
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

PAPAYA Federated Analytics Stack:
Engineering Privacy, Scalability and Practicality
Harish Srinivas, Graham Cormode, Mehrdad Honarkhah, Samuel Lurye,

Jonathan Hehir, Lunwen He, George Hong, Ahmed Magdy, Dzmitry Huba,
Kaikai Wang, Shen Guo, and Shoubhik Bhattacharya, Meta

https://www.usenix.org/conference/nsdi25/presentation/srinivas

PAPAYA Federated Analytics Stack:
Engineering Privacy, Scalability and Practicality

Harish Srinivas Graham Cormode Mehrdad Honarkhah Samuel Lurye
Jonathan Hehir Lunwen He George Hong Ahmed Magdy Dzmitry Huba

Kaikai Wang Shen Guo
Meta

Shoubhik Bhattacharya

Abstract
Cross-device Federated Analytics (FA) is a distributed com-
putation paradigm designed to answer analytics queries about
and derive insights from data held locally on users’ devices.
On-device computations combined with other privacy and
security measures ensure that only minimal data is transmit-
ted off-device, achieving a high standard of data protection.
Despite FA’s broad relevance, the applicability of existing FA
systems is limited by compromised accuracy; lack of flexi-
bility for data analytics; and an inability to scale effectively.
In this paper, we describe our approach to combine privacy,
scalability, and practicality to build and deploy a system that
overcomes these limitations. The PAPAYA FA system lever-
ages trusted execution environments (TEEs) and optimizes
the use of on-device computing resources to facilitate fed-
erated data processing across large fleets of devices, while
ensuring robust, defensible, and verifiable privacy safeguards.
We focus on federated analytics (statistics and monitoring), in
contrast to systems for Federated Learning (ML workloads),
and we flag the key differences.

1 Introduction

The scale of distributed systems that allow users to transact
and interact have grown massively over the past two decades,
prompted by the widespread availability of powerful mo-
bile devices: primarily, smartphones, but also tablets, smart
watches, and other wearables. These systems are typically
mediated by a centralized organization, such as Google, Ap-
ple, Meta, Bytedance, or other players broadly in the “high
tech” arena. Providing a positive user experience in such sys-
tems relies on their operators monitoring a variety of metrics,
and gathering data to inform ML workflows such as recom-
mender systems. Consequently, it is necessary to instrument
the system for data collection and analysis of user activities
and preferences. We refer to this process as analytics.

Increasingly, there are strong motivations to ensure high
levels of privacy for analytics. Internally, companies recog-
nize the high expectations of users that their data will be used

responsibly, and will be protected from threats. Externally, a
range of laws and regulations govern how organizations must
manage data safely, including GDPR1, ePD2, and CCPA3.
These mean that analytics systems must have strong protec-
tions on how user data is stored and processed. Meanwhile,
we design the system to operate effectively, so that monitoring
queries can be evaluated accurately and unobtrusively.

In response to these needs, the model of federated compu-
tation, and specifically federated analytics (FA), has recently
risen to prominence [5]. This model embodies the notion
that data gathered by client devices should remain on those
devices, and only minimal summary information should be
sent from devices to a server, which can compute and release
aggregate results. Beyond this data minimization paradigm,
additional protections can be instantiated, to ensure: deiden-
tification (the identity of the client is dissociated from the
messages they send); security (data is encrypted to prevent
it being observed by unauthorised parties while in transit or
at rest); and privacy (the results of a query do not disclose
information about any individual participant).

Putting this philosophy into practice requires significant
levels of systems and algorithm engineering. Careful design
choices are needed to ensure that components can cope with
the scale of millions to billions of active participants. Compo-
nents must interact reliably, so that the security and privacy
guarantees compose constructively, and do not allow leakage
or expose vulnerabilities. The system must also be flexible
enough to allow complex queries to be evaluated over subsets
of users, whose ongoing active participation is not guaranteed.

1.1 Our Contributions
Variations of federated analytics technology are utilized
across the industry, such as by Google for identifying popular
items and producing geographic heatmaps [2, 19, 45] and by
Apple for autocorrect and user experience purposes [1, 38].

1https://gdpr-info.eu/
2https://www.edps.europa.eu/data-protection/our-work/
3https://oag.ca.gov/privacy/ccpa

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 883

https://gdpr-info.eu/
https://www.edps.europa.eu/data-protection/our-work/
https://oag.ca.gov/privacy/ccpa

However, the first generation of FA systems faced challenges
that tend to limit their wider applicability. Some systems suf-
fer from low accuracy due to overly restrictive models of
privacy, making them less reliable for deriving valuable in-
sights. Others lack the flexibility that analysts need to obtain
the information necessary for making data-driven decisions.
Moreover, several early FA solutions do not scale effectively,
preventing them from reaching many millions of devices.

In this paper, we present the Federated Analytics stack at
Meta that integrates privacy, scale, and practicality in a cohe-
sive architecture. The FA stack enables efficient computation
across three zones: (1) Device, (2) Trusted Environment, and
(3) Untrusted Orchestrator. We first provide an overview of
the challenges and then our approach to solve them.

Practicality and Accessibility to Analysts. Previous FA sys-
tems have struggled with limited expressivity, slow query
deployment (time from query creation to result), and requir-
ing deep expertise in federated paradigms—barriers to wider
adoption. Our approach addresses these challenges as follows:

• Expressive and Flexible Computational Model. We
provide a powerful yet intuitive model combining local
(device-level) data transformations with a minimal set of
private cross-device aggregation primitives. Analysts can
configure federated computations using familiar SQL
queries to define local operations, select cross-device ag-
gregation methods, and specify privacy parameters. This
balance of expressivity and simplicity meets most analyt-
ical needs without requiring deep technical knowledge.
See section 3.2.

• Ad-Hoc Query Support and Fast Iteration. A rapid it-
eration cycle is crucial for an effective analytics platform.
With active query management, periodic device synchro-
nization with the server, and batched computations, our
system allows analysts to go from query creation to re-
sults within a day. This quick turnaround facilitates agile
data exploration and decision-making.

Scalability and Resource Consumption. Our system must
tackle two aspects: (1) device population—the total number of
devices answering a query, which can vary from thousands to
billions, and (2) query volume—the number of active queries
within the FA system. Additionally, the processing must be
stateful, fault tolerant, and mindful of resource usage on con-
strained devices. See Sections 3.6 and 3.7.

• One-shot Algorithms. Unlike Federated Learning, the
system is optimized for only one or a very few (constant)
rounds of data collection. We express these algorithms
with a flexible primitive, namely Secure Sum and thresh-
olding. Furthermore the algorithms are robust to devices
dropping out or being unavailable. They also avoid any
inter-device dependence, and require that client informa-
tion can be encapsulated in a single message. We give a
discussion of FA algorithms for quantiles in Appendix A.

• Batch Processing. To reduce resource use, PAPAYA
batches computations on each device. Each device re-
trieves all relevant queries, executes them and makes
one report back, effectively amortising the cost across
metrics. See Section 3.6

• Predictable Query Load. We randomize the sync and
reporting schedules of individual devices to distribute
data submission over a defined period, controlled by
a system parameter, ensuring a manageable and pre-
dictable Query Per Second (QPS) to the TEEs. This
is in Section 5.1

It’s important to highlight that one-shot algorithms with
batched processing were critical to minimise the computa-
tional and communication cost on resource constrained de-
vices and maximise inclusion of all device types.

Privacy and Security (Section 4). Federated systems inher-
ently offer a baseline of privacy through data minimization,
i.e., keeping raw user data on the device, but our stack aims to
provide a higher privacy standard through well-defined mathe-
matical guarantees. Given the diversity of differential privacy
models, varying trust levels among actors, and evolving data
analysis needs, privacy management becomes complex. We
address this by centering privacy guarantees around the user’s
device. Each user’s device takes responsibility to ensure that
their data is handled properly during its processing and the
outputs meet the expected privacy standard.

• Simple Data Handling Off-device. TEEs provide a
secure environment where the device can verify the be-
haviour; i.e., how data is handled. We have explicitly de-
signed the TEE code to be simple and use-case agnostic,
to ensure a reliable, verifiable, and auditable implemen-
tation. Concretely, the only role of this environment is to
perform Secure Sum across devices, threshold and apply
differentially private noise. With SQL data transforma-
tion on device and post processing of the anonymized
aggregate on untrusted servers we show that this Secure
Sum and threshold functionality is sufficient to support
a broadly applicable analytics platform.

• Device Autonomy and Control. Each device indepen-
dently decides which queries to execute and when. It
ensures, via remote attestation, that data processing is
conducted off-device on a trusted TEE, running authen-
ticated code. This mechanism guarantees that user data
is only processed under secure and verified conditions

• Support for Different Privacy Modes. Different pri-
vacy models, such as local and distributed differential
privacy, offer varying trade-offs between privacy and
utility. Recognizing there is no one-size-fits-all solution,
our stack supports both. For each query, the analyst can
choose between on-device or TEE-based noise addition

884 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and configure privacy parameters accordingly. Devices
validate these parameters before accepting a query, en-
suring that only those queries meeting the user-defined
privacy standards are processed.

Production-Grade System and Evaluation (Section 5).
Building on standard concepts in Federated Analytics, we
developed a cohesive architecture that addresses the limita-
tions discussed above, with a focus on resource efficiency and
fault tolerance (Section 3.7). We successfully implemented
this architecture at production scale. Beyond system design,
we present empirical results from real-world experiments in-
volving a population of nearly 100 million Android devices.
These experiments carefully ensure system and data hetero-
geneity, measuring key performance metrics such as the time
required to iterate over devices and data, and the effects of
variables like time of day and device usage patterns. The large-
scale experiments demonstrate the system’s ability to handle
challenges such as unpredictable device availability, diverse
network conditions, and maintaining a predictable Query Per
Second (QPS) rate to the TEEs. To the best of our knowl-
edge, this is the first large-scale evaluation of a production FA
system of this magnitude.

Similarities and Differences with Federated Learning.
Both FA and FL instantiate the federated model of computa-
tion to protect client data. However, they differ significantly in
their workloads, each posing distinct challenges to the system.
Thus our FA system has fundamental differences in protocol,
execution, scalability and hence is implemented separately.
Specifically, FL systems are optimized for ML model train-
ing, which entails a fairly homogeneous set of tasks around
sending a (large) model to clients, and obtaining (large) up-
dates back from clients in the form of gradient updates. This
process is repeated many times across small batches of clients
(hundreds to thousands). By contrast, the FA system is meant
for general purpose analytics on all device types. It optimizes
for computations with fewer rounds of interaction, smaller
messages from client to server, and participation from more
clients (as many as billions). While we can use the FA system
to run FL workloads, it would not be a good fit, and vice-versa.

Example use-cases. The system is used for a range of ap-
plications in production. Some indicative scenarios include:
counting daily and monthly active users of different products,
while ensuring that duplicates are not counted repeatedly [24];
identifying popular content (heavy hitters) within different ge-
ographic regions; producing heatmaps of density of activity at
differing levels of granularity [2]; tracking the tail of response
time distributions to ensure that SLAs are met and to raise
warnings (see Appendix A); efficient collection of quality
statistics (means, counts and variances) on system health met-
rics that impact user experience [11]; gathering accuracy and
calibration metrics on the performance of deployed federated
learning systems; populating dashboards for adoption of new
features in applications; and reporting results of federated

experiments (A/B testing) on different user interface designs.

2 Background: Secure Computation in TEEs

No matter the approach, federated analytics requires client
devices to report some information about their data. Therefore,
in order to provide robust security and privacy guarantees,
it is necessary to rely on secure computation. The goal of
secure computation is to evaluate functions on distributed
inputs while disclosing only the result of the computation and
revealing as little information about the inputs as possible.
There are two feasible approaches for secure computation
that are resilient against a curious or adversarial server and
which are suited for a federated workload: secure multiparty
computation (MPC) [13] and trusted execution environments
(TEEs) [36]. While fully homomorphic encryption (FHE) is
often suggested as a third alternative, existing FHE techniques
are not flexible or performant enough to operate at scale.

MPC involves the use of techniques like secret sharing to
instantiate partially homomorphic encryption across multiple
co-operating servers [7]. Meanwhile, TEEs rely on hardware
security to ensure that the TEE operates as described and
does not leak any information to an external observer. TEEs
provide several features for establishing trust that a unit of
code has been executed faithfully and privately:

• Confidentiality: The state of the code’s execution re-
mains secret, unless it explicitly publishes a message.

• Integrity: The code’s execution cannot be affected by
any party, except by the code explicitly receiving a legal
input.

• Measurement/Attestation: The TEE can prove to a
remote party what code (binary) is executing and what its
starting state was, ensuring confidentiality and integrity.

Our focus in this paper is on the trust that clients place on
the FA system, and in ensuring that raw information does not
leak to the analyst or other clients or even the orchestrator.
We therefore focus on the security and privacy attached to
client messages, and providing verification back to clients
that their data is handled correctly. Handling clients who try
to subvert the protocol by manipulating their responses to
“poison” the results is not in scope for this work—separate
mitigations are in place to ensure that clients are only running
authorized binaries. TEEs enable us to derive anonymized,
aggregated insights from distributed datasets while protecting
the data of individual clients. Via attestation, clients obtain
proof of confidentiality and integrity before data ever leaves
their devices.
Enforcing Security through Remote Attestation. In our
deployment, we use Intel SGX hardware to provide TEE func-
tionality in the form of secure enclaves, similar to the Papaya
FL system and others [18, 27, 38]. One needs to be mindful

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 885

about the possible attacks on SGX and apply appropriate mit-
igations [20]. With client attestation and hosting on public
cloud one can limit the attack vectors. While TEEs provide
confidentiality and integrity guarantees, these guarantees are
valuable only if a client device can obtain proof that it is send-
ing its data to a valid TEE running a known, trusted binary
before the data leaves the device. It is possible to do this by
using remote attestation as follows:

1. Before protocol execution, the TEE code is made avail-
able for audit along with the hash of the trusted binary.
Ideally, the code is fully open-sourced to allow public
scrutiny.

2. The TEE generates an attestation quote (AQ). This quote
is used to cryptographically verify the initial state of the
TEE, the hash of the binary running inside the TEE,
the hash of public parameters used to initialize the TEE
at runtime, and a Diffie-Hellman (DH) key exchange
context used to establish a shared secret with the TEE.
Under standard operating assumptions, it is not feasible
to forge an AQ.

3. Upon receiving an AQ the client checks (a) the hash
of the running trusted binary is the same as the one
published with source code, (b) the public parameters
used to initialize the TEE at runtime are valid, and (c)
the DH key exchange context was actually generated
by the TEE. The client aborts if any of these conditions
can’t be verified.

4. The client uses the DH key exchange context to estab-
lish a shared secret with the TEE, and sends its data
encrypted.

Via this protocol, each client ensures it is talking to a legiti-
mate TEE running trusted code with acceptable parameters.

3 System Design

Within a global-scale distributed system, we identify multiple
types of participating entities. The system is operated for the
benefit of many users (ranging in scale from millions to bil-
lions). Each user makes use of client devices (clients for short)
to interact with the system. Each user can operate multiple
devices, and one device can be shared among multiple users
(switching between accounts). For simplicity, we focus on the
case where each user uses a primary client device to access
the system. The client devices communicate with a number
of system servers which deliver the service on behalf of the
system operator. Again, we simplify this to focus on client
device interactions with a single device-facing server, which
in turn will interact with various backend servers on the op-
erator side. In order to offer additional privacy guarantees,
the system engages additional trusted aggregators outside the

direct control of the system operator to perform aggregation
of client messages. These may be sourced from, e.g., a cloud
service provider. Within this setting, trusted analysts seek to
find the answer to various queries about client performance,
such as measuring client latency and user engagement with
new features. We seek a solution where client devices re-
tain control over data generated by user actions, sharing only
the minimum information necessary to support monitoring
queries. This paradigm is federated analytics, a.k.a. FA [5].

The PAPAYA FA system (Figure 1) comprises three appli-
cations: an end-user application that runs on client devices, a
TEE-based trusted secure aggregator that can run on a system
server or a cloud server, and a server application that runs on
a data center server and orchestrates the complete protocol.

3.1 System Overview
We introduce the major components of the federated system.
We describe how an analyst can derive aggregated insights
from a distributed dataset in a secure, privacy-preserving way:

1. The analyst authors a federated query. This has two
parts: a SQL-like query that runs on user devices and
specifies what data should be uploaded to the server for
aggregation; and a server specification that describes
how it should aggregate client data and which privacy
techniques to use.

2. The analyst publishes the federated query to the un-
trusted orchestrating server (UO), which allocates re-
sources for aggregation and makes the query visible to
user devices.

3. The client runtime on each user device downloads the
federated query spec and retrieves/transforms the rele-
vant data from the on-device data store (see Section 3.4).

4. The client runtime uses a secure channel to upload data
to the trusted secure aggregator (TSA) running in a TEE.

5. The TSA uses the federated query spec to aggregate the
data across user devices before releasing an anonymized,
aggregated result to the orchestrating server.

6. The UO uploads the anonymized, aggregated result to a
database for consumption by the analyst.

We now present each of the above components in more detail.

3.2 Federated Query
First, we introduce some terminology: Dimensions are dis-
crete data attributes representing “group by” columns, in the
sense that a federated query will group by the specified dimen-
sions before aggregating within each unique set of dimension
values. For example, if a query includes city as a dimen-
sion, then data points with city="Paris" will be aggregated
separately from data points with city="New York". Metrics

886 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Clients

Metric
Config

Forwarder Trusted

Aggregator

Coordinator Job Config

Results

Aggregator

Analyst

CLI ENT RUNTI ME PERSI STENCE STORAGETEE ORCHESTRATI NG SERVER

Metric
Config

quer y

Figure 1: Overall system architecture

are quantitative measurements aggregated across clients after
grouping by the dimensions of interest, e.g., total time spent
on an app across all users.
For example, suppose an analyst wants to compute average
time spent by city and by day of the week. The query is split
into two parts:

1. Data transformation on device. This is typically defined
by a SQL query which runs on the client device. In our
example, this local query would retrieve all relevant data
on device, group by the dimensions city and day, and
then sum the total time spent for each city-day pair.

2. Private aggregation across devices. This defines how to
aggregate the reports from different devices under the
chosen privacy-preserving regime. In our example, this
will tell the trusted secure aggregator to take the average
timeSpent across devices for each city-day pair, and to
apply privacy perturbations before publishing the result.

The schemata of on-device tables are present on server and
accessible to analysts. The analyst can configure their query
such as in Figure 2. The query result is a table in the data
center with one column for each dimension and one column
for the metric. In our example, there would be columns for
city, day, and mean timeSpent. Each row would contain a
unique city-day pair and the average time spent associated
with that pair.

With the above framing, the most common analytical
queries can be realized with only a handful of secure aggrega-
tion protocols—such as COUNT, SUM, MEAN, and QUANTILE—in
combination with on-device local transformation and down-
stream post-processing to capture use case-specific needs.

3.3 Untrusted Orchestrating Server
Once the analyst has defined their federated query, it is handed
off to the untrusted orchestrating server (UO) to begin execu-
tion. The UO has the following responsibilities:

• Provide centralized coordination to ensure queries
progress with enough clients active in the face of hard-
ware failures;

query:
onDeviceQuery: "SELECT ...", // SQL to run on device
dimensionCols: ["city", "day"] // grouping columns
metricCols: // aggregations (e.g., count, mean, ...)

mean: ["timeSpent"]
privacy:

centralDP:
epsilon: ...

kAnonThreshold: ...
output: ... // where to persist the anonymized result

Figure 2: Example configuration for federated query

• Send active federated queries to clients;

• Facilitate communication between clients and TSAs; and

• Publish query results to persistent storage.

The UO has several sub-components:

• A fleet of aggregators. Each federated query is assigned
to a single aggregator at a time. The assigned aggre-
gator is responsible for allocating a TSA for the query,
requesting periodic results from the TSA, publishing
query results to persistent storage and reporting query
progress. Each aggregator may be responsible for multi-
ple queries.

• A central coordinator, which monitors the state of each
federated query, assigns each query to an aggregator and
builds the list of active queries to broadcast to clients.

• A forwarder layer, which handles incoming client re-
quests and forwards them to the relevant backend com-
ponents.

After a federated query is registered with the UO, it be-
comes visible to clients, which retrieve query instructions
from the forwarder layer using the client runtime.

3.4 Client Runtime
The client application runs on end-user devices and so needs
to be lean, performant and also mindful of the resources con-
sumed by the process. The client runtime (Figure 3) provides:

• A local store that securely persists data on the device. It
manages data lifetime and scope, and provides the ability
to run simple analytic functions over the data.

• An engine to execute the client protocol, described be-
low.

• A scheduler to monitor the resources consumed and
invoke the engine if the device is idle and cumulative re-
sources consumed by the runtime are below a set thresh-
old.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 887

Local Store

Worker

Engine

Hardcoded

Privacy

Guardrails
Scheduler

Resource

Monitor

sql i t e

Connector

Server

Log API

Figure 3: Core components of the Client runtime

The client protocol is split into selection and execution phases:
Selection Phase. Each client periodically fetches the list of
active federated queries by polling the UO (subject to a self-
enforced daily limit on total resources consumed). Each query
configuration in the list has the instructions the client needs
to execute locally for each query. Each query configuration
may also contain extra information the client uses to decide
whether or not it can execute the query. For example, it may
include privacy-related parameters to be used for aggregation
on the server side, and the client can reject a query if these
parameters do not meet locally enforced guardrails (e.g., by
capping the number of queries per day, or barring access to
certain features). The query configuration could also include
a client subsampling rate, where the client uses its own ran-
domness to reject the query with some probability; this can be
leveraged to establish stronger privacy guarantees [38]. Last,
the client inspects its local state to see if it has any new data
to report for each query. After these steps, the client has a list
of queries to execute.
Execution Phase. The goal of the execution phase is for the
client to calculate the required outputs for each query from the
selection phase, then share the outputs with the TSA assigned
to each query. The client splits the set of queries into batches.
For each task in a batch, the client retrieves and transforms the
relevant data; validates the TSA and establishes an encrypted
channel via remote attestation; then encrypts its data and
sends the encrypted reports to the server, which forwards
them to the target TSAs.

3.5 Trusted Secure Aggregator
The TSA is the component of our system that handles the
concrete aggregation logic to combine data from different
clients. One TSA corresponds to one federated query, though
there can be multiple independent TSA instances on the same
physical host. The TSA runs inside a TEE and uses remote
attestation to establish trust and shared secrets with clients.
Clients encrypt their data before sending it to the TSA, so it
is the only component of our backend that sees plaintext data

from individual client reports. Once enough time has passed
and enough client devices have reported, the TSA releases an
aggregated anonymized result to the UO.
Secure Sum and Thresholding (SST). Many analytical
queries can be realized with only a handful of private aggrega-
tion protocols such as COUNT, SUM, MEAN and QUANTILE (Sec-
tion 3.2). To further streamline this, our system implements
each aggregation primitive via private sparse histograms.
Here, histogram refers to taking a set of key-value pairs from
distributed client devices and outputting a map from keys (or
“buckets”) to two quantities: the sum of values for the key
across all clients with that key, and the count of clients that re-
ported a value for the key. Histograms are one of the most used
queries within FA, and many FA queries rely on histograms
as a building block, including prefix queries, range queries,
heavy hitters, and quantiles. Specifically, these queries use
histograms over data with different bucket granularities to
build a picture of the data distribution. Histograms allow us to
address privacy and scalability with a single aggregation prim-
itive. The TSA running in a TEE allows us to build histograms
while maintaining strong privacy and security guarantees via
a Secure Sum and thresholding (SST) process (Figure 4). This
process, which can run from minutes to days, goes as follows:

1. At the start of federated query execution, a TSA is ini-
tialized with an empty histogram.

2. Each client validates the TSA and shares encrypted key-
value pairs (essentially a “mini” histogram) with the
TSA if validation succeeds, using remote attestation
(Section 2).

3. The TSA decrypts each client’s key-value pairs and im-
mediately aggregates them into the histogram before
discarding the individual client data.

4. Once enough clients have reported and enough time has
passed (see Section 5.1), the TSA anonymizes the his-
togram by applying privacy noise to both the sum value
and client count value for each bucket. It filters out any
buckets with a noisy client count below a threshold spec-
ified by the analyst—i.e., if too few clients report a value
for some bucket, that bucket will not be released from
the TSA (see Section 4.2).

5. The anonymized histogram is released to the UO.

3.6 Handling Scale
For scalability, we employ strategies that address both the
volume of devices and the number of queries, while enabling
random and unbiased device sampling.
Single-Query Scalability. Employing one-shot algorithms
built on Secure Sum and thresholding, each device submits
data only once per query, reducing traffic and processing load.
To mitigate the “thundering herd” problem, where multiple

888 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Anonymous
Channel

Clients
(User Devices)

Forwarder

Encrypted

Reports

Trusted Secure Aggregator

1 Decrypt & Aggregate

COUNT SUM
bucket versus

num of devices

bucket versus

aggregate value

2 Anonymization Filter

Periodic release after anonymization

f i r st 1

second 2

t hi r d 3

f or t h 4

.

.

.

Result Snapshot

dimension value

Figure 4: Secure Sum and Thresholding (SST)

devices attempt to connect simultaneously, we randomize the
reporting schedules of individual clients. This distributes the
data submission over a defined period, controlled by a system
parameter, ensuring a manageable and predictable QPS to the
TEEs (see Section 5 and Figure 6). The server immediately
aggregates incoming reports, using memory proportional to
the histogram’s dimensions and simplifying the processing in-
volved. Our experiments show a single server is sufficient for
one query, but this can be expanded to a tree-level aggregation
scheme to distribute the workload.
Multi-Query Scalability. To handle multiple queries, our
system batches computations on each device and shards by
query on the server. Devices receive all relevant metrics at
once, execute their computations, and report back collectively.
This setup amortizes process initiation costs and server com-
munication, scaling with query volume.

3.7 Handling Failures
There are multiple potential failure modes, which we classify
into two clusters: faulty clients, and faulty servers. For sim-
plicity, we consider faulty connections and clients together,
since clients often have unreliable connections that are sub-
ject to interruptions. To circumvent this, we break the device
work into batches of size ∼ 10. This size was empirically
determined and can be fine tuned on the respective platform
to make sure interruptions are infrequent. If interruptions do
happen, we retry during the next period. The client compu-
tation is idempotent and will occur again until a successful
acknowledgement (ACK) for that metric has been received
from the server.

This leaves failures that occur on the server side, especially
the aggregator and TSA, as they are stateful. Each aggregator-
TSA pair stores periodic snapshots of query progress (every
few minutes) that would allow a different aggregator-TSA pair
to recover intermediate results and resume query execution
in case of failure. The coordinator component of the UO
can detect fatal query execution errors and will reassign and
restart a query on a new aggregator when this occurs. If the

coordinator itself fails, a new coordinator instance is started,
recovering the previous state from persistent storage.

An important issue here is the privacy of the intermediate
aggregation state with partial query results. If the partial re-
sults meet the privacy requirements as defined in the query,
they can be released and stored in plaintext. Alternatively, the
intermediate results can be stored in an encrypted form that
is only accessible by another TEE running the same binary
as the TEE that generated the results. This is achieved by
maintaining a separate group of TEEs responsible for gener-
ating, storing and replicating encryption keys. Maintaining
robust privacy guarantees is possible with careful bookkeep-
ing and replication logic [28]. Encrypted aggregation state
becomes unrecoverable when the associated encryption key is
lost, which occurs if and only if a majority of the TEEs with
that key fail. This is not a significant obstacle in practice. Be-
cause we replicate encryption keys rather than actual data, it
is relatively inexpensive to increase the number of replication
nodes. As intermediate aggregation state is cumulative, we
only need the latest encrypted data. Increasing the frequency
of encrypted snapshot generation further reduces the impact
of data loss.

A final consideration for the robustness comes from the
federated algorithms themselves. In Appendix A, we require
that the algorithms do not need participation from all clients,
expecting that drop outs will occur as a matter of course.
Additionally, if a client is malicious and tries to ‘poison’ its
output the effects are negligible due to (1) its contribution is
bounded per report on the TEE prior to aggregation, (2) the
typical large scale of operation.

4 Privacy and Security

Secure Aggregation provides a baseline of data protection by
insisting that clients do not share raw information, and only
aggregated statistics are revealed. We now discuss how data
is further protected as it is handled by the FA stack via authen-
tication, access control, and explicit privacy noise addition.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 889

4.1 Secure Data Handling
Storage. Our FA system protects data at rest by design by
storing the data on the user’s device. The device application
manages data scope and lifetime, with encryption and access
controls applied to protect data from potential adversaries.
Data retention time is configurable with max lifetime (typi-
cally 30 days) hard-coded in the application as a guardrail.
Communication. Protecting data during transit is a well-
studied problem, and we rely on the standard Transport Layer
Security (TLS) protocol to secure network communications.
To further minimize leakage of data, communications happen
via anonymous authenticated channels, making use of the
Anonymous Credentials Service (ACS) library [26, 44]. Thus,
the platform is unaware of the identity of the client.
Processing. Secure processing is nuanced due to intricate
interactions. Each user’s device takes responsibility to ensure
that their data is handled properly during its processing. All
data from one user is either handled on their device or in an
environment where their device can verify the data handling.

Device control over computation. A first component of pri-
vacy is admission control. Each device determines which
computations to run and when, based on eligibility criteria
like previous FA participation, geographic region, hardware
type, software version, user features, available data, privacy
guardrails, and local randomness. In this way, client devices
have total control over their participation in the FA process.

Validation before sharing. Because additional data process-
ing occurs on the TSA server, it is not sufficient that the device
controls its own computation. The device must also ensure
that the server will handle its data properly and privately. In
order for the device to make a fully informed decision about
whether to provide data without trusting the UO, the device
can use remote attestation as described in Section 2. With this
protocol, before sharing any data, the client validates that its
data will be processed by a legitimate TEE running a known
binary. We have explicitly designed the TEE code to be sim-
ple and use case-agnostic, ensuring a reliable, verifiable, and
auditable implementation. Thus, prior to any communication,
clients obtain proof that their data will be handled as expected.

4.2 Private Handling of Outputs
The previous section discussed how the system provides pro-
tections for the data while it is processed in order to compute
aggregate statistics. However, aggregating statistics alone is
not necessarily sufficient to preserve a strong notion of pri-
vacy, as some statistics can still inform on the state of the
client. We enforce additional measures in order to meet the
higher bar of differential privacy.

Definition 1 ([17]) Approximate differential privacy (DP)
is parameterized by (ε,δ) and requires that we define a
randomized mechanism M such that, for pairs of inputs X,

X ′ that are neighboring (differing in the presence of a sin-
gle piece of information) and for any possible output set O,
Pr[M(X) ∈ O]≤ exp(ε)Pr[M(X ′) ∈ O]+δ.

Many randomized DP mechanisms have been defined for
different applications; here, we focus on obtaining privacy
for a histogram of values, where adding zero-mean Gaussian
noise to each count gives (ε,δ)-DP [17].

After adding noise, we apply k-anonymity, where any
counts below k are removed from reports. While k-anonymity
on its own has been deprecated as a formal privacy tool, this
additional step provides an intuitive notion of privacy to our
histograms for both users and decision makers—in contrast
with the formal DP guarantee, which requires some statisti-
cal sophistication to appreciate. Moreover, when histogram
dimensions are not known a priori, this thresholding step is
critical to the DP guarantee [43].

We briefly show DP models which vary in how the notion
of neighboring inputs is defined and at what granularity the
definition is enforced: centrally or by each client individually.
Central DP at the Enclave. Applying DP via the central
aggregator (TEE) is the most straightforward way to obtain
DP. The TEE can compute the exact histogram, in the form
of a SUM or COUNT aggregation, then add noise to each value
in the bucket of the histogram to achieve differential privacy.
Local DP. Local differential privacy takes the standard DP
definition, but applies it to every message from every device.
For COUNT-queries we can represent the user’s input as a 1-hot
vector and randomly flip the bits, or pick a value to report
from an appropriate probability distribution. The enclave or
server aggregates the reports from all devices, and performs a
statistical de-biasing step to obtain the estimated histogram.
Distributed Privacy Noise. In the distributed DP model, each
client adds a small amount of noise, so that after aggregation
the noise is sufficient to give the desired DP guarantee. Each
client builds a “mini histogram” with the full set of buckets,
records its values, and draws random noise to add. The noisy
mini histograms are sent to the TSA, which sums them and
checks that enough have been received to achieve the central
noise requirements. It then performs k-anonymity enforce-
ment and releases the final result. We use the “sample-and-
threshold” approach to distributed noise addition, where the
uncertainty is introduced due to client randomly deciding
whether or not to participate in the data collection [5].
Periodic Data Release. An important consideration in
anonymizing the histogram is when results should be released.
Client devices have intermittent connectivity and availability;
there can be a delay on the order of days before enough partic-
ipate in FA query to report results with confidence. This poses
a challenge to our system, as analysts want results as soon
as possible. We balance the desire to give up-to-date results
against the privacy cost of making multiple disclosures. The
TSA sends partial results to the orchestrating server every few
hours. To uphold the privacy guarantee, we limit the num-

890 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 25 50 75 100
Requests per Device

Fr
ac

tio
n

(a) Daily values stored per device

0 200 400
Round-Trip Time (ms)

Fr
ac

tio
n

(b) Round Trip Times (RTT)

Figure 5: Heterogeneity of data: (a) number of sampled re-
quests per device, (b) round-trip times

ber of times the TEE releases partial results. The overall DP
privacy parameters (ε,δ) set by the query configuration are
budgeted across all releases, using “composition” results [17].

5 Empirical Study

We perform our experimental study using queries in our pro-
duction deployment of the PAPAYA FA stack. Queries are
issued on various system health metrics to ensure smooth
running of different systems. Here, we focus on queries of
network activity: round trip times (RTT) per network request
and request volume. These queries give insights into system
and device heterogeneity. They are used to track system per-
formance and are an important canary for regression issues.

Formally, each device i records a set of ni round trip times
xi1, . . . ,xini , which are aggregated on-device into a local RTT
histogram ui = (ui1, . . . ,uiB), where uik denotes the number of
RTT values from device i assigned to bucket k. We compute
a federated histogram v = ∑i ui, making use of the trusted
secure aggregator (TSA, Section 3.5). To objectively measure
performance, the data points xi j are also stored in a central
database (for evaluation purposes only), from which we com-
pute a ground-truth histogram w = (w1, . . . ,wB), where wk
denotes the total number of data points in bucket k across all
devices. For the device activity histogram, each device has
a single data point of interest, ni (as defined above). So the
local histogram produced is a one-hot vector ui ∈ {0,1}B, i.e.,
ui[j] = 1 encodes ni is in bucket j out of B. The rest of the
federated histogram collection proceeds as in the RTT case.

Each device has a periodic job to poll the server, compute
the local histogram ui, and report to the TSA. This job has a
10-second timeout, runs in the background, and is run at most
twice per day to minimize the burden placed on client devices.
Each device also adds individual randomness on when to
initiate reporting, to smooth out traffic load.

Queries run on a population of nearly 100 million Android
phones that report the relevant data to Intel SGX devices op-
erated by a secure cloud service provider, under the guidance
of the UO. Data are gathered at both daily and hourly gran-
ularities. The number of data points in the hourly reports is
proportionately lower than in daily reports.

Figure 5 shows the distribution of device data, highlighting
two different aspects of heterogeneity. Figure 5a shows that

0 24 48 72 96
Time (hours)

0%

20%

40%

60%

80%

100%

Co
ve

ra
ge

Launch Offset
Offset 0 hours
Offset 6 hours
Offset 12 hours

(a) Three query runs

0 24 48 72 96
Time (hours)

0%

20%

40%

60%

80%

100%

Co
ve

ra
ge

RTT
0-30 ms
30-50 ms
50-100 ms
100+ ms

(b) Coverage by RTT

Figure 6: Coverage of the device population over time: (a) for
different query execution times, (b) by device latency

usage patterns differ widely across devices, leading to varying
dataset sizes on each device. While the most common case is
for clients to have just a single sampled value to report, it is
not unusual for them to have tens, with a few having in excess
of 100 values to report. Figure 5b shows the differences in
network RTT. The mode is around 50 ms RTT, but the dis-
tribution stretches out to half a second or more. This reflects
variation in device resources and capabilities.

5.1 Collection Speed and Scalability

To begin, we evaluate how long it takes for a task to reach all
devices and iterate over the data in its entirety. It is important
to note that in practice a random sample of a fraction of the
devices or data is considered sufficient to answer most metrics.
However, in order to build a thorough understanding of our
system, we evaluate the time needed to access all data and
devices. We measure wall-clock time from the launch of the
query and compute coverage, the number of data points pro-
cessed by the FA task divided by the number of ground-truth
points in the database. There are many variables that can im-
pact the collection speed, including time of day (device usage
and connectivity patterns vary throughout the day), job re-
strictions (configuration indicating when a device should not
report, based on conditions like network metering, battery sta-
tus, cumulative quotas, etc.), and other device characteristics
(e.g., capabilities, frequency of use, connection quality).

Figure 6 shows how quickly our system accesses the popu-
lation over different query executions. These queries request
the round trip time (RTT) values from devices. Figure 6a
shows three executions of the same query launched at six-hour
intervals. Encouragingly, results are not much influenced by
time of day, and so are similar across all runs.

In fact, the behavior we see in Figure 6 is most strongly
influenced by our choice of system parameters: We observe a
linear growth in coverage up to around 85% over the initial 16
hours after issuing the query. This reflects that clients check
into the server at random, with a uniform delay of 14-16
hours. Coupled with random offsets, this means that active

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 891

0 24 48 72 96
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

To
ta

l V
ar

ia
tio

n
Di

st
an

ce Launch Offset
Offset 0 hours
Offset 6 hours
Offset 12 hours

(a) TVD: different offsets

0 24 48 72 96
Time (hours)

0.00

0.01

0.02

0.03

0.04

0.05

To
ta

l V
ar

ia
tio

n
Di

st
an

ce Time Window
1 day
1 hour

(b) TVD: Different queries

Figure 7: Accuracy over time: (a) for different query execution times, (b) for two different queries

client reports are spread uniformly through the initial 16 hour
period after the query is issued. This accounts for a majority
of clients. The remaining 15% of less active clients check in
more gradually, hitting 90% in 24 hours and reaching over
96% coverage after 96 hours, i.e., 4 days from when the query
is issued. We should not expect to attain 100% coverage, as
a small minority of devices may go fully offline, have local
storage reset, or otherwise be unable to report in. For faster
collection, we could narrow the check-in window from 16
hours to a lower value. This would speed up the time to reach
85% coverage, but we expect that the “long tail” of less active
clients would still require up to a week to check in, due to
their sporadic availability.

Figure 6b tests whether the speed of coverage is corre-
lated with network connection quality, by measuring cover-
age from a single query based on subsets of the histogram
corresponding to different ranges of RTT values. The correla-
tions observed are very small, with the coverage rate for low
and high latencies following remarkably similar curves. On
close inspection, there is a small effect: low latencies have
higher coverage than high latencies. This is easiest to see at
16 hours—as time passes, this gap shrinks further.

Through our experiments, we observed that the majority
of resource consumption on devices is driven by process
initiation and communication with the server, while the actual
computation of metrics is comparatively insignificant. This
aligns with our hypothesis and design, as unlike Federated
Learning, we only execute lightweight SQL queries on the
device. Our batched processing setup effectively amortizes
these initiation and communication costs, enabling the system
to handle many concurrent queries (around 100) efficiently.

5.2 Analysis of Accuracy
Next we evaluate the accuracy of a metric computed in the
federated setting against the same metric computed from the
ground-truth dataset. As explained in Section 3.2, all metrics
can be computed through data manipulation on the device
followed by a handful of aggregation primitives. Since each

aggregation primitive is built via the histogram operator using
the Secure Sum and Threshold primitive (Section 3.5), mea-
suring the accuracy of a histogram can be used as a proxy for
measuring accuracy of any standard metric.

Letting nv = ∑k vk denote the number of data points in
the histogram v, the normalized histogram v̄ = 1

nv
v reflects

the relative frequencies per bucket. To plot error between
federated histogram v and the ground-truth w, we use total
variation distance (TVD) between their normalized versions,

dTV(v̄, w̄) = 1
2∥v̄− w̄∥1 = maxS⊆{1,...,B} |∑k∈S(v̄k − w̄k)| .

This straightforward measurement of error reflects the bucket-
wise absolute differences between the frequencies observed
in v̄ vs. w̄ for any subset of histogram buckets.

Figure 7 shows the total variation distance across several
queries as a function of the time since query launch. In Fig-
ure 7a, histograms of round trip time (RTT) are created with
B= 51 buckets: 0-10 ms, 10-20 ms, . . . , 490-500 ms, 500+ ms.
These are created with the same time offsets as in Figure 6. In
Figure 7b, histograms of device request counts are created at
the daily and hourly grain, using B = 50 and B = 15 buckets
(respectively), corresponding to sampled counts of 1, 2, . . . ,
B−1, B+. In both cases, we see that it is possible to achieve
a very accurate representation: the final TVD is negligible,
meaning that the distribution obtained via federated reporting
is nearly identical to the ground truth. This is obtained quickly:
within 12 hours, an accurate result is found, corresponding
to when half of clients have checked in (per Figure 6). Even
within a few hours, the result is pretty accurate.

5.3 Analysis of Privacy Mechanisms
To better guide how different privacy guarantees may affect
query accuracy, we study how adding differentially private
noise impacts the accuracy of histograms. In Section 4.2,
we described ways to provide a differential privacy guaran-
tee, based on how and where noise is added in the system:
centrally at the secure enclave (central DP, CDP), by each
client locally (local DP, LDP), or in a distributed fashion
(sample-and-threshold, S+T). We compare generating his-

892 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 24 48 72 96
Time (hours)

10−2

10−1

100

To
ta

l V
ar

ia
tio

n
Di

st
an

ce LDP
S+T

CDP
No DP

(a) RTT histogram accuracy

0 24 48 72 96
Time (hours)

10−2

10−1

100

To
ta

l V
ar

ia
tio

n
Di

st
an

ce LDP
S+T

CDP
No DP

(b) Daily event count histogram accuracy

0 24 48 72 96
Time (hours)

10−2

10−1

100

To
ta

l V
ar

ia
tio

n
Di

st
an

ce LDP
S+T

CDP
No DP

(c) Hourly event count histogram accuracy

Figure 8: Experiments on histogram generation with different models of privacy noise addition

tograms in our system under these three different models of
privacy via TVD to the ground truth. Each data release from
the CDP and S+T privacy mechanisms satisfies (ε,δ)-DP
(Definition 1), and each LDP release satisfies (ε,0)-DP, all
with ε = 1,δ = 10−8.

Recall that against the ground truth, the steady-state total
variation distance (Section 5.2) is considerably below 10−2 =
0.01 (Figure 7). Figure 8 shows that there is a clear difference
in behavior based on the scale of the input population and
the privacy model. When building the histogram of round
trip times (Figure 8a), we see that local differential privacy
(LDP) achieves an order of magnitude more noise than other
methods, and this gap does not decay over time. Nevertheless,
this error is in the region of 0.02, which is tolerable for most
of our applications. The gap between privacy mechanisms is
replicated across other tests (Figures 8b, 8c), where the error
for CDP and S+T is much lower than LDP—for CDP, the
result is essentially indistinguishable from the un-noised data
collected. Results in Figures 8b and 8c consider the accuracy
of reporting histograms on the amount of activity recorded on
a daily and hourly basis (respectively). Note that the hourly
activity counts are proportionately lower than the daily ones.
Here, the hourly activity was 34 times lower than the daily
activity, as the measurements correspond to a quieter than
average period. Hence, the impact of privacy noise introduces
more variation for the hourly event counts. This is particularly
notable for S+T, where thresholding the sampled data leads to
more signal loss. Meanwhile, error introduced by CDP noise
addition remains almost imperceptible on these plots.

Thus, for histogram generation, privacy can be achieved
with minimal impact on accuracy in FA. The three privacy
techniques shown are arguably incomparable, since they ex-
ercise different trust models. But even our “weakest” model,
CDP, is stronger than simply gathering the data on a regular
server, since we use secure TEEs to perform the aggregation
and noise addition. Furthermore, the local model of privacy,
as previously deployed at scale [1,19], has the biggest impact
on accuracy. So, where permissible, we advocate for central
or distributed privacy noise within FA systems.

Additional experiments on the impact of privacy noise of
the accuracy for the quantiles (CDF) query are presented and
discussed in Appendix A.

6 Related Work

Instrumenting large scale deployments of distributed clients
has been studied widely in the distributed systems and net-
working communities. However, building systems with data
privacy as a main goal has enjoyed less focus until recently.

The notion of federated computation has emerged as a
distributed paradigm that emphasizes the privacy of the par-
ticipants [5]. Systems implementing federated learning (FL)
have been described by Google [8], Apple [31], LinkedIn [41],
Snap [32], Meta [27] and others in the big tech arena. FL is
primarily concerned with the training of machine learning
models, with examples held by the clients used as the train-
ing set. Typically, FL workflows have access to a very large
number of clients (millions or billions), but engage only a
few thousand in each round. In each round, a batch of clients
suggest improvements to the current model. This process is re-
peated over a large number of rounds, often several thousands
in total [23]. The duration can thus be days to weeks, allowing
for clients that may be slow to respond or only intermittently
available. Here, we focus on analytics tasks that are qualita-
tively different in nature. Rather than concentrate on a single
computation task (model training), we seek a system with
greater flexibility for processing a range of possible queries.
These queries are typically processed in few rounds: ideally,
a single round or two. However, we seek to engage many
more clients in each round (at least tens of thousands, often
millions), and so the latency to complete a round is higher,
due to greater variability in client availability and dropouts.

This approach to FA was promoted by Google [33], with
an emphasis on gathering information on frequency distribu-
tions. The antecedents of this model can be seen in Google’s
prior RAPPOR system [19] and Apple’s differential privacy
deployment [1]. Both these systems use local differential pri-
vacy to mask client inputs, building on the classical technique

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 893

of randomized response [42]. Clients are prompted to pro-
vide (perturbed) information on browsing and typing behavior
(e.g., frequently visited webpages, new words), in order to
improve autocomplete suggestions and detect malware. This
information is gathered regularly and perturbed based on a
sparse vector encoding with random noise. These first sys-
tems demonstrated the utility of private information gathering.
However, the level of noise due to local DP is high, requiring a
very large population of clients and a loose setting of privacy
parameters to get actionable information [39].

Subsequent developments have sought to broaden the range
of statistics that can be collected, and to provide stronger
privacy and security protections. Work on secure aggrega-
tion [4, 7] highlights the power of a primitive that computes
the sum of inputs from a large number of clients without
revealing any intermediate values. Google’s described solu-
tion uses interactions between clients to recover from other
clients dropping out during the protocol, via cryptographic
techniques (threshold secret sharing) and a single coordinat-
ing server. Other approaches to implement secure aggregation
achieve a similar functionality but remove client-client com-
munications by instead having two or more independent ag-
gregating servers. PRIO, implemented by Mozilla, performs
aggregation of inputs from clients based on secret sharing,
along with simple zero-knowledge proofs to check that client
inputs are well-formed [9, 12, 25]. Apple’s sampling-based
system adopts this model, where two servers (leader and
helper, as in [21]) interact to perform the aggregation [38].
Systems such as Honeycrisp and Orchard use additively ho-
momorphic cryptography to aggregate client reports across
multiple servers [34, 35]. For our implementation, we adopt
TEEs for aggregation, to simplify key management and scal-
ing issues, and to be able to handle the thresholding primitive.

Most effort in FA has been directed towards learning fre-
quency distributions of (discrete) values held by clients, such
as commonly visited web sites. Since rare values are likely to
be privacy-revealing (e.g., URLs that encode identifying infor-
mation), we seek popular values, or “heavy hitters.” Google
researchers show that sampling a random (secret) subset of
clients can achieve differential privacy [45]. PRIO also tar-
gets towards secure computation of heavy hitters, where DP
noise can be introduced by the aggregating servers [12, 29].
Other approaches are via distributed noise addition, where
each client adds small random noise [2], or via shuffling client
responses to disassociate the message from the sender, which
has a similar statistical effect [6, 38]. Explicitly suppressing
responses with low frequencies captures the intuitive privacy
definition of k-anonymity [14].

7 Discussion and Concluding Remarks

We have laid out our experience and insights in building a
state-of-the-art large scale FA system. The chief takeaways
that we draw from our experience are: (1) It is indeed possible

to achieve large scale, secure federated analytics. At this scale,
failures are inevitable, and so it was important for us to design
with these in mind (e.g, incorporating snapshotting and recov-
ery). (2) Security is increasingly available as a commodity,
thanks to availability of secure hardware. Designing for sim-
plicity ensured that security was auditable and efficient for us.
(3) A wide range of tasks are served by the Secure Sum and
threshold operation, including finding popular values, captur-
ing distributions, and gathering feature usage statistics. (4)
We obtained privacy in addition to security by designing in
noise addition (differential privacy), and at scale this made
minimal impact on accuracy.

Key design choices that could be revisited in future are:
Privacy Models and TEEs. The FA system accommodates
various privacy models (central, local and distributed DP). The
use of TEEs is of particular importance in allowing complex
central DP algorithms, and the secure aggregation for local
and distributed DP. Current TEE hardware comes with some
tradeoffs, which will alter as new generations are released.
Our threat model treats data poisoning efforts as negligible,
but protections against malicious clients could be hardened.
Privacy Budgeting. DP parameter ε captures the degree of
privacy, which is weakened as more queries are answered. Our
pragmatic approach is to focus on per-query privacy impact,
and seek to ensure that analysts do not posed repeated queries
to the same data. In future we may use stronger constraints,
and more sophisticated privacy accounting tools [15, 28].
Longitudinal Issues. Currently, we allow clients to respond
to one batch of queries per day, pertaining to data collected
over the previous 24 hours. We will loosen these constraints
in future versions as we allow more fine-grain responses.
Other considerations. When we try to batch queries together
for efficiency, we can combine responses while ensuring that
the results do not expose too much private information. For
analytics, the main demand is for aggregation queries, future
plans are to expand to more types of queries and data. As we
extend the deployment of our FA stack to more use cases, we
will face new types of queries, and have to decide whether to
answer these via custom code, or extend the capability of our
system to provide more “built-in” support for common query
patterns. A leading concern is how to simplify the deployment
of queries by non-expert analysts, and in particular how to
provide useful debugging and cross-checking information,
while maintaining the high levels of privacy guarantees.

Acknowledgements

Contributions to this project extend beyond the authors. We
are grateful for the following people who have engaged in
system design/implementation and provided valuable feed-
back: Ilya Mironov, Jon Millican, Eric Northup, Ravi Ranjan,
Anthony Shoumikhin, Pavel Ustinov, Renchang Miao, Vlad
Grytsun, Igor L. Markov and Akash Bharadwaj.

894 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Federated Algorithms: Quantiles

The federated model opens itself to a number of design tech-
niques to answer a wide range of queries. Simple queries, such
as sums and counts, are straightforward to implement within
FA, while more complex queries require more nuanced solu-
tions. Examples include finding the “heavy hitters” (frequent
items) from a large domain [45], estimating U-statistics across
pairs of observations [3], finding the mean of scalar and vector
values [40], measuring classifier accuracy and AUC [10], and
making heat maps of data distributions [2].

For FA algorithms, there is a strong preference for tech-
niques that require only one or a very few (constant) rounds
of data collection. This is distinct from Federated Learning,
where it is common to iterate towards a solution over hun-
dreds or thousands of short-lived rounds. It is also highly
desirable to express the algorithms using well-supported tool-
ing, specifically the SST primitive. We favor algorithms that
are robust to clients drop outs and unavailability, via sam-
pling and ensuring that client information is encapsulated in
a single message.

To illustrate the design space and considerations of building
support for a non-trivial query into a federated analytics sys-
tem, we study an example query in depth: to find the quantiles
of a (distributed) data distribution. Finding quantiles (or per-
centiles) is one of the most requested queries for the FA stack.
We have made several implementations to handle different
trust and privacy models, and thus refined our understanding
and optimized the approach that we advocate. Our first efforts
used multiple rounds of interaction, which slowed down the
process, and led to synchronization issues. Subsequently, we
focused on approaches using few rounds.

Given a (multi)set of readings, the quantile query seeks the
point p such that a q fraction of readings are below it. For
instance, the median asks for the 0.5-quantile, where half the
readings are below and half are above. We also often seek the
90%-ile, 95%-ile and the 99%-ile corresponding to the 0.9-,
0.95- and 0.99-quantiles. There is noise in the reported answer
as we use approximate algorithms and introduce noise for (dif-
ferential) privacy reasons. Outside of FA, there are algorithms
to build compact summaries for the quantiles problem, partic-
ularly when processing the inputs as a single stream of data.
These include the q-digest [37], t-digest [16], dd-sketch [30]
and Greenwald-Khanna (GK) summary [22]. However, these
do not all immediately map to the federated setting, nor do
they provide a privacy guarantee.

The simplest approach to answering a fixed quantile query
in the federated setting is to perform a binary search over
multiple rounds. We start with a range [low,high] that all
the data falls in, and issue a federated counting query to find
what fraction of examples fall in this range. This process
is repeated for ranges [low, p], adjusting p higher and lower
based on the result of the previous rounds, until we find an
answer for which the count is close enough to the target q (as

a fraction of the number of participating clients). Typically,
8-12 rounds suffice, provided the initial range is fairly tight
around the true data. However, this can be slow to complete.

The key to reducing the number of rounds is to think of the
multi-round algorithm as looking up values in a collection of
histograms of progressively finer granularity. The first round
looks up the two values in a two bucket histogram, where
the buckets correspond to the left and right halves of the
value domain, respectively. Depending on what answer is
obtained, the second round looks up two values in a four
bucket histogram (corresponding to dividing the domain into
four equal pieces), and so on. Importantly, although the set of
buckets to inspect depends on what we find in the previous
round, the choice of bucket boundaries is not data dependent.
Hence, we can build out the complete set of histograms in a
single round of FA, and use the output of this query to answer
all-quantiles queries. We refer to this as the hierarchical, or
tree, approach to quantile estimation.

To put this into practice we need some prior knowledge
of a range that all values fall into (or a first round of FA to
gather this knowledge), in order to specify the histograms. We
must determine the number of histograms to build, based on
the granularity of the finest histogram. Building histograms
out to a depth of 12 (giving 212 buckets at the finest level
of detail) gives a good level of accuracy in practice, while
remaining relatively quite compact. In some cases, rather than
the full hierarchy, it suffices to collect data at the finest level
and treat the resulting (noisy) histogram as if it gave the exact
distribution. We refer to this as the flat, or hist, approach.

A.1 Experiments on Quantile Data Collection

We implement and apply these quantile algorithms in order to
evaluate the impact of our design choices on query accuracy
and scalability. Figure 9a shows the error in estimating the
cumulative distribution function (CDF) of the number of data
points per device, based on histograms of B = 2048 buckets
representing sampled counts of 1,2, ...,2047,2048+. That is,
for each potential quantile query (e.g., the median, being the
0.5-quantile), we identify which true quantile the reported
value corresponds to, using knowledge of the ground truth
distribution. We plot this for both daily and hourly round-trip
times, using data collected after 48 hours from initiating the
query. The pattern for both is similar: the error is zero at either
extreme, since the measure can be satisfied by reporting an
arbitrarily small value for the 0.0-quantile, and an arbitrarily
large value for the 1.0-quantile. We gain more information
when studying quantiles that are closer to the middle of the
distribution. After 48 hours of data collection, the maximum
error is 0.32% for the daily measurements, and 0.49% for the
hourly data—this is the Kolmogorov-Smirnov test statistic
for measuring similarity of distributions. In both cases, it is
much less than 1%, indicating close agreement. The error is
higher in the hourly case, due to fewer observations.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 895

0.0 0.2 0.4 0.6 0.8 1.0
Requested Quantile

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

CD
F

Er
ro

r

Daily RTT
Hourly RTT

(a) CDF approximation error for RTT

0% 20% 40% 60% 80% 100%
Coverage

−15%

−10%

−5%

0%

5%

10%

15%

Re
la

tiv
e

Er
ro

r

DP (Tree)
DP (Hist)
No DP

(b) DP error for daily 90%-ile daily RTT

0% 20% 40% 60% 80% 100%
Coverage

−15%

−10%

−5%

0%

5%

10%

15%

Re
la

tiv
e

Er
ro

r

DP (Tree)
DP (Hist)
No DP

(c) DP error for 90%-ile hourly RTT

Figure 9: CDF error after 48 hours (left) and relative error in DP estimation of 90th percentile RTT (center, right)

Figures 9b, 9c show our results for estimating the 90th per-
centile (i.e., 0.9-quantile), under different privacy approaches.
Per Appendix A, we add noise either to a flat histogram,
DP (hist), or to a hierarchy of histograms, DP (tree). In
both cases, we follow a central DP model, adding Gaussian
noise to the histograms to achieve an (ε,δ)-DP guarantee for
ε = 1,δ = 10−8. We compare the accuracy of these quantile
estimates against a federated quantile estimate without any
privacy noise addition (No DP). Here, we measure the relative
error: we compute the ratio of reported value to the ground
truth value of the 90th percentile.

Unsurprisingly, when only a few clients have reported, there
is a lot of uncertainty in the value of the target quantile, par-
ticularly for the hourly data (Figure 9c). However, once more
than about a quarter of clients have submitted their input, we
can find a reliable estimate of the quantile, up to a few per-
centage points in variation. For these experiments, where we
have many clients each reporting a single contribution to the
histogram, the impact of DP noise is marginal: the greater
uncertainty comes from the sampling effect of partial client
participation. The tree histogram method adheres closer to
the no-DP case than the simple flat histogram. Our practical
experience is that the tree approach is preferred when larger
histograms are needed to represent the input. We conclude
that we can obtain very accurate answers to quantile queries
while enjoying FA’s strong security and privacy properties.

References

[1] Apple. Apple differential privacy technical overview,
2017. https://www.apple.com/privacy/docs/
Differential_Privacy_Overview.pdf, last ac-
cessed 19/07/21.

[2] E. Bagdasaryan, P. Kairouz, S. Mellem, A. Gascón, K. A.
Bonawitz, D. Estrin, and M. Gruteser. Towards sparse
federated analytics: Location heatmaps under distributed
differential privacy with secure aggregation. Proc. Priv.
Enhancing Technol., 2022(4):162–182, 2022.

[3] J. Bell, A. Bellet, A. Gascón, and T. Kulkarni. Private
protocols for u-statistics in the local model and beyond.
In Artificial Intelligence and Statistics, AISTATS, vol-
ume 108 of Proceedings of Machine Learning Research,
pages 1573–1583. PMLR, 2020.

[4] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint,
and M. Raykova. Secure single-server aggregation
with (poly)logarithmic overhead. In ACM SIGSAC
Conference on Computer and Communications
Security, pages 1253–1269. ACM, 2020.

[5] A. Bharadwaj and G. Cormode. An introduction to
federated computation. In SIGMOD ’22: International
Conference on Management of Data, pages 2448–2451.
ACM, 2022.

[6] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode, J. Tin-
nés, and B. Seefeld. Prochlo: Strong privacy for analyt-
ics in the crowd. In Symposium on Operating Systems
Principles, pages 441–459. ACM, 2017.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
Practical secure aggregation for privacy-preserving
machine learning. In ACM SIGSAC Conference
on Computer and Communications Security, page

896 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf

1175–1191, New York, NY, USA, 2017. Association
for Computing Machinery.

[8] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba,
A. Ingerman, V. Ivanov, C. Kiddon, J. Konečný, S. Maz-
zocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ra-
mage, and J. Roselander. Towards federated learn-
ing at scale: System design. In Proceedings of the
Second Conference on Machine Learning and Systems.
mlsys.org, 2019.

[9] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai. Lightweight techniques for private heavy hitters.
In IEEE Symposium on Security and Privacy, pages
762–776. IEEE, 2021.

[10] G. Cormode and I. L. Markov. Federated calibration and
evaluation of binary classifiers. Proc. VLDB Endow.,
16(11):3253–3265, 2023.

[11] G. Cormode, I. L. Markov, and H. Srinivas. Pri-
vate and efficient federated numerical aggregation.
In Proceedings 27th International Conference on
Extending Database Technology, pages 734–742. Open-
Proceedings.org, 2024.

[12] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust,
and scalable computation of aggregate statistics. In
USENIX Symposium on Networked Systems Design
and Implementation, NSDI, pages 259–282. USENIX
Association, 2017.

[13] R. Cramer, I. Damgård, and J. B. Nielsen. Secure
Multiparty Computation and Secret Sharing. Cam-
bridge University Press, 2015.

[14] A. Davidson, P. Snyder, E. B. Quirk, J. Genereux,
B. Livshits, and H. Haddadi. STAR: secret
sharing for private threshold aggregation reporting.
In ACM SIGSAC Conference on Computer and
Communications Security, pages 697–710. ACM, 2022.

[15] V. Doroshenko, B. Ghazi, P. Kamath, R. Kumar, and
P. Manurangsi. Connect the dots: Tighter discrete ap-
proximations of privacy loss distributions. Proc. Priv.
Enhancing Technol., 2022(4):552–570, 2022.

[16] T. Dunning and O. Ertl. Computing extremely accurate
quantiles using t-digests. CoRR, abs/1902.04023, 2019.

[17] C. Dwork and A. Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[18] H. Eichner, D. Ramage, K. A. Bonawitz, D. Huba,
T. Santoro, B. McLarnon, T. V. Overveldt, N. Fallen,
P. Kairouz, A. Cheu, K. Daly, A. Gascón, M. Gruteser,
and B. McMahan. Confidential federated computations.
CoRR, abs/2404.10764, 2024.

[19] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
randomized aggregatable privacy-preserving ordinal re-
sponse. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1054–1067. ACM,
2014.

[20] S. Fei, Z. Yan, W. Ding, and H. Xie. Security vulner-
abilities of sgx and countermeasures: A survey. ACM
Comput. Surv., 54(6), July 2021.

[21] T. Geoghegan, C. Patton, E. Rescorla, and C. A. Wood.
Distributed Aggregation Protocol for Privacy Preserv-
ing Measurement. Internet-Draft draft-ietf-ppm-dap-08,
Internet Engineering Task Force, Oct. 2023. Work in
Progress.

[22] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In ACM SIGMOD
international conference on Management of data, pages
58–66. ACM, 2001.

[23] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage. Feder-
ated learning for mobile keyboard prediction. CoRR,
abs/1811.03604, 2018.

[24] J. Hehir, D. Ting, and G. Cormode. Sketch-flip-merge:
Mergeable sketches for private distinct counting. In
International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research,
pages 12846–12865. PMLR, 2023.

[25] B. Holley. Built for privacy: Partnering
to deploy oblivious http and prio in firefox.
https://blog.mozilla.org/en/products/
firefox/partnership-ohttp-prio/, Oct. 2023.

[26] S. Huang, S. Iyengar, S. Jeyaraman, S. Kushwah, C.-K.
Lee, Z. Luo, P. Mohassel, A. Raghunathan, S. Shaikh, Y.-
C. Sung, and A. Zhang. DIT: De-identified authenticated
telemetry at scale, 2021.

[27] D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat,
A. Yousefpour, C. Wu, H. Zhan, P. Ustinov, H. Srini-
vas, K. Wang, A. Shoumikhin, J. Min, and M. Malek.
PAPAYA: practical, private, and scalable federated learn-
ing. In Proceedings of Machine Learning and Systems
2022, MLSys 2022, Santa Clara, CA, USA, August 29
- September 1, 2022. mlsys.org, 2022.

[28] J. Jin, C. Chuengsatiansup, T. Murray, B. I. P. Ru-
binstein, Y. Yarom, and O. Ohrimenko. Elephants
do not forget: Differential privacy with state con-
tinuity for privacy budget. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, page 1909–1923, New York,
NY, USA, 2024. Association for Computing Machinery.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 897

https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio/
https://blog.mozilla.org/en/products/firefox/partnership-ohttp-prio/

[29] D. Keeler, C. Komlo, E. Lepert, S. Veitch, and X. He.
Dprio: Efficient differential privacy with high utility for
prio. Proc. Priv. Enhancing Technol., 2023(3):375–390,
2023.

[30] C. Masson, J. E. Rim, and H. K. Lee. Ddsketch: A fast
and fully-mergeable quantile sketch with relative-error
guarantees. Proc. VLDB Endow., 12(12):2195–2205,
2019.

[31] M. Paulik, M. Seigel, H. Mason, D. Telaar, J. Kluiv-
ers, R. van Dalen, C. W. Lau, L. Carlson, F. Granqvist,
C. Vandevelde, S. Agarwal, J. Freudiger, A. Byde,
A. Bhowmick, G. Kapoor, S. Beaumont, Áine Cahill,
D. Hughes, O. Javidbakht, F. Dong, R. Rishi, and
S. Hung. Federated evaluation and tuning for on-device
personalization: System design & applications, 2022.

[32] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung,
D. Huang, and R. Zeng. Differentially-private "draw
and discard" machine learning: Training distributed
model from enormous crowds. In Cyber Security,
Cryptology, and Machine Learning - 6th International
Symposium, CSCML 2022, volume 13301 of Lecture
Notes in Computer Science, pages 468–486. Springer,
2022.

[33] D. Ramage and S. Mazzocchi. Federated analytics:
Collaborative data science without data collec-
tion. https://blog.research.google/2020/
05/federated-analytics-collaborative-data.
html, 2020.

[34] E. Roth, D. Noble, B. H. Falk, and A. Haeberlen. Hon-
eycrisp: large-scale differentially private aggregation
without a trusted core. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
196–210. ACM, 2019.

[35] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce.
Orchard: Differentially private analytics at scale. In
14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020, pages 1065–1081. USENIX As-
sociation, 2020.

[36] C. Shepherd and K. Markantonakis. Trusted Execution
Environments. Springer, 2024.

[37] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques

for sensor networks. In International Conference on
Embedded Networked Sensor Systems, pages 239–249.
ACM, 2004.

[38] K. Talwar, S. Wang, A. McMillan, V. Jina, V. Feldman,
B. Basile, Á. Cahill, Y. S. Chan, M. Chatzidakis, J. Chen,
O. Chick, M. Chitnis, S. Ganta, Y. Goren, F. Granqvist,
K. Guo, F. Jacobs, O. Javidbakht, A. Liu, R. Low, D. Ma-
scenik, S. Myers, D. Park, W. Park, G. Parsa, T. Pauly,
C. Priebe, R. Rishi, G. Rothblum, M. Scaria, L. Song,
C. Song, K. Tarbe, S. Vogt, L. Winstrom, and S. Zhou.
Samplable anonymous aggregation for private federated
data analysis. CoRR, abs/2307.15017, 2023.

[39] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang.
Privacy loss in apple’s implementation of differential
privacy on macos 10.12. CoRR, abs/1709.02753, 2017.

[40] S. Vargaftik, R. Ben-Basat, A. Portnoy, G. Mendelson,
Y. Ben-Itzhak, and M. Mitzenmacher. DRIVE: one-bit
distributed mean estimation. In Advances in Neural
Information Processing Systems, pages 362–377, 2021.

[41] E. Wang, A. Kannan, Y. Liang, B. Chen, and M. Chowd-
hury. FLINT: A platform for federated learning integra-
tion. CoRR, abs/2302.12862, 2023.

[42] S. L. Warner. Randomized response: A survey tech-
nique for eliminating evasive answer bias. Journal of the
American Statistical Association, 60(309):63–69, 1965.

[43] A. Wilkins, D. Kifer, D. Zhang, and B. Karrer. Exact
privacy analysis of the gaussian sparse histogram mech-
anism. Journal of Privacy and Confidentiality, 14(1),
2024.

[44] R. Zhang and H. Xiong. Open-sourcing
Anonymous Credential Service. https:
//engineering.fb.com/2022/12/12/security/
anonymous-credential-service-acs-open-source/.
Accessed: 2024-04-24.

[45] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li.
Federated heavy hitters discovery with differential
privacy. In International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 3837–3847.
PMLR, 2020.

898 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
https://blog.research.google/2020/05/federated-analytics-collaborative-data.html
https://engineering.fb.com/2022/12/12/security/anonymous-credential-service-acs-open-source/
https://engineering.fb.com/2022/12/12/security/anonymous-credential-service-acs-open-source/
https://engineering.fb.com/2022/12/12/security/anonymous-credential-service-acs-open-source/

	Introduction
	Our Contributions

	Background: Secure Computation in TEEs
	System Design
	System Overview
	Federated Query
	Untrusted Orchestrating Server
	Client Runtime
	Trusted Secure Aggregator
	Handling Scale
	Handling Failures

	Privacy and Security
	Secure Data Handling
	Private Handling of Outputs

	Empirical Study
	Collection Speed and Scalability
	Analysis of Accuracy
	Analysis of Privacy Mechanisms

	Related Work
	Discussion and Concluding Remarks
	Federated Algorithms: Quantiles
	Experiments on Quantile Data Collection

