the first time, the save plans and global metadata file
are cached for future reuse, eliminating repetitive planning.

4.2 Fully Asynchronous Engine Pipeline

ByteCheckpoint Engine optimizes operation execution during
checkpoint saving and loading (resharding) through pipelin-
ing. Using loading as an example (Fig. 10), we pipeline
file reading, deserialization, Host-to-Device (H2D) copy, and
inter-GPU communication for each tensor shard, thereby
achieving higher efficiency. The read operation downloads
files containing desired tensors from the storage system and
places them into shared memory (e.g., the dev/shm direc-
tory). The deserialize operation deserializes tensors from
shared memory. ByteCheckpoint employs multiple threads

0
0
0

Read Deserialize H2D Copy

01

Time
All2All

23 45

Rank 0 2 4 6
2 4 6
2 4 6

67

0 0 0

Naive Loading Pipeline

Rank 0

Rank 1

1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

1
1
1
01 23 45

Rank 1 3 5 7
3 5 7
3 5 7

67

Fully Asynchronous Loading Pipeline

8
8
8
89 1011 1213

10 12 14
10 12 14
10 12 14

1415

9
9
9
89 1011 123

11 13 15
11 13 15
11 13 15

1415

3 3 4

3 3 4

4 4

4 4

. . .

. . .

Figure 10: Comparison between ByteCheckpoint’s loading
pipeline and the naive implementation.

for parallel file downloading and deserialization. The H2D
copy operation transfers tensors from CPU memory to GPUs,
while All2All facilitates tensor transferring within the DP
group. For saving, we implement a symmetrical, fully asyn-
chronous pipeline comprising D2H copy, serialization, and
file uploading operations. To mitigate the performance impact
of D2H copy on training, we employ a pinned CPU memory
pool combined with a Ping-Pong buffering mechanism to ac-
celerate this operation. We run multiple parallel processes to
serialize tensors and dump files into shared memory. Upload-
ing threads actively monitor and initiate file uploading upon
the completion of the dumping phase.

4.3 High Performance Read/Write

We optimize the read and write throughput of checkpointing
by tailoring our implementation to optimal I/O usage of com-
monly used storage backends. For example, while HDFS is
not primarily designed for random data access, it does offer
some random read capabilities via its SDK, allowing applica-
tions to access specific file offsets and retrieve data from those
positions. We leverage this feature and enable multi-threaded
reading of a single file, significantly accelerating the down-
load speed of checkpoint files from HDFS. In our production
platform, single-file read speed has improved from 400 MB/s
to 2-3 GB/s, all tested on H800 servers equipped with over
100 CPU cores, TB-level memory, and a 200Gbps NIC.

For file writing, HDFS’s append-only write makes it im-
practical to split a single file into multiple parts based on
offsets for multi-threaded writing. To overcome this limita-
tion, we split the target file into several sub-files of fixed size
and concurrently write them into HDFS using multi-threading.
After the upload is complete, we perform metadata-level con-
catenation to seamlessly merge the sub-files back into a single
entity, ensuring the integrity of the stored data blocks. With-
out network congestion, single-file upload speed can reach 3
GB/s, far exceeding the average read/write throughput of a
single HDFS client (under 100 MB/s [48]).

566 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.4 Prefetching Dataloader States
Each dataloader employs multiple subprocesses, referred to
as read workers, to handle data loading and preprocessing.
When checkpointing is initiated, the main read worker signals
all other read workers to prepare their states. The training
process is paused until all states are collected to ensure ac-
curacy, as any update in the main process would result in
the state change of workers. The duration of this blocking
period depends on both the number of workers and the size
of the accumulated token buffers. For instance, when using
a dataloader configured with 4 workers and a total state size
of approximately 1GB, the state collection process typically
takes around 8 seconds.

To alleviate this overhead, we adopt prefetching. Based on
the pre-set checkpoint frequency, each read worker prepares
its state during the training step just before checkpointing
and puts the state into its state queue. At the checkpointing
step, the main read worker gathers those prepared states im-
mediately through queue polling. This optimization allows
ByteCheckpoint to achieve near-zero dataloader state gather-
ing delays.

5 Checkpointing at Scale

This section explores in depth the methods employed to opti-
mize checkpointing for large-scale LFM training.

5.1 Storage Support
High throughput, scalable storage system. HDFS is the
primary storage backend for ByteCheckpoint, we have im-
plemented several optimizations to enhance throughput and
scalability for large-scale checkpointing. We have rewritten
all HDFS components, including NameNode, DataNode, and
SDK [15], in C++, effectively doubling performance com-
pared to the original Java-based implementation. Additionally,
we have refined its architecture by introducing a new compo-
nent named NNProxy [1]. NNProxy functions as a stateless
RPC proxy for HDFS NameNode, facilitating large-scale fed-
erated deployments of NameNodes while maintaining min-
imal querying latency. The NNProxy design addresses the
QPS bottleneck of HDFS NameNode metadata requests, a
challenge intensified by the high volume of distributed check-
points. NNProxy also provides additional features such as au-
thentication, rate limiting, and metadata query caching. These
capabilities enable more granular management of checkpoints
in production environments. Our optimized HDFS achieves a
substantial capacity of hundreds of PBs, 10 TB/s read/write
bandwidth, and approximately 100,000 metadata QPS.
Checkpoint cool-down strategy. We have implemented a
two-tier hot-cold storage architecture using a combination of
SSD and HDD storage servers. Our key observation is that
newly stored checkpoint files are typically downloaded by

evaluation tasks shortly after their creation. However, where
no training anomalies such as loss spikes occur, the access
frequency of these files decreases significantly after being
downloaded by evaluation tasks. Nonetheless, all checkpoint
files must be preserved for traceability. To efficiently manage
storage space while ensuring data availability, we have devel-
oped a data cool-down mechanism that migrates data from
SSD to HDD storage, thus ensuring that high-performance
hot storage consistently has sufficient space for operations.
Specifically, we cool down all files that exceed the reten-
tion threshold based on their last modification time. We then
remap the original file paths to the new HDD storage locations
through pure metadata operations. This strategy applies to
HDFS directories and preserves the original access paths of
the cooled-down files, providing a seamless user experience.

5.2 Collective Communication
Collective communications (e.g., scatter, gather, barrier) are
crucial in ByteCheckpoint’s workflow (Sec.3.3), particularly
for planning and checkpoint integrity guarantee. We initially
used NCCL [54] as the communication backend to execute
gather and scatter operations at the coordinator. However,
when scaling a pre-training task to 8960 GPUs, we observed
that NCCL requires a long time to lazily build communication
channels and allocate GPU memory during the planning stage
of ByteCheckpoint’s saving workflow. In some cases, it be-
comes unresponsive or causes CUDA out-of-memory (OOM)
errors, as scatter or gather operations necessitate establish-
ing peer-to-peer communication with each GPU. These GPU
OOM issues and long initialization times are not apparent in
small-scale trials but become significant at larger scales.

To enhance communication stability during planning, we
have re-implemented the procedure using the gRPC frame-
work [17], which eliminates GPU memory usage during plan-
ning. However, when scaling training to tens of thousands of
GPUs, centralized gathering and scattering operations contin-
ued to impose a significant burden on the coordinator, leading
to communication failures. We further improved its stability
by implementing a tree-based hierarchical communication
topology. Training workers on a single machine are organized
into first-level subtrees, with the worker of local rank 0 des-
ignated as the root. For inter-machine communication, we
iteratively group multiple machines, designating the worker
with the lowest global rank in each group as the root. This
procedure continues until all workers are integrated into a hi-
erarchy converging at the global root (i.e., the coordinator). In
large-scale 3D parallel training scenarios, a TP-DP-PP com-
munication tree naturally forms, removing extra connections.

5.3 Monitoring and Analysis
During training, ByteCheckpoint continuously collects criti-
cal performance measurements and visualize them for real-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 567

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

duration (ms)

2344

34286

TP Comm. DP Comm.

Host 0

PP Comm.

Host 1 Host 2 Host 3

Host 4 Host 5 Host 6 Host 7

TP=4 DP=4 PP=2

End-to
-End

Pla
nning

D2H Copy

Seria
liza

tion

Dump
Uploa

d

Atom
ic B

arr
ier

Figure 11: End-to-end checkpoint saving time heat map from
a 3D parallel training task with Megatron-LM on 32 GPUs.
The color denotes the time of a selected phase on a rank.

bytecheckpoint.save()

planning_model
D2H_model

serialize_model

upload_model
planning_optimizer

D2H_optimizer
serialize_optimizer

dump_optimizer
upload_optimizer

return enter

serialize_dump_common@loader
upload_common@loader

serialize_dump_unique@loader
upload_unique@loader

upload_extra_state

6951ms

11951ms

16951ms
save_api_call

dump_model

serialize_dump_extra_state

Total:901MB|Model:112MB|Optimizer:672MB|Loader:116MB|Extra: 1MB

Name: upload_optimizer
Duration: 223ms
Size: 672.08MB
Bandwith: 332.22MB/s

Figure 12: Time breakdown of checkpoint saving on rank 0.

time performance monitoring and analysis. This approach
enables quick checkpointing issues detection, such as low
read/write throughput, stragglers, and upload failures and re-
tries.
Data collection. We have designed a user-friendly metrics
system based on Python’s context manager and decorator
syntax to monitor critical procedures flexibly. It automatically
captures the duration and I/O size of each operation, along
with relevant metadata such as each worker’s rank, the file
path, and the current step. All collected metrics are transferred
to a remote database via a background message queue.
Visualization. ByteCheckpoint provides users with a compre-
hensive topological performance overview of all ranks asso-
ciated with different checkpoint phases, as well as detailed
duration breakdowns for any specific rank. Fig. 11 presents an
exemplary heat-map visualization of checkpoint saving times
within a 3D parallel training topology. The visualization high-
lights that ranks 0, 4, 8, and 12 experience the longest saving
times as their checkpoints including dataloader states. Addi-
tional metrics visualizations are also available for detailed
analysis, such as blocking time and fine-grained phases like
planning and D2H copy. These visualizations enable users
to easily pinpoint straggler nodes or phases for both system

development and in production environments. For instance,
if certain nodes experience network issues, increased upload
or download times during the HDFS transfer phase would be
readily apparent. Furthermore, detailed timeline breakdowns
of checkpointing procedures at each rank are accessible via
the heat map topology overview, enabling users to thoroughly
evaluate all optimizations in the system. Fig. 12 illustrates
the execution details of each checkpoint-saving phase for a
specific rank.
Storage-side monitoring. On the storage client side, we mon-
itor the latency and I/O size of each atomic read/write oper-
ation at the I/O chunk level. All collected metrics are peri-
odically transmitted via a message queue to a ClickHouse
service, where the data are aggregated and analyzed. Un-
expectedly high latency or low bandwidth triggers alerts to
engineers for further investigation. On the storage cluster side,
our primary focus is on overall performance metrics, includ-
ing metadata request QPS, cluster-level read/write throughput,
and storage capacity utilization. This comprehensive monitor-
ing system plays a crucial role in identifying issues such as
slow checkpoint reads and writes, and even complete system
unavailability due to storage capacity exhaustion, facilitat-
ing the implementation of preventive measures for enhancing
system reliability and efficiency.

6 Evaluation

In this section, we detail our deployment and operational
experiences with ByteCheckpoint. ByteCheckpoint is built
upon DCP [58] (commit hash: 80c07df), a state-of-the-art
open-source checkpointing system that supports checkpoint
resharding for FSDP [73]. The implementation of ByteCheck-
point consists of about 20,000 lines of Python code.

6.1 Checkpointing Efficiency

We demonstrate checkpointing performance of ByteCheck-
point relative to baselines [52, 58] with different workloads.
Workloads. We adopt two different transformer-based [62]
structures, i.e. DiT [40] and GPT-3 [9] to implement two
models referred to as vDiT and tGPT, respectively. The vDiT
model is fine-tuned with the FSDP framework for video gen-
eration on a cluster of NVIDIA A100 80GB GPUs, while
the tGPT model is trained for text generation with Megatron-
LM [47] on NVIDIA H800 80GB GPUs. Detailed config-
urations for model and parallelism are provided in Table 3,
where the source number of GPUs and parallelism pertain to
the saving and loading evaluations, while the target number
of GPUs and parallelism correspond to the configurations
used for load-time resharding evaluations. All machines in
the training clusters are interconnected via InfiniBand, with
HDFS selected as the persistent storage solution for all exper-
iments. We integrate the test models into our LFM training

568 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 3: Model and parallelism configurations.

Model Hidden Size #Heads #Layers #Parameters Source #GPUs Soure Parallelism Target #GPUs Target Parallelism

vDiT 1664 16 48 4B 32 ZeRO-2 64 ZeRO-2
128 ZeRO-2 64 ZeRO-2

tGPT 8192 64 80 70B 2400 TP=4, DP=75, PP=8 4800 TP=4, DP=150, PP=8
4800 TP=4, DP=150, PP=8 2400 TP=4, DP=75, PP=8

Table 4: I/O performance comparison among ByteCheckpoint, DCP and MCP.

Model and Framework Source #GPUs Method TBlock (s) TSave (s) TLoad (s) TReshard (s) ETTR (%)

vDiT 4B 32
DCP 16.25 86.82 50.12 74.89 38.60

ByteCheckpoint (GPU states) 0.54 (30.09×) 27.47 (3.16×) 11.69 (4.29×) 16.01 (4.68×) 46.22 (1.20×)

FSDP 128
DCP 61.37 236.34 105.74 91.01 41.62

ByteCheckpoint (GPU states) 0.38 (161.50×) 23.74 (9.96×) 12.01 (8.80×) 13.64 (6.67×) 48.92 (1.18×)

tGPT 70B 2400
MCP 4.73 28.97 69.87 126.30 34.61

ByteCheckpoint (GPU states) 0.39 (12.13×) 13.11 (2.21×) 49.48 (1.41×) 62.10 (2.03×) 40.18 (1.16×)
ByteCheckpoint (full states) 0.50 20.55 72.35 401.21 28.80

Megatron-LM 4800
MCP 4.70 76.21 123.80 64.62 31.28

ByteCheckpoint (GPU states) 0.36 (13.06×) 8.59 (8.87×) 64.39 (2.00×) 54.31 (1.19×) 40.29 (1.29×)
ByteCheckpoint (full states) 0.43 25.04 83.56 115.95 34.70

trials, conducting training over 500 steps and saving check-
points every 100 steps. We then resume training under two
scenarios: with and without changes in GPU numbers and
parallelism configurations, to assess the performance of load-
time resharding and standard checkpoint loading. Saving per-
formance is evaluated based on average additional overheads,
specifically checkpoint stalls (training blocking time) and
end-to-end checkpoint saving time (from the save API call to
the completion of checkpoint integrity checking). Addition-
ally, we measure the end-to-end checkpoint loading time (the
blocking time of the load API call) for both load-time reshard-
ing and standard loading scenarios. We use the average ETTR
as the metric to evaluate the end-to-end system performance.
Following GEMINI [66], we assume a consistent occurrence
of failures within each checkpointing interval (100 steps),
calculating the average wasted time to derive the achieved
ETTR. Calculation details can be found in Appendix C.
Baselines. In experiments with FSDP, we use DCP (com-
mit hash: c7338f4) as the baseline, while for Megatron-LM,
MCP [52] (commit hash: 3fb5c51) serves as the baseline. We
ensure that all hyper-parameters, such as batch size and con-
text length, remain consistent across systems for a fair compar-
ison. Both baselines support asynchronous checkpointing and
load-time checkpoint resharding for the model and optimizer,
but not for dataloader states. Consequently, we compare I/O
performance with these baselines only for GPU states and
additionally evaluate the performance of ByteCheckpoint for
the full training states. Since neither DCP nor MCP supports
HDFS, we implement the logic to enable HDFS access for
them, using the same configurations (e.g., thread count, file
chunk size, etc.) as those employed in ByteCheckpoint.
Saving performance. As shown in Table 4, ByteCheckpoint
significantly reduces checkpoint stalls during runtime, with

reductions ranging from 13.06× to 161.50×. This improve-
ment reduces the average checkpoint stall time from minutes
or seconds to sub-second durations, outperforming both DCP
and MCP. In terms of end-to-end saving time, ByteCheck-
point delivers an average speedup of 6.05×, primarily driven
by our fine-grained performance optimizations. Notably, the
acceleration provided by ByteCheckpoint scales with the size
of the training workload, increasing from 2.21× for 2400
GPUs to 8.87× for 4800 GPUs. This can be attributed to
the workload balancing mechanism, which becomes more
effective with larger DP sizes. Additionally, we observe a
particularly significant reduction in blocking time for FSDP
workloads. This results from the high communication and
synchronization overheads caused by FSDP’s irregular tensor
shard processing when using DCP for distributed checkpoint
storage. These overheads grow as the training scale increases,
making DCP less suitable for large-scale training. In contrast,
ByteCheckpoint’s decomposition representation strategy in-
curs zero communication overhead during metadata genera-
tion, leading to improved training efficiency. We also provide
a detailed overhead breakdown in Appendix D for further
investigation. For training with Megatron-LM, we report I/O
performance for the handling of full training states.
Loading and resharding performance. In experiments in-
volving the loading of distributed checkpoints into unchanged
parallelism configurations, ByteCheckpoint achieves perfor-
mance improvements ranging from 1.41× to 8.80× compared
to baseline methods. Our approach leverages an asynchronous
loading pipeline, which overlaps tensor reading and transfer-
ring, significantly reducing blocking time before training be-
gins. When it comes to the resharding efficiency of model and
optimizer states, ByteCheckpoint delivers an average accel-
eration of 3.64×. By eliminating the need for running costly

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 569

Table 5: Saving optimization microbenchmark.

Workload Parallel Config. Optimization Saving Time (s)

tGPT 13B TP=2, DP=8, PP=2

No Optim. 50.26
Async. 34.68 (1.45×)

Async. + WB. 20.28 (2.48×)
Async. + WB. + Cache. 19.97 (2.52×)

tGPT 30B TP=2, DP=8, PP=4

No Optim. 46.34
Async. 25.56 (1.81×)

Async. + W.B. 18.83 (2.46×)
Async. + W.B. + Cache. 18.56 (2.50×)

Table 6: Loading optimization microbenchmark.

Model Parallel Config. Optimization Loading Time (s)

tGPT 13B TP=2, DP=8, PP=2
No Optim. 63.48

Async. 48.43 (1.31×)
Async. + Overlap. 41.38 (1.53×)

tGPT 30B TP=2, DP=8, PP=4
No Optim. 77.02

Async. 74.54 (1.03×)
Async. + Overlap. 48.73 (1.58×)

Table 7: Resharding optimization microbenchmark.

Model Parallel Config. Optimization Processing Time (s)

tGPT 13B ZeRO-2 32 GPUs
All-gather + D2H. 4.12

Decompose. 0.21 (19.80×)

tGPT 30B ZeRO-2 64 GPUs
All-gather + D2H. 5.84

Decompose. 0.19 (30.50×)

offline resharding jobs, ByteCheckpoint enables flexible and
efficient checkpoint transformations across various scenarios.
However, we observe that including CPU states, primarily dat-
aloader states, increases the end-to-end load-time resharding
time. This is largely due to the time-consuming processing
of unique components within the dataloader states, such as
the token buffer, which can grow as large as 20GB in text-
to-video LFM training. Additionally, since only a subset of
workers hold these dataloader states, they often become strag-
glers during the checkpoint saving and loading (resharding)
procedures. We leave the design of a more efficient dataloader
to our future works.
End-to-end performance. ByteCheckpoint outperforms both
DCP and MCP in terms of the average end-to-end ETTR,
achieving improvements ranging from 1.16× to 1.29×. Lever-
aging full-stack optimizations, ByteCheckpoint improves the
execution efficiency of each checkpoint-related operation,
thereby effectively minimizing training downtime.

6.2 Microbenchmarks
We conduct several micro-benchmarks (Table 5, Table 6 and
Table 7) to highlight the performance improvements. To eval-
uate different model sizes, We modify the tGPT 70B model
to create tGPT 13B and tGPT 30B. For saving and loading
microbenchmarks, we used the Megatron-LM training frame-

work, while for resharding, we employed FSDP.
In Table 5, we compare the end-to-end saving times with

and without ByteCheckpoint features, as described in Sec. 4.
The results demonstrate that asynchronous saving pipeline
achieves significant reduction in saving time compared to the
unoptimized settings, yielding speedups of 1.45× and 1.81×
for tGPT 13B and tGPT 30B, respectively. The workload bal-
ancing mechanism and plan cache of ByteCheckpoint can
further boost these improvements. When applying all I/O op-
timization techniques to both model and optimizer states, the
average saving time for these models is reduced from 48.3
seconds to 19.27 seconds. In Table 6, we present the perfor-
mance gains achieved by the asynchronous loading pipeline
and read-communication overlap techniques. For tGPT 13B
and tGPT 30B, the baseline loading times were 1.53× and
1.58× longer than those achieved with ByteCheckpoint.

For load-time resharding, we compared the irregular ten-
sor processing time between FSDP and ByteCheckpoint’s
irregular tensor decomposition strategy. As shown in Table 7,
ByteCheckpoint incurs an average blocking time of just 0.20s,
which is 25.15× shorter than that of FSDP. Moreover, our
approach consistently achieves microsecond-level blocking
times, regardless of the training scale. (see results in Sec. 6.1
and Sec. 6.4).

6.3 Correctness Verification
In Fig. 13, we depict normalized training loss curves of tGPT
13B before and after resharding with ByteCheckpoint in vari-
ous situations. For PP and TP resharding, the normalized loss
curve after resharding can smoothly match that in the previous
phase and continue to display a consistent decline trend. Unit
testing confirms that ByteCheckpoint can correctly transform
distributed checkpoints across varying parallelism. Results of
DP and hybrid resharding are in Appendix E.

We further verify the bit-wise alignment ability of
ByteCheckpoint when training resumes without changes in
parallelism configurations. We show the normalized loss
curve from real production in Fig. 14, where a 175B language
foundation model is trained. As highlighted, the normalized
loss before and after resuming are exactly the same.

6.4 Checkpointing in Real LFM Production
We share our experience deploying ByteCheckpoint in real-
world LFM production environments, highlighting the issues
we encountered and resolved.
Scalabilty. As shown in Table 8, ByteCheckpoint was used
to train two transformer-based LFMs for image and text gen-
eration on H800 GPUs, respectively. ByteCheckpoint con-
sistently maintained average checkpoint stalls under 600ms,
even at the largest scale with 8,960 GPUs. Additionally, end-
to-end checkpointings were completed efficiently, typically
within a few seconds.

570 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 8: I/O performance of ByteCheckpoint in large-scale LFM training.

Model and Framework #GPUs Parallelism TBlock (s) TSave (s) TLoad (s)

Vision Transformer 7B FSDP 1488 ZeRO-2 0.34 20.13 265.73
Text Transformer 405B Megatron-LM 8960 TP=8, DP=70, PP=16 0.59 51.06 129.49

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Step

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ss

Before Resharding After Resharding

(a) PP resharding from TP=1,
DP=4, PP=4 to TP=1, DP=4,
PP=8.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Step

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Lo
ss

Before Resharding After Resharding

(b) TP resharding from TP=1,
DP=4, PP=4 to TP=2, DP=4,
PP=4.

Figure 13: Resharding correctness verification.

��� ��� ��� ��	 ��
 ���
�����������
���

���

���

���

��	

��

���

��
��

��
���

��
��
��

0.0399
0.0399

0.0162
0.0162

0.0096
0.0096

Figure 14: Training resuming with ByteCheckpoint in real
production run on 2080 H800 GPUs for several days. Color
changes indicate training resuming.

Dataloader stragglers. By analyzing the performance vi-
sualization results from our monitoring tools (Sec. 5.3), we
identified prolonged uploading time for dataloader checkpoint
files. To support dataloader state resharding, ByteCheckpoint
divides the states of a dataloader into multiple parts (e.g., 6
parts for the tGPT experiments in Sec. 6.1) and stores them as
individual files. These files can be independently loaded dur-
ing resharding. However, uploading these small files sequen-
tially leads to low bandwidth utilization, causing performance
degradation. In cases like the 7B vision transformer, upload-
ing time of dataloader states can account for 73.16% of total
saving time. To fix this issue, we implemented a process pool
for concurrent uploads, significantly reducing saving time.
HDFS metadata bottleneck. Through monitoring, we iden-
tified several bottlenecks related to HDFS. Despite applying
the parallel optimization techniques for single-file uploads
described in Sec. 4.3, the actual HDFS upload performance
fell short of our expectations. A detailed profiling revealed
that the metadata concatenation operation in the HDFS Na-
meNode was performed serially, making it a significant per-
formance bottleneck when large volumes of checkpoint files
were generated. We mitigated this issue by enabling parallel

execution of the concatenation operation. Another issue that
emerged was related to our initial use of the HDFS SDK. For
the convenience of the users, the SDK encapsulates a lot of
safeguard logic, leading to unnecessary overheads introduced
by checking, creating parent directories, and verifying target
files. To address this, we optimized ByteCheckpoint by ensur-
ing directory existence and file uniqueness prior to invoking
HDFS APIs, reducing redundant metadata operations and im-
proving performance significantly. By addressing these issues,
we reduced the maximum metadata overhead of HDFS write
operations for a single checkpoint file from 3s to 150ms.

7 Conclusion

This paper presents the design, implementation, and deploy-
ment of ByteCheckpoint, a production-grade checkpointing
system built for LFM development. ByteCheckpoint advo-
cates a unified architecture for checkpoint representation and
workflow, enables efficient load-time resharding and supports
multiple training frameworks and storage backends. It enables
full-stack I/O performance and scalability optimizations and
incorporates efficient performance monitoring and analysis
tools for LFM development at scale. Compared to state-of-
the-art baselines [52,58], ByteCheckpoint reduces checkpoint
stalls by up to 161.50× and shortens end-to-end checkpoint-
ing completion time by up to 9.96×. Additionally, the loading
(resharding) procedure is optimized to be 3.88× faster on
average. We believe our system not only provides valuable
practical experience to those building checkpointing systems
for real-world LFM development but also offers deep insights
for future research in the community.

8 Acknowledgments

We would like to thank our shepherd Ayush Goel and the
anonymous reviewers for their constructive feedback. We
thank Juncai Liu and Xiang Li for their efforts in facilitat-
ing our large-scale experiments. We thank Shibiao Nong,
Shuaishuai Cao, Wei Jia, Jingzhe Tang, Jun Wang, Xi Wang,
Sa Wang, and other contributors for refining our system and
extending its functionalities. We thank Liyang Zhao and the
HDFS team of ByteDance for their support. This work was
supported in part by a ByteDance Research Collaboration
Project, and grants from Hong Kong RGC under the contracts
HKU 17204423 and C7004-22G (CRF).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 571

References

[1] HDFS Federation Solution: NameNodeProxy. https:
//github.com/bytedance/nnproxy, 2016.

[2] Safetensors. https://huggingface.co/docs/
safetensors/index, 2024.

[3] TensorStore. https://google.github.io/
tensorstore/, 2024.

[4] Zarr. https://zarr.dev/, 2024.

[5] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[6] Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen,
Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du,
Wenjun Gao, Kang Guan, et al. Fire-Flyer AI-HPC:
A cost-effective software-hardware co-design for deep
learning. arXiv preprint arXiv:2408.14158, 2024.

[7] Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-
machandran Ramjee, and Nipun Kwatra. Varuna:
scalable, low-cost training of massive deep learning
models. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 472–487,
2022.

[8] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances
in Neural Information Processing Systems, 33:1877–
1901, 2020.

[10] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 571–582, 2014.

[11] et al. DeepSeek-AI. Deepseek-v2: A strong, economical,
and efficient mixture-of-experts language model, 2024.

[12] Jiangfei Duan, Ziang Song, Xupeng Miao, Xiaoli Xi,
Dahua Lin, Harry Xu, Minjia Zhang, and Zhihao Jia.
Parcae: Proactive,{Liveput-Optimized}{DNN} training
on preemptible instances. In 21st USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 24), pages 1121–1139, 2024.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[14] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-N-Run: A checkpointing system for
training deep learning recommendation models. In 19th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 929–943, 2022.

[15] Apache Software Foundation. Hadoop Distributed
File System. https://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/
HdfsDesign.html, 2024.

[16] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo
Mai. {ServerlessLLM}:{Low-Latency} serverless
inference for large language models. In 18th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24), pages 135–153, 2024.

[17] gRPC Team. grpc: A high performance, open source
universal rpc framework get started! https://grpc.
io/, 2024.

[18] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

[19] Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Ab-
hishek Vijeev, Bhargav Gulavani, Nipun Kwatra, Ra-
machandran Ramjee, and Muthian Sivathanu. Just-
In-Time Checkpointing: Low cost error recovery from
deep learning training failures. In Proceedings of
the Nineteenth European Conference on Computer
Systems, pages 1110–1125, 2024.

[20] Tao He, Xue Li, Zhibin Wang, Kun Qian, Jingbo Xu,
Wenyuan Yu, and Jingren Zhou. Unicron: Economiz-
ing self-healing llm training at scale. arXiv preprint
arXiv:2401.00134, 2023.

[21] Frank Herold, Sven Breuner, and Jan Heichler. An
introduction to BeeGFS. ThinkParQ, Kaiserslautern,
Germany, Tech. Rep, 2014.

[22] Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang,
Meng Zhang, Qiaoling Chen, Peng Sun, Dahua Lin, Xi-
aolin Wang, Yingwei Luo, et al. Characterization of
large language model development in the datacenter.

572 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/bytedance/nnproxy
https://github.com/bytedance/nnproxy
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/safetensors/index
https://google.github.io/tensorstore/
https://google.github.io/tensorstore/
https://zarr.dev/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://grpc.io/
https://grpc.io/

In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), pages 709–729,
2024.

[23] Drew A Hudson and Christopher D Manning. GQA:
A new dataset for real-world visual reasoning and com-
positional question answering. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 6700–6709, 2019.

[24] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates.
In Proceedings of the 29th Symposium on Operating
Systems Principles, pages 382–395, 2023.

[25] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, et al. MegaScale: Scaling large
language model training to more than 10,000 GPUs.
In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), pages 745–760,
2024.

[26] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] Apostolos Kokolis, Michael Kuchnik, John Hoffman,
Adithya Kumar, Parth Malani, Faye Ma, Zachary De-
Vito, Shubho Sengupta, Kalyan Saladi, and Carole-Jean
Wu. Revisiting reliability in large-scale machine learn-
ing research clusters. arXiv preprint arXiv:2410.21680,
2024.

[28] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation re-
computation in large transformer models. Proceedings
of Machine Learning and Systems, 5:341–353, 2023.

[29] Jiamin Li, Hong Xu, Yibo Zhu, Zherui Liu, Chuanx-
iong Guo, and Cong Wang. Lyra: Elastic scheduling for
deep learning clusters. In Proceedings of the Eighteenth
European Conference on Computer Systems, pages
835–850, 2023.

[30] Mingzhen Li, Wencong Xiao, Hailong Yang, Biao Sun,
Hanyu Zhao, Shiru Ren, Zhongzhi Luan, Xianyan Jia,
Yi Liu, Yong Li, et al. Easyscale: Elastic training with
consistent accuracy and improved utilization on gpus.
In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–14, 2023.

[31] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,

Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[32] Xinyu Lian, Sam Ade Jacobs, Lev Kurilenko, Masahiro
Tanaka, Stas Bekman, Olatunji Ruwase, and Minjia
Zhang. Universal checkpointing: Efficient and flexi-
ble checkpointing for large scale distributed training.
arXiv preprint arXiv:2406.18820, 2024.

[33] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 techni-
cal report. arXiv preprint arXiv:2412.19437, 2024.

[34] Avinash Maurya, Robert Underwood, M Mustafa
Rafique, Franck Cappello, and Bogdan Nicolae.
DataStates-LLM: Lazy asynchronous checkpoint-
ing for large language models. arXiv preprint
arXiv:2406.10707, 2024.

[35] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. CheckFreq: Frequent, fine-Grained DNN
checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 203–216,
2021.

[36] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale lan-
guage model training on gpu clusters using Megatron-
LM. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15, 2021.

[37] Bogdan Nicolae, Jiali Li, Justin M Wozniak, George
Bosilca, Matthieu Dorier, and Franck Cappello. Deep-
freeze: Towards scalable asynchronous checkpoint-
ing of deep learning models. In 2020 20th
IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID), pages 172–
181. IEEE, 2020.

[38] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

[39] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul
Sikaria, Pavel Zakharov, Abhinav Sharma, Mike Shuey,
Richard Wareing, Monika Gangapuram, Guanglei Cao,
et al. Facebook’s tectonic filesystem: Efficiency from
exascale. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 217–231, 2021.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 573

[40] William Peebles and Saining Xie. Scalable diffu-
sion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 4195–4205, 2023.

[41] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn. Di-
rect preference optimization: Your language model is se-
cretly a reward model. Advances in Neural Information
Processing Systems, 36, 2024.

[42] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. ZERO: Memory optimizations
toward training trillion parameter models. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–16. IEEE, 2020.

[43] Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[46] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu,
Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and
Chuan Wu. Hybridflow: A flexible and efficient rlhf
framework. arXiv preprint arXiv:2409.19256, 2024.

[47] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[48] Konstantin V. Shvachko. HDFS Scalability: The limits
to growth. USENIX Magazine, 35, 2010.

[49] Character AI Team. Character.ai. https://character.
ai/, 2024.

[50] DeepSeek Team. Fire-flyer file system. https://
github.com/deepseek-ai/3FS, 2025.

[51] Github Team. The world’s most widely adopted
ai developer tool. https://github.com/features/
copilot/, 2024.

[52] Megatron Team. Dist checkpointing package.
https://docs.nvidia.com/megatron-core/
developer-guide/latest/api-guide/dist_
checkpointing.html, 2024.

[53] Midjourney Team. Midjourney. https://www.
midjourney.com/home, 2023.

[54] NVIDIA NCCL Team. Nvidia collective communi-
cations library (nccl). https://developer.nvidia.
com/nccl, 2024.

[55] OpenAI Team. Creating video from text. https://
openai.com/index/sora/, 2024.

[56] OpenAI Team. Introducing ChatGPT. https://
openai.com/index/chatgpt/, 2024.

[57] OpenAI Team. Introducing OpenAI o1. https://
openai.com/o1/, 2024.

[58] PyTorch Team. Getting started with Distributed Check-
point (DCP). https://pytorch.org/tutorials/
recipes/distributed_checkpoint_recipe.html,
2023.

[59] Suno Team. Bark is a transformer-based text-to-
audio model created by suno. https://github.com/
suno-ai/bark, 2023.

[60] Zarr Team. Zarr: chunked, compressed, n-dimensional
arrays. https://zarr.dev/, 2024.

[61] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and
Guoqing Harry Xu. Bamboo: Making preemptible in-
stances resilient for affordable training of large DNNs.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 497–513,
Boston, MA, April 2023. USENIX Association.

[62] A Vaswani. Attention is all you need. Advances in
Neural Information Processing Systems, 2017.

[63] veScale Team. veScale: A PyTorch Native LLM Train-
ing Framework. https://github.com/volcengine/
veScale, 2024.

[64] Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and
Peter Pietzuch. Tenplex: Dynamic parallelism for deep
learning using parallelizable tensor collections. In
Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, pages 195–210, 2024.

[65] Yuxin Wang, Shaohuai Shi, Xin He, Zhenheng Tang,
Xinglin Pan, Yang Zheng, Xiaoyu Wu, Amelie Chi Zhou,
Bingsheng He, and Xiaowen Chu. Reliable and efficient
in-memory fault tolerance of large language model pre-
training. arXiv preprint arXiv:2310.12670, 2023.

574 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://character.ai/
https://character.ai/
https://github.com/deepseek-ai/3FS
https://github.com/deepseek-ai/3FS
https://github.com/features/copilot/
https://github.com/features/copilot/
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/dist_checkpointing.html
https://www.midjourney.com/home
https://www.midjourney.com/home
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://openai.com/index/sora/
https://openai.com/index/sora/
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/
https://openai.com/o1/
https://openai.com/o1/
https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html
https://pytorch.org/tutorials/recipes/distributed_checkpoint_recipe.html
https://github.com/suno-ai/bark
https://github.com/suno-ai/bark
https://zarr.dev/
https://github.com/volcengine/veScale
https://github.com/volcengine/veScale

[66] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, TS Eugene Ng, and Yida Wang. Gemini: Fast
failure recovery in distributed training with in-memory
checkpoints. In Proceedings of the 29th Symposium on
Operating Systems Principles, pages 364–381, 2023.

[67] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. Finetuned language models are
zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

[68] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. {AntMan}: Dynamic scaling on {GPU}
clusters for deep learning. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 533–548, 2020.

[69] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi
Zheng, Xiao Xia, et al. GLM-130b: An open bilingual
pre-trained model. arXiv preprint arXiv:2210.02414,
2022.

[70] Chi Zhang, Guangming Sheng, Siyao Liu, Jiahao
Li, Ziyuan Feng, Zherui Liu, Xin Liu, Xiaoying Jia,
Yanghua Peng, Haibin Lin, et al. A framework for
training large language models for code generation via
proximal policy optimization.

[71] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[72] Juntao Zhao, Borui Wan, Yanghua Peng, Haibin Lin,
Yibo Zhu, and Chuan Wu. QSync: Quantization-
minimized synchronous distributed training across hy-
brid devices. arXiv preprint arXiv:2407.02327, 2024.

[73] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid Sho-
janazeri, Myle Ott, Sam Shleifer, et al. Pytorch FSDP:
Experiences on scaling fully sharded data parallel. arXiv
preprint arXiv:2304.11277, 2023.

[74] Yuchen Zhong, Guangming Sheng, Juncheng Liu, Jin-
hui Yuan, and Chuan Wu. Swift: Expedited failure re-
covery for large-scale dnn training. In Proceedings
of the 28th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, pages
447–449, 2023.

[75] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao,

Shirong Ma, et al. DeepSeek-Coder-V2: Breaking the
Barrier of Closed-Source Models in Code Intelligence.
arXiv preprint arXiv:2406.11931, 2024.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 575

--target_tp=4 --target_dp=200 --target_pp=8 --gate_fp32=True --sp_attn=True

python3 reshard_megatron_ckpt/reshard_moe_v2_3.py --prev_tp=8 --prev_dp=100 --prev_pp=12 \

Offline Script for MoE Checkpoint Resharding

--prev_vp=10 --target_tp=8 --target_dp=200 --target_pp=6 --target_vp=10 --sp_attn=False

python3 reshard_megatron_ckpt/reshard_gpt_v4_8.py --prev_tp=8 --prev_dp=100 --prev_pp=6 \

Offline Script for GPT Checkpoint Resharding

Figure 15: Examples of running offline scripts for checkpoint
resharding.

A More Background on Maintaining Reshard-
ing Scripts

Examples of offline resharding with customized scripts are
given in Fig. 15. Customizing offline scripts is labor-intensive.
For GPU state resharding, the offline scripts must cover all
different components in the LFM and its optimizer and cater
to the diverse behavior of each component under different par-
allelism strategies. For example, with Tensor Parallelism (TP),
GEMM operators in attention and MLP blocks are sharded
along different dimensions, while other operators like Lay-
erNorm [8] are replicated across GPUs. When hybrid 3D
parallelism [36] is adopted, TP-sharded tensors of one layer
(module) in the distributed optimizer are first flattened and
then merged before being sharded according to the designated
Data Parallelism (DP) degree. Offline scripts must implement
resharding logic that is tightly coupled with combinations of
model (optimizer) components and parallelism strategies. Ad-
ditionally, special algorithmic optimization techniques such
as GQA [23] and MLA [75] change the tensor layout of cer-
tain operators (e.g., the query-key-value projection GEMM
operator in the attention block), necessitating corresponding
resharding support. To handle various cases in our production
environment, our largest script even includes 3193 lines of
Python code. This complexity results in significant engineer-
ing efforts for both development and maintenance.

B Efficient Integrity Guarantee

A complete checkpoint consists of multiple files stored by
different workers. The failure of any single worker can cor-
rupt the entire checkpoint. To prevent such issues, a barrier
mechanism is essential to achieve atomic save/load operations
among all training workers.

Checkpointing modules in training frameworks like
Megatron-LM [47] rely on the barrier function in
torch.distributed to perform integrity checks. This ap-
proach synchronizes training workers to ensure that all check-
point saving/loading operations are finished. We observed
that when scaling training to involving approximately 10,000
GPUs, this behavior results in stalls of about 20 seconds
each time. To address this inefficiency, we re-implement the
barrier function using the aforementioned method (gRPC
with tree-based communication topology) and conduct the

integrity checks asynchronously, effectively eliminating the
blocking time. We also incorporate upload/download retry
mechanisms in ByteCheckpoint’s I/O workers and integrate
failure logging, which records the exact stage of failure within
the checkpoint saving/loading pipelines in workers who fail
to complete checkpointing tasks.

C Average ETTR Calculation

Failures that happened during training introduce progress loss
and the last checkpoint loading overhead. Assume failures
are evenly distributed within one checkpoint interval [66],
the best case is that a failure occurs just after the comple-
tion of a checkpoint end-to-end saving procedure whereas the
worst case is just before that. Given the per iteration training
time Titer, checkpoint interval N, end-to-end checkpoint sav-
ing time Tsave and loading (resharding) time Tload , we derive
the average wasted time Twasted as:

Twasted = Tsave +Tload +
N ·Titer

2
(1)

Therefore, the average ETTR is:

ET T R = 1− Twasted

Tsave +Tload +N ·Titer
(2)

The end-to-end ETTR results presented in Table 4 are aver-
aged across standard loading and resharding settings.

D Checkpointing Overhead Breakdown

We break down the end-to-end checkpoint saving time (Tsave)
for rank 0 by dividing it into several phases and investigating
the overhead of each part. The results are depicted in Table 9,
where TFirst

Plan denotes the initial planning cost while TCache
Plan

refers to the overhead when using the plan and metadata
cache for subsequent checkpointing operations. Costs of other
phases are averaged over various checkpointing steps. We
find that the communication overhead of planning increases
as training scales up, leading to significant stalls. Thanks to
the caching strategy (Sec. 4.1), it becomes a one-time ex-
pense for each (resumed) training session. In addition, the
adoption of the pinned memory CPU pool renders the block-
ing time of D2H almost negligible, while our asynchronous
engine pipeline overlaps the execution time of serialization,
shared memory dumping, and HDFS uploading, diminishing
the end-to-end time. Furthermore, the load-balancing mech-
anism exploits the capabilities for parallel uploading within
each DP group and achieves more performance gains at larger
training scales (e.g., the uploading speed of model states with
4800 GPUs is 3.03× faster than that with 2400 GPUs).

576 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 9: Detailed overhead breakdown of the checkpoint saving procedure for rank 0.

Model and Framework Source #GPUs State TFirst
Plan (s) TCache

Plan (s) TD2H (s) TSerialize (s) TDump (s) TUpload (s)

vDiT 4B 32
Model 0.05 0.00 0.15 0.52 0.50 11.04

Optimizer 0.65 0.00 0.37 0.93 1.03 14.60

FSDP 128
Model 0.35 0.00 0.06 0.29 0.12 10.57

Optimizer 0.89 0.00 0.06 0.29 0.26 9.85

tGPT 70B 2400
Model 8.39 0.00 0.08 1.93 0.48 6.67

Optimizer 5.02 0.00 0.17 2.00 2.23 2.30

Megatron-LM 4800
Model 17.09 0.00 0.08 1.95 0.47 2.20

Optimizer 6.46 0.00 0.03 1.69 0.35 1.67

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Step

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ss

Before Resharding After Resharding

(a) DP resharding from TP=1,
DP=4, PP=4 to TP=1, DP=8,
PP=4.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Step

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ss

Before Resharding After Resharding

(b) Hybrid resharding from TP=1,
DP=4, PP=4 to TP=2, DP=8,
PP=2.

Figure 16: Resharding correctness verification.

��� ��� ��� ��	 ��
 ���
�����������
���

���

���

���

��	

��

���

��
��

��
���

��

�

�
��
��
��
��

��

0.6012
0.6012

0.6335
0.6335

0.6363
0.6363

Figure 17: The normalized sample length curves of the dat-
aloader with multiple training restarts.

E More Resharding Correctness Experiments

The normalized loss curves for DP and hybrid resharding
correctness are shown in Fig. 16. In the case of DP and hybrid
resharding, since we also increase the global batch size, the
loss curve after resharding declines more rapidly.

We further show that ByteCheckpoint can achieve bit-wise
correct resuming for dataloader states. Since the RNG state
is fixed, correct resumptions should yield the same data sam-
pling trajectory. Therefore, we use the normalized data sam-
ple length curve (Fig. 17) for evaluation. As highlighted, the
normalized data sample length before and after restarts is
identical.

F Related Work

Checkpointing frameworks. Some industrial initiatives fo-
cus on developing checkpointing systems for deep learn-
ing. Prior to DCP [58], PyTorch provided torch.save and
torch.load APIs for local checkpoint management, without
native resharding support. DCP [58] introduced resharding
capabilities for FSDP but lacks support for parallelism strate-
gies such as TP and PP. DeepSpeed-UCP [32] provides a
unified format for DeepSpeed checkpoints and offers reshard-
ing capabilities through offline scripts. Megatron MCP [52]
builds upon the workflow of DCP [58] and extends storage op-
tions to formats like Zarr [60]. All these frameworks provide
limited support for various parallelism strategies and training
frameworks, and their I/O performance does not scale well in
large-scale training.
Checkpointing optimizations. Several works [10, 37] in-
vestigated reducing checkpointing costs from different per-
spectives. Check-N-Run [14], designed for recommendation
models, employs differential checkpointing to store only the
modified portions of the model, alongside quantization to re-
duce checkpoint size. CheckFreq [35] pipelines snapshot and
save operations with computation to minimize checkpoint
stalls and introduces an online algorithm for tuning check-
point frequency to further lower costs. Gemini [66] advocates
for in-memory checkpointing with inter-machine backup for
fast recovery, interleaving checkpoint communication with
training traffic to enable frequent checkpoints per iteration.
JIT-Checkpointing [19] adopts just-in-time checkpointing for
low-cost error recovery. In industrial use cases, it is crucial
to store checkpoints in separate persistent storage for various
tasks such as auto-evaluation [22], hyper-parameter tuning,
and model debugging. ServerlessLLM [16] focuses on the
demand for loading optimizations which is critical in server-
less inference scenarios. It proposes a chunk-based, multi-tier
loading pipeline to accelerate checkpoint loading. Unlike ex-
isting solutions, ByteCheckpoint champions both optimized
I/O performance and flexible load-time checkpoint resharding,
supporting general LFM development.
Checkpoint representation. PyTorch’s torch.save/load
functionality relies on pickle for serialization and deserial-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 577

ization. This format lacks crucial tensor shard metadata, such
as global shape information, precluding automatic resharding.
DCP [58] addresses this limitation by introducing a disaggre-
gated format that separates metadata from tensor data. This
metadata, which includes global shape and offset details, en-
ables automatic resharding in DCP. Tenplex [64] introduces
Parallelizable Tensor Collection (PTC) to flexibly represent
and transform tensor states across diverse parallelism con-
figurations. To build a PyTorch-native checkpointing system,
ByteCheckpoint adopts the representation of DCP and in-
corporates necessary adaptations to handle irregular tensor
sharding. Array-based storage systems like Zarr [4] and Ten-
sorStore [3] allow tensors to be saved as individual arrays,
supporting concurrent reads and writes. MCP [52] supports
distributed checkpointing using the Zarr format. For secure
and efficient tensor storage, Safetensors [2] is a file format for
saving tensors safely and loading them efficiently. To improve
compatibility with the Hugging Face open-source ecosystem,
ByteCheckpoint incorporates functionality to export check-
points in the Safetensors format.
Storage systems for LFM. Large-scale checkpointing re-
quires robust storage systems. The LLaMA 3.1 report [13]
highlights Tectonic [39], Meta’s general-purpose file system,
as the backbone for storing checkpoints during pre-training.
One of the key challenges for this system is managing high-
frequency checkpoint writes. Similarly, FireFlyer [6], the AI-
HPC system developed by DeepSeek [11, 18, 33] for LFM
training, utilizes the custom-built 3FS Distributed File Sys-
tem [50], which is akin to other parallel file systems like
BeeGFS [21], to manage checkpoint storage.
Elastic training systems. Some orthogonal efforts are de-
voted to enhancing the elasticity of DL training jobs [7, 12,
24, 30, 61, 74]. For instance, Varuna introduces job morph-
ing to reconfigure training jobs in both pipeline and data
parallelism degrees, without changing the hyper-parameters.
Bamboo [61] leverages cross-stage redundant computa-
tions into the pipeline for elastic training on spot instances.
Oobleck [24] implements a pipeline instantiation mechanism
via predefined templates to tolerate concurrent failures in
different pipelines. These works are limited to specific paral-
lelism strategies (e.g., DP without ZeRO), while ByteCheck-
point does not assume any specific parallelism, supporting
real-world production. The flexibility of elastic training sys-
tems can be significantly enhanced by adopting our check-
point representation for training state management.

578 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	LFM development
	Checkpoint Resharding Scenarios
	LFM Checkpointing Requirements

	System Design
	Unified Architecture
	Decoupled Checkpoint Representation
	Checkpoint Resharding Workflow

	Performance Optimization
	Optimized Plan Generation
	Fully Asynchronous Engine Pipeline
	High Performance Read/Write
	Prefetching Dataloader States

	Checkpointing at Scale
	Storage Support
	Collective Communication
	Monitoring and Analysis

	Evaluation
	Checkpointing Efficiency
	Microbenchmarks
	Correctness Verification
	Checkpointing in Real LFM Production

	Conclusion
	Acknowledgments
	More Background on Maintaining Resharding Scripts
	Efficient Integrity Guarantee
	Average ETTR Calculation
	Checkpointing Overhead Breakdown
	More Resharding Correctness Experiments
	Related Work

