
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Self-Clocked Round-Robin Packet Scheduling
Erfan Sharafzadeh, Johns Hopkins University and Hewlett Packard Labs;

Raymond Matson, University of California Riverside; Jean Tourrilhes and Puneet Sharma,
Hewlett Packard Labs; Soudeh Ghorbani, Johns Hopkins University and Meta

https://www.usenix.org/conference/nsdi25/presentation/sharafzadeh

Self-Clocked Round-Robin Packet Scheduling

Erfan Sharafzadeh1,2, Raymond Matson3, Jean Tourrilhes2, Puneet Sharma2 and Soudeh Ghorbani1,4

1Johns Hopkins University, 2Hewlett Packard Labs, 3University of California Riverside, 4Meta

Abstract. Deficit Round Robin (DRR) is the de facto fair
packet scheduler in the Internet due to its superior fairness and
scalability. We show that DRR can perform poorly due to its
assumptions about packet size distributions and traffic bursts.
Concretely, DRR performs best if (1) packet size distributions
are known in advance; its optimal performance depends on
tuning a parameter based on the largest packet, and (2) all
bursts are long and create backlogged queues. We show that
neither of these assumptions holds in today’s Internet: packet
size distributions are varied and dynamic, complicating the
tuning of DRR. Plus, Internet traffic consists of many short,
latency-sensitive flows, creating small bursts. These flows can
experience high latency under DRR as it serves a potentially
large number of flows in a round-robin fashion.

To address these shortcomings while retaining the fairness
and scalability of DRR, we introduce Self-Clocked Round-
Robin Scheduling (SCRR), a parameter-less, low-latency, and
scalable packet scheduler that boosts short latency-sensitive
flows through careful adjustments to their virtual times with-
out violating their fair share guarantees. We evaluate SCRR
using theoretical models and a Linux implementation on a
physical testbed. Our results demonstrate that while perform-
ing on an equal footing with DRR on achieving flow fairness,
SCRR reduces the average CPU overhead by 23% compared
to DRR with a small quantum while improving the application
latency by 71% compared to DRR with a large quantum.

1 Introduction

The Internet is continuously evolving as a multi-party en-
vironment. To meet service performance requirements, en-
forcing isolation at various levels, from tenants to applica-
tions and individual flows is crucial [40, 43, 58, 72, 80, 83].
Packet scheduling offers fine-grained control over network
bandwidth at both the edge and core of the network. De-
spite the abundance of scheduling techniques relying on
explicit labeling, such as strict priority queues [28, 77, 89]
or time wheels [72, 78], obtaining flow priorities or times-
tamps from Internet transports is usually not feasible. In-

stead, Fair Queuing provides fine-grained fairness without
flow information, and has been deeply studied from fair-
ness, latency bounds, and computational complexity stand-
points [21, 32, 41, 42, 64, 68]. Since Fair Queuing schedulers
suffer from non-linear computational complexity that hinders
deployment [21, 41, 42], a middle-ground alternative is to
use Deficit Round-Robin (DRR) scheduling due to its low
overhead and scalability [56, 69, 81, 90]. Indeed, DRR is
used everywhere from hardware traffic management pipelines
to software middleboxes, host stacks, and network interface
cards [6, 7, 12, 14, 15, 82, 83].

Regrettably, Internet traffic has evolved since Deficit
Round-Robin was proposed, and its drawbacks are increas-
ingly problematic. Workloads like real-time video confer-
encing and voice communication, streaming, cloud gaming,
and instant messaging are now widespread among more tradi-
tional web and file transfer [27, 35, 52, 59, 60, 65, 67, 86, 87].
Such workloads feature diverse properties concerning flow
counts, flow arrival rates, flow sizes, packet lengths, packet
inter-arrivals, and burstiness [22, 23, 27, 39, 67, 85, 86]. First,
concerning burstiness, Internet traffic traces show bursts of
packets with diverse lengths and inter-arrivals [1,4,20,22,29].
Long bursts are prone to creating backlogged queues at the
packet scheduler, while, broadly, short bursts from latency-
sensitive applications such as web and streaming [61, 74]
exhibit periodic on-off arrivals. For example, the median re-
sponse size for web workloads does not exceed 10 kB, while
Variable Bit-Rate (VBR) streaming workloads such as Zoom
have a median frame length of 10 kB with large idle gaps
between frames [61].

Our experiments with DRR reveal that under a backlogged
scheduler, a bursty latency-sensitive flow has to wait for up
to a full scheduling round, i.e., until all flows have been ser-
viced at least once, before it can send its traffic. This can
be detrimental to the performance of such flows, causing
much higher application latency compared to Fair Queueing
Schedulers. Even with recent DRR enhancements, such as
Sparse Flow Optimization (SFO) [47], which prioritize new
incoming flows over backlogged ones to improve responsive-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1437

ness, bursts with more than one packet are prone to being
quickly demoted to lower-priority and forced to compete with
backlogged flows, thus experiencing long delays.

Secondly, packet lengths are diverse and skewed [1,4,16,20,
22, 29] and packet length distribution for wide-area network
traffic is difficult to generalize. Many modern applications use
small packets to reduce latency and the impact of packet loss
[30, 79]. Network Interface hardware acceleration [11] may
produce very large packets (64 kB). DRR relies on a fixed,
user-specified quantum equal to (or larger than) the maximum
packet size in the network [81], making it hard to tune. A
large quantum can be detrimental to intermediate buffers as it
allows large bursts of packets to be sent when servicing each
flow [56,69], ultimately increasing response times for latency-
sensitive applications. No packet scheduler today offers low
resource utilization, low latency, and adaptability to packet
sizes without explicit flow information feedback.

Our work makes several novel contributions to fair schedul-
ing. First, we show that DRR’s drawbacks, i.e., high latency
for bursty flows and vulnerability to quantum choice, are mea-
surable at the application level, even on high-speed networks.
We further identify the trade-off between latency and CPU uti-
lization to be intrinsic to DRR’s design and argue that there’s
no correct answer to configuring DRR (§2).

Second, we outline the design of Self-Clocked Round-
Robin (SCRR), a novel multi-queue round robin scheduler.
SCRR borrows virtual clocking from Fair Queuing [41, 42]
to eliminate the quantum and enforce fairness, and services
sub-queues like DRR in strict sequence for simplicity and scal-
ability. SCRR is parameter-less, light, scalable, and adapts
to bursts and packet length variations. We design various
SCRR enhancements to efficiently prioritize bursty flows and
reduce application latency. When an idle flow becomes active,
the scheduler decides its bandwidth allowance via its virtual
clock setting. Backed by strong theoretical virtual clocking
principles, SCRR can efficiently adjust the virtual clocks for
short, bursty flows, allowing them to quickly make progress
without violating fairness bounds (§3). Third, we provide
rigorous proofs of flow burstiness and fairness for SCRR,
guaranteeing that SCRR has the same fairness as DRR with a
low maximum burstiness bound (§4).

Fourth, we evaluate SCRR and competing schedulers on a
physical testbed under Cubic and BBRv3 using novel experi-
ments. Application-level fairness is tested with thousands of
active flows while application latency is measured for request-
response flows and VBR traffic. Our results demonstrate that
employing SCRR in a software switch reduces CPU utiliza-
tion by 23% when compared to DRR with 1500B quantum.
Our results further reveal that SCRR offers 93×, 71%, and
45% lower response times over tail-drop, DRR with a small
quantum, and DRR with a large quantum, respectively. (§5)

SCRR is a step toward more dynamic packet scheduling
for multi-party wide-area deployments. It is the first true al-
ternative to DRR, offering the low latency of Start Time Fair

Queuing with the low complexity of DRR. Our ultimate goal
is for SCRR to replace existing hardware and software packet
schedulers because of its plug-and-play deployment, low re-
source consumption, low latency, and desirable fairness.1

2 Packet Scheduling for Modern Internet

Internet workloads incorporate a mix of heavy, throughput-
intensive flows, as well as bursty latency-sensitive flows with
diverse arrival patterns. Can Deficit Round Robin [81], as
the de facto candidate for fair scheduling cope with modern
traffic characteristics?

2.1 A brief history of packet scheduling

Historically, Packet-by-packet Generalized Processor Sharing
(PGPS) [68] was among the first scheduling paradigms that
target fair bandwidth allocation among tenants. Tenants or
flows are classified into separate FIFO queues that are then
processed by the packet scheduler. Subsequently, numerous
Fair Queuing schedulers [32, 41, 42, 45, 66, 81, 90] were intro-
duced with distinct bounds and computational complexities.
Classical Fair Queuing algorithms such as Start-Time Fair
Queuing (STFQ) [42] have the downside of expensive per-
packet sorting operations as they need to constantly track and
update the bandwidth allocation for each flow and choose the
most eligible sub-queue, i.e., the sub-queue with the least
progress. Further, computing requirement scales up with the
number of sub-queues.

Deficit Round Robin (DRR) scheduling addresses this
shortcoming by allowing constant complexity dequeue op-
erations irrespective of scale [81]. Instead of maintaining a
sorted data structure to keep track of flow progress, it visits
each sub-queue in a round-robin fashion and allocates a fixed
amount of bytes, called quantum, to each queue at each round.
The part of the quantum that is too small to send the next
packet is accumulated as a deficit for the queue. Other vari-
ants of DRR, including Weighted Round-Robin (WRR) and
Modified Deficit Round Robin (MDRR) [12] can operate on a
limited number of FIFO queues strictly reserved for different
flow priorities [6]. These variants have a coarser fairness gran-
ularity (per priority group, instead of per-flow) and need to
be configured with a deficit value that determines the amount
of bytes each priority group transmits on each pass.

Due to its constant computational complexity and low
memory footprint, DRR is one of the most widely de-
ployed packet schedulers in both software and hardware
[6, 7, 12, 14, 15, 81–83]. Even with the emergence of novel
queuing abstractions such as PIFO [82] and calendar queues
[78] that offer advanced traffic classification and shaping,
DRR endures as a robust and widely used option for flow
scheduling, particularly in scenarios where intricate packet

1SCRR artifacts are available at https://github.com/jean2/scrr.

1438 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/jean2/scrr

102 103 104 105 106

Burst Length (B)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(a) Burst size in bytes

1 10 100 1000
Burst Length (packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(b) Packets in a burst
Figure 1: Diversity in burst length distributions in the wild.

1 2 3 4 5 6 7 8 9 10 11 12
Number of packets in request

0.2

0.3

0.5

0.7

1.0

1.5

2.0

Re
qu

es
t l

at
en

cy
 (m

s)

drr-1500
drr-9000
stfq

drr+sfo-1500
drr+sfo-9000
scrr (this paper)

Figure 2: DRR offers poor la-
tency under different burst sizes.

100 1000 10000
Packet Size (B)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

mawi2024
mawi2010
caida
im
dc
ccdc

Figure 3: Skewed packet length
distributions in the wild.

classification is unnecessary [26, 33, 37, 91, 93] and standard
TCP support is required.2

2.2 Flow burstiness in modern traffic

Burstiness is a well-known phenomenon for Internet traffic
due to its multitude of root causes [20, 22, 50, 51, 76, 92]. The
emergence of interactive applications such as cloud gaming,
video streaming, and video conferencing further underscores
a type of traffic that experiences long idle times due to user
behavior, network congestion, and variable bit-rate enforce-
ment by the application [20, 44, 61, 75, 87]. Traffic studies
further report that many latency-sensitive workloads primarily
produce short flows. For example, the median response size
for web requests entering Facebook data centers is reported
to be less than 10 kilobytes [74], and frames in Zoom video
traffic do not exceed 10 kB, with large gaps in between [61].

Fig. 1 presents the CDF of burst length distributions
for various Internet traces, ranging from backbone internet
(caida) [4], campus networks (dc) [22], and ISP gateways
(mawi) [29], to instant messaging (im) [20] and anonymized
traces (ccdc) [1] using an Inter-Packet Gap (IPG) threshold of
50 µs (distributions with other IPG thresholds are similar and
reported in Appendix C). The diversity in burst sizes suggests
that not all Internet flows tend to remain active for a long time
as they arrive at a bottleneck. Notably, many flows exhibit
small bursts of packets followed by large idle periods. But
we also see a number of very large bursts belonging to heavy
flows likely to congest the packet scheduler.

DRR has effectively the same theoretical bounds as Fair
Queuing schedulers (§2.1): it is fair and has a maximum
service deviation of 2× the quantum [81]. The fairness,
burstiness and latency guarantees of DRR and Fair Queuing
schedulers are based on the assumption that all flows arriving
at the scheduler are always backlogged [41, 42, 81]. Alas,
the above evidence suggests that this is rarely the case for
modern Internet traffic! In practice, DRR usually has higher
latency for those short bursty flows which are not backlogged
at the scheduler, and this is seldom studied. With gaps in
arrivals, short flows are prone to get stuck behind backlogged

2We later compare the performance of state-of-the-art implementations
of PIFO, such as AIFO [89] and SP-PIFO [17], with DRR in §5. Our results
suggest that AIFO suffers from severe throughput loss at large RTTs, while
SP-PIFO causes heavy packet re-ordering.

flows in the scheduler. Fig. 2 compares the response times
for a request-response workload under two software imple-
mentations of DRR, the original design presented in [81],
and the state-of-the-art implementation of DRR which im-
plements Sparse Flow Optimization (SFO) [47], a technique
that prioritizes interactive traffic (§3.3.1). We compare DRR
with two different quantum settings: 1500B and 9000B, and
with STFQ [42]. Two senders generate a total of 16 parallel
streams of requests composed of bursts of 150B MSS packets,
while the burst length increases on the x axis. Two other
senders generate 64 heavy flows each to ensure the scheduler
is backlogged. The full experiment setup can be found in
§5.5. Latency gaps as large as 4× between DRR and STFQ
suggest that DRR degrades the application performance due
to poor scheduling decisions regardless of its quantum setting,
as consecutive packets in a burst have to wait for full schedul-
ing rounds before they are transmitted. DRR+SFO is initially
able to bridge this gap by boosting short flows through the
scheduler, but as the burst size increases, consecutive packets
of the burst do not benefit from prioritization and have to wait.

2.3 The amplifying impact of packet sizes

Packet lengths are diverse in today’s networks. Recent
studies report a wide variety of packet length distributions
observed in the network [4, 20, 22, 71, 92]. Fig. 3 presents the
packet size distribution for a few Internet traces. According
to these studies, heavier workloads such as instant messaging
(im) tend to transmit MTU-sized packets while mixed work-
loads such as mawi send a wider range of packet sizes with a
considerable number of short packets in the mix. The avail-
able backbone traffic packet traces [4] further highlight that
packet length distribution constantly alternates in short peri-
ods (e.g., between bursts of 550B, 1500B, and 60B segments).
Many modern interactive applications use small packets to re-
duce latency and to minimize the impact of packet loss, while
some even adapt their packet sizes based on performance feed-
back [30,79]. The quantum for DRR needs to be set based on
the packet size [81], which makes it even harder for operators
to tune their fixed quantum scheduler since these variations
in packet lengths are not only workload-dependent but also
volatile in the short term.
Hardware offloads and large packet buffers make it diffi-
cult to configure quanta. Software network stacks rely on

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1439

10 100 1K 10K
Number of parallel flows

100

500

1K

5K

10K

50K

Pa
ck

et
 S

ize
 (B

)

drr+sfo-1500

(a) TSO on TX machine

5 10 50 100 500 1K 5K
Number of parallel flows

100

200

500

1K

2K

5K

10K

20K

Pa
ck

et
 S

ize
 (B

)

drr+sfo-1500

(b) LRO on RX machine
Figure 4: SKB length distribution under NIC offloading functions.

offloading support in the network interface (NIC) to keep up
with their increasing bandwidth [25]. On the transmit side,
Transmit Segmentation Offload (TSO) breaks large Socket
Buffers (SKBs) into MTU-sized packets in the NIC [11]. On
the receiving side, Large Receive Offload (LRO) aggregates
small segments into larger frames [11]. In Linux, by default,
the SKB size can run as high as 64 kB and with proposals to
greatly increase this maximum [34]. The reduction in SKB
rate provided by TSO and LRO improves software perfor-
mance by reducing the overhead of context switches, cache
misses, and metadata handling. However, TSO and LRO
force any software packet scheduler to deal with a wide and
unpredictable range of packet sizes.

For packet schedulers deployed as part of virtual switches
in the datacenter or cloud, the packet size distribution will be
dictated by TSO. Fig. 4a presents the packet size distribution
of experiment §5.3, in the form of parallel histograms (wider
bins indicate higher occurrence and the straight horizontal
line presents the average packet size over the number of par-
allel flows) as received by the packet scheduler for different
numbers of concurrent Iperf flows generated on that server.
With more flows, TSO tends to generate smaller packets, as
each flow has a smaller bandwidth and TSO tries to match
the smaller bandwidth delay product.

For packet schedulers that are part of home routers, SD-
WAN gateways, access points or middleboxes, the packet size
distribution will be dictated by LRO. Fig. 4b presents the
packet sizes generated by LRO for experiment §5.3. LRO
causes less aggregation than TSO, but is also less predictable,
likely due to the interplay of LRO with actual packet arrivals
at the NIC and NIC interrupt coalescence. TSO and LRO
make it harder to set the quantum optimally, and a quantum
greater than the largest packet size, 64 kB, is much too large
in most cases.

Mis-configuration with Jumbo Ethernet. Many network
devices may not be optimally configured, or are configured
conservatively. Most end hosts are configured for standard
Ethernet, in case a network device does not support Jumbo
packets. If a network device enables support for Jumbo Eth-
ernet [57], e.g., in case some end-hosts need it, then DRR
on this device would use a 9 kB quantum when the MTU is
effectively 1500 B.

0.2

0.3

0.4

0.5

0.6

0.7
0.8
0.9

Re
qu

es
t l

at
en

cy
 (m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

3.5

4.0

4.5

5.0

5.5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(a) CPU vs scheduling latency

3

4

5

6

7

8
9

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

 [d
ot

te
d]

50 100 500 1K 5K 10K
Quantum size (B)

0.8

1.0

1.2

1.4

1.6

1.8
2.0
2.2

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
scrr: cpu
drr: t-put
drr+sfo: t-put
scrr: t-put

(b) CPU vs app. throughput
Figure 5: Trade-offs in DRR’s quantum configuration.

2.4 DRR quantum configuration trade-offs

DRR’s quantum is usually set to the maximum packet size
in the network (MTU) [81]. Such configuration impacts ap-
plication performance and resource utilization. With a large
quantum, DRR produces large bursts of packets that belong to
a single flow and a latency-sensitive flow has to wait longer
to be allocated its share, increasing the application latency
(Fig. 2). Conversely, with a quantum smaller than MTU,
DRR may need to spend a few scheduling rounds accumu-
lating enough deficit to transmit a large packet, such missed
visits ultimately result in wasted compute resources.3 Fig. 5a
presents the results of an experiment with the DRR scheduler
mixing latency-sensitive 500B requests traffic (a two packet
burst) with heavy background traffic using 1500B packets
as an attempt to mimic the mixed and diverse nature of In-
ternet bursts arriving at a bottleneck (the experiment is fully
described in §5.5). Increasing the quantum to 10 kB increases
the latency of the small requests experienced at the applica-
tion level (by 140% compared to the best-case latency for
DRR+SFO). Reducing the quantum to 100B raises the CPU
utilization of the scheduler to nearly 7% of the system (around
75% increase), in this case 93% of its scheduling visits are
missed due to insufficient deficit.

CPU utilization is a good proxy for the overall resource
requirements of the packet scheduler. Some software imple-
mentations of packet schedulers in Internet gateways result
in reduced network throughput due to their high CPU us-
age [2, 3]. Fig. 5b shows an incast of heavy flows sharing
a bottleneck link serviced by DRR as we increase the CPU
utilization by reducing the quantum. We use perf [9] to mea-
sure the CPU consumption of the scheduler’s qdisc module.
At higher quanta, the lower per-packet processing time is
balanced by the increasing packet rate, and CPU usage is
constant. A small 20B quantum makes DRR the bottleneck
and reduces aggregate throughput to 3 Gb/s, which is a third
of the capacity. During packet processing many parts of the
Linux network stack must be exercised (§D.4). The CPU
usage for DRR is less than 2.5%, however this increases CPU
contention, cache misses and overall pressure on the rest of
the networking stack, causing this slowdown.

3Some hardware implementations of DRR use negative deficits, however
after sending a large packet, missed visits will be needed to recover the deficit
and avoid unfairness. The only way to eliminate missed visits is either to
accept unfairness or to restrict the quantum to be greater than MTU.

1440 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 Self Clocked Round Robin

An ideal packet scheduler should adapt to workload dynamics,
such as varying packet sizes and burstiness, both at the flow
and packet level, without the need for explicit user input. Con-
versely, DRR requires quantum configuration based on packet
lengths and flow types. In addition, a widespread deployment
requires scalability, resource efficiency, and tight bounds on
both performance and fairness, which cannot be satisfied al-
together by Fair Queuing schedulers. In this section, we
introduce Self-Clocked Round-Robin Scheduling (SCRR) to
address those needs. We design SCRR with the following
goals in mind:

• Per-flow or per-class QoS scheduling.
• Fair bandwidth allocation.
• Low scheduling latency for bursty flows.
• Low resource consumption at high loads.
• Scalability to large number of sub-queues.
• Compatibility to any transport, including TCP.
• Parameter-less and agnostic to flow information.
• Plug and play replacement for DRR and Fair Queuing.
To envision SCRR, we find that virtual clocking proves to

be a great asset in realizing dynamic scheduling paradigms
that adapt to workload changes. Unlike conventional deficit
round-robin that sends a predetermined burst on each sub-
queue visit, SCRR aims to track virtual times for sub-queues
and transmit as much as a flow sub-queue’s virtual time allows
in order to achieve fair scheduling without relying on any flow
information. In order to eliminate the expensive ordered list
maintenance as in classical fair scheduling [41, 42], SCRR
visits each flow sub-queue in a round-robin fashion. SCRR
can be used in both low-load and high-load environments as
a parameter-less improvement over DRR. (§3.1)

SCRR is flexible and is augmented by various customiza-
tions and enhancements. SCRR can optionally use weight
for the sub-queues (§3.1) [32]. It can use the virtual finish
time, like SCFQ [41], or virtual start time, like STFQ [42].
No Packet Metadata (§3.2) eliminates the need to tag pack-
ets with their virtual time while enqueued, reducing resource
requirements. The combination of Sparse Flow Optimiza-
tion (§3.3.1), Initial Advance (§3.3.2), and No Empty (§3.3.3)
use the properties of virtual time to decrease the latency of
bursty flows beyond the state of the art, without violating
the fairness and burstiness guarantees of SCRR. With these
enhancements, when both heavy and short flows are present
at the scheduler, bursty flows will not have to wait for mul-
tiple scheduling rounds to make progress and enjoy lower
scheduling latency.

3.1 Virtual Clocking Semantics

We start by laying out the formal foundations of the SCRR
scheduler. All mathematical notations used are summarized in
Table 1. The SCRR scheduler maintains a global virtual clock,

which is updated to the maximum virtual time of dequeued
packets at the end of each round. Each sub-queue features
a head virtual time which is determined by the virtual time
of the packet at the head of the queue. Depending on the
head virtual time, sub-queues can be either lagging or leading
compared to the global virtual clock. During each sub-queue
visit, the scheduler allows a lagging sub-queue to catch up
with the global virtual scheduling time, while a leading sub-
queue advances the global virtual clock. During a period that
is longer than a scheduling round, sub-queues may change
their state from lagging to leading and vice versa.

Definition 1. A scheduling round is the period of time when
all active sub-queues have been visited once, and only once.
A sub-queue is active when it contains outstanding packets.

Definition 2. A sub-queue is lagging (catching up) as long as
its head virtual time is smaller than the global virtual clock.

Definition 3. A sub-queue is leading as long as its head
virtual time is larger or equal to the global virtual.

During each round, the scheduler visits sub-queues in
round-robin and forwards all packets that have a virtual time
that is older than the global virtual clock. If a sub-queue does
not feature a lagging packet, the head packet is transmitted,
and the scheduler moves to the next sub-queue. This
ensures that no processing cycle is wasted when visiting
each sub-queue, while still ensuring that fairness can be
achieved via virtual clocking. SCRR effectively implements
round-robin scheduling with byte-level fairness granularity
and an adaptive quantum equal to the largest serviced packet
in a round.

Enqueue Process. Since SCRR is a multi-queue scheduler,
the arrived packets undergo a classifier to determine their
target sub-queues. In implementations that target per-flow
fairness, each flow is stochastically assigned to a separate
sub-queue using a flow classifier (e.g., fq in Linux). If the
sub-queue is backlogged, the virtual time of the tail packet
plus its size is used as the virtual time for the new packet.
However, if the sub-queue had been idle, the current global
clock is used as the packet virtual time. This is to ensure that
an idle sub-queue does not receive a large (and consequently,
unfair) scheduling share due to inactivity for a long period.

Formally, at scheduling round k, the virtual time of packet
p j

f , i.e., the j’th packet of sub-queue f , is defined as:

S(p j
i) = max{F(p j−1

i),c(k)} (1)

where F(p j
i) is the virtual finish time of the previous packet

and c(k) denotes the current virtual time of the scheduler. The
virtual finish time for packet p j

i is defined as:

F(p j
i) = S(p j

i)+
l(p j

f)

r f
(2)

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1441

Table 1: Description of mathematical notations.
Notation Description
p j

f Packet j of flow f

l(p j
f) Length of packet p j

f
c(k) Global virtual clock at scheduling round k
v(p j

f) Virtual time of packet (p j
f)

r f Rate (weight) of flow f
N Number of packets in the scheduler
Q Vector of active sub-queues in the scheduler
n Number of active sub-queues in the scheduler
M Maximum length among all packets

where l(p j
f) denotes the length of the packet and r f is the

weight of the sub-queue f . Algorithm 1 in Appendix A
presents the enqueue procedure.

Dequeue Process. The majority of virtual timekeep-
ing processes take place during the packet dequeue. SCRR
starts with the first non-empty sub-queue and schedules one
packet. The scheduler then loops through that sub-queue
and transmits packets as long as the virtual time of the head
packet is older than the global virtual clock. This approach
accomplishes two key objectives. First, it guarantees the
transmission of at least one packet from each sub-queue,
preventing missed schedule opportunities that lead to wasted
compute cycles. Second, it helps the lagging sub-queues to
catch up with the leading sub-queues by sending multiple
packets. Upon moving to the next sub-queue, the scheduler
records the start time of the last dequeued packet and cycles
through the remaining active sub-queues. When a scheduling
round is finished, SCRR updates the global virtual clock to
the maximum packet virtual time that was transmitted during
that round. Therefore, an update of the global clock only
occurs once during each round to ensure the correct operation
of the scheduler. The dequeue procedure is outlined in
Algorithm 2 in Appendix A.

The self-clocking semantics in SCRR uses Start-Time Fair
Queuing (STFQ) [42] as its basis. Alternatively, as a design
choice, it is possible to schedule packets using their virtual
finish times as in [41]. In §4, we perform all the correctness
proofs for the start time version, and in Appendix B.1, we do
the same for the finish-time version. The two self-clocking
paradigms offer identical fairness and burstiness bounds for
SCRR and differ slightly in the state-keeping required for the
scheduler’s implementation. It is also worth noting that all
virtual time calculations in SCRR support sub-queue weights
to implement QoS, i.e., the packet’s length is divided by the
weight of its corresponding sub-queue.

3.2 Eliminating per-packet metadata
Both SCFQ [41] and STFQ [42] need to store the virtual
time of the packet while the packet is enqueued. Since this
is usually done in the packet metadata, it has the downsides

of added complexity and increased memory operations. No
Packet Metadata (NPM) is an enhancement to the SCRR
algorithm that computes packet metadata after dequeuing the
packet, and therefore eliminates the need to store the virtual
time of the packet as metadata.

When dequeuing a packet, the first issue is to know if
the sub-queue was idle or backlogged when the packet was
enqueued (§3.1). With NPM, the scheduler saves the global
virtual clock of the previous round. If the virtual time of
the last dequeued packet in the sub-queue is greater than
previous virtual clock, then that sub-queue was scheduled in
the previous or current round, and was backlogged. When a
sub-queue is backlogged, the start time of any queued packet
can be derived from the finish time of its predecessor in the
sub-queue. Consequently, the sub-queue must store the finish
time of the last dequeued packet, instead of the finish time of
the last enqueued packet. When a sub-queue was idle, NPM
always sets to virtual time of the packet to the current global
clock. When the sub-queue was idle, the packet virtual time is
supposed to be the value of the global virtual clock at the time
the packet was enqueued (Equation 1). The insight is that in
SCRR, precise virtual timing does not really matter as long
as the packet is included in the proper scheduling round and
its virtual time does not change the computation of the next
global clock. Further, in many cases the sub-queue was added
to the schedule in the current round, so the packet virtual time
would have been the current global clock anyway.

NPM computes the virtual time of dequeued packets based
on the scheduler’s previous global time and the previous
packet’s finish time in the same sub-queue. This simple heuris-
tic makes SCRR as memory efficient as DRR while making
the enqueue process a breeze by removing four memory oper-
ations during insertion. The theoretical proofs obtained for
SCRR also apply to SCRR with NPM, using either the finish
time of packets or their start times.

3.3 Flow Latency Enhancements for SCRR

Packets of backlogged flows need to wait for all prior packets
of the sub-queue to be dequeued, so their queuing delay is
the sub-queue’s length times the duration of each schedul-
ing round. The latency of such packets is dominated by the
queuing delay, therefore their exact position in the scheduling
round has little impact on their latency. Further, backlogged
flows are usually associated with throughput-intensive ap-
plications whose performance is dictated by the fairness of
the scheduler. For backlogged flows, round robin schedulers,
such as DRR and SCRR, are in practice as good as Fair Queu-
ing schedulers, such as SCFQ and STFQ.

Non-backlogged flows, also called sparse flows, don’t ac-
cumulate packets in the sub-queue, therefore, their packets
are immediately eligible to be dequeued. The position of
those packets in the scheduling round makes a big difference
to their latency. Further, interactive and latency-sensitive

1442 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

applications are major origins of sparse flows, or flows that
alternate between sparse and lightly backlogged. Our aim is
to make the latency of SCRR for sparse flows as good as the
Fair Queuing schedulers.

Our enhancements for SCRR reduce the latency of sparse
flows, and as a result make the latency of backlogged flows
slightly worse than DRR. As pointed above, backlogged
flows are almost never sensitive to such minor differences in
latency. This design choice aims to improve the latency of
flows that care the most about it. This enables to balance the
scheduling performance for various types of flows without
explicit flow information.4 The above enhancements involve
various trade-offs between resource usage, latency, and fair-
ness. Hence, it is at the discretion of the network operators
to decide which combination of SCRR features to use. We
empirically evaluate the direct impact of each of these en-
hancements on application performance in Appendix D.2.

3.3.1 Sparse Flow Optimization

Sparse Flow Optimization (SFO) is a technique developed
for DRR that reduces the latency of bursty flows by prioritiz-
ing sparse flows [47]. SFO was trivially added to SCRR. In
SFO, sub-queues that were previously inactive (i.e. sparse)
are no longer added at the back of the schedule, but instead in
the new list of sub-queues that always take precedence over
the old list of sub-queues (that were already part of the sched-
ule, i.e. backlogged). To prevent sparse sub-queues from
starving backlogged sub-queues, newly empty sub-queues are
kept in the schedule and are only potentially removed from it
during the next scheduling round [19].

3.3.2 Initial Advance for new sub-queues

The trivial version of SFO in SCRR does not benefit the bursty
flows as well as SFO for DRR. With DRR, if multiple packets
have accumulated prior to a sub-queue being scheduled via
SFO, those packets can be sent in the current scheduling
round, up to a quantum. With basic SCRR, when a sub-queue
has been idle, the virtual time of the first packet is set to the
current virtual clock (same as SCFQ/STFQ). When the sub-
queue is scheduled with SFO, the first packet can be sent, but
any subsequent packet has a virtual time in the future and
needs to wait for the next scheduling round.

Initial advance fixes this issue by allowing SFO to send
multiple packets in the first schedule of a previously inactive
sub-queue. It simply sets the virtual time of the first packet
based on the previous virtual time instead of the current vir-
tual time (Fig. 6c). The virtual time of subsequent packets is
based on the virtual time of the first packet, packet size, and
the sub-queue weight, therefore setting a virtual time closer

4The Completely Fair Scheduler is a relevant case study. While the
original process scheduler design heavily depended upon the use of nice
values for latency-sensitive processes, the scheduler was gradually improved
to automatically favor interactive applications [24].

v(i-2)

Advance

c(k-1) c(k)

v(i+j)v(i+j)

v(i-1)v(i-1) v(i+1)v(i+1)

v(i+j+1)v(i+j+1)

v(i)v(i)

f1

f2

f5

v(i)v(i)

f4 v(i-1) v(i)v(i)

f3 v(i-1)v(i-1)

v(i-1)v(i-1)

c(k+1)

v(i)v(i)

v(i)v(i)

(a) Advancing global clock

b1 ≤ A(k)

P(i)P(i)P(i-1)P(i-1)

c(k-1)
Advance = A(k) ≤ M

P(i+j-1)P(i+j-1)

b2 ≤ M

c(k)

P(i+j)P(i+j)

c(k+1)

P(i+j+1)P(i+j+1)

(b) Maximum burstiness

Initial
advance

Regular

c(k-1) c(k)

v(i+2)v(i+2)

c(k+1)

v(i+j)v(i+j) v(i+j+1)v(i+j+1)v(i-1)v(i-1) v(i)v(i) v(i+j) v(i+j+1)v(i-1) v(i)

v(i+1)v(i+1)v(i)v(i) v(i+1)v(i)

v(i+1)v(i+1)v(i)v(i)

f1

f2r

f2i

(c) Initial Advance
Figure 6: SCRR clock management with start-time semantics.

to the previous virtual clock enables potentially more subse-
quent packets to have a virtual time lower than the current
virtual time, and consequently to send more packets in current
schedule.

Initial advance will not violate the scheduler’s fairness and
burstiness properties. The current scheduling round processes
packets from sub-queues with virtual times later than the
previous virtual clock c(k−1) (Fig. 6a). Therefore, setting
the virtual time of the first packet to any value later than
the previous virtual clock is still compatible with SCRR. To
further prevent unfairness and avoid starvation, SCRR makes
sure that the virtual time of a sub-queue used to tag packets
can only go forward, not backward. Initial advance can be
further tuned. To reduce the average flow burstiness, we set
the virtual time of the head packet to the previous virtual
clock plus the packet’s size times the sub-queue weight: if
all packets in the sub-queue are the same size, the burst of
packets from the sub-queue scheduled by SFO is equal to the
advance, instead of the advance plus an additional packet (Fig.
6b).

3.3.3 Getting rid of empty visits with No Empty

SFO in DRR keeps newly empty flows in the schedule for at
least one round to prevent unfairness and starvation [19]. This
means that the next time that sub-queue is scheduled, if it is
still empty, the scheduler needs to remove it from the schedule
and pick another sub-queue. This is problematic in software
as such empty visits create extraneous cache misses. This
is also problematic in hardware with fixed-delay processing
pipelines, it makes the amount of work to schedule one packet
unpredictable, as many successive empty sub-queues may
need to be processed.

No Empty improves SFO and eliminates these empty visits
by leveraging the virtual clocking semantics. With No Empty,
idle sub-queues are never kept in the schedule. To prevent
starvation, when a previously inactive sub-queue needs to be
inserted into the schedule, its virtual time is checked against
the current clock. If a sub-queue has transmitted more than
its fair share of packets in the current schedule, its virtual
time will have advanced beyond the global virtual clock. If
a sub-queue has a virtual time greater than the global virtual
clock, it is denied the use of SFO, and is instead added to the
back of the old list of sub-queues, similar to the original DRR.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1443

Otherwise, it can use SFO and is added at the back of the new
list of sub-queues.

No Empty is especially attractive to hardware implemen-
tations as it makes the processing of SCRR with SFO com-
pletely deterministic, without loops and recursions. It also
combines with Initial advance to benefit bursty flows. In
many cases, the packets of the burst do not arrive at the same
time. With the original SFO, only the packets already accumu-
lated prior to SFO scheduling are sent in the current schedule,
if a packet arrives later, the sub-queue is at the back of the
schedule and the packet has to wait a full scheduling round.
With No Empty, when this later packet arrives, the sub-queue
is inactive, and can be inserted in the current scheduling round
another time, as long as the virtual time of the packet is older
than the current virtual clock.

4 Theoretical Analysis

In this section, we explore the theoretical properties of the
scheduler and provide upper bounds for the throughput, fair-
ness, and burstiness.

4.1 Analysis of Backlogged SCRR
Initially, we show that the movement of the global clock
under SCRR is tightly bounded during each scheduling round.
Next, using this insight, we establish the fairness index of
the backlogged scheduler and argue that SCRR enjoys the
same fairness index as DRR in the long run. Finally, we
argue that the per-flow burst sizes are strictly bounded by two
maximum-sized packets, similar to DRR.

Definition 4 (Single Clock Update per Round). For the
smallest time interval [t1, t2] that includes a full round-robin
scheduling round, i.e., a period when all active flows are
visited at least once, SCRR global clock is updated only once
according to the scheduled packet with the highest virtual
time value.

Definition 5 (SCRR Global Clock Updates). All global
clock updates in SCRR occur at the end of a scheduling round,
the global clock only advances forward, and the clock update
marks the start of a new scheduling round.

Theorem 1 (The Global Clock Advance Upper Bound).
At each scheduling round, the global clock advancement in
SCRR, A(k), is bounded by the maximum packet length.

Proof. Suppose that for the SCRR scheduler with backlogged
sub-queues, the global clock is set to c(k) at the beginning
of a scheduling round. Since SCRR guarantees the dequeue
of a packet upon a visit, packet pi

f is dequeued for flow f .
The packet’s virtual time (start time) is v(pi

f). The following
cases can be observed (Fig. 6a):

(1) v(pi
f)≤ c(k):

The dequeued packet has a virtual time earlier than the global

clock (flows f1, f2, f3). In this case, the flow is lagging behind
the global clock and the dequeued packet will not move the
global clock forward according to Definition 5. The flow will
have a chance to dequeue consecutive packets as long as the
above condition holds, without an impact on the global clock.

(2) v(pi−1
f)≤ c(k)< v(pi

f):
The dequeued packet has a virtual time later than the global
clock, therefore, this packet can move the global clock to
v(pi

f) (flows f4, f5). The flow can only send a single packet,
since dequeuing any packet with a virtual time after the clock
will force the scheduler to switch to a new sub-queue (see
§3.1). The value of v(pi

f)−v(pi−1
f) is the size of packet pi−1

f ,
and is therefore always smaller than the maximum packet
size. Let M denote the maximum possible packet size in
the scheduler, i.e., M = max f∈Q(lmax

f). In this condition, the
updated virtual clock has the following bound:

v(pi
f)≤ v(pi−1

f)+M ≤ c(k)+M

c(k+1) = max f∈Q(v(pi
f))≤ c(k)+M.

No other conditions are possible, Theorem 1 follows.

Theorem 2 (Maximum Burstiness of SCRR). At each
scheduling round, the aggregate size of a set of packets de-
queued from one sub-queue is at most (rmax +1)M, where
rmax = max f∈Q r f .

Proof. We denote the burst size for flow f at round k as
Burstk

f . If the flow has become active during the schedul-
ing round, or if the virtual clock of the dequeued packet is
later than the global clock, it is only allowed to send a single
packet, according to Theorem 1.

If the virtual clock of the dequeued packet is earlier than the
global clock, the flow is lagging and all packets with virtual
time earlier than the global clock can be dequeued. Given
that the virtual time of these packets is later than the global
clock of the previous round–otherwise they would have been
dequeued during the previous scheduling round–, the set of
packets dequeued is constrained by:

c(k−1)< v(pi
f)≤ v(pi+ j

f)≤ c(k)

The virtual time difference between the first and last packet
is bounded by the clock advance, which is bounded by the
maximum packet size, M:

v(pi+ j
f)− v(pi

f)≤ c(k)− c(k−1)≤M (3)

In a flow, the virtual clock increase of successive packets
corresponds to the size of those packets. The virtual clock is
based on packet start times (see Fig. 6b for a demonstration),
so the clock increase is based on the previous packet. Since
v(pi

f)− v(pi−1
f) = l(pi−1

f) and by (3),

v(pi+ j
f)− v(pi

f) =
i+ j−1

∑
n=i

l(pn
f)

1444 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Burstk
f =

i+ j−1

∑
n=i

rmax · l(pn
f)+ l(pi+ j

f)≤ (rmax +1)M

4.2 Throughput and Fairness in SCRR
In this section, we derive theoretical bounds for SCRR.

Theorem 3 (Fairness Index for SCRR). The fairness index
of SCRR, FairnessIndex f , is 1 for any flow, f .

Proof. Suppose each flow in our system is continuously
backlogged and each packet is tagged with their start-
time at enqueue. Let A(k) = c(k + 1) − c(k), n = |Q|,
M = max f∈Q

(
lmax

f

)
, and R = ∑ f∈Q r f .

By Theorem 1, A(k)≤M for each round k. If a packet has
a virtual time before or equal to c(k), our algorithm will send
it by the end of round k. Thus, the total amount of bytes sent
by flow f by the end of round k, Sent f ,k, is bounded by

r f

k

∑
j=1

A(j)−M ≤ r f

k−1

∑
j=1

A(j)≤ Sent f ,k ≤ r f

k

∑
j=1

A(j)+M.

Similarly, summing over all flows provides bounds for
Sentk, the total amount of data sent overall by round k.

∑
f∈Q

(
r f

k

∑
j=1

A(j)−M

)
≤ Sentk ≤ ∑

f∈Q

(
r f

k

∑
j=1

A(j)+M

)

Then combining these inequalities gives us

r f ∑
k
j=1 A(j)−M

R∑
k
j=1 A(j)+n ·M

≤
Sent f ,k

Sentk
≤

r f ∑
k
j=1 A(j)+M

R∑
k
j=1 A(j)−n ·M

.

As the number of rounds approaches infinity, the fairness
quotient converges to r f /R by the squeeze theorem, and thus
our fairness index is

FairnessIndex f =
FQ f

r f
∑g∈Q rg

=
FQ f

r f
R

= 1.

5 Testbed Evaluations

We present a scalable way to evaluate SCRR by developing a
novel approach to testing packet schedulers. We use a physi-
cal testbed with synthesized traffic and perform measurements
at the application level. For simplicity, we only evaluate flow
scheduling, i.e., all scheduling entities (flows) have the same
weight. We believe that our findings apply to QoS scheduling,
where flows have different weights. Our experiments yield
the following findings:

• In the presence of NIC acceleration functions, SCRR
reduces the CPU utilization of the packet scheduling
operations by up to 46% and 23% compared to STFQ
and DRR (with 1500B quantum), respectively (§5.3).

• SCRR achieves equivalent Jain fairness to all fair
scheduling schemes when facing up to 20k active flows
(§5.4). E.g., SCRR maintains a Jain index of > 0.97
when scheduling up to 20k active flows.

• SCRR offers 87×, 50%, and 18% lower latency for a
request-response workload, compared to tail-drop, DRR-
1500 with Sparse Flow Optimization, and STFQ, respec-
tively (§5.5).

• SCRR offers 15× and 40% lower frame latency com-
pared to tail-drop and DRR+SFO-1500, respectively,
when scheduling synthetic VBR traffic (§5.5).

A more comprehensive set of results on performance of
PIFO approximations (D.1), SCRR’s individual components
(D.2), application performance under TCP BBRv3 congestion
control (D.3), CPU utilization and throughput (D.4), flow
fairness (D.5) and application performance under TCP Cubic
(D.6) can be found in Appendix D.

5.1 Scheduler Implementations

We implement various queuing disciplines and schedulers
in Linux tc subsystem as a set of ‘qdisc’ modules for Linux
version 5.10. These software implementations in the tc sub-
system enable us to use the schedulers on a real system and
employ them as part of a sender software switch, a software
router, or combined with other qdiscs. Our implementations
are compatible with all accelerations of the Linux TCP/IP
stack, such as segmentation offloading and interrupt coalesc-
ing. Our implementations are intentionally single-threaded
to remove the interference from the NIC driver’s weighted
round-robin scheduler among parallel packet rings [7, 84].
The evaluated systems are as follows:

Tail-drop uses the standard byte-FIFO from the Linux
kernel (bfifo) on a single queue with the default capacity of
18 MB (15 ms of traffic) for a 10 Gbps setup. PI2 is our own
optimized version of the PI2 reference implementation [31].
As a representative of modern Active Queue Management
(AQM) [73], PI2 uses a single queue and its target delay is 15
ms (the recommended default).

DRR+SFO is the Deficit Round Robin implementation
from the sch_fq module [33]. We stripped all extraneous
features from this scheduler and kept only the classifier and
the scheduler. The simpler code and smaller sub-queue struc-
ture help dramatically reduce CPU usage. The classifier is
based on a small hash table, and each hash bucket contains an
RB-tree [10] holding the sub-queues. This implementation
improves the original DRR algorithm [81] with Sparse Flow
Optimization [47], which prioritizes newly active sub-queues
to reduce the response times of latency-sensitive flows. We
also include DRR in our results to represent the original DRR
algorithm without Sparse Flow Optimization. This is the im-
plementation widely found on hardware targets. The suffix of
DRR+SFO and DRR indicates its quantum.

SCRR is our implementation of SCRR. This scheduler

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1445

Software Switch

(a) Edge Switching
Software Router

(b) Software Routing
Figure 7: Topologies in the physical testbed.

reuses the structure and classifier of the DRR scheduler, along
with its sub-queue management and instrumentation. SCRR
includes four enhancements: No Packet Metadata (§3.2),
Sparse Flow Optimization (§3.3.1) Initial Advance (§3.3.2),
and No Empty (§3.3.3). SCRR-basic refers to the SCRR
algorithm without these enhancements.

STFQ is our implementation of STFQ [42]. We reuse
the structure and classifier of the DRR and SCRR modules.
The sub-queue pointers are stored in a sorted RB-tree [10],
ordered by the virtual time of the head packets. Using an RB-
tree for implementing STFQ proved to be the most efficient
way to manage a dynamic sorted list– inspired by CFS [5].

AIFO and SP-PIFO are two approximations of Push-In
First-Out queuing abstractions that use STFQ prioritization
[17, 82, 89]. We implement AIFO using a single FIFO queue
with default parameters set as 64 for the sampling and 10%
for the burst headroom. SP-PIFO uses 8-level priority FIFOs
with no restrictions on their size. We include both techniques
in our results and refer the readers to Appendix D.1 for further
analysis of these schemes,

5.2 Experiment Setup

We use the two topologies as depicted in Fig. 7. The edge
switching topology (Fig. 7a) represents packet switching
on a sender host machine, for example in a virtual switch
deployed on a server in a datacenter or in the cloud. One
server acts as the traffic generator and the schedulers are con-
figured on that server to forward the traffic. This mimics
a small-scale outcast traffic pattern setting. The software
routing topology (Fig. 7b) is used by default and represents
in-network scheduling where one software gateway routes
traffic between the senders and receivers, this represents de-
ployment on home routers, SD-WAN gateways, access points
or middleboxes. The schedulers are configured on the middle
server to forward the traffic between seven receiving network
interfaces and one transmitting interface being the bottleneck.
This topology enables us to emulate incast traffic patterns.
These topologies are implemented in a testbed consisting
of ten Linux servers connected via X710 10 Gbps NICs to
Aruba 5406R switches. The scheduling server machine in
the edge topology features 2x Intel Xeon E5-2643 CPUs to-
taling 24 logical cores (3.4 GHz). The scheduling server for
the routing topology leverages 2x Intel Xeon E5-2680 CPUs
totaling 28 cores (2.4 GHz). A subset of our experiments
is done in a 25 Gbps topology consisting of four servers in

3

5

7

10

20

30

50

70

Av
er

ag
e

pa
ck

et
 le

ng
th

 (k
B)

 [d
ot

te
d]

10 100 1K 10K
Number of parallel flows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr
skblen

(a) TSO

2

3

4

5

6
7
8
9

Av
er

ag
e

pa
ck

et
 le

ng
th

 (k
B)

 [d
ot

te
d]

5 10 50 100 500 1K 5K
Incast scale (number of flows)

1

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr
skblen

(b) LRO
Figure 8: Impact of increasing Incast scales on CPU utilization in
the presence of NIC offloading functions.

the edge-switching topology, connected via Intel E810 NICs
and a Tofino 2 switch. By default, each experiment runs for
1 minute. The workload traffic is generated using versions
2.1.9 and 2.1.10 of iperf [8]. The default TCP congestion
control is Cubic (refer to §D.3 for BBRv3 results). The de-
fault MSS is 1456 bytes and LRO/GRO are disabled unless
specified otherwise. In some experiments, Byte Queue Lim-
its are lowered [48], to shrink the NIC transmit queue and
to reduce transmit batching, which can decrease application
latency. Finally, CPU utilization is measured using Linux
perf framework [9] by summing the usage of the enqueue
and dequeue functions of each scheduler.

5.3 NIC Accelerations - TSO & LRO

We start by investigating the interaction between hardware
offloading functions and the schedulers. Fig. 8a shows the
impact of TCP Segmentation Offloading (TSO) on software
packet schedulers as we increase the number of TCP flows in
the edge switching topology (Fig. 7a). With a larger number
of flows, the individual bandwidth share decreases and the
average TSO packet size (dotted line) decreases from 64 kB
to 1500B (full packet size distribution is in Fig. 4a), causing
an increase in CPU usage in all schedulers. Decreasing the
quantum of DRR increases CPU cycles wasted in missed
visits (§2.4). The CPU utilization of SP-PIFO and AIFO
is atypical and described in §D.1.1. We also observe that
SCRR-basic scheduling automatically lowers CPU usage by
adapting to the packet sizes, yielding a similar CPU overhead
as DRR-9000. This experiment is a worst case for SCRR, in
our other experiments it often has equal or lower CPU usage
than DRR+SFO-9000 (§5.5). Nevertheless, with 2048 flows,
SCRR reduces the CPU utilization compared to STFQ and
DRR-1500 by 46% and 23%, respectively.

Fig. 8b presents the LRO packet sizes (dotted) received
on the router in topology 7b, where each of the two sender
machines produces half of the workload flows. The impact
of LRO is a lot less predictable than TSO, and less packet
aggregation is done (full packet size distribution is in Fig. 4b).
DRR with smaller quanta cannot adapt to the dynamics of
the traffic, causing CPU wastage while SCRR offers lower
CPU overhead amongst schedulers with flow classification at
high scales. Our previous results in Fig. 5b indicate that for

1446 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
in

 Fa
irn

es
s

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) TCP flows and MSS bias

5 10 50 100 500 1K 5K 10K
Number of parallel flows

0.85

0.90

0.95

1.00

Ja
in

 Fa
irn

es
s

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) UDP flows and rate bias
Figure 9: Jain fairness index with different bias settings.

every 1% increase in the overall CPU utilization of the qdisc
up to 17% reduction in throughput can be expected. In other
experiments, we disable the offloading functions to prevent
the schedulers from dealing with unwanted large segments.

5.4 Application Fairness

The crucial property of a packet scheduler is enforcing fair-
ness and QoS. To better scale the experiments, we configured
all sub-queues with identical weights and configured biases
between flows to showcase how the scheduler overcome the
bias and achieves fairness under backlogged flows.

Fig. 9a uses maximum segment sizes (MSS) as the bias
between TCP flows, each of the seven senders is using an
MSS set to 2500, 3000, 3500, 5000, 6000, 8500, and 8956
bytes, respectively. This forces the schedulers to send more
packets from flows that feature smaller packets and can verify
the proper byte-level accounting of the schedulers. On each
sender, the number of TCP connections varies from 1 to 4096,
for a maximum of 28,672 flows. The Jain Index [49] based
on the throughput of every flow shows that all Fair Queuing
and Round-Robin schedulers, including SCRR, offer superior
fairness as they enforce byte-level fairness for every flow.
Since TCP congestion control is not designed to provide byte-
level fairness, tail-drop and PI2 show poor fairness. AIFO and
SP-PIFO also show poor fairness due to their limited number
of sub-queues. At a very high number of TCP flows (28k),
the fairness of all schedulers is impacted by hash collisions
in the classifier, a well-known caveat of using hashing in
flow classifiers. Most QoS classifiers have well-defined QoS
classes that do not use hashing and would not suffer from
this issue. With 28k flows, some flows experience reduced
performance or stalls, especially with the tail-drop queue.

We repeat the above experiments using UDP and flow rates
as the bias in a 25 Gbps setup consisting of one sending ma-
chine and three receivers. Each connection pair is configured
to offer 16.6, 12.5, and 8.3 Gbps, respectively, all bottle-
necked by the sender’s 25 Gbps egress bandwidth. According
to Fig. 9b, a similar trend can be observed for all evaluated
schedulers. The only difference is AIFO, which is able to
throttle faster flows in order to control the queue utilization.
A more comprehensive set of results on fairness using UDP
and different bias settings can be found in Appendix D.5.

200 300 500 1K 2K 3K 5K 10K
Reply Size (bytes)

0.15

0.20

0.30

0.50

0.70

1.00

1.50

2.00

Re
qu

es
t l

at
en

cy
 (m

s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) Response size vs latency

2.5 3.0 3.5 4.0 4.5
Enqueue+Dequeue CPU (percent)

0.3

0.5

1.0

2.0
3.0

5.0

10.0

20.0

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-500
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) CPU util. vs latency
Figure 10: Impact of packet scheduling on request latency.

150 200 300 400 500 600 800 1000 1500
Packet Size (bytes)

1.5

2.0

2.5

3.0

3.5

Fr
am

e
la

te
nc

y
(m

s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) Frame size vs latency

2 3 4 5
Enqueue+Dequeue CPU (percent)

2

3

5

7

10

15

20

Fr
am

e
la

te
nc

y
(m

s) tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) CPU util. vs latency
Figure 11: Impact of packet scheduling on VBR frame latency.

5.5 Bursty Flow Performance

Request-response workloads. Modern networks are filled
with small request-response flows [22, 62, 71]. This improved
BufferBloat experiment [38] showcases how our schedulers
can help those small requests when they are mixed with long-
lived heavy flows. Here, two of the receiver machines gener-
ate 8 latency-sensitive flows each, the flows are a sequences
of short back-to-back request-response with a request of 50B
and varying response lengths. The replies are usually a short
burst: the TCP ack and one or more packets for the reply.
Another two senders generate 32 parallel background long-
lived TCP flows each, to force the scheduler to be congested
(uncongested schedulers just act as FIFOs).

Fig. 10a presents the latency of a selected subset of the
schedulers. As the response size increases, they are split
across more TCP segments, requiring more scheduling rounds
to be forwarded, and we see a corresponding increase in la-
tency. SP-PIFO has poor latency and fairness beyond one
MSS, this is detailed in §D.1.3. DRR+SFO variants with
smaller quanta are able to produce lower response times as
smaller response packets experience lower queuing delays,
similar to STFQ. SCRR with its latency enhancements offers
superior performance compared to all other alternatives be-
cause when a sub-queue is added to the schedule, it can send
multiple packets in the round instead of a single packet.

Fig. 10b averages CPU overhead and average latency over
all reply sizes of fig. 10a. Tail-drop and PI2 use a single queue
that is quickly filled by background TCP flows, imposing a
full queuing delay to the request packets. AIFO keeps its
single queue short (§D.1.2), which only slightly helps its
latency at the cost of increased CPU utilization. SP-PIFO’s
CPU utilization is amongst the highest, and higher than STFQ

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1447

(§D.1.1). The performance trade-offs of DRR is detailed in
Fig. 5a. In this experiment, 500B looks to be a sweet spot
for quanta setting. Other configurations may lead to different
sweet spots (see §D.6). Both SCRR and SCRR-basic adapt
to packet sizes and are therefore able to offer smaller latency
than the optimally configured DRR+SFO-1500. Specifically,
SCRR is able to achieve lower CPU utilization than all DRR
counterparts while improving the application latency by 87×,
1.5×, and 1.18×, compared to tail-drop, DRR+SFO-1500,
and STFQ, respectively. A more comprehensive performance
study of SCRR components can be found in Appendix D.2.

Streaming workloads. Streaming workloads are nowa-
days popular [55]. They commonly use Variable Bit Rate
(VBR) encoding and reduce their packet sizes to mitigate the
impact of packet losses [30, 79]. Those short bursts of small
packets will alternate between sparse and backlogged, de-
manding low latency and high throughput performance from
the scheduler. We use the isochronous capability in Iperf
to emulate 64 concurrent VBR UDP flows on two servers,
each targeting 1.5 Mbps and 30 Frames Per Second (FPS),
which represents a typical 720p Zoom video communication
bitrate. The VBR flows are competing in 7b topology with
128 long-running heavy TCP flows from two servers. Fig.
11 presents the one-way latency of each frame for different
schedulers. Reducing packet size decreases performance as
the header and processing overheads of small packets hurts
their throughput. For DRR, the increased CPU utilization of
short quantum hurts the throughput of the burst. STFQ man-
ages low latency despite its high CPU utilization. Much like
the request-response workload, the majority of VBR frames
are bursty, therefore, SCRR which is carefully designed for
bursty flow performance offers superior latency compared
to all alternatives. Concretely, SCRR offers 15×, 1.4×, and
1.08× lower frame latency compared to tail-drop, DRR+SFO-
1500, and STFQ, respectively. Our experiments with BBRv3
congestion control in Appendix D.3 further confirm that while
congestion control has no impact on the performance of short
bursty flows, SCRR can provide lower latency and resource
utilization compared to the state-of-the-art schedulers.

6 Related Work

Starting from Nagle’s [64] practical fair queuing, packet
scheduling has been the focus of numerous works.
The Origin of Self-Clocking. Packet-based Generalized Pro-
cessor Sharing (PGPS) scheduling [68] studies latency and
burstiness bounds with virtual clocking and leaky bucket ad-
mission control. Self-Clocked Fair Queuing (SCFQ) [41] tags
packets with a virtual clock, indicating their virtual finish time
(expected end of transmission). To determine eligible queues
for transmission, the scheduler maintains a sorted list based
on virtual times of head packets. Upon enqueue, each packet’s
virtual time is calculated as the queue’s current virtual time,
augmented by the packet’s length, proportional to the queue’s

assigned weight assigned. After transmission, the scheduler
updates its virtual time to the transmitted packet’s time.

Start-Time Fair Queuing (STFQ) [42] is a similar fair queu-
ing paradigm, using virtual clocking but tags packets with
their virtual start time (expected start of transmission). This
virtual time equals the finish time of the tail packet if the
queue is backlogged or the scheduler’s global virtual time if
idle. STFQ improves SCFQ’s average scheduling delays by
53% [42], but its O(log(n)) computational complexity limits
its practicality. Several works explore STFQ’s implementa-
tion [45,53,88] or attempt to approximate it in programmable
hardware [17, 63, 89]. However, scalability challenges re-
main [45, 82], and existing approximations fail to ensure flow
fairness and ideal sparse flow performance. Fair queuing
schedulers have strong performance, and may outperform
SCRR for some workloads or configurations. Finally, DRR
variants [56, 69, 81] offer flow-level fairness, but using a user-
specified quantum makes it difficult to argue their perfor-
mance trade-offs.
Programmable and priority packet scheduling. [78] im-
plements a programmable queuing abstraction for com-
plex scheduling and queue management paradigms such as
Weighted Fair Queuing. Similarly, PIFO [82] enables packet-
level prioritization at a limited scale in hardware. As shown
in Appendix D.1, existing programmable scheduling imple-
mentations suffer from under-utilization and heavy packet
reordering. AFQ [77] similarly approximates fair queuing
paradigms in programmable hardware. Karuna [28] presents
packet scheduling for deadline flows. SCRR focuses on stan-
dard TCP/IP networks while allowing for future extensions.

7 Conclusions

Dating back to almost three decades ago, deficit round-robin is
still one of today’s widely used fair queueing paradigms. This
paper identifies the diversity in packet sizes and burstiness as
two critical characteristics of modern Internet traffic that make
DRR’s performance unpredictable and sub-optimal. We then
revisit classical fair queueing and introduce the Self-Clocked
Round Robin Scheduler (SCRR) with strong fairness bounds.
We augment SCRR with enhancements that target bursty,
latency-sensitive flows over the Internet. Our physical testbed
evaluations, carefully crafted to probe the performance of
the packet scheduler, reveal that SCRR offers lower resource
consumption and superior latency performance compared to
widely deployed scheduling and policing mechanisms.

Acknowledgments

We thank our shepherd John Sonchack and all the anonymous
reviewers for their constructive feedback. We thank Hewlett
Packard Labs for hosting the first two authors as interns during
this work. The work is partially supported by NSF CNS NeTS
grant 2313164.

1448 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense

Competition (MACCDC) Traces. https://www.netresec.com/?pa
ge=MACCDC, 2012.

[2] SQM, Cake and Piece of Cake QoS - High CPU Usage. https:
//forum.openwrt.org/t/sqm-cake-and-piece-of-cake-qos
-high-cpu-usage/17794, 2018.

[3] SQM/QoS Can Saturate the CPU/Is This Expected or Can the Code Be
Improved? https://forum.openwrt.org/t/sqm-qos-can-satur
ate-the-cpu-is-this-expected-or-can-the-code-be-impro
ved/, 2019.

[4] The CAIDA UCSD Anonymized Internet Traces. https://www.ca
ida.org/catalog/datasets/passive_dataset, 2019.

[5] CFS Scheduler. https://docs.kernel.org/scheduler/sched-d
esign-CFS.html, 2023.

[6] Intel® Ethernet Controller E810 Datasheet. https://cdrdv2.intel
.com/v1/dl/getContent/613875?wapkw=columbiaville%20dat
asheet, 2023.

[7] Intel® Ethernet Controller X710/ XXV710/XL710 Datasheet. https:
//cdrdv2-public.intel.com/332464/332464_710_Series_Dat
asheet_v_4_1.pdf, 2023.

[8] Iperf 2 Download. https://sourceforge.net/projects/iperf
2/, 2023.

[9] perf: Linux Profiling With Performance Counters. https://perf.w
iki.kernel.org/index.php/Main_Page, 2023.

[10] Red-black Trees (rbtree) in Linux. https://www.kernel.org/doc
/Documentation/rbtree.txt, 2023.

[11] Segmentation Offloads in Linux Kernel. https://www.kernel.org
/doc/html/latest/networking/segmentation-offloads.html,
2023.

[12] Understand and Configure MDRR/WRED on 12000 Series Routers.
https://www.cisco.com/c/en/us/support/docs/routers/120
00-series-routers/18841-mdrr-wred-18841.html, 2023.

[13] BBR. https://github.com/google/bbr, 2024.

[14] Configuring MDRR on Enhanced Queuing DPCs. https://www.ju
niper.net/documentation/us/en/software/junos/cos/topic
s/concept/cos-configuring-mdrr-on-enhanced-queuing-d
pcs.html, 2024.

[15] Linux Advanced Routing & Traffic Control HOWTO. https://tldp
.org/HOWTO/Adv-Routing-HOWTO, 2024.

[16] AGARWAL, S., CAI, Q., AGARWAL, R., SHMOYS, D., AND VAHDAT,
A. Harmony: A Congestion-free Datacenter Architecture. In NSDI
(2024).

[17] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. SP-
PIFO: Approximating Push-in First-out Behaviors Using Strict-priority
Queues. In NSDI (2020).

[18] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pFabric: Mminimal Near-
optimal Datacenter Transport. In SIGCOMM (2013).

[19] ARASHLOO, M. T., BECKETT, R., AND AGARWAL, R. Formal
Methods for Network Performance Analysis. In NSDI (2023).

[20] BAHRAMALI, A., SOLTANI, R., HOUMANSADR, A., GOECKEL, D.,
AND TOWSLEY, D. Practical Traffic Analysis Attacks on Secure
Messaging Applications. In NDSS (2020).

[21] BENNETT, J. C. R., AND ZHANG, H. WF2Q: Worst-case Fair
Weighted Fair Queueing. In INFOCOM (1996).

[22] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network Traffic
Characteristics of Data Centers in the Wild. In IMC (2010).

[23] BERG, B., BERGER, D. S., MCALLISTER, S., GROSOF, I., GU-
NASEKAR, S., LU, J., UHLAR, M., CARRIG, J., BECKMANN, N.,
HARCHOL-BALTER, M., AND GANGER, G. The CacheLib Caching
Engine: Design and Experiences at Scale. In OSDI (2020).

[24] BOURON, J., CHEVALLEY, S., LEPERS, B., ZWAENEPOEL, W.,
GOUICEM, R., LAWALL, J., MULLER, G., AND SOPENA, J. The
Battle of the Schedulers: FreeBSD ULE vs. Linux CFS. In ATC
(2018).

[25] CAI, Q., CHAUDHARY, S., VUPPALAPATI, M., HWANG, J., AND
AGARWAL, R. Understanding Host Network Stack Overheads. In
SIGCOMM (2021).

[26] CAI, Q., VUPPALAPATI, M., HWANG, J., KOZYRAKIS, C., AND
AGARWAL, R. Towards µs Tail Latency and Terabit Ethernet: Disag-
gregating the Host Network Stack. In SIGCOMM (2022).

[27] CHANG, H., VARVELLO, M., HAO, F., AND MUKHERJEE, S. Can
You See Me Now? A Measurement Study of Zoom, Webex, and Meet.
In IMC (2021).

[28] CHEN, L., CHEN, K., BAI, W., AND ALIZADEH, M. Scheduling
Mix-flows in Commodity Datacenters with Karuna. In SIGCOMM
(2016).

[29] CHO, K., MITSUYA, K., AND KATO, A. Traffic Data Repository at
the WIDE Project, 2000.

[30] CHOI, A., KARAMOLLAHI, M., WILLIAMSON, C., AND ARLITT, M.
Zoom Session Quality: A Network-Level View. In PAM (2022).

[31] DE SCHEPPER, K., ALBISSER, O., STEEN, H., AND TILMANS,
O. sch_dualpi2: Dual Queue with Proportional Integral controller
Improved with a Square. https://github.com/L4STeam, 2020.

[32] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and Simula-
tion of a Fair Queueing Algorithm. In SIGCOMM (1989).

[33] DUMAZET, E. sch_fq: Fair Queue Packet Scheduler. https://lwn.
net/Articles/564825/, 2013.

[34] DUMAZET, E., AND LI, C. BIG TCP. In Netdev 0x15 (2021).

[35] FELDMANN, A., GASSER, O., LICHTBLAU, F., PUJOL, E., POESE,
I., DIETZEL, C., WAGNER, D., WICHTLHUBER, M., TAPIADOR, J.,
VALLINA-RODRIGUEZ, N., HOHLFELD, O., AND SMARAGDAKIS,
G. The Lockdown Effect: Implications of the COVID-19 Pandemic
on Internet Traffic. In IMC (2020).

[36] FLOYD, S., HENDERSON, T., AND GURTOV, A. The NewReno
Modification to TCP’s Fast Recovery Algorithm. https://datatrac
ker.ietf.org/doc/html/rfc3782, 2001.

[37] FORENCICH, A., SNOEREN, A. C., PORTER, G., AND PAPEN, G.
Corundum: An Open-Source 100-Gbps NIC. In FCCM (2020).

[38] GETTYS, J. Bufferbloat: Dark Buffers in the Internet. IEEE Internet
Computing (2011).

[39] GHABASHNEH, E., ZHAO, Y., LUMEZANU, C., SPRING, N., SUN-
DARESAN, S., AND RAO, S. A Microscopic View of Bursts, Buffer
Contention, and Loss in Data Centers. In IMC (2022).

[40] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA, I. Multi-
resource Fair Queueing for Packet Processing. In SIGCOMM (2012).

[41] GOLESTANI, S. J. A Self-clocked Fair Queueing Scheme for Broad-
band Applications. In INFOCOM (1994).

[42] GOYAL, P., VIN, H. M., AND CHENG, H. Start-time Fair Queue-
ing: a Scheduling Algorithm for Integrated Services Packet Switching
Networks. ToN (1997).

[43] GRANT, S., YELAM, A., BLAND, M., AND SNOEREN, A. C. Smart-
NIC Performance Isolation with FairNIC. In SIGCOMM (2020).

[44] HE, J., AMMAR, M., ZEGURA, E., AND HALEPOVIC, E. QoE Met-
rics for Interactivity in Video Conferencing Applications: Definition
and Evaluation Methodology. In MMSys (2024).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1449

https://www.netresec.com/?page=MACCDC
https://www.netresec.com/?page=MACCDC
https://forum.openwrt.org/t/sqm-cake-and-piece-of-cake-qos-high-cpu-usage/17794
https://forum.openwrt.org/t/sqm-cake-and-piece-of-cake-qos-high-cpu-usage/17794
https://forum.openwrt.org/t/sqm-cake-and-piece-of-cake-qos-high-cpu-usage/17794
https://forum.openwrt.org/t/sqm-qos-can-saturate-the-cpu-is-this-expected-or-can-the-code-be-improved/
https://forum.openwrt.org/t/sqm-qos-can-saturate-the-cpu-is-this-expected-or-can-the-code-be-improved/
https://forum.openwrt.org/t/sqm-qos-can-saturate-the-cpu-is-this-expected-or-can-the-code-be-improved/
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://docs.kernel.org/scheduler/sched-design-CFS.html
https://cdrdv2.intel.com/v1/dl/getContent/613875?wapkw=columbiaville%20datasheet
https://cdrdv2.intel.com/v1/dl/getContent/613875?wapkw=columbiaville%20datasheet
https://cdrdv2.intel.com/v1/dl/getContent/613875?wapkw=columbiaville%20datasheet
https://cdrdv2-public.intel.com/332464/332464_710_Series_Datasheet_v_4_1.pdf
https://cdrdv2-public.intel.com/332464/332464_710_Series_Datasheet_v_4_1.pdf
https://cdrdv2-public.intel.com/332464/332464_710_Series_Datasheet_v_4_1.pdf
https://sourceforge.net/projects/iperf2/
https://sourceforge.net/projects/iperf2/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/Documentation/rbtree.txt
https://www.kernel.org/doc/Documentation/rbtree.txt
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.cisco.com/c/en/us/support/docs/routers/12000-series-routers/18841-mdrr-wred-18841.html
https://www.cisco.com/c/en/us/support/docs/routers/12000-series-routers/18841-mdrr-wred-18841.html
https://github.com/google/bbr
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/cos-configuring-mdrr-on-enhanced-queuing-dpcs.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/cos-configuring-mdrr-on-enhanced-queuing-dpcs.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/cos-configuring-mdrr-on-enhanced-queuing-dpcs.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/cos-configuring-mdrr-on-enhanced-queuing-dpcs.html
https://tldp.org/HOWTO/Adv-Routing-HOWTO
https://tldp.org/HOWTO/Adv-Routing-HOWTO
https://github.com/L4STeam
https://lwn.net/Articles/564825/
https://lwn.net/Articles/564825/
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc3782

[45] HEDAYATI, M., SHEN, K., SCOTT, M. L., AND MARTY, M. Multi-
Queue Fair Queuing. In ATC (2019).

[46] HEMMINGER, S. tc-netem(8): Network Emulator - Linux man Page.
https://man7.org/linux/man-pages/man8/tc-netem.8.html.

[47] HØILAND-JØRGENSEN, T. Analyzing the Latency of Sparse Flows in
the FQ-CoDel Queue Management Algorithm. IEEE Communications
Letters (2018).

[48] HRUBY, T. Byte Queue Limits Revisited. In Linux Plumbers Confer-
ence (2012).

[49] JAIN, R., CHIU, D. M., AND WR, H. A Quantitative Measure
Of Fairness And Discrimination For Resource Allocation In Shared
Computer Systems. CoRR (1998).

[50] JIANG, H., AND DOVROLIS, C. Why Is the Internet Traffic Bursty in
Short Time Scales? In SIGMETRICS (2005).

[51] KAPOOR, R., SNOEREN, A. C., VOELKER, G. M., AND PORTER,
G. Bullet Trains: A Study of NIC Burst Behavior at Microsecond
Timescales. In CoNEXT (2013).

[52] KARAMOLLAHI, M., WILLIAMSON, C., AND ARLITT, M. Packet-
Level Analysis of Zoom Performance Anomalies. In ICPE (2023).

[53] KORTEBI, A., MUSCARIELLO, L., OUESLATI, S., AND ROBERTS, J.
Minimizing the Overhead in Implementing Flow-aware Networking.
In INCS (2005).

[54] KUZNETSOV, A. N. tc-tbf(8): Token Bucket Filter - Linux man Page.
https://man7.org/linux/man-pages/man8/tc-tbf.8.html.

[55] LEE, I., LEE, J., LEE, K., GRUNWALD, D., AND HA, S. Demystify-
ing Commercial Video Conferencing Applications. In MM (2021).

[56] LENZINI, L., MINGOZZI, E., AND STEA, G. Aliquem: a Novel
DRR Implementation to Achieve Better Latency and Fairness at O(1)
Complexity. In IEEE QoS (2002).

[57] LEVY, M. Jumbo Frame Deployment at Internet Exchange Points.
https://www.ietf.org/archive/id/draft-mlevy-ixp-jumbo
frames-00.txt, 2011.

[58] LO, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KOZYRAKIS, C. Heracles: Improving Resource Efficiency at Scale.
In ISCA (2015).

[59] MACMILLAN, K., MANGLA, T., SAXON, J., AND FEAMSTER, N.
Measuring the Performance and Network Utilization of Popular Video
Conferencing Applications. In IMC (2021).

[60] MENG, Z., ATRE, N., XU, M., SHERRY, J., AND APOSTOLAKI, M.
Confucius: Achieving Consistent Low Latency With Practical Queue
Management for Real-time Communications. arXiv cs.NI 2310.18030
(2023).

[61] MICHEL, O., SENGUPTA, S., KIM, H., NETRAVALI, R., AND REX-
FORD, J. Enabling Passive Measurement of Zoom Performance in
Production Networks. In IMC (2022).

[62] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT, J.
Homa: A Receiver-driven Low-latency Transport Protocol Using Net-
work Priorities. In SIGCOMM (2018).

[63] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. NUMFabric: Fast and Flexible Band-
width Allocation in Datacenters. In SIGCOMM (2016).

[64] NAGLE, J. On Packet Switches with Infinite Storage. IEEE ToC
(1987).

[65] NISTICÒ, A., MARKUDOVA, D., TREVISAN, M., MEO, M., AND
CAROFIGLIO, G. A Comparative Study of RTC Applications. In IS
(2020).

[66] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: Distributed, Low Latency Scheduling. In SOSP (2013).

[67] PANG, R., ALLMAN, M., BENNETT, M., LEE, J. R., PAXSON, V.,
AND TIERNEY, B. A First Look at Modern Enterprise Traffic. In IMC
(2005).

[68] PAREKH, A. K., AND GALLAGER, R. G. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. ToN (1993).

[69] RAMABHADRAN, S., AND PASQUALE, J. Stratified round Robin: a
low complexity packet scheduler with bandwidth fairness and bounded
delay. In SIGCOMM (2003).

[70] RAMAKRISHNAN, K., FLOYD, S., AND BLACK, D. The Addition of
Explicit Congestion Notification (ECN) to IP. https://datatracke
r.ietf.org/doc/html/rfc3168, 2001.

[71] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.
Inside the Social Network’s (Datacenter) Network. In SIGCOMM
(2015).

[72] SAEED, A., DUKKIPATI, N., VALANCIUS, V., THE LAM, V., CON-
TAVALLI, C., AND VAHDAT, A. Carousel: Scalable Traffic Shaping at
End Hosts. In SIGCOMM (2017).

[73] SCHEPPER, K., ALBISSER, O., TSANG, I., AND BRISCOE, B. PI2 :
A Linearized AQM for both Classic and Scalable TCP. In CoNEXT
(2016).

[74] SCHLINKER, B., CUNHA, I., CHIU, Y.-C., SUNDARESAN, S., AND
KATZ-BASSETT, E. Internet Performance from Facebook’s Edge. In
IMC (2019).

[75] SENGUPTA, S., YADAV, V. K., SARAF, Y., GUPTA, H., GANGULY,
N., CHAKRABORTY, S., AND DE, P. MoViDiff: Enabling Service
Differentiation for Mobile Video Apps. In IM (2017).

[76] SHARAFZADEH, E., ABDOUS, S., AND GHORBANI, S. Understand-
ing the Impact of Host Networking Elements on Traffic Bursts. In
NSDI (2023).

[77] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNAMURTHY, A.
Approximating Fair Queueing on Reconfigurable Switches. In NSDI
(2018).

[78] SHARMA, N. K., ZHAO, C., LIU, M., KANNAN, P. G., KIM, C., KR-
ISHNAMURTHY, A., AND SIVARAMAN, A. Programmable Calendar
Queues for High-Speed Packet Scheduling. In NSDI (2020).

[79] SHARMA, T., MANGLA, T., GUPTA, A., JIANG, J., AND FEAMSTER,
N. Estimating WebRTC Video QoE Metrics Without Using Application
Headers. In IMC (2023).

[80] SHIEH, A., KANDULA, S., GREENBERG, A., KIM, C., AND SAHA,
B. Sharing the Data Center Network. In NSDI (2011).

[81] SHREEDHAR, M., AND VARGHESE, G. Efficient Fair Queueing Using
Deficit Round Robin. In SIGCOMM (1995).

[82] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable Packet Scheduling at
Line Rate. In SIGCOMM (2016).

[83] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom: Flexible and
Efficient NIC Packet Scheduling. In NSDI (2019).

[84] STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Titan:
Fair Packet Scheduling for Commodity Multiqueue NICs. In ATC
(2017).

[85] THAKKAR, P., SAXENA, R., AND PADMANABHAN, V. N. AutoSens:
Inferring Latency Sensitivity of User Activity Through Natural Experi-
ments. In IMC (2021).

[86] WANG, Z., LI, Z., LIU, G., CHEN, Y., WU, Q., AND CHENG, G.
Examination of WAN traffic characteristics in a large-scale data center
network. In IMC (2021).

[87] XU, X., AND CLAYPOOL, M. Measurement of Cloud-based Game
Streaming System Response to Competing TCP Cubic or TCP BBR
Flows. In IMC (2022).

1450 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-tbf.8.html
https://www.ietf.org/archive/id/draft-mlevy-ixp-jumboframes-00.txt
https://www.ietf.org/archive/id/draft-mlevy-ixp-jumboframes-00.txt
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

[88] XU, Y., AND ZHAO, M. IBIS: Interposed Big-data I/O Scheduler. In
HPDC (2016).

[89] YU, Z., HU, C., WU, J., SUN, X., BRAVERMAN, V., CHOWDHURY,
M., LIU, Z., AND JIN, X. Programmable packet scheduling with a
single queue. In SIGCOMM (2021).

[90] YUAN, X., AND DUAN, Z. Fair Round-Robin: A Low Complexity
Packet Scheduler with Proportional and Worst-Case Fairness. IEEE
ToC (2009).

[91] ZHANG, I., RAYBUCK, A., PATEL, P., OLYNYK, K., NELSON,
J., LEIJA, O. S. N., MARTINEZ, A., LIU, J., SIMPSON, A. K.,
JAYAKAR, S., PENNA, P. H., DEMOULIN, M., CHOUDHURY, P.,
AND BADAM, A. The Demikernel Datapath OS Architecture for
Microsecond-scale Datacenter Systems. In SOSP (2021).

[92] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNAMURTHY, A. High-
resolution Measurement of Data Center Microbursts. In IMC (2017).

[93] ZHANG, Y., TAN, Y., STEPHENS, B., AND CHOWDHURY, M. Justitia:
Software Multi-Tenancy in Hardware Kernel-Bypass Networks. In
NSDI (2022).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1451

A Self-Clocked Round-Robin Scheduling

This section expands on the design of the Self-Clocked Round-
Robin (SCRR) packet scheduler. Both SCRR-basic and SCRR
with its enhancements are presented.

Algorithm 1 SCRR-basic Enqueue

function ENQUEUE(pkt)
cur_queue← classi f y(pkt)

if cur_queue is inactive then
sub_queues.tail← cur_queue
rounds← rounds+1

end if
pkt.virtual← max(virtual_clock,cur_queue.clock)
cur_queue.clock← pkt.virt_tag+ pkt.length
cur_queue.enqueue(pkt)

end function

Algorithm 2 SCRR-basic Dequeue

Require: NP≥ 0 ▷ Packet Count
function DEQUEUE ▷ Packet Retrieval

if NP == 0 then return NULL
end if
cur_queue← sub_queues.head
pkt← cur_queue.dequeue()
NP← NP−1

▷ Global Clock Advance
if NP == 0 then

virtual_dequeue← pkt.virtual + pkt.length
virtual_clock← virtual_dequeue

else if pkt.virtual > virtual_dequeue then
virtual_dequeue← pkt.virtual

end if
▷ Sub-Queue Round Robin

virtual_next← pkt.virtual_time+ pkt.length
if virtual_next > virtual_clock or cur_queue is empty

then
if rounds≤ 0 then

virtual_clock← virtual_dequeue
rounds← all_queues.length

end if
rounds← rounds−1
sub_queues.head← cur_queue.next
if cur_queue is not empty then

sub_queues.tail← cur_queue
end if

end if
return pkt

end function

A.1 Pseudo code of SCRR-basic

SCRR-basic is the simplest of all the variants of SCRR.
The pseudo-code for the enqueue process of SCRR-basic is
shown in Algorithm 1. This is the process that is run when a
new packet arrives at the scheduler. First, the arrived packet
passes through the classifier to obtain its sub-queue handle,
i.e. the sub-queue where it will be enqueued. When doing
per-flow classification, the 5-tuple from the packet header is
used to select a sub-queue (source IP, destination IP, protocol,
source transport port and destination transport port). Other
QoS classifiers can also be used with SCRR. The current
sub-queue may be active (already in the schedule) or inactive
(empty). In the case the sub-queue is inactive, it is added
at the end of the schedule, the schedule is a simple linked
list of sub-queues. Tagging a packet with its virtual time is
implementation dependent and usually done in the metadata
associated with the packet. The packet virtual time is com-
puted here exactly like STFQ [42], i.e., the most recent of the
global clock and the finish time of the previous packet added
to the sub-queue. The virtual time of the sub-queue is updated
with the finish time of the new packet by adding its length in
bytes. In the weighted version of SCRR, the packet length
would be multiplied by the sub-queue weight. Ultimately,
the packet is added to the SKB list of the corresponding sub-
queue.

The pseudo-code for the dequeue process of SCRR-basic
is shown in Algorithm 2. This is the process that is run when a
packet needs to be sent over the outgoing link. First, a packet
is extracted from the current sub-queue. Then, the global
clock advance is computed. While conceptually similar to
STFQ [42], SCRR makes sure that the clock can only go
forward. Then, to advance the global clock, the scheduler
maintains a temporary virtual_dequeue clock that tracks the
largest virtual time of packets dequeued during the schedul-
ing round. After finishing a scheduling round, the global
clock is set to virtual_dequeue. The next part is where SCRR
distinguishes itself from STFQ. SCRR uses the virtual time
of the next packet in the sub-queue to decide if it stays on
that sub-queue or round robin to the next sub-queue. If the
virtual time is in the future (greater than current clock), or if
the sub-queue is empty, then the scheduler moves on to the
next sub-queue (that will be used next time the function is
called). If a number of scheduling rounds equal to the number
of sub-queues has elapsed, the virtual clock is updated with
virtual_dequeue (the largest of the packet virtual times de-
queued during that scheduling round). If the sub-queue is not
empty, it is put at the back of the schedule, so that its packets
can be sent at the next scheduling round.

The dequeue process must properly keep track of schedul-
ing rounds. The enqueue process may add a previously inac-
tive sub-queue to the current scheduling round. Tracking the
scheduling round is needed to ensure that the global clock is
only updated between rounds. If the global clock were to be

1452 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 3 SCRR Enqueue (with enhancements)

function ENQUEUE(pkt)
cur_queue← classi f y(pkt)
if cur_queue is inactive then

▷ No Empty
if cur_queue.clock <= virtual_clock or nq == 0

then ▷ Sparse Flow Optimization
new_queues.tail← cur_queue
rounds← rounds+1

else
old_queues.tail← cur_queue

end if
end if
cur_queue.enqueue(pkt)

end function

updated after each packet transmission, the later sub-queues
might fall further behind the global clock, leading to large
unwanted packet bursts.

The algorithm describes SCRR-basic using the start-time
of the packet like STFQ [42]. SCRR can also be implemented
using the finish-time of the packet, similar to SCFQ [41]. We
chose the start-time because it enables us to make SCRR’s
implementation simpler by computing the virtual time of the
next packet without any information about that packet.

A.2 Pseudo code of SCRR with enhancements

SCRR, for brevity, refers to the variant of SCRR scheduler
that includes all the enhancements, No Packet Metadata,
Sparse Flow Optimization, Initial Advance and No Empty.
In this section, we will only highlight the differences from
SCRR-basic in §A.1.

The pseudo-code for the enqueue process of SCRR is
shown in Algorithm 3. SCRR uses the No Packet Metadata
enhancement, therefore the packet virtual time is not com-
puted in the enqueue process, but in the dequeue process.
Consequently, the packet is not tagged with its virtual time.
In case the sub-queue has been inactive, SCRR uses the No
Empty enhancement to decide how to schedule that sub-queue.
If the finish time of the last packet on this sub-queue is in the
past (earlier than the current clock), then the new packet can
be fit into the schedule. In this case, it is eligible to use Sparse
Flow Optimization and the inactive sub-queue is added to
the list of sub-queue for priority scheduling. Otherwise, it is
added at the end of the schedule.

The pseudo-code for the dequeue process of SCRR-basic
is shown in Algorithm 4. SCRR uses Sparse Flow Opti-
mization, therefore it first looks for a sub-queue in the list of
previously inactive sub-queues, and only if that list is empty,
it looks in the regular schedule. With No Packet Metadata,
packet virtual time can be computed in dequeue. If the vir-

Algorithm 4 SCRR Dequeue (with enhancements)

Require: NP≥ 0 ▷ Packet Count
Require: nq≥ 0 ▷ Active Sub-queue Count

function DEQUEUE ▷ Packet Retrieval
if NP == 0 then return NULL
end if

▷ Sparse Flow Optimization
cur_queue← new_queues.head()
if cur_queue is null then

cur_queue← old_queues.head()
end if
pkt← cur_queue.dequeue()
NP← NP−1

▷ No Packet Metadata
if cur_queue.clock < virtual_previous then

if con f ig.initial_advance then ▷ Initial Advance
virtual_pkt← virtual_previous+ pkt.length

else
virtual_pkt← virtual_clock

end if
else

virtual_pkt← cur_queue.clock
end if
virtual_next← virtual_pkt + pkt.length
cur_queue.clock← virtual_next

▷ Global Clock Advance
if NP == 0 then

virtual_dequeue← pkt.virtual + pkt.length
virtual_previous← virtual_clock
virtual_clock← virtual_dequeue

else if pkt.virtual > virtual_dequeue then
virtual_dequeue← pkt.virtual

end if
▷ Sub-queue Round Robin

if virtual_next > virtual_clock or cur_queue is empty
then

if rounds≤ 0 then
virtual_previous← virtual_clock
virtual_clock← virtual_dequeue
rounds← nq

end if
rounds← rounds−1
rr_queue← rr_queue.next
if cur_queue is not empty then

old_queues.tail← cur_queue
end if

end if
return pkt

end function

tual finish of the last packet on the sub-queue is older than
the virtual clock of the previous scheduling round, then that
sub-queue was inactive. If the queue was inactive, and Initial

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1453

Advance is enabled, the packet virtual time is based on the
virtual clock of the previous scheduling round, this enables
the sub-queue to potentially send a few packets in the current
scheduling round before its clock advances beyond the global
clock. Otherwise, it uses the current virtual clock, and the
sub-queue can only send one packet in the current schedule. If
the sub-queue has been active, the packet virtual time is based
on the virtual time of the previous packet in that sub-queue,
like in SCRR-basic and STFQ. After that, the sub-queue’s
clock is advanced based on the packet length and optionally
the sub-queue’s weight. The rest of the dequeuing process is
identical to SCRR-basic, except the need to keep track of the
global clock of the previous scheduling round.

B Extended Theoretical Analysis

This section expands the theoretical properties of the sched-
uler, extending our findings in §4. We present the analysis of
SCRR using finish-time semantics.

B.1 Analysis of Backlogged SCRR Using
Finish-time Semantics

Section 4.1 studies the SCRR scheduler using start time, sim-
ilar to STFQ [42]. SCRR can also use finish time, similar to
SCFQ [41]. Using the finish time in SCRR does not change
the way the schedule behaves and similar proofs can be ob-
tained for SCRR’s fairness.

In Theorem 1, the packet virtual time is v(pi
f) and is

equal to its finish-time (Fig. 12). In case (2), The value of
v(pi

f)− v(pi−1
f) is the size of packet pi

f (instead of packet
pi−1

f), this packet is still smaller than the maximum packet
size, therefore the bound for case (2) is:
v(pi

f)≤ v(pi−1
f)+M ≤ c(k)+M.

c(k+1) = max f∈Q(v(pi
f))≤ c(k)+M.

The bound for case (2) is unchanged, and the other case
is unchanged, therefore Theorem 1 also applies when using
finish time.

In Theorem 2, equation 3 remains unchanged. Since the
virtual clock is based on packet’s finish time (Fig. 13), the
increase in the global clock occurs based on the current packet
(instead of the previous packet) :

v(pi+ j
f)− v(pi

f) =
i+ j

∑
n=i+1

l(pn
f)

Burstk
f =

i+ j

∑
n=i

l(pn
f) = l(pi

f)+
i+ j

∑
n=i+1

l(pn
f)

Burstk
f ≤M+M

Throughput Bounds and Fairness. The proof of fairness

c(k-1) c(k)

v(i+1)v(i+1)v(i-1)v(i-1)

v(i+j+1)v(i+j+1)

v(i)v(i)

f1

f2

v(i)v(i)

v(i+j)v(i+j)f3 v(i-1)v(i-1) v(i)v(i)

f4 v(i-1)v(i-1) c(k+1)
Advance

f5 v(i-1)v(i-1) v(i)v(i)

v(i)v(i)

Figure 12: Advancing the global clock in SCRR with finish-time
semantics.

b2 ≤ A(k)

Advance = A(k) ≤ M
c(k-1)

P(i+1)P(i+1) P(i+j)P(i+j)

c(k)

P(i+j+1)P(i+j+1)P(i)P(i)P(i-1)P(i-1)

c(k-2)

b1 ≤ M

Figure 13: Burstiness of SCRR with finish-time semantics.

with the finish time is identical to the proof using start-time
(§4.2). The only difference is that we define A(k) = c(k)−
c(k−1) (instead of A(k) = c(k+1)− c(k)). The rest of the
proof is unchanged, and as the number of rounds approaches
infinity, the fairness quotient converges to 1

n and the fairness
index converges to 1.

C Burstiness in Internet Traces

A burst is a train of packets with inter-packet gaps smaller
than a threshold [51]. Using this definition, we plot the CDF
of burst lengths for six representative Internet traces [1, 4, 20,
22, 29] in Fig. 14. Regardless of the threshold, a diverse
range of burst lengths can be observed which suggests that
Internet workloads feature both heavily backlogged and short
flows arriving at the bottlenecks. In fact. the similarity among
burst size distributions with different Inter-Packet Gap (IPG)
thresholds suggest that our analysis of Internet bursts in §2 is
independent of the chosen threshold. Additionally, the above
figures highlight the presence of back-to-back packets with
very small gaps, forming up a burst, and large inactivity gaps
between bursts. This can be partly attributed to factors such as
user behavior, especially for workloads like video streaming.
We explore the performance of packet scheduling under VBR
workloads in §5.5 and more thoroughly in Appendices D.3
and D.6.

D Extended Testbed Evaluation

This section presents an extended version of the testbed eval-
uation in §5, putting together our results of scheduling in
the presence of NIC offloading, fairness experiments, and
application latency experiments, SCRR’s component analy-
sis, and a closer look at the performance of existing PIFO
implementations.

1454 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

102 103 104 105 106

Burst Length (B)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

102 103 104 105 106

Burst Length (B)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

103 105 107

Burst Length (B)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

103 105 107

Burst Length (B)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

1 10 100 1000
Burst Length (packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(a) IPG < 10µs

1 10 100 1000
Burst Length (packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(b) IPG < 50µs

1 10 100 1000
Burst Length (packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(c) IPG < 100µs

1 10 100 1000
Burst Length (packets)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F mawi2024

mawi2010
caida
im
dc
ccdc

(d) IPG < 500µs
Figure 14: Burst length distribution for Internet traces using various IPG thresholds.

D.1 Performance of PIFO Approximations
Push-In First-Out abstraction [82] presents an interesting
breakthrough in realizing priority packet scheduling, paving
the way for maintaining priority lists in hardware that can
realize schemes such as STFQ [42] and pfabric [18]. To
overcome the practical roadblocks of deploying PIFO, recent
works attempt to approximate PIFO using admission control
on a single queue [89], and using strict-priority FIFOs [17].

D.1.1 CPU utilization in AIFO and SP-PIFO is high

The CPU utilization profile of AIFO is strikingly different
from conventional packet schedulers. Fig. 15 shows the CPU
utilization of the enqueue and dequeue functions separately
for the experiment shown in Fig. 8a (§5.3). The CPU utiliza-
tion of AIFO dequeue function is lower than even Tail-drop
(Fig. 15b), because AIFO keeps the queue much shorter
than other packet schedulers (§D.1.2) and reduces the overall
cache footprint. On the other hand, the CPU utilization in
enqueue is very high (Fig. 15a) due to the rank sampling and
percentile calculation [89]. Since the rank sampling of AIFO
can be tuned, we configured AIFO to sample the rank every
16 packets and to maintain up to 64 samples. We increased
the maximum number of samples from the default [89] to
improve AIFO’s fairness. In practice, the number of sam-
ples is usually much lower than 64, because only the samples
still in the queue are considered, and the queue is kept short.
Changes to the rank sampling rate and the maximum num-
ber of rank samples would obviously impact AIFO’s fairness
and CPU utilization, however we haven’t found a configu-
ration giving better overall performance than STFQ in our
experiments.

The CPU utilization profile of SP-PIFO is more balanced.
In enqueue, there is additional overhead in choosing the
proper priority sub-queue and keeping track of the rank of

each priority sub-queue (Fig. 15a). In dequeue, there is ad-
ditional overhead in scanning the priority sub-queues (Fig.
15b). For the majority of data points, SP-PIFO has higher
CPU utilization than STFQ with higher application latency
(Fig. 21, 22, 23).

D.1.2 AIFO causes queue underutilization

AIFO selectively drops packets prior to admitting them in its
single queue. For each packet, it computes a rank, and com-
pares this rank to the distribution of ranks for packet already
in the queue. If the percentile of the packet is lower than the
current queue occupancy, the packet is dropped, otherwise
it is admitted. AIFO implements STFQ by calculating the
packet rank from packet virtual times.

In Fig. 16a, a single TCP flow with increasing RTT is
run through a bottleneck. The bottleneck is created using
Linux TBF rate limiter [54], while the RTT in increased by
adding a fixed delay with Linux NetEm [46]. Each scheduler
is configured for 15 ms queuing delay. The theory of buffer
sizing [46] predicts that the 15 ms queue should be large
enough for TCP Cubic traffic with RTT up to 35 ms. This is
the case for all schedulers, except AIFO.

The problem is that when using STFQ, the statistical distri-
bution of ranks is highly biased, and the statistical admission
control of AIFO is no longer appropriate. With a single flow,
the virtual time of incoming packets is strictly increasing, as
it is always larger than any other packet in the queue, and
is therefore always rejected based on its rank. AIFO also
includes a burst mechanism: when the queue utilization is
below 10%, packets are never dropped. As a result, with
a single flow, AIFO can only use the portion on the queue
configured for burst. This underutilization of the queue has
direct impact on TCP performance as depicted in Fig 16a.

Fig 16b shows that even for very large number of flows

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1455

5 10 50 100 500 1K 5K
Incast scale (number of flows)

0

1

2

3

4

En
qu

eu
e

CP
U

us
ag

e
(p

er
ce

nt
)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) LRO - Enqueue

5 10 50 100 500 1K 5K
Incast scale (number of flows)

0.5

1.0

1.5

2.0

2.5

3.0

De
qu

eu
e

CP
U

us
ag

e
(p

er
ce

nt
)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) LRO - Dequeue

Figure 15: Impact of increasing Incast scales on CPU utilization
in the presence of NIC offloading functions.

1 2 5 10 20 50 100
Round Trip Time (ms)

600

700

800

900

1000

iPe
rf

th
ro

ug
hp

ut
 (M

b/
s)

tail-drop
pi2-drop
stfq
aifo-stfq
drr-1500

drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) Throughput as RTT increases

5 10 50 100 500 1K 5K
Incast scale (number of flows)

0.5

1.0

2.0

5.0

10.0

20.0

50.0

Co
ng

es
tio

n
Qu

eu
e

De
la

y
(m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
drr-1500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) Queue utilization

Figure 16: Throughput and queue utilization of AIFO under differ-
ent schedulers as RTT and flow count increase.

(10k), the statistics of packet virtual times are still sufficiently
biased to show severe queue uderutilization with AIFO. The
amount of queue underutilization decreases with the number
of flows, therefore it is not possible to fully compensate for it.

D.1.3 SP-PIFO causes packet reordering

We implement SP-PIFO using the semantics outlined in [17]
and compare its performance against our representative packet
schedulers. Fig. 17a presents the TCP re-transmission count
for all schemes for the TSO experiment in §5.3. Even with
heavy flows congesting the scheduler, SP-PIFO suffers from
intense packet re-ordering, resulting in unwanted TCP re-
transmissions. This in turn impairs the large receive of-
fload functions to save CPU by creating larger packets as
depicted in Fig. 17b, ultimately resulting in higher CPU uti-
lization. Hence, SP-PIFO’s flow migration across priorities,
comes at the cost of heavy re-ordering, starvation, TCP re-
transmissions and higher CPU consumption for heavy flows.

Next, we repeat the fairness experiments previously re-
ported in Fig. 9a on a testbed with similar configuration but
faster CPUs and report the results in Fig. 17c (§5.4). With
faster CPUs, all schedulers except SP-PIFO can achieve line
rate regardless of the incast scale, even in the case of resource-
hungry DRR+SFO-200. Similar to the above case, SP-PIFO
suffers from unwanted TCP re-transmissions that result in
reduced throughput.

Fig. 17d presents the request-response workload perfor-
mance under various packet schedulers; it is an extract of the
experiments previously reported in 10a (§5.5). The vertical
violins in Fig. 17d represent the distribution of latencies for

10 100 1K 10K
Number of parallel flows

0.0

200K

400K

600K

800K

1000K

1200K

Nu
m

be
r o

f r
e-

tra
ns

m
iss

io
ns

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) No. TCP re-transmissions

10 100 1K 10K
Number of parallel flows

2

3

5

10

20

30

50

Av
er

ag
e

pa
ck

et
 le

ng
th

 (k
B)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) Mean packet size with TSO

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

7

7.5

8

8.5

9

9.5

10

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(c) Aggregate throughput

200 300 500 1K 2K 3K 5K 10K
Reply Size (bytes)

0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

Re
qu

es
t l

at
en

cy
 (m

s)

sppifo-stfq
aifo-stfq

stfq
scrr

(d) Request latency

Figure 17: SP-PIFO performance with heavy flows and TSO (top
row), under heavy flows (bottom left), and under request-response
workloads (bottom right).

each reply size and each scheduler. Other schedulers have a
tight distribution of latency, whereas the latency distribution
of SP-PIFO is wide and mostly bimodal when the reply size
spans multiple packets. Although many requests are lucky to
benefit from the highest priority band and are quickly com-
pleted with a latency even lower than STFQ and SCRR, some
requests are heavily penalized and lead to poor average per-
formance. This is because, while the first response packet
will have a high chance of using the highest priority band, the
consecutive packets will have a larger virtual time and will
be inserted into lower bands, hence facing starvation.

D.2 SCRR Component Analysis
Fig. 18a compares the CPU utilization and response latency
of different SCRR components for the request-response exper-
iment reported in §5.5. The basic SCRR algorithm (without
bursty flow enhancements) offers lower CPU utilization com-
pared to DRR alternatives. The no packet metadata variant
offers even better CPU performance due to imposing less
memory pressure. The No Empty Schedule enhancement pre-
vents the Sparse Flow Optimization in SCRR from performing
unwanted visits into stale flow entries in the old flows list by
immediately kicking the flows out of the schedule and re-
inserting them back when they become active. This results
in improved responsiveness by lowering the latency by 23%
compared to the basic algorithm. The initial advance enhance-
ment has a similar effect on sparse flows by allowing them
to send a slightly larger burst without violating the fairness
bounds. When both enhancements come together in SCRR,
the best response latency results can be seen, improving the
basic algorithm by 46% while performing 18% faster than

1456 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) CPU util. vs latency

200 300 500 1K 2K 3K 5K 10K
Reply Size (bytes)

0.15

0.20

0.30

0.50

0.70

1.00

1.50

2.00

Re
qu

es
t l

at
en

cy
 (m

s)

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic

scrr+sfo
scrr+nm
scrr+nm+ne
scrr+nm+ia
scrr

(b) Response size vs latency

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
Enqueue+Dequeue CPU (percent)

0.2

0.3

0.4

0.5

0.6
0.7

Re
qu

es
t l

at
en

cy
 (m

s)

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr+sfo
scrr+nm
scrr+nm+ne
scrr+nm+ia
scrr

(c) Edge: Varying Request Size

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
Enqueue+Dequeue CPU (percent)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Fr
am

e
la

te
nc

y
(m

s)

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr+sfo
scrr+nm
scrr+nm+ne
scrr+nm+ia
scrr

(d) Router: Varying VBR pkt size
Figure 18: Comparing the performance of individual SCRR components for the request-response experiment in §5.5.

DRR+SFO with 200B quantum configuration. Finally, with
increasing reply lengths, the upper hand of Sparse Flow Opti-
mization starts to fade as the latency-sensitive flows become
backlogged in the scheduler and exhaust their fair share (Fig.
18b). We repeat this experiment on the Edge switching topol-
ogy and report the results in Fig. 18c in which similar trends
in the CPU utilization and response times can be observed
for SCRR variants. Finally, Fig. 18d presents the CPU vs
latency trade-off for a VBR traffic on the routing topology.
SCRR-basic shows a better adaptation to the VBR traffic com-
pared to DRR by offering 15% lower latency and 8% lower
CPU utilization with respect to DRR-1500 setting. Other
enhancements of SCRR further increase the latency gap by
16%.

D.3 Application Performance Under BBRv3
Request-response Flow Performance. Small request-
response flows are one of the most prevalent traffic patterns of
modern applications [22, 62, 71]. We already presented exper-
iments with request-response flows using TCP Cubic in §5.5
and §D.6, this section repeats those experiments with BBRv3
and highlight the differences between using BBRv3 and TCP
Cubic. We integrated BBRv3 from its official repository [13]
and use a different testbed with identical configuration to Fig.
7 with Linux machines running kernel 6.10. The main differ-
ence is that on this testbed the scheduler is running on much
faster CPUs (Intel Xeon W5-3435X), and therefore the packet
schedulers with high CPU usage are less penalized.

Fig. 19a depicts the application performance as we in-
crease the size of the requests from 100B to 10 kB while
the reply size is set to 100B on the router in topology 7b.
For this experiment, two sender machines generate 8 latency-
sensitive flows each, similar to the Cubic experiments (§5.5).
Another two senders generate 64 parallel background long-
lived TCP flows each. All flows are configured to use BBRv3.
We intentionally opt not to enable Explicit Congestion No-
tification (ECN) [70] support in BBRv3 as it can arbitrarily
impact scheduling performance, and the integration of ECN
in SP-PIFO and AIFO is not trivial and undefined [82, 89].

Fig. 19d shows that with the faster CPU, the CPU uti-
lization of all schedulers is reduced, and has also less jit-
ter. Fig. 19g illustrates that for request-response workloads,

the quantum configuration for DRR under BBRv3 offers the
usual tradeoff between latency and CPU usage along with
the benefits offered by SFO. Finally, BBRv3 offers a tighter
control over queue utilization, which causes all single-queue
schedulers, i.e., tail-drop, PI2, and AIFO, to have a smaller
average queuing latency. Nonetheless, SCRR is able to of-
fer superior latency compared to all alternatives, with low
CPU usage (Fig. 19j). SCRR has the lowest average latency
(0.24 ms), closely followed by DRR+SFO-200 (0.25 ms),
DRR+SFO-500 (0.27 ms), STFQ (0.28 ms) and DRR+SFO-
1500 (0.34 ms).

Figs. 19b, 19e, 19h, and 19k repeat the request-response
experiment on the edge topology (7a). Again, the same trends
in both application latency and CPU utilization in the face
of different request sizes can be observed. Linux’s control
over the transmit socket buffer size prevents the backlog to
exceed 1 ms for tail-drop which significantly improves its
application response time. As a result, both PI2 and AIFO
do not show any meaningful latency improvements over Tail-
Drop. Those results are pretty much equal to our results with
Cubic (§D.6), indicating again that the congestion control has
little effect on overall performance in this setup. SCRR has
the lowest average latency (0.14 ms), closely followed by SP-
PIFO (0.15 ms), DRR+SFO-200 (0.15 ms), STFQ (0.15 ms),
DRR+SFO-500 (0.16 ms) and DRR+SFO-1500 (0.19 ms).
Streaming Flow Performance. The traffic of video con-
ferencing applications is another important traffic pattern of
modern applications [52, 61, 79]. We already presented exper-
iments with Variable Bit Rate (VBR) flows using TCP Cubic
in §5.5 and more extensively in §D.6, this section repeats
those experiments with BBRv3 and highlight the differences
between using BBRv3 and TCP Cubic.

VBR experiment results under BBRv3 are depicted in Figs.
19c, 19f, 19i, and 19l. In this experiments, 2 senders generate
32 concurrent VBR UDP flows each, and two other servers
generate 64 long-running heavy TCP flows each. Here, the
major difference from Cubic experiments (§5.5) is that DRR’s
overall latency is barely affected when changing the quantum,
which is attributed to the faster CPU. The smaller quanta
does increase the CPU utilization, and for this experiment,
the optimal quantum is around 1500 B. Furthermore, SFO
improves the latency of DRR at little CPU cost. As usual,
SCRR meaningfully reduces both the latency and the CPU uti-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1457

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

0.2

0.3

0.5

0.7

1.0

2.0

3.0
Re

qu
es

t l
at

en
cy

 (m
s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) Router: Varying Request Size, Latency

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

0.10

0.15

0.20

0.30

0.50

0.70

1.00

1.50

Re
qu

es
t l

at
en

cy
 (m

s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) Edge: Varying Request Size, Latency

150 200 300 400 500 600 800 1000 1500
Packet Size (bytes)

0.3

0.4
0.5

0.7

1.0

1.5

2.0

3.0

Fr
am

e
la

te
nc

y
(m

s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(c) Router: Varying VBR packet size, La-
tency

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(d) Router: Varying Request Size, CPU

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

0.5

1.0

1.5

2.0

2.5

3.0
En

qu
eu

e+
De

qu
eu

e
CP

U
(p

er
ce

nt
)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(e) Edge: Varying Request Size, CPU

150 200 300 400 500 600 800 1000 1500
Packet Size (bytes)

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(f) Router: Varying VBR packet size, CPU

0.15

0.20

0.30

0.40

0.50

0.70

1.00

1.50

Re
qu

es
t l

at
en

cy
 (m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(g) Router: Varying Response Size,
DRR+SFO at 500B

0.10
0.12

0.15

0.20

0.30

0.40

0.50
0.60

Re
qu

es
t l

at
en

cy
 (m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

1.0

1.5

2.0

2.5

3.0

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(h) Edge: Varying Request Size, DRR+SFO
at 500B

1.0

1.5

2.0

2.5

3.0

Fr
am

e
la

te
nc

y
(m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

2

3

4

5

6

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(i) Router: Varying VBR packet size,
DRR+SFO at 500B

2 3 4 51.4 × 100

Enqueue+Dequeue CPU (percent)

0.3

0.5

1.0

2.0

3.0

5.0

10.0

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-500
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(j) Router: Varying Request Size

0.5 1.0 1.5 2.0 2.5
Enqueue+Dequeue CPU (percent)

0.15

0.20

0.30

0.40

0.50
0.60

0.80

1.00

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-500
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(k) Edge: Varying Request Size

2 3 4 5
Enqueue+Dequeue CPU (percent)

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

Fr
am

e
la

te
nc

y
(m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(l) Router: Varying VBR packet size
Figure 19: Impact of packet schedulers on application response times for latency sensitive workloads with BBRv3 transport.

lization. In this experiment, SCRR has the lowest average la-
tency (0.42 ms), followed by STFQ (0.56 ms), DRR+SFO-500
(0.57 ms), DRR+SFO-1500 (0.62 ms), DRR-200 (0.66 ms),
DRR+SFO-200 (0.67 ms), SCRR-basic (0.70) and DRR-200
(0.71 ms).

We observe that scheduling paradigms follow a similar
trend under both Cubic and BBRv3. BBRv3 includes ad-

vanced techniques to pace packets, to adjust the sending rate,
and to try to keep the latency small at the queue, plus a modi-
fied slow-start algorithm [13]. However, the bursty requests
are too short to show any significant difference compared to
Cubic (§5.5). Our results confirm that unlike packet schedul-
ing, congestion control has limited impact on the performance
short bursty flows and SCRR can complement widely used In-

1458 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5

6

7

8

9

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

 [d
ot

te
d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

4.0

4.5

5.0

5.5

6.0

6.5
CP

U
us

ag
e

(p
er

ce
nt

)
drr: cpu
drr+sfo: cpu
drr: throughput
drr+sfo: throughput

(a) CPU vs TCP throughput, 70 flows

3

4

5

6

7

8

9

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

 [d
ot

te
d]

50 100 500 1K 5K 10K
Quantum size (B)

2

3

4

5

6
7
8
9

10

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
scrr: cpu
drr: t-put
drr+sfo: t-put
scrr: t-put

(b) CPU vs TCP throughput, 700 flows

3

4

5

6

7

8
9

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

 [d
ot

te
d]

50 100 500 1K 5K 10K
Quantum size (B)

0.8

1.0

1.2

1.4

1.6

1.8
2.0
2.2

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
scrr: cpu
drr: t-put
drr+sfo: t-put
scrr: t-put

(c) CPU vs UDP throughput, 700 flows

_..

__commo..

ip_sublist_rcv_finish

Dequeue

Dequeue

Enqueue

f..

ip_list_rcv

i40e_lan_xmit_frame

secondary_startup_64_no_verify

i..

de..

native_queued_spin_lock_slowpath

fi..

net_rx_action

napi_consum..

iommu_map_a..

ip_ro..

handle_softirqs

skb_r..

menu_sel..

vlan_dev_hard_start_xmit

_..

napi_complete_done

handle..

mwait_idle_with_hints.constprop.0

swapper

fq_deque..

ip_sublist_rcv

do_idle

intel_idle

ha..
__napi_poll

in..

ip_finish_output2

intel..

__qdisc_..

f..

i4..

asm_common_interrupt

__netif_receive_skb_list_core

__i..

sch_direct_xmit

cpuidle_enter

n..

mwait_idle_with_hints.con..

sch_d..

ti..

xas_..

a..

__qdisc_run

intel_idle_xstate
common_interrupt

de..

net_tx_a..

i..

netif_receive_skb_list_internal

_raw_spi..

iommu_dma_map_p..

xa_f..

iommu_dma_u..

cpu_startup_entry

dev_hard_start_xmit

__iommu_dma_map

start_secondary

__dev_queue_xmit

irq..

i40e_napi_poll

ip_r..
dev_hard_start_xmit

cpuidle_enter_state

ip_rcv..

i..

_raw_spin_lock

__irq_exit_rcu

__iommu_..

__..

__dev_queue_xmit

(d) FlameGraph, TCP, DRR, Quantum 500 B

Figure 20: Impact of DRR quantum on CPU overhead and traffic throughput.

ternet congestion control by providing fairness, low resource
consumption and superior application performance for such
flows.

D.4 Impact of CPU overhead on throughput

CPU utilization is a good proxy for the overall resource re-
quirements of the packet scheduler. Some software imple-
mentations of packet schedulers in Internet gateways result
in reduced network throughput due to their high CPU us-
age [2, 3]. It is usually tricky to estimate the impact of CPU
overhead, because different packet schedulers may interact
differently with the rest of the networking stack. By changing
the quantum of DRR, we can artificially increase the CPU
overhead of packet scheduling without changing anything
else, and isolate the contribution of the packet scheduler over-
head. Further, when the quanta is below 1000 B, packets are
scheduled in the exact same order, so only CPU overhead
changes. Experiments in Fig. 20 create an incast of heavy
flows sharing a bottleneck link serviced by DRR and show the
increase in CPU overhead due to the reduced the quantum.

Fig. 20a shows the CPU overhead of the packet scheduler
and the throughput when using TCP flows. Each of the 7
sender generates 10 flows and each uses a MSS of 1000,
1500, 2000, 3000, 5000, 7000 and 8956 bytes respectively.
At higher quanta, the lower per-packet processing time is
balanced by the increasing packet rate, and CPU usage is
constant. A small 100B quantum makes DRR the bottleneck
and reduces the aggregate throughput to 5 Gb/s, which is

half of the capacity. The CPU usage for DRR is less than
7%, however this puts enough pressure on the rest of the
networking stack to cause such a slowdown.

Fig. 20b extends this experiment on our new testbed. Each
of the 7 senders initiate 100 flows, each using an MSS of 1500,
2000, 3000, 4000, 6000, 8000 and 8956 bytes, respectively.
The CPU frequency is downscaled to 1 GHz to mimic the
original testbed.5 The performance of DRR is similar to the
experiment on the original testbed in Fig. 20a, a small 20B
quantum reduces throughput to 3 Gb/s, which is a third of
when quantum is 10000B. SCRR achieves optimal throughput,
however on a slower CPU, SCRR could become a bottleneck
and cause lower throughput. SCRR offers low CPU overhead
because every iteration of the dequeue function is guaranteed
to dequeue a packet.

Fig. 20c repeats the experiment of Fig. 20b using UDP
flows, the flows are constant bit rate and the aggregate rate
per sender is 2 Gb/s, for a total of 14 Gb/s. This traffic that the
bottleneck can’t process is dropped, the ratio of UDP packet
drops (not shown) is the inverse mirror of the throughput,
a lower throughput means more packets are dropped. The
throughput results are broadly similar to the experiment with
TCP flows, however the CPU overhead measured is much
lower. Also, with the highest quantum, CPU overhead goes
up. We repeated these experiments multiple times to elim-
inate a fluke. We do not have a good explanation for those
specific results. The Linux network stack is complex, and
cache performance impact and context switch impact can be

5In the original testbed, the CPU frequency was not downscaled.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1459

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

0.75

0.80

0.85

0.90

0.95

1.00
Ja

in
 Fa

irn
es

s tail-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) UDP and rate bias: Jain

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
in

 Fa
irn

es
s tail-drop

stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) UDP and MSS bias: Jain

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
in

 Fa
irn

es
s

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(c) TCP and MSS bias: Jain

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

8.5

9

9.5

10

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

tail-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(d) UDP and rate bias: Throughput

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

8.5

9

9.5

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

tail-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(e) UDP and MSS bias: Throughput

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

5

6

7

8

9

10

iPe
rf

th
ro

ug
hp

ut
 (G

b/
s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(f) TCP and MSS bias: Throughput

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

1.0

1.5

2.0

2.5

3.0

3.5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(g) UDP and rate bias: CPU

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

1

2

3

4

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(h) UDP and MSS bias: CPU

10 50 100 500 1K 5K 10K
Incast scale (number of flows)

1

2

3

4

5

6

7

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(i) TCP and MSS bias: CPU
Figure 21: Fairness of packet schedulers and their CPU overhead as the scale of Incast increases.

un-intuitive. With UDP traffic, the networking stack has to
process a lot more packets and ultimately drop them, causing
additional CPU pressure. With TCP traffic, sub-queues may
go in and out of the schedule due to the saw-tooth behavior of
the TCP congestion control, increasing the amount work for
the scheduler. In summary, it’s not possible to determine an
exact CPU overhead that will cause throughput degradation,
this will depend on the traffic and the system.

Fig. 20d shows the the CPU overhead of the various kernel
functions in more detail as a FlameGraph for the experiment
in Fig. 20b with quantum size 500 B. The call stack for the en-
queue function starts with the kernel polling Ethernet drivers
(__napi_poll), which then passes newly received packet to
the networking stack (netif_receive_skb_list_internal), those
packets are routed (ip_finish_output2) and then directed to
a network device (__dev_queue_xmit) and finally the en-
queue function is called. Most of the calls to the dequeue
function are when a packet is directed to a network device
(__dev_queue_xmit), effectively after enqueuing some pack-

ets, the network stack try to make progress sending packet
from that queue. Another call stack for the dequeue function
is from a periodic timer in the network stack (net_tx_action).
As expected, the dequeue operations consume more CPU
than enqueue, because it needs to spin to accumulate quanta
for each flow (which is a similar result to Fig. 15). Dur-
ing packet processing many other parts of the Linux network
stack must be exercised that respectively consume CPU. With
more pressure on the qdisc, the network stack processing also
experiences more CPU contention and cache pressure. This
explain why even if the qdisc uses a fairly low percentage
of the CPU, it can be a bottleneck and lead to throughput
decrease.

D.5 Fairness Under Different Biases

The crucial property of a packet scheduler is enforcing fair-
ness and QoS. This section is an extended version of the
fairness experiments already shown in §5.4. Again, to better

1460 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

scale the experiments, we configured all scheduling classes
with identical weights and configured various biases between
flows to create potential unfairness. These experiments show-
case how the scheduler achieves fairness by overcoming these
biases.

The first bias we introduce is the rate at which flows arrive
at the scheduler. This is a much-generalized version of the
experiments in previous papers [81], where it aims to investi-
gate how well a scheduler deals with incast traffic and a large
number of misbehaving flows. The testbed is the original
testbed (§5.2) and we are using the routing topology 7b. The
seven senders generate UDP traffic, each with different aggre-
gate offered rates of 1.5, 2, 3, 4, 5, 6, and 7 Gb/s, respectively.
The number of UDP connections per sender varies from 1 to
4096, for a maximum of 28672 flows. Fig. 21a depicts the
Jain Index measuring fairness across the flows. The tail-drop
and SP-PIFO schedulers show poor fairness since it admits
packets proportional to their arrival rate, favoring UDP flows
with higher rates. All fair queueing schedulers, including
SCRR, have excellent fairness, as expected, as they enforce
byte-level fairness for every flow. At a very high number of
UDP flows (28k), the fairness of all schedulers is impacted
by hash collisions in the classifier, a well-known caveat of
using hashing in flow classifiers. Most QoS classifiers have
well-defined QoS classes that do not use hashing, and would
not suffer from this issue.

Fig. 21d presents the aggregate throughput of the UDP
flows. DRR-200 and DRR-500 are methods that waste CPU
cycles (§2.4) and they result in decreased throughput at higher
flow counts. This is because an increase in flow count in-
creases the cache footprint of the scheduler and the probabil-
ity of cache misses. Fig. 21g presents the CPU overhead on
the router. In general, a higher CPU overhead is more likely
to impact throughput (§2.4), however, in this experiment, the
relation between the two is not obvious. We believe that the
need to drop a very large number of packets distorts the CPU
overhead numbers measured. A lower quantum increases
CPU consumption for DRR, as more scheduling cycles are
needed to accumulate enough quantum. All variants of SCRR
offer lower CPU utilization amongst the schedulers.

The second bias we introduce is the packet size. Vary-
ing the packet sizes forces the schedulers to transmit more
packets from flows that send smaller packets in order to sat-
isfy the proper byte-level accounting of the schedulers. The
seven sender machines generate UDP traffic, each using a
different Maximum Segment Size of 2500, 3000, 3500, 5000,
6000, 8500, and 8956 bytes, respectively. Fig. 21b shows the
Jain Index measuring fairness across the flows. The tail-drop
queue yields poor fairness again. This is because the incast
traffic causes the single FIFO to always be at its peak utiliza-
tion. In this state, it becomes more probable for the queue
to have enough space for small packets under the byte limit
(18 MB, or 15 ms of traffic), which further favors flows with
small packets. All other schedulers have excellent fairness,

as expected. Fig. 21e shows the aggregate throughput of
the UDP flows, again DRR-200 and DRR-500 show reduced
throughput. Fig. 21h shows the CPU overhead on the router,
asserting SCRR’s low CPU overhead.

The packet size bias can also be used for TCP traffic. Fig.
21c plots the Jain Index for TCP Cubic flows. At a very
high number of TCP flows (28k), some flows experience
reduced performance or stalls, especially with schedulers that
use the tail-drop queue. The TCP congestion protocol is
not designed to provide byte-level fairness, therefore tail-
drop shows only slightly better fairness compared to UDP.
However, this time, flows with larger packets are favored. In
the congestion avoidance phase, TCP increases the congestion
window by one whole packet for each RTT, therefore flows
with larger packets can increase their throughput faster. The
PI2 AQM is not designed for byte-level fairness either, which
explains why it performs similarly to tail-drop. The same
applies to AIFO and SP-PIFO. All fair schedulers provide
superior fairness as they enforce byte-level fairness amongst
classes. Fig. 21e shows the aggregate throughput of the TCP
flows. The TCP flows are much more impacted than UDP
flows, as packet drops cause the congestion control to reduce
the congestion window. Fig. 21i shows the CPU overhead on
the router. In this experiment, the throughput decrease can
be directly correlated with the CPU overhead. As expected,
the schedulers consume more CPU than the tail-drop and
PI2, and as in previous experiments, the SCRR variants are
amongst the schedulers with the lowest overhead.

D.6 Application Performance Under Cubic

We present the extended application latency results from §5.5.
Request-response Workloads. Modern networks are filled
with small request-response flows [22, 62, 71]. We designed
experiments showcasing how schedulers can help those small
requests when they are mixed with long-lived heavy flows.
Single queues often suffer from BufferBloat, where a few
heavy flows can fill the queue and cause high latency for all
other flows. It is fairly easy to show how schedulers provide
lower latency than a single queue, however, we found it dif-
ficult to show the difference between the various schedulers
on latency experienced by applications. The main issue is
that those differences are mostly visible at very small request
sizes, but those small requests magnify the processing over-
heads and inefficiencies of the packet processing pipelines,
especially in the software. Additionally, the difference in
scheduling delays is an order of magnitude lower than the
latency added by necessary system optimizations such as in-
terrupt coalescence, packet batching and NIC offloads. Con-
sequently, in many cases, those differences are buried in the
noise.

Our first experiment mixes small requests with long-lived
heavy flows on the router in topology 7b. Two of the receiver
machines generate 8 latency-sensitive flows each, the flows

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1461

200 300 500 1K 2K 3K 5K 10K
Reply Size (bytes)

0.15

0.20

0.30

0.50

0.70

1.00

1.50

2.00
Re

qu
es

t l
at

en
cy

 (m
s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(a) Router: Varying Response Size, Latency

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

0.2

0.3

0.5

1.0

2.0

3.0

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-1500

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) Edge: Varying Request Size, Latency

150 200 300 400 500 600 800 1000 1500
Packet Size (bytes)

1.5

2.0

2.5

3.0

3.5

Fr
am

e
la

te
nc

y
(m

s)

stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(c) Router: Varying VBR packet size, La-
tency

200 300 500 1K 2K 3K 5K 10K
Reply Size (bytes)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(d) Router: Varying Response Size, CPU

200 300 500 1K 2K 3K 5K 10K
Request Size (bytes)

1.0

1.5

2.0

2.5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(e) Edge: Varying Request Size, CPU

150 200 300 400 500 600 800 1000 1500
Packet Size (bytes)

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500

drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(f) Router: Varying VBR packet size, CPU

0.2

0.3

0.4

0.5

0.6

0.7
0.8
0.9

Re
qu

es
t l

at
en

cy
 (m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

3.5

4.0

4.5

5.0

5.5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(g) Router: Varying Response Size,
DRR+SFO at 500B

0.2

0.3

0.4

0.5

0.6
0.7
0.8

Re
qu

es
t l

at
en

cy
 (m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

1.5

1.6

1.7

1.8

1.9

2.0

2.1
2.2
2.3
2.4

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(h) Edge: Varying Request Size, DRR+SFO
at 500B

1.5

2.0

2.5

3.0

3.5

Fr
am

e
la

te
nc

y
(m

s)
 [d

ot
te

d]

100 200 300 500 1K 2K 3K 5K 10K
Quantum size (B)

3.5

4.0

4.5

5.0

5.5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

drr: cpu
drr+sfo: cpu
drr: latency
drr+sfo: latency

(i) Router: Varying VBR packet size,
DRR+SFO at 500B

2.5 3.0 3.5 4.0 4.5
Enqueue+Dequeue CPU (percent)

0.3

0.5

1.0

2.0
3.0

5.0

10.0

20.0

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-500
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(j) Router: Varying Response Size

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Enqueue+Dequeue CPU (percent)

0.2

0.3

0.5

0.7

1.0

1.5

2.0

Re
qu

es
t l

at
en

cy
 (m

s)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-500
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(k) Edge: Varying Request Size

2 3 4 5
Enqueue+Dequeue CPU (percent)

2

3

5

7

10

15

20

Fr
am

e
la

te
nc

y
(m

s) tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-200
drr-1500
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(l) Router: Varying VBR packet size
Figure 22: Impact of packet schedulers on application response times for latency sensitive workloads with Cubic transport.

are a sequences of short back-to-back request-response with
a request of 100B and varying response lengths. To highlight
the difference between schedulers, we need to make them con-
gested, because if there is no packet accumulation, packets are
sent as soon as they arrive at the schedulers and they act as a
FIFO. To ensure congestion, another two senders generate 32
parallel background long-lived TCP flows each. The requests
are initiated on the receivers, so that the replies go from the

sender to receiver and get mixed with the background traffic.
For all flows, the MSS of TCP set to 1456B (MTU 1500B).
LRO is disabled on the software router to minimize the un-
wanted latency. The latency of the TCP requests and the CPU
utilization of the packet scheduler are measured under various
request sizes and queue configurations.

Fig. 22a presents the latency of a selected subset of the
schedulers. As the size of the replies increases, they are

1462 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

split across more TCP segments, requiring more scheduling
rounds to be forwarded, and we see a corresponding increase
in latency. The theoretical optimal quanta for DRR is the MTU
size, which is 1500B, however DRR with smaller quanta can
reach the performance of STFQ, whereas DRR-9000 has the
worst latency among the schedulers because it always tries to
dequeue 9000B worth of packets on every schedule. SCRR
has a lower latency than SCRR-basic due to the combination
of Sparse Flow Optimization (§3.3.1), No Empty (§3.3.3) and
Initial Advance (§3.3.2) enhancements, which allow, most of
the time, to send all the packets of the latency-sensitive flow
in one attempt ahead of the background flows.

Sparse Flow Optimization implemented in DRR and SCRR
(Algorithm 4) already allows previously idle sub-queues to
be scheduled ahead of heavy hitters, giving an advantage to
latency-sensitive flows and flows that use less than their fair
share bandwidth. The replies are a burst of packets of various
length, it usually includes a TCP ack and one or more TCP
packets for the reply. The number of packets in the burst
depend on the reply size, reply size greater than a MSS need
to be broken down. It’s also depend on the timing between the
TCP ack and the reply. In our experiments, the TCP ack is not
deferred into the reply and is sent as a separate packet. The
difference in latency between schedulers is due to how they
handle those consecutive packets, in particular whether the
subsequent packets have to wait for a full scheduling round
or not, and how long a scheduling round lasts. Sparse Flow
Optimization allow those packet train to be scheduled ahead
of backlogged flows. Initial Advance (§3.3.2 allow SCRR
to send multiple of those packets in the same schedule. And
No Empty (§3.3.3) allows the packets of the train that did
not arrive initially to still be scheduled in the current round.
Those mechanisms explain the performance of SCRR.

Fig. 22d shows the CPU overhead on the router. The SCRR
variants are again amongst the schedulers with the lowest over-
head. SCRR has a slightly higher aggregate CPU utilization
than SCRR-basic mostly due to higher ratio of small packets
processed (increasing the total number of packets) and the
No Empty schedule (§3.3.3) enhancement, imposing cache
pressure by re-inserting sparse flows into the schedule on their
arrival.

Fig. 22g presents the performance trade-offs of DRR and
DRR+SFO with 500B response sizes. A smaller quantum
enables DRR to reduce average latency, however, it causes
DRR to consume more CPU. In this experiment, 500B looks
to be a sweet spot for quantum configuration, offering the
best latency improvements.

Finally, Fig. 22j summarizes the average CPU overhead
and average latency over all the request sizes. Tail-drop and
PI2 use a single queue, therefore, the background TCP flows
quickly fill that queue and impose a full queueing delay to the
response packets, or more. All fair-queueing schedulers offer
much better latency performance by trading off more com-
pute resource usage. SCRR-basic and SCRR offer the lowest

CPU utilization among fair queueing schedulers. SCRR and
SCRR-basic adapt to packet sizes and are therefore able to
offer smaller latency than DRR-1500 while offering a CPU
usage even lower than DRR-9000. SCRR-basic has lower
CPU usage than DRR-1500 mostly because it can decide to
schedule the current sub-queue without having to consult the
next packet in that sub-queue. SCRR has the lowest aver-
age latency (0.29 ms), closely followed by STFQ (0.34 ms),
DRR+SFO-200 (0.35 ms), DRR+SFO-500 (0.35 ms) and
DRR+SFO-1500 (0.45 ms).

The bursty flows are using TCP Cubic, however the latency
of those flows with per-flow scheduling is mostly indepen-
dent of the congestion control, and we believe other conges-
tion controls or UDP flows should have similar performance.
Our experiments with BBRv3 in §D.3 partially confirm it.
With per-flow scheduling, short bursty flows never accumu-
late enough packets in their sub-queue at the bottleneck to
cause congestion and trigger a packet drop (or ECN signal
when available). With per-flow schedulers, even under heavy
congestion, we did not observe any packet re-transmissions
for the request-response flows. Without packet drops, the
TCP Cubic never has to throttle the sending rate, and there-
fore the performance of those short bursty flows is entirely
dictated by how they are serviced by the scheduling algorithm
at the bottleneck. For similar reasons, Slow-start is not an
issue for such small requests, the Initial Window of TCP is
usually big enough to send the full request. With Tail-drop,
we see a very low level of re-transmissions, and some connec-
tions that fail to connect entirely. Packets of bursty flows are
added at the tail of an already full queue, where they can get
dropped, and the congestion control will need to re-transmit
them. This is an issue for those short request-response flow :
no data is waiting after the missing packet, consequently Fast
Recovery [36] usually does not happen and the retry will only
happen with the slower Retransmit Time Out (RTO). This
explains why with Tail-drop in Fig. 22j, some requests have a
latency greater than the queuing delay (15 ms). With PI2, the
number of packet dropped is much lower than Tail-drop [73],
which helps to reduce latency to the queuing delay.

Our second experiment mixes small requests with long-
lived heavy flows on the edge-switching topology 7a. This
time, the request are varying in size and mixed with the back-
ground traffic to resemble applications such as POST and PUT
methods in HTTP, Telemetry, Analytics, and Email which
send larger chunks of data as a request. Two of the sender
machines generate 8 latency-sensitive flows each, the flows
are a sequences of short back-to-back request-response with a
varying request length and a 50B reply. Another two senders
generate 32 parallel background long-lived TCP flows each.
Figs. 22b show similar results to our first experiment (fig.
22a). One big difference is SP-PIFO, for requests that fit
in a single packet, it offers very low latency. However, SP-
PIFO is unfair and usually has wider variance of latency when
requests span multiple packets (§D.1.3). According to Fig.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1463

22e, the CPU utilization is much more stable than our first
experiment (fig. 22d) because the arrival of packets is more
deterministic in this topology, it is no impacted by processing
at the receiver NIC like in topology 7b. Fig. 22h shows the
usual tradeoffs of DRR and DRR+SFO. Again, 500B seems
to be a sweet spot for quantum configuration if latency is
preferred. The default quantum of the Linux ’sch_fq’ module
is 3000B [33], i.e., 2× the MTU, which indicates that it was
most likely optimized for low CPU utilization. Finally, 22k
collects all previous results. SP-PIFO has the lowest average
latency (0.19 ms), followed by SCRR (0.22 ms), DRR+SFO-
200 (0.23 ms), DRR+SFO-500 (0.24 ms), STFQ (0.25 ms),
DRR-200 (0.33 ms) and DRR+SFO-1500 (0.34 ms).

Tail-drop and PI2 offer considerably lower latency than
expected and than the first experiment. The reason is that
the Linux kernel keeps in check the number of outstanding
SKB packet buffers for each socket, in order to prevent queue
build ups on sender machines and to reduce the latency. We
measure much lower queue size in all schedulers, in DRR
and SCRR the sub-queues for heavy flows are much shorter
than in the first experiment by almost a factor 10. However,
the mechanism to limit outstanding packet buffers reduces
the latency only for Tail-drop, PI2 and AIFO, in other sched-
ulers it has little impact on the latency of the requests. The
smaller queue size also reduce CPU utilization for all sched-
uler, mostly through reduction of the CPU cache footprint.
This mechanism has also the potential of affecting adversely
the performance of the packet schedulers, if the sub-queue of
a heavy flow does not refill fast enough, it could lose some
transmit opportunity, however we believe this is not happen-
ing in this experiment. There are also potential issue of CPU
starvation and synchronization. We have seen unexplainable
results in this topology, and we believe that the performance
of SP-PIFO in this experiment is one of them.
Streaming Flow Performance. The previous section ex-
plores the very short packet bursts created by applications
using request-reply. This section explores the longer burst
patterns created by streaming applications. The traffic of
video conferencing applications is usually composed of short
to medium bursts that can saturate the network [79], each
burst encoding a video frame. We use the isochronous sup-
port in iperf to generate Variable Bit Rate (VBR) traffic [8],
each VBR flow is a UDP stream at 1.5 Mb/s, bursting at 30
frame per seconds. This emulates a Zoom video session at
720p [52, 61]. The traffic is Variable Bit Rate (VBR), so the
length of the burst of packets varies from one frame to the
next. The length of the burst of packets also depends on the
packet size, it goes from an average of 333 packets (150 B) to
33 packets (1500 B) per burst. 64 streams of VBR traffic are
generated on two senders, they are mixed with 128 long lived
heavy flows on two other senders on the router in topology
7b.

Fig. 22c shows the average one way latency to transmit a
full frame for a selected subset of the schedulers. The delay

are much higher than the previous experiments, the size of the
burst of packets (50k) means that multiple scheduling rounds
are needed to transmit it, even at the highest quantum of DRR
(9k). Conferencing often uses small packets to reduce the
impact of packet losses [52, 79]. In this case, using smaller
packets decreases performance, the reason is that VBR traffic
is sensitive to both latency and throughput, and header and
processing overheads of small packets hurt throughput of
the burst. Fig. 22f shows that SCRR has the lowest CPU
utilization amongst per-flow schedulers. Fig. 22i shows that
the behavior of DRR is the opposite of request-response traffic,
here the bigger quanta decrease latency as this traffic is more
sensitive to throughput than latency. SFO is still effective and
does reduce the latency of DRR. Fig. 22l averages the latency
and CPU utilization over all packet sizes. STFQ maintains low
latency despite its high processing overhead. SCRR has the
lowest average latency (1.89 ms), closely followed by STFQ
(2.04 ms), DRR+SFO-9000 (2.14 ms), DRR-9000 (2.34 ms)
and DRR+SFO-1500 (2.48 ms).

SCRR offers a unique proposition, it offers the lowest la-
tency and lowest CPU usage for VBR frames amongst per-
flow schedulers. The latency enhancement of SCRR enables
the burst to start transmitting sooner, and the low CPU uti-
lization allows to expedite the remaining packets of the bursts
and those other packets scheduled ahead of the burst.

D.7 NIC Accelerations - TSO & LRO

We present the extended version of the NIC Accelerations
results from §5.3.

The commodity acceleration functions of modern Network
Interface Cards (NIC) are essential to sustain the high packet
rates for high-speed Ethernet in software. TCP segmentation
offloading (TSO) [11] and its software counterpart, Generic
Segmentation Offload (GSO), allow the sender to defer the
segmentation until the very late packet processing stages,
resulting in very large packets being passed to the qdisc. Sim-
ilarly, TCP Large Receive Offload (LRO) and its software
counterpart, Generic Large Receive Offload (GRO), allows
a NIC to aggregate received packets into larger chunks. In
Linux, the current default maximum size of those packets is
64 kB and there are proposals to greatly increase this max-
imum [34]. This is because, a reduction in packet rate im-
proves software performance by reducing the overhead of
context switches, cache misses, and metadata handling. How-
ever, as studied earlier in this work, both TSO and LRO make
packet size unpredictable for a software packet scheduler.

Fig. 23a and 23b show the impact of TSO on the packets
as seen by the sender host’s software scheduler in the edge
switching topology (7a). This would be a typical packet distri-
bution seen in a virtual switch deployed in a datacenter or the
Cloud, or on a busy server. As the number of flows increases,
the individual bandwidth share decreases and the average
TSO packet size decreases from 64 kB to 1500B. Fig. 23c

1464 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10 100 1K 10K
Number of parallel flows

100

500

1K

5K

10K

50K
Pa

ck
et

 S
ize

 (B
)

drr+sfo-1500

(a) TSO: Packet distribution

10 100 1K 10K
Number of parallel flows

2

3

5

10

20

30

50

Av
er

ag
e

pa
ck

et
 le

ng
th

 (k
B)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(b) TSO: Average packet length

10 100 1K 10K
Number of parallel flows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(c) TSO: CPU overhead

5 10 50 100 500 1K 5K
Number of parallel flows

100

200

500

1K

2K

5K

10K

20K

Pa
ck

et
 S

ize
 (B

)

drr+sfo-1500

(d) LRO: Packet distribution

5 10 50 100 500 1K 5K
Incast scale (number of flows)

2

3

4

5

6
7
8
9

10

Av
er

ag
e

pa
ck

et
 le

ng
th

 (k
B)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000
drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(e) LRO: Average packet length

5 10 50 100 500 1K 5K
Incast scale (number of flows)

1

2

3

4

5

En
qu

eu
e+

De
qu

eu
e

CP
U

(p
er

ce
nt

)

tail-drop
pi2-drop
stfq
aifo-stfq
sppifo-stfq
drr-9000

drr+sfo-200
drr+sfo-500
drr+sfo-1500
drr+sfo-9000
scrr-basic
scrr

(f) LRO: CPU overhead
Figure 23: Performance of packet schedulers under TSO and LRO accelerations.

presents the CPU overhead of the various schedulers. Smaller
packets do increase CPU overhead, as expected. This is a
scenario where it is difficult to find an optimal configuration
for DRR. DRR-1500 is configured based on the MTU and
uses a fixed quantum of 1500B, but this causes too many CPU
cycles to be wasted on accumulating quantum over multiple
scheduling rounds to send packets that are larger than the
quantum. SCRR lowers CPU usage by adapting to the packet
sizes and has a similar CPU overhead as DRR-9000 which
uses a large quantum.

Figs. 23d and 23e show LRO packet sizes received on
the router in topology 7b. This would be a typical packet
distribution seen in home routers, SD-WAN gateways, access
points or middleboxes. Two sender machines produce half of
the workload flows, so the LRO packets are aggregated on two
separate NICs. The impact of LRO is a lot less predictable
than TSO, but there is still a general trend of higher number
of flows resulting in smaller packet sizes. DRR with smaller
quantum cannot adapt to the dynamics of the traffic, causing
CPU wastage. Again, SCRR lowers CPU usage by adapting to
the packet sizes and has a similar CPU overhead as DRR-9000
which uses a large quantum.

The default quantum of the Linux ’sch_fq’ module is
3000B [33], i.e., 2× the MTU. From the packet distribu-
tions in Fig. 23a and 23d, it’s a logical choice as it’s a very
common packet size, and would allow to send most packets
without the need to accumulate deficit for LRO and TSO with
high number of flows.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1465

	Introduction
	Packet Scheduling for Modern Internet
	A brief history of packet scheduling
	Flow burstiness in modern traffic
	The amplifying impact of packet sizes
	DRR quantum configuration trade-offs

	Self Clocked Round Robin
	Virtual Clocking Semantics
	Eliminating per-packet metadata
	Flow Latency Enhancements for SCRR
	Sparse Flow Optimization
	Initial Advance for new sub-queues
	Getting rid of empty visits with No Empty

	Theoretical Analysis
	Analysis of Backlogged SCRR
	Throughput and Fairness in SCRR

	Testbed Evaluations
	Scheduler Implementations
	Experiment Setup
	NIC Accelerations - TSO & LRO
	Application Fairness
	Bursty Flow Performance

	Related Work
	Conclusions
	Self-Clocked Round-Robin Scheduling
	Pseudo code of SCRR-basic
	Pseudo code of SCRR with enhancements

	Extended Theoretical Analysis
	Analysis of Backlogged SCRR Using Finish-time Semantics

	Burstiness in Internet Traces
	Extended Testbed Evaluation
	Performance of PIFO Approximations
	CPU utilization in AIFO and SP-PIFO is high
	AIFO causes queue underutilization
	SP-PIFO causes packet reordering

	SCRR Component Analysis
	Application Performance Under BBRv3
	Impact of CPU overhead on throughput
	Fairness Under Different Biases
	Application Performance Under Cubic
	NIC Accelerations - TSO & LRO

