
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Verifying maximum link loads in a changing world
Tibor Schneider, ETH Zürich; Stefano Vissicchio, University College London;

Laurent Vanbever, ETH Zürich

https://www.usenix.org/conference/nsdi25/presentation/schneider

Verifying maximum link loads in a changing world

Tibor Schneider
ETH Zürich

Stefano Vissicchio
University College London

Laurent Vanbever
ETH Zürich

Abstract

To meet ever more stringent requirements, network operators
often need to reason about worst-case link loads. Doing
so involves analyzing traffic forwarding after failures and
BGP route changes. State-of-the-art systems identify failure
scenarios causing congestion, but they ignore route changes.

We present Velo, the first verification system that efficiently
finds maximum link loads under failures and route changes.
The key building block of Velo is its ability to massively re-
duce the gigantic space of possible route changes thanks to (i)
a router-based abstraction for route changes, (ii) a theoretical
characterization of scenarios leading to worst-case link loads,
and (iii) an approximation of input traffic matrices. We fully
implement and extensively evaluate Velo. Velo takes only a
few minutes to accurately compute all worst-case link loads
in large ISP networks. It thus provides operators with critical
support to robustify network configurations, improve network
management and take business decisions.

1 Introduction

Link loads—how much traffic crosses each link—are a key
indicator of network performance. High link loads, in partic-
ular, increase the likelihood of congestion, packet drops, and
inflated delays. To meet stringent service-level agreements,
operators often need to reason about the worst-case load that
every link can realistically experience during network opera-
tion – e.g., to check that all loads are below a safety threshold,
and adapt routing configurations if they do not.

Identifying worst-case link loads is hard, though. Operators
often have tools to measure traffic and model traffic patterns,
even long term [26, 35]. However, determining worst-case
loads requires to scrutinize traffic forwarding for a huge range
of possible events. During network operation, links and nodes
fail, and BGP routes for external destinations appear, disap-
pear and change. Even a single failure or 3-4 route changes at
specific border routers can overload links, as our case study
on a real ISP network shows (§7).

0 0.7 1 1.3
0

0.5

1

Maximum additional link load, normalized by capacity
Fr

ac
tio

n
of

co
re

lin
ks

up to 2 link failures only
up to 2 link failures and
up to 10 route changes

Figure 1: Additional link loads can double due to route
changes compared with link failures only. This plot shows
the additional traffic on all the core links of an ISP network.

Reasoning about link loads is beyond the capabilities of
existing network verifiers. Most of them [1, 4, 14, 39, 40,
42, 45, 50] do not support performance requirements such as
maximum link loads, but restrict to functional requirements,
such as the absence of blackholes and forwarding loops.

A couple of recent contributions [7, 27, 44] focus on
assessing properties on link loads. Yet, they only consider
network failures and assume fixed external routes, fitting con-
trolled network environments such as data centers. For most
Internet-connected networks, both failures and route changes
must be considered, jointly, to provide guarantees on link
loads. As an illustration, Figure 1 depicts the additional load
on the core links of a real ISP network, when simulating all
one and two link failures. In the presence of up to ten route
changes (solid curve), most links reach higher load than with-
out route changes (dashed curve), and their load can be twice
as big. In other words, ignoring route changes leads to vastly
underestimating maximum link loads.

This paper presents Velo, the first verification system that
efficiently computes the individual worst-case loads of all
links for arbitrary link failures and external route changes.
Velo does not depend on how paths are computed, and hence
it works in both traditional (e.g., IGP/BGP-based) and SDN
networks; it also supports typical traffic engineering technolo-
gies such as ECMP and tunnelling (e.g., MPLS).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1269

In each run, Velo takes as input: router configurations, BGP
routes, and a traffic matrix. The traffic matrix captures the
specification (such as the worst-case pattern seen in the past,
or the expected future traffic) for that run. Different traffic
scenarios can be verified in separate runs. As in [44], opera-
tors can also input the maximum traffic volume additional to
the given matrix, e.g., to model uncertainty. Further, Velo can
limit its computations to user-defined subsets of failures and
route changes that model realistic scenarios. For example,
operators can specify a maximum number of simultaneous
route changes, and define per-network and per-router stable
destinations, for which route changes are not allowed.

As such, Velo supports many practical use cases including:
(i) verification of configurations before deployment; (ii) adap-
tation of BGP preferences to make the worst-case routing
states less likely; (iii) fine-tuning of network monitors to raise
alerts only when there is a significant risk of congestion; (iv)
support for business decisions and routing policies. Our case
study (§7) exemplifies some of these use cases.

Challenge It is infeasible to iterate over all possible route
changes and failure scenarios. For each destination, external
networks may advertise new routes, modify existing ones, or
completely withdraw them. New and modified routes have at-
tributes (e.g., AS path or BGP communities) with a very large
set of possible values. When factoring in possible failures,
not only does the search space grow, but it also becomes more
challenging to navigate. Indeed, failures generally affect paths
to multiple destinations, hence destinations cannot be treated
as independent from each other across failures. This also pre-
vents us from extending prior verification work [4, 15, 45, 50].

Solution We greatly reduce this search space in three steps.
First, we provide a compact abstraction for capturing route

changes. We do not explicitly model possible external routes,
e.g., symbolically as in [4]. Instead, we model possible routes
for a destination as sets of egress routers. Each set captures
the many equivalent routes inducing the same link loads.

Second, we design Velo to explore a minimal set of states
guaranteeing correctness. We prove that for common intra-
domain routing schemes (e.g., shortest-path routing), each
link is maximally loaded when only one egress router is used
per destination. This enables Velo to compute all the worst-
case link loads in polynomial time. In the presence of paths
deviating from the above schemes (e.g., for traffic engineer-
ing), Velo extends its search to minimal sets of egress routers,
ensuring limited impact on Velo’s efficiency.

Third, we propose an efficient technique to approximate
the input traffic matrix by combining destinations with similar
traffic patterns, while also providing strong accuracy guar-
antees. We formalize the traffic matrix approximation as a
clustering problem, and prove that the clustering error bounds
the approximation error of the worst-case link load.

2

2s2

s1

u v

b2

b1

d2

d1

In
te

rn
et

s1→ d1: 3 gb/s
s1→ d2: 9 gb/s
s2→ d1: 4 gb/s
s2→ d2: 1 gb/s

s2

s1

u v

b2

b1

d2

d1

(a) Both destinations d1 and d2
are advertised only to b1.

s2

s1

u v

b2

b1
d1

d2

(b) Destination d1 is advertised
to b1 and d2 is advertised to b2.

Figure 2: Network that routes traffic along the shortest paths.
Subfigures (a) and (b) show the forwarding paths for two
possible routing advertisements of destinations d1 and d2. All
link weights are 1, except those from si to bi are 2.

Results We implement a prototype of Velo and make it
publicly available1. Our evaluation on real network topologies
shows that Velo computes the worst-case load of every link
in large networks and the entire BGP routing table, within
minutes, even considering up to two simultaneous link failures.
Velo’s computed maximum loads are also highly accurate,
within 1% of the actual ones, and this across a wide range of
traffic matrices, from heavy-tailed to almost-uniform.

2 Overview

Velo finds the worst-case load for each link by exploring
the input space of failures and route changes. Consider the
example in Figure 2. Routers s1 and s2 receive traffic for two
remote destinations d1 and d2. Depending on the received
BGP routes, d1 and d2 can be reached via either b1 alone, b2
alone, or both simultaneously. Both s1 and s2 send packets
to the closest egress among b1 and b2 that can reach the
destination (i.e., implementing hot-potato routing).

Let’s initially focus on the link (u,v), assuming no failures.
The link load depends on the BGP routes received by b1 and
b2. For example, if only b1 receives BGP routes for d1 and
d2, packets from s2 crosses (u,v) but those from s1 do not,
resulting in a total load of 5 gb/s—see Figure 2a.

To compute the worst-case link load, we conceptually need
to check all the combinations of each destination being reach-
able from b1, b2, or both. For example, if b2 receives the
same BGP route as b1 for d1 and still no route for d2, the load
of (u,v) decreases, because the traffic from s2 to d1 is moved
to the path (s2,b2). Figure 2b shows the worst-case scenario:
when d1 is only reachable from b1 and d2 only from b2, then
13 gb/s are sent over (u,v) since both demands s1→ d2 and
s2→ d1 cross that link.

1Available at https://github.com/nsg-ethz/velo (GPLv3 license)

1270 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/nsg-ethz/velo

Consider now any other link, for example, (s2,b2). Clearly,
Figure 2b is not the worst-case scenario for (s2,b2); its load
is higher if s2 uses b2 as next hop for both d1 and d2.

Real networks are much bigger than Figure 2, and typically
have many more border routers and millions of destinations,
making the problem challenging to solve. For example, iterat-
ing over all the possible BGP routes received by any border
router for each destination does not scale. Worse yet, every
possible failure affects the network topology, and so requires
to re-assess the impact of each possible route change.

2.1 Problem Statement
We now describe Velo’s problem and provide the intuition
of how Velo manages to accurately and efficiently solve it.
We refer to any router that sends traffic outside the network
as egress router. For example, in Figure 2b, b1 is the only
egress router for d1, and b2 is the only egress router for d2. An
egress change occurs when the set of egress routers for one
destination changes, such as between Figure 2a and Figure 2b.

Problem: Given (i) the network configuration, (ii) current
BGP routes, (iii) traffic per destination, (iv) constraints on
route changes, and (v) a space of failure scenarios, find the
worst-case load for each link in the network, along with the
egress changes and the failure scenario causing such loads.

We provide more details on Velo’s inputs in the following.

Network configuration We define a network configuration
as the network topology and the collection of all router config-
urations. We support a wide range of networking paradigms
and protocols and present an abstraction in §3. Operators can
provide either the current topology and router configurations
as input, or alternative ones (e.g., for what-if analyses).

BGP routes Velo takes the current BGP routes as input. We
define a BGP route as a BGP advertisement from an external
network concerning a single destination and including its
BGP attributes. Routes generally change over time.

Yet, not all route changes are equally likely, and some are
not worth considering in practice. For example, at operational
timescales, receiving new routes for a few destinations is
more likely than the same occurring for all Internet prefixes.

For this reason, Velo allows to limit the set of route changes
verified in any Velo’s run. Operators can specify the maxi-
mum number k of egress changes, where the number of egress
changes is the number of destinations featuring one or more
egress changes. Operators can also provide constraints on
specific destinations (e.g., high-volume IP prefixes) for which
routes can or cannot change, and on the possible egress routers
per destination (e.g., enforcing that BGP customers always
advertise only their own prefixes).

Failure scenarios Contrary to route changes, network fail-
ures typically affect many forwarding paths for many (if not
all) destinations. Velo takes as input a description of the
space of failure scenarios to explore. This can be the set of
up to l simultaneous link or node failures [42, 44], and can
include Shared Risk Link Group (SRLG) information [53].
The only constraint here is that for each failure scenario, Velo
can derive a new topology from the original one.

Traffic In each run, Velo takes a traffic matrix as input.
Previous work often defines a traffic matrix as the traffic
volumes per pair of ingress and egress routers, describing
where traffic enters and exits the network. We instead define a
traffic matrix as traffic volumes for each pair of ingress router
and destination prefix. We do so because we are interested in
assessing the impact of BGP routes which are per-destination.

While Velo accepts a single matrix as input, operators can
specify the current traffic matrix, or, for more conservative
analyses, they can provide Velo with a matrix derived from
one or multiple congestion events recorded in the past. They
can also run Velo multiple times on different matrices.

Velo models uncertainty on inter-domain traffic in the same
way as QARC [44]. It indeed allows operators to specify the
total amount of traffic, across all the destinations, that may
need to be forwarded in addition to the input traffic matrix.

2.2 Velo in a nutshell

Verifying link loads requires exploring a gigantic search space.
Besides the sheer number of routes and route attributes, link
failures prevent destinations from being verified indepen-
dently (i.e., one at the time). Velo addresses these challenges
by massively reducing both the search space and the number
of destinations. We now provide the intuition of how it does
so, referring to the following sections for details.

Reducing the search space In §4, we prove that the worst-
case link loads occur when for each destination, all the net-
work routers select the same BGP route. Indeed, the worst-
case load for (u,v) in Figure 2 occurs when all routers select
b1’s route for d1, and b2’s route for d2. This key insight en-
ables us to explore, for each failure scenario, only |P| · |NB|
different states, where P is the set of destinations and NB is
the set of egress routers—a polynomial search space instead
of an exponential one.

The above property holds for all strictly isotone routing
protocols (such as shortest path routing) that usually govern
intra-domain routing. We further extend our technique to
support exceptions to strict isotonicity, such as MPLS tun-
nels for traffic engineering, by computing the minimal set of
additional states to explore in these cases (§4.1.2).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1271

Velo iterates over all the input failure scenarios, one by one.
We experimentally show (§6) that Velo is anyway more effi-
cient than approaches attempting to prune failure scenarios,
like QARC, even when considering combinations of up to 3
or 4 simultaneous failures. Intuitively, this happens because
our search space reduction enables Velo to analyze any failure
scenario very quickly.

Reducing the number of destinations In §5, we show that
we can combine destinations with similar traffic distributions
across the same ingress routers, and obtain an approximated
traffic matrix that contains much fewer destinations. This
approximation significantly improves Velo’s running time at
the expense of potentially degrading its accuracy. Yet, we
present a modified k-means clustering algorithm that com-
putes an approximated traffic matrix with provable bounds on
the accuracy loss. In §6.2, we experimentally show that the ap-
proximation is highly accurate for both realistic (heavy-tailed)
and unrealistic (almost-uniform) traffic matrices. We show
that this clustering technique is more efficient and general
than a simple approach based on heavy-hitters, as it achieves
tighter error bounds by considering fewer destinations for all
the traffic matrices used in our experiments.

To illustrate our approximation, consider a third destination
d3 in Figure 2 with traffic s1 → d3 of 0.4 gb/s and s2 → d3
of 0.3 gb/s. d3 is also reachable via b1, b2, or both. The traffic
for d1 (3 gb/s from s1 and 4 gb/s from s2) is ten times larger
than for d3, but their distributions are similar. Considering
d1 and d3 jointly would yield a maximum load on link (u,v)
of 13.3 gb/s instead of 13.4 gb/s when analyzing d1 and d3
individually. Velo accurately bounds the error to 0.1 gb/s.

Dealing with traffic variability Velo’s input can include an
amount y of traffic additional to the input traffic matrix. There
are infinite traffic matrices compatible with any given y; obvi-
ously, we cannot analyze all of them. Two key observations
instead inspire Velo’s approach. First, allowing y additional
traffic increases the worst-case load of any link by up to y
compared to its maximum load for the input traffic matrix.
Second, for any link, its maximum load increases exactly by
y whenever a router r sends all its traffic to a destination d
across that link: in this case, indeed, increasing the traffic
from r to d by y increases the load on that link by y.

Based on these observations, Velo accounts for y additional
traffic by first computing the maximum link loads for the
input traffic matrix, and then increasing the maximum link
loads by y. This approach may overestimate the maximum
load of a link if no router forwards all its traffic for any single
destination over that link in the worst-case scenario for that
destination. This tends to occur rarely in practice (less than
0.1% in our experiments in §6), implying that Velo is fully
accurate in the vast majority of scenarios.

3 Model and Notation

We model the network as a graph G = (N,E) with routers N
connected by edges E. Border routers NB ⊂ N are connected
to external networks that advertise BGP routes to destinations
P, that is, remote IP prefixes populating the routing tables of
the routers. For each destination, the network selects a set
of preferred routes, corresponding to a set B⊆ NB of border
routers that will be used as egress routers (i.e., to forward
traffic towards that destination). This selection can be done
by a central controller [10] or in a distributed fashion using
iBGP [37]. In the case of iBGP, we assume that (i) BGP
attributes that affect routes’ preference are not modified on
any iBGP session, and (ii) all routers eventually learn their
preferred routes. Several techniques are available to avoid
iBGP visibility problems [36, 47, 48] or to prove the absence
thereof [4, 16, 45, 49].

By focusing on egress routers per destination, we hide most
of BGP’s low-level details (e.g., its decision process). For
any given destination d, we must only consider (i) the border
routers that can receive a route for d, and (ii) the possible
subsets of border routers that can receive preferred routes
for d. For the former, we check whether configured eBGP
ingress route maps discard all routes for d. For the latter, we
analyze the attributes modified by ingress route maps, mainly
the Local Preference, that affect the BGP decision process.
Other attributes like the AS path can take arbitrary values,
including those that result in a tie during route selection.

We denote the input traffic matrix as M. Each element
Ms,d is the ingress traffic that enters the network at router
s ∈ N with destination d ∈ P. We define a column Md of
M as the total traffic for destination d, as sourced from all
ingress routers in N. The network sends traffic Md for d over
the computed paths for egress routers in B, resulting in load
load(e,Md ,B) on any link e ∈ E.

Intra-domain routing Forwarding paths are computed
from each router to its selected egress router. Many intra-
domain routing approaches exist. Some rely on a central
controller [18, 20], while others use distributed Interior Gate-
way Protocols (IGPs) [33, 34]. Static routes, source routing
or tunnelling can also be used to forward traffic [26].

We model the intra-domain path computation using routing
algebra [41], consisting of weights W , a binary operation ⊕
and an order relation ≽. For example, the commonly used
shortest-path-based IGPs [33, 34] are modeled with weights
corresponding to per-link IGP costs, a binary operation that
adds costs, and a binary relation that selects the shorter path.

We write link weights as w : E 7→W . We denote the optimal
s-t path in the routing algebra as p∗s,t = (s,n1, . . . ,ni, t) with
path weight ws,t = w(s,n1)⊕·· ·⊕w(ni, t). We assume that
traffic is split equally across all next-hops of each router, i.e.,
the first hops of its optimal paths. This is consistent with
traffic distribution in the presence of ECMP [26].

1272 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Link weights W are strictly isotone if a≻ b implies both
a⊕ c ≻ b⊕ c and c⊕ a ≻ c⊕ b for any a,b,c ∈W . This
property is both necessary and sufficient to ensure that any
sub-path of an optimal path is itself optimal, allowing the
paths to be computed using a generalized Dijkstra algorithm
(if they exist) [41]. Note that strict isotonicity is common in
intra-domain routing regardless of the forwarding paradigm
(e.g., hop-by-hop vs. source routing vs. SDN).

Strictly isotone weights offer limited flexibility to achieve
traffic engineering [13], so operators sometimes configure
exception paths (e.g., MPLS RSVP-TE tunnels [3]) that carry
packets over manually defined sequences of edges. We denote
the set of exception paths as ρ that take precedence over
shortest paths.

4 Finding Maximum Link Loads

We achieve scalability thanks to a highly efficient algorithm
for finding the worst-case link load in any input topology,
allowing us to iterate over a large number of failure scenarios.
For any given topology, the worst-case load of a link is the
sum of its worst-case loads for each destination considered
independently: this is because BGP routes are specified per
destination, and so are forwarding paths. To find the worst-
case link loads in each topology, we thus search for the worst-
case egress routers per destination, one destination at a time.
Hereafter, we explain how Velo performs such a search for a
given topology and a single destination.

4.1 Per-Destination Worst-Case Link Loads
The basic building block of our approach is to efficiently find
the set of egress routers for a single destination that maximizes
the load of a specific link. Reasoning on the worst-case egress
routers per destination compared to the huge and possibly
infinite space or BGP routes and their attributes is already
a massive optimization. Yet, naively exploring the space of
egress routers still requires exploring O(2|NB|) states.

In the following, we explain how we reduce our search
space to O(|NB|) states whenever internal paths are computed
from strictly isotone weights (§4.1.1), and slightly more states
in the presence of a few exception paths (§4.1.2).

4.1.1 Strictly Isotonic Routing

Let G = (N,E) be a network routing traffic matrix M accord-
ing to protocol (W,⊕,≽) where W is strictly isotone. We
focus on one destination d and the maximal load on link e.

Theorem 1 For any non-empty set of egress routers B⊆ NB
and any link e ∈ E, there exists a single egress b ∈ B that, if
chosen as the unique egress for destination d, causes at least
the same load on e as the set B. Formally:

∀e ∈ E : ∃b ∈ B s.t. load(e,Md ,B)≤ load(e,Md ,{b})

Algorithm 1: Find the worst-case link load for all
links simultaneously if all traffic is forwarded along
optimal paths.

Data: Graph G = (N,E), border routers NB ⊆ N, link
weights w : E 7→ R, traffic Md

Result: maximum link loads y[e] for all links e ∈ E

y[u,v]← 0 ∀(u,v) ∈ E

for b ∈ NB do

l[s]←Ms,d ∀s ∈ N
Gdag← ForwardingDAG(G,w,root = b)

for u ∈ TopoSort(Gdag) do

dout ← |out(Gdag,u)|
for v ∈ out(Gdag,u) do

l[v]← l[v]+ l[u]/dout
y[u,v]←max(y[u,v], l[u]/dout)

Intuitively, Theorem 1 holds by the main property of strict
isotonic routing protocols; the sub-path of any optimal path is
also optimal. All traffic crossing the edge e = (u,v) must fol-
low a path that is also optimal for v, allowing us to reduce the
set of egresses to the one selected by v. In case a router splits
its traffic equally among multiple paths, we show that the
fraction of traffic it sends across the edge e will not decrease.

Proof of Theorem 1. Consider any edge e = (u,v), and let
Ne ⊆ N be the set of all nodes that forward traffic along e.
Further, let b be an egress router preferred by v, and pick any
router n ∈ Ne.

First, observe that the weight of n’s optimal path towards
any egress router in B, namely wn,B, is equal to the weight
of its path to b via e, i.e., wn,b = wn,u⊕w(e)⊕wv,b. Hence,
wn,B = wn,b due to the strict isotonicity.

We now show that the total amount of traffic n sends across
edge e cannot decrease when only egress b is available. We
show this by comparing n’s next-hops for egresses B, i.e.,
nhn,B, with those for the single egress b, i.e., nhn,b. First, we
argue that nhn,b ⊆ nhn,B, and thus, the traffic n sends to any
next-hop in nhn,b does not decrease. This follows from the
fact that any optimal path of n for b is also optimal for B.

Second, we show that nhn,b ∩Ne = nhn,B ∩Ne, proving
that the fraction of traffic n sends across the edge e cannot
decrease. Consider any next-hop x ∈ nhn,B ∩Ne: n can still
reach the destination d via egress b on an optimal path via x.
This is because x ∈ Ne, and thus, wx,B = wx,b.

Theorem 1 implies that the worst-case load of any link for
any destination is obtained when the entire network chooses
a single egress router. More formally,

max
b

load(n,Md ,{b}) = max
B

load(n,Md ,B).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1273

1
1

3
1

2 3

1

b1

b2v

s1

u

s2

Figure 3: Example where considering less combinations of
egress routers than Velo in the presence of exception paths
leads to underestimating maximum link loads.

This observation directly enables us to reduce the number
of explored states to O(|NB|). Indeed, Velo iterates over the
border routers in NB. For each border router b, Velo creates
the forwarding graph rooted at b, which is a directed acyclic
graph (DAG). It then computes the corresponding link loads
by traversing the DAG in topological order and pushing traffic
from each node to its outgoing edges. At the end of the
iteration, it reports the worst-case scenario for each link.

Algorithm 1 shows our pseudo-code. Note, that the second-
to-last line ensures traffic is split equally among next-hops,
i.e., implementing ECMP. Its computational complexity is
O(|N|2 log|N|+ |N||E||P|), because the two most expensive
operations are (i) computing |NB| forwarding DAGs with Dijk-
stra’s algorithm [41], and (ii) traversing a DAG in topological
order for each destination prefix d ∈ P.

4.1.2 Exception Paths for Traffic Engineering

Theorem 1 does not hold in the presence of exception paths.
Take the example depicted in Figure 3, with two egresses
b1 and b2, and two ingress routers s1 and s2. Shortest-path
routing is always used, except s1 forwards traffic for b1 on the
path (s1,s2,u,v,b1), drawn as a dotted line. The load on link
(u,v) is maximized when both b1 and b2 are egress routers.
Indeed, shortest paths are such that s2 bypasses (u,v) if b1 is
the only egress, and s1 bypasses (u,v) if b2 is the only egress.

To deal with exception paths for destination d, we explore
all single egress routers plus all the combinations of the bor-
der routers terminating any exception paths configured for
d. The example in Figure 3 demonstrates that considering
less egress routers can lead to incorrect results. We now show
that considering only these combinations is sufficient to find
the worst-case link loads. Let ρd be the exception paths con-
figured for d, and let T = {b | (s, · · · ,b) ∈ ρd} be the set of
egress routers ending any path in ρd .

Theorem 2 For any non-empty set of egress routers B⊆ N
and any link e ∈ E, there exists a subset B′ = {b}∪T ′, where
T ′ = T ∩B, that causes at least the same load on e than the
set B. Formally, for every link e ∈ E,

∃b ∈ B s.t. load(e,Md ,B)≤ load(e,Md ,{b}∪T ∩B)

Intuitively, Theorem 2 holds as nodes either forward via
optimal paths, in which case Theorem 1 applies, or via excep-
tional path that are still available with the reduced subset of
egress routers. We provide a proof in Appendix A.1.

Theorem 2 allows us to find the worst-case link loads by
iterating over all subsets T ′ ⊆ T and one other egress router
in NB \T . We filter out combinations of egresses that cannot
receive equally preferred routes due to BGP policies.

For each set B of egress routers computed as above, we
construct the corresponding forwarding DAG by combining
the forwarding DAGs rooted at all egresses in B. We then
find the load resulting from traffic routed along exception
paths, and push the remaining traffic through the DAG as in
Algorithm 1. We provide a pseudo-code in Appendix A.2.

Computing link loads in the presence of exception paths
has complexity O(|N|2 log|N|+ 2|T ||N||E||P|), similarly to
the complexity of Algorithm 1 but for the larger search space.

4.2 Restricting the Number of Route Changes

So far, we have discussed finding the worst-case link loads
considering any set of route changes. However, part of Velo’s
input is the maximum number k of egress changes. Hence,
for each link, we must find the k destinations that cause the
highest increase of its load. To that end, we maintain for each
link a heap of size k with the largest difference between the
worst-case and current-state link loads. Maintaining the heap
has a time complexity of O(|E| · |P| · logk) which is negligible
with respect to the total time of the algorithm.

5 Approximating the Traffic Matrix

The algorithms presented in §4 scale linearly in the number
of destinations. It is not rare that real routers have order of
a million entries [19, 26], so finding the worst-case link load
for so many destinations would be a limiting factor.

We greatly reduce the number of destinations by combining
those with similar traffic patterns. Specifically, we approxi-
mate the input traffic matrix with a smaller one, leveraging the
low effective rank that traffic matrices typically exhibit [6,31].

We formulate this traffic matrix approximation problem
as a clustering problem, and find that the clustering error
bounds the approximation error δ; by how much the link loads
differ when computed on the original and approximated traffic
matrices. We envision that our approximation technique can
be useful within other networking problems for which the
size of traffic matrices limits scalability.

Approximation problem Given a traffic matrix M : |N|×
|P|, we aim to find a clustering C of the destinations that re-
duces the size of M while also bounding the error induced by
that reduction. More formally, we aim to compute a partition
C of P, an approximate traffic matrix A of size |N|× |C|, and

1274 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

an error bound ε for the approximation error δ, such that

δ = max
e∈E
|max load(e,M)−max load(e,A)| ≤ ε, (1)

where max load(e,M) is the maximum load of link e for M.
We take the number of clusters |C| as input. Increasing |C|

reduce both ε and δ at the cost of running time. Operators can
tune |C| to find a balance between accuracy and running time.

We must however be careful to cluster together only desti-
nations for which the routing and forwarding states are equiv-
alent. For example, we must not aggregate destinations with
different intra-domain paths for the same egress point. To this
end, we provide a custom definition of Equivalence Class,
and only cluster destinations in the same equivalence class.
We distribute the available clusters |C| across all equivalence
classes proportional to the amount of traffic they carry. Specif-
ically, any pair of destinations in an equivalence class must
satisfy the following two conditions:

1. The same egress routers are used for both destinations in
the current routing state.

2. The forwarding paths for both destinations are always
equal for the same set of preferred egress routers.

In the following, we detail our clustering algorithm for
destinations in the same equivalence class.

Normalized clustering algorithm We cluster together des-
tinations with similar traffic distribution across ingress routers,
i.e., if similar fractions of traffic for two destinations enter
from the same routers. Such destinations likely produce worst-
case link loads for the same routing inputs.

We define the traffic distribution Md/|Md | of destination
d as the fraction of traffic from each ingress compared to
d’s total traffic load |Md |. We then use the L1 norm [24] to
measure the similarity of two distributions, as the L1 norm
quantifies their absolute difference. We run an adaptation of
the k-means clustering algorithm on the traffic distributions:
instead of minimizing the L1 distances within a cluster ci, we
weighten the distance between its cluster centroid Ai and a
destination d according to d’s total traffic. Thus, the computed
clusters accurately resemble high-traffic destinations. Cluster
centroids Ai and the clustering error ε are defined as follows.

Ai = ∑
d∈ci

Md ε =
1
2 ∑

ci∈C
∑

d∈ci

|Md | ·
∣∣∣∣ Md

|Md |
− Ai

|Ai|

∣∣∣∣ . (2)

Finally, Velo constructs the approximate traffic matrix A =
[A1,A2, · · ·] directly from the cluster centroids.

Our clustering approach guarantees that the approximation
error δ is bounded by the clustering error ε. Intuitively, this is
because (i) ε is the amount of traffic in M that the approxima-
tion A does not account for, and (ii) ε is also the amount of
additional traffic in A that is not part of the original matrix M.
Consequently, max load(e,A) can differ from max load(e,M)
by at most ε. We provide a formal proof in Appendix B.

6 Evaluation

We now evaluate Velo’s performance in terms of scalabil-
ity (running time) and accuracy. Its correctness is instead
guaranteed by our theorems in §4 and §5.

In §6.1, we discuss aspects that influence Velo’s running
time. We show that Velo can find the maximum loads for all
the links in large networks (with close to 2 000 links) within
a few hours, considering up to two simultaneous failures and
up to ten changes of any external routes. As baseline, we also
compare Velo against its closest related work, QARC [44], in
scenarios where external routes do not change. We find that
Velo runs much faster than QARC for scenarios considering
up to two simultaneous failures (the most practical ones).

In §6.2, we evaluate the impact of the traffic matrix on
Velo’s accuracy. We show that Velo’s approximation error is
less than 1% even for unrealistic traffic matrices that are hard
to approximate.

Implementation We implement a prototype of Velo in ≈
7 000 lines of Rust,2 including an optimized version of both
Algorithms 1 and 2, and our modified k-means clustering
algorithm. We run the evaluation on a server with 96 CPU
threads and 384 GB of memory.

Networks We study the 75 largest networks from Topology-
Zoo [23], ranging from 40 to 754 nodes with 80 to 1 790
links. For each network, we study the effect of increasing the
number of border routers by randomly connecting external
peers that can advertise a route for any destination to internal
routers. We assign random IGP weights (between 10 and 100)
to each link. To study the impact of non-shortest paths routing,
we setup exception paths (i.e., traffic-engineered paths that
do not follow the shortest paths) for given destinations by
computing alternative paths using permuted link weights.

Traffic matrices We obtain real traffic matrices from a
research network. We also generate synthetic traffic matrices
following the gravity model [9,31]. This enables us to control
and vary traffic characteristics to evaluate Velo’s sensitivity
to different traffic patterns.

6.1 Running Time

The following factors affect Velo’s running time: network
size, number of simultaneous failures l, maximum number of
external route changes k, number of clusters |C|, number of
border routers |NB|, and number of exception paths |ρ|. The
specification of traffic additional to the traffic matrix instead
has no noticeable impact, consistently with the inexpensive
approach to deal with it in Velo (see §2).

2Available at https://github.com/nsg-ethz/velo (GPLv3 license).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1275

https://github.com/nsg-ethz/velo

100 1000 1790

1 sec

1 min

1 hour

Network size (# edges)

R
un

ni
ng

tim
e

k = 10, l = 1
k = 10, l = 2

Figure 4: Velo can scale to large networks of over 1 000
links while exploring up to two simultaneous link failures.
This log-log plot shows the running time of Velo for the 75
largest topologies in TopologyZoo with up to one and two
simultaneous link failures l running on 96 parallel threads.

We find that the network size and the number of failures
have the biggest impact on Velo’s running time. We therefore
divide our experiments in two sets: a fist set considering only
these two factors, and another set considering the others.

Following these experiments, we compare Velo’s running
time against QARC [44], a state-of-the-art approach to find
link load violations under varying scenarios, albeit assuming
fixed external routes.

Network size and link failures In the first set of experi-
ments, we analyze the impact of network size and maximum
number of failures on Velo’s efficiency across all the topolo-
gies in our dataset. We set a relatively low number of simul-
taneous failures (l ≤ 2) and route changes (k = 10), as it is
unlikely for many more links to fail and many more external
routes to change at the same time [42]. We also set |C| to 300,
which empirically provides a good accuracy-performance
tradeoff (see Appendix D.3). We finally configure 30 border
routers per topology, and no exception path.

Figure 4 shows a log-log plot of Velo’s running time. Vary-
ing the network size from 100 to 1 790 increases the running
time by about four orders of magnitude. A similar effect is
caused by considering all combinations of two link failures
(l = 2) rather than single link failures (l = 1).

Yet, our results show that Velo is practical for all the Topol-
ogyZoo networks. For the largest one, Velo finds the worst-
case load for all its 1 790 links within one minute for single
link failures, and within three hours for two link failures. For
all the other networks, Velo finds all the worst-case loads for
l ≤ 2 within two minutes.

We further break down Velo’s efficiency according to its
two main phases: clustering and analysis. The clustering
phase dominates the running time for small networks (up to
200 edges), while the analysis phase is the dominant one for
bigger networks. The asymptotic growth of the analysis time,
and hence of the overall running time, is roughly cubic for
l = 2. Full results are shown in Appendix D.2.

Finally, we approximate the running time improvement
gained from reducing the search space of route changes.
With 30 border routers, the naive approach requires exploring
230 states—seven orders of magnitudes bigger than Velo’s
search space. Analyzing a network of only 80 links without
the state reduction would take roughly one year for l = 2.

Other factors To measure the impact of the other factors,
we focus on Cogent, one of the largest networks in Topology
Zoo, and vary each factor, one at a time.

The number of route changes k has a small effect on Velo’s
efficiency. This is because for each link, we always need to
compute the worst-case routing input for all destinations, be-
fore picking the k destinations causing the highest load on that
link. Increasing k from 10 to 100 still increases the running
by 1.3× but only because the algorithm must maintain larger
heaps. We however note that allowing all routing inputs to
change (i.e., k = |P|) reduces the running time by 2.9×, as
Velo needs to maintain less state.

Increasing the number of clusters |C| affects the running
time, as Algorithms 1 or 2 are called for each cluster. Increas-
ing |C| from 300 to 600 or 1 000 increases the running time
by 1.3× or 1.6×, respectively. Similarly, decreasing |C| to
100 improves Velo’s performance 1.2×. As a reference, de-
activating clustering would take Velo roughly 1 000× longer
to complete, assuming around 1 million destinations.

The number of border routers |NB| affects the number of
states to be explored. Yet, increasing |NB| from 30 to 100
only increases Velo’s running time by 1.7×.

Finally, adding exception paths forces Velo to explore ad-
ditional states. Indeed, Velo must explore all combinations
of distinct egress routers of these paths. Such paths are usu-
ally configured manually, and they are often used only for
traffic-heavy destinations. A total of 30 or 50 exception paths
increases the running time by respectively 1.4× or 3.2×.

Comparison to QARC QARC does not support changes
in routing inputs. We thus compare Velo against QARC when
both systems are asked to analyze link loads under l link
failures. We rerun the same experiments as in [44] with the
author’s implementation. These experiments involves the
specification of traffic between all pairs of routers, and 10%
additional traffic. For Velo, we extract the traffic matrix by
attaching one destination per egress router, and set k = 0:
this effectively disables Velo’s clustering algorithm, since no
destinations fall in the same equivalence class (see §5).

The results for up to two simultaneous link failures are
shown in Figure 5. Velo is several orders of magnitude faster
in computing maximum link loads than QARC, achieving sub-
second computation on all topologies. We believe that such a
performance gap is mainly due to the different approaches at
the core of the two systems: QARC solves an Integer Linear
Program, while Velo relies on Dijkstra’s algorithm.

1276 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

50 100 150 200

10 ms

1 sec

1 min

1 hour

Network size (# edges)

R
un

ni
ng

tim
e

QARC, l = 1
QARC, l = 2
Velo, k = 0, l = 1
Velo, k = 0, l = 2

Figure 5: For small l < 3, Velo outperforms QARC when
comparing only the current state, i.e., with k = 0. This figure
compares the running time of Velo and QARC [44] to find
link load violations for networks from TopologyZoo.

Velo is 10-100× faster than QARC even for l = 3 and l = 4
(see Figure 7). However, the performance gap between the
two systems seems to progressively decrease when increasing
l. We expect QARC to outperform Velo for large values of l.

In fairness, QARC guarantees exact computation of link
loads, while Velo theoretically doesn’t. However, in the ab-
sence of clustering, Velo is fully accurate, except possibly
overapproximating additional traffic (see §2.2). This is a
rare case that does not occur in these scenarios—Velo has no
approximation error in any of these experiments.

Takeaways Velo finds the worst-case loads of all links
within minutes for the most likely and practical scenarios
with up to two link failures and a limited number of route
changes. Because it is mostly polynomial in the network size,
Velo scales to large networks with close to 2 000 links.

6.2 Accuracy

Velo’s accuracy depends on the input traffic matrix, which
indeed impacts the effectiveness of our clustering. We evalu-
ate Velo’s accuracy on both real inter-domain traffic data and
synthetic traffic matrices, using the latter ones to measure the
effects of traffic characteristics on our clustering algorithm.

We measure both the error bound ε as defined in Equa-
tion (2) and the approximation error δ from Equation (1), i.e.,
maximum difference in worst-case link loads between the
approximate and the original traffic matrix.

We further compare our clustering algorithm with the sim-
pler approach of picking the destinations carrying the most
traffic, in the following called Top-X . We determine how
many such destinations are needed to provide the same guar-
antees as Velo. That is, we find the smallest X such that the
amount of traffic disregarded by Top-X equals our error bound
ε. We report the ratio between this smallest X and |C|: such
ratio relates directly to Velo’s running time, given that its
efficiency scales linearly with the analyzed destinations.

We represent real and synthetic traffic matrices according
to the gravity model, a common technique in network traf-
fic synthesis [38]. In the gravity model, a traffic matrix is
parametrized by three distributions:

Ms,d ∝ repulsion(s) ·attraction(d) · friction(s,d).

The attraction describes the distribution of the traffic to-
wards the destinations: a heavy-tailed attraction results in
a few destinations attracting most traffic. The repulsion de-
scribes the distribution of traffic originating from each ingress,
symmetrically to the attraction. The friction describes traffic
similarity across source-destination pairs: a heavily tailed
friction yields a sparse matrix, where many entries are zero.

Related work has shown that all the three distributions are
heavy tailed in practice [31]. Our real measurements con-
firm this: traffic per destination (i.e., the attraction), traffic
per source (i.e., the repulsion), and traffic similarity across
destinations (i.e., friction) are similar to LogNormal distribu-
tions. We thus characterize traffic matrices according to the σ
parameter of attraction, repulsion and friction: σ indeed mea-
sures the skeweness of LogNormal distributions. We provide
more details in Appendix C.1.

In all experiments, we pick |C|= 300 clusters, as we find
this to be a good compromise between accuracy and running
time, but we evaluate different values of |C| in Appendix D.3.

Real traffic data We obtain Netflow data for four 5-minute
slices from the Swiss research network Switch. These mea-
surements include byte counters per ingress link and per des-
tination IP, aggregated by /24 IPv4 or /48 IPv6 prefixes. The
data is extremely skewed; 95% of all traffic is towards 0.23%
of all destinations. We stress that this does not seem to be
common in the Internet [11, 31]. For example, the top 15%
destinations are reported to account for 95% of the traffic in
the real traffic matrices studied in [31]. This difference might
be an artifact of the destination granularity (i.e., we cannot
reconstruct traffic for prefixes less specific than /24), or due to
the specificities of the research network originating our data.

Both addresses and ingress links are anonymized, forcing
us to randomly assign links to routers. We analyze 100 such
random assignments to confirm that this has little impact on
the results. We refer to Appendix C.2 for more details.

The first four rows in Table 1 show the results for all such
traffic matrices. Velo achieves an error bound ε of around 5%
and an approximation error δ of around 0.5%. Appendix D.4
expands on the relationship between ε and δ. Further, Velo is
≈ 3.4× more efficient that top-X despite the extreme skewe-
ness of the data; a property that favors Top-X .

Synthetic data Based on our real traffic matrices, we syn-
thesize matrices with similar characteristics using the gravity
model with 30 equivalence classes, cf. §5. Starting from
the average parameters of the real matrices, we evaluate how

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1277

real repulsion attraction friction error bound ε approx. error δ efficiency w.r.t. Top-X
0 10% 0 1% 1 60×

yes 2.79 2.99 3.99 5.63% 0.68% 4.3×
yes 2.82 2.93 3.96 5.34% 0.68% 3.7×
yes 2.79 3.05 4.03 5.07% 0.49% 4.2×
yes 3.16 2.91 4.21 3.46% 0.44% 3.7×

no 2.03 3.01 4.02 11.04% 1.06% 10.8×
no 2.53 3.01 4.03 8.79% 0.82% 15×
no 3.00 3.00 4.01 7.34% 0.88% 24×
no 3.47 2.99 4.01 6.47% 0.77% 40.4×

no 2.97 1.98 4.02 9.1% 0.89% 63.7×
no 2.98 2.50 4.01 8.52% 0.88% 39.1×
no 3.00 3.00 4.01 7.34% 0.88% 24×
no 3.02 3.51 4.01 6.01% 0.72% 14.8×
no 3.04 4.01 4.01 4.58% 0.52% 8.9×

no 2.95 3.00 2.51 12.18% 0.88% 48.6×
no 2.96 3.01 3.01 11.07% 0.91% 36.8×
no 2.97 3.00 3.50 9.43% 0.85% 30.4×
no 3.00 3.00 4.01 7.34% 0.88% 24×
no 3.01 3.00 4.51 5.85% 0.67% 18.9×

Table 1: Velo’s accuracy is affected by the tail distribution over per-destination traffic, i.e., the attraction, and the variation
between traffic distributions, i.e., the friction. This table shows both the error bound ε and the approximation error δ, the latter on
a smaller scale. The box represents the 25 and 75 percentiles, with the mean indicated by the red line. The whiskers show the
minimum and maximum values. The number right to the upper whisker show the maximum number.

changing the skewness in all three dimensions affects Velo’s
accuracy, one at a time. We do so for six large topologies
from TopologyZoo (with 140–200 nodes). For each topology
and set of parameters, we generate 20 random traffic matrices.

Table 1 demonstrates that clustering is an excellent fit for
approximating traffic matrices. The error bound ε is mostly
below 10%, and the actual approximation error δ is always
<1%. Clustering is also 5x-50x more efficient than Top-X .

As expected, decreasing traffic skeweness (for any parame-
ter) increases both ε and δ, because it causes traffic to be more
evenly spread across more sources or destinations, making it
harder to capture all traffic with a fixed amount of clusters.
Yet, |C| = 300 clusters accurately approximate unrealistic
traffic matrices where traffic distributions are not very skewed
at all. In contrast, Top-X needs a lot more destinations to
achieve the same error bound, especially if the attraction has
a less significant tail. We conclude that Velo’s clustering is
more effective and more general than Top-X .

The number of clusters |C| also affects the accuracy of Velo,
reducing the error when increasing |C|. Doing so, however,
also increases the running time, as discussed in §6.1. We
find that Velo with |C| = 300 is sufficiently accurate for all
matrices we evaluated, and increasing it to 1000 clusters only
yields minor gains in accuracy (reducing the error bound from
≈3.5% to ≈1.8%). Appendix D.3 shows more results.

Traffic Variability We finally evaluate Velo’s accuracy
when traffic volumes additional to the traffic matrix is given
as input (see §2). Across all the experiments described in
Figure 4, Velo computes the correct maximum link loads in
over 99.9% of all links, for any value of additional traffic.

Takeaways Velo is very accurate in approximating the
worst-case link loads, even when using only |C|= 300 clus-
ters. In all our experiments, Velo’s approximation error is
below 1% of the total traffic volume. Further, Velo guarantees
error bounds below 12% even for unrealistic traffic matrices
that are challenging to approximate.

7 Case Study

We experiment with an ISP that provides connectivity to
around 100 universities and research institutions. The ISP
manages 126 routers connected by 376 links. Ten routers
are connected to either providers or IXPs. We generate a
traffic matrix with 100 000 prefixes according to the gravity
model [32] to match reported characteristics [31]. Customers
only announce their respective prefixes, while all the other pre-
fixes are reachable through neighboring providers or IXPs. In
the initial network state, all links are utilized below 50%—the
ISP upgrades links that maintain load above that threshold.

1278 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 4 16
0

100%

original config.

improved config.
k

utilization of backbone link

0 3

single link

redundant links k

utilization of link to IXP

(a) Configuration fine-tuning (b) Network upgrade

Figure 6: Our case study demonstrates that Velo helps im-
proving network robustness.

We run Velo on the relevant parts of the router configura-
tions, the generated traffic matrix, and an increasing k. Within
a few seconds, Velo finds that the current configuration and
topology is worryingly fragile to specific egress changes: two
links would exceed their capacities if egresses of only four
destinations change. We now show three ways in which Velo’s
insight can be leveraged by operators.

Robustifying configurations One of the two fragile links is
part of the ISP backbone: this link would be congested by spe-
cific egress changes for four (large) destinations. We use this
insight to assess an alternative configuration with three addi-
tional MPLS paths to effectively shift traffic to underutilized
links. The alternative configuration would prevent congestion
on any link for up to 16 arbitrary egress changes – a much less
likely scenario than 4 egress changes. Figure 6a compares the
robustness of the initial and alternative configurations.

Aiding strategic decisions The second fragile link connects
the ISP to an IXP. The link would be congested if traffic to
just three specific destinations is sent to that IXP. Operators
may think about upgrading that link; however, Velo’s output
highlights that other links within the ISP would also need to be
upgraded to sustain the additional traffic. A better alternative
is to add a link from the IXP to another, geographically close
backbone router. Re-running Velo on the alternative topology
reveals that ≈ 1 000 prefixes must be advertised at that IXP
to congest either of the two links – see Figure 6b.

Velo can also guide operators’ peering decisions, predicting
possible configuration and infrastructural changes required
by new BGP peerings.

Improving network management Velo identifies 64 pairs
of prefixes and egress routers; link loads significantly increase
if any such prefix is routed via the corresponding egress. This
information is highly valuable for network management and
operation. For example, it enables monitoring systems to
focus only on those 64 pairs of prefixes and egress routers,
alerting operators only for the small subset of critical events.

Velo’s output can also improve automated management
systems. For example, it enables traffic engineering systems
(e.g., [8, 18, 20]) to optimize paths before link load require-
ments are violated. Consider the above case of the backbone
link congested after four BGP egress changes. When any three
egress changes are observed out of these four, an emergency
recomputation of internal paths can be triggered immediately,
preventing congestion without waiting for data-plane mea-
surements typically collected every few minutes [20].

8 Related Work

Velo focuses on verifying link load properties, e.g., to help
improving network robustness to external events. As such, it
is related to prior work in network verification and routing.

Network verification Many verification systems have re-
cently been proposed. Among them, data-plane ones [12, 21,
22, 43] target properties based on packet headers for fixed
forwarding states, basically ignoring traffic and routing.

Control-plane verification systems [1,4,5,14,15,45,46,54]
are more related to Velo, as they admit different network set-
tings (e.g., failures). Almost all of them however focus on
properties, such as forwarding paths and routes’ propagation,
that cannot be directly translated into link loads. Prior works
cannot be easily extended to verify link load properties, be-
cause they verify one destination at the time. As failures break
the independence of destinations, thousands of destinations
must be considered jointly for link load properties. Doing so
with prior approaches would simply not scale: for techniques
like [15], it would inflate SMT formulas by |P|×, where P is
the number of destinations, hence hundreds of thousands.

The few existing checkers of link load properties do not
support BGP route changes. Jingubang [26] is a flow-level
simulation tool that computes link loads for specific failure
scenarios and traffic matrices. YU [27] extends the above
simulator to deal with k arbitrary link failures: it still works
at the per-flow level. NetDice [42] implements probabilistic
verification of properties including link load ones; however,
for link load properties, NetDice’s approach does not scale
beyond a dozen ingress-destination pairs [42]. The frame-
work presented in [7] allows to check link utilization under
arbitrary failures for network designs where configurations
(e.g., routing) can be changed. Our closest related work is
QARC [44], that verifies link load violations (without com-
puting all link loads) upon link failures. We experimentally
compare Velo against QARC in §6.1.

Routing systems Optimizing link loads has been the fo-
cus of a large body of work [2, 30, 51], especially in the
area of traffic engineering (TE). TE approaches typically
optimize paths based on the current traffic and BGP routes
or, at best, variations of them [17, 25, 35]. Some of these

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1279

approaches [7, 28, 52] rely on robust optimization to approxi-
mate the impact of failures. Future work may try robust opti-
mization techniques for link-load verification, although it’s
unclear how these techniques would guarantee accuracy and
scalability when analyzing both failures and route changes.

Real-world TE systems [18, 20] update forwarding upon
detecting a failure, and react to BGP route changes by re-
optimizing paths according to load measurements collected
every few minutes. By anticipating the most impactful failures
and route changes, Velo can be integrated into TE systems to
prevent excessive link loads or react faster to them, see §7.

Information on current and future traffic is key for intra-
domain traffic engineering. Recently, systems (e.g., [29])
have been proposed to predict changes in incoming traffic
caused by specific BGP routes announced to external neigh-
bors. We envision that such systems can be used by operators
to compute traffic matrices they want to verify with Velo.

9 Discussion

In this section, we discuss some of the design choices we
made in Velo alongside the generality of the approach.

Why not modeling congestion? For each link, Velo com-
putes the load by simply summing the amount of traffic routed
over it. In practice, though, no link load could exceed its ca-
pacity: traffic would be dropped instead. This also means that
the amount of traffic forwarded through the network immedi-
ately decreases for the links downstream of the congested one.
Hence, when any link is congested, the link loads reported by
Velo do not reflect the actual traffic volumes crossing links.

Despite this simplification, Velo’s approach is practical for
at least two reasons. First, Velo correctly identifies all the
links that cannot sustain the input traffic. Second, it correctly
estimates the amount of exceeding traffic, and it therefore
helps quantifying how much traffic needs to be rerouted, or
by how much links’ capacity should be upgraded.

What protocols and features can Velo model? Despite
hiding most of the complexity of BGP and intra-domain rout-
ing protocols, Velo’s model is powerful enough to capture
common routing architectures, including iBGP and SDN (see
§3). In fact, our model only imposes two constraints on intra-
domain routing. First, all routers must be able to select any of
the egress routers, which means that there must be no iBGP
visibility problems. Several existing techniques avoid these
problems [36, 47, 48]. Second, destinations must be indepen-
dent, which requires the de-activation of intra-domain routing
features that tie different destinations together, such as route
aggregation or conditional advertisements. The use of these
features is discouraged in iBGP [37]. Additionally, we think
that Velo can be extended to jointly reason about egresses of
dependent destinations, if needed.

Data-plane filters like ACLs do not influence routing, and
thus, Theorem 1 still applies. In their presence, Algorithms 1
and 2 can be easily extended to apply such filters by dropping
(some) traffic instead of propagating it. Doing so would
ensure that the worst-case link loads computed by Velo would
be consistent with both routing inputs and data-plane filters.

What route changes does Velo support? Velo computes
the worst-case link loads for route changes affecting subsets
of destinations. In §3, we have defined destinations as the IP
prefixes in the routing tables. This allows Velo to cover BGP
route changes for any of these IP prefixes.

In reality, the set of IP prefixes learned via BGP can change
over time. For example, at any time, the remote network
owning an IP prefix, say 1.0.0.0/8, can start announcing a
more specific prefix, such as 1.0.0.0/16. If this happens, BGP
propagates two distinct and independent routes – e.g., one for
1.0.0.0/8 and the other for 1.0.0.0/16.

Since Velo learns the destinations from the input traffic
matrix, it supports some analyses of route changes affecting
the set of known destinations, provided that enough informa-
tion is specified by operators. For instance, Velo can handle
the previous example if the input matrix includes traffic vol-
umes for 1.0.0.0/16 and (separately) for the other subnets in
1.0.0.0/8. This information is anyway necessary to compute
link loads with distinct routes for 1.0.0.0/16 and 1.0.0.0/8.

In contrast, Velo does not currently support systematic
explorations of route changes affecting the set of destinations,
e.g., announcements of any possible sub-prefix of a current
destination. We leave this direction for future work.

10 Conclusions

Velo demonstrates the feasibility of verifying worst-case link
loads in large networks, despite the need to navigate a gigantic
space of possible failures and route changes. Our evaluation
shows that Velo is both scalable and accurate across a wide
range of topologies, settings, constraints and traffic matrices.

Velo focuses on maximum link loads due to their straight-
forward practical relevance in assessing network performance.
As our case study demonstrates, Velo readily supports opera-
tors in complex tasks ranging from improving configurations
to network design and aiding business decisions.

We also see Velo as a stepping stone towards the broader
goal of verifying network performance. We believe that ex-
ploring other performance aspects, such as delay or bandwidth
guarantees, is an interesting avenue for future research.

Acknowledgments The research leading to these results
was supported by an ERC Starting Grant (SyNET) 851809.
We thank João Luís Sobrinho, our shepherd Siva Kakarla and
all anonymous reviewers for their valuable feedback. We also
thank Simon Leinen and Switch for providing traffic data.

1280 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, 2020.

[2] Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo,
and Wu Chou. A roadmap for traffic engineering in
sdn-openflow networks. Computer Networks, 71:1–30,
2014.

[3] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony
Li, Dr. Vijay Srinivasan, and George Swallow. RSVP-
TE: Extensions to RSVP for LSP Tunnels. RFC 3209,
Internet Engineering Task Force, December 2001.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 155–168, 2017.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. Control plane compression. In Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, pages 476–489, 2018.

[6] Vineet Bharti, Pankaj Kankar, Lokesh Setia, Gonca Gür-
sun, Anukool Lakhina, and Mark Crovella. Inferring
invisible traffic. In Proceedings of the 6th International
Conference, Co-NEXT ’10, New York, NY, USA, 2010.
Association for Computing Machinery.

[7] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani.
Robust Validation of Network Designs under Uncer-
tain Demands and Failures. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 347–362, Boston, MA, March 2017.
USENIX Association.

[8] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Wid-
jaja. Mate: Mpls adaptive traffic engineering. In
Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), volume 3, pages 1300–
1309. IEEE, 2001.

[9] Wenjia Fang and Larry Peterson. Inter-as traffic pat-
terns and their implications. In Seamless Interconnec-
tion for Universal Services. Global Telecommunications
Conference. GLOBECOM’99.(Cat. No. 99CH37042),
volume 3, pages 1859–1868. IEEE, 1999.

[10] Nick Feamster, Hari Balakrishnan, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. The case
for separating routing from routers. In Proceedings of
the ACM SIGCOMM Workshop on Future Directions in
Network Architecture, FDNA ’04, page 5–12, New York,
NY, USA, 2004. Association for Computing Machinery.

[11] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick
Reingold, Jennifer Rexford, and Fred True. Deriving
traffic demands for operational ip networks: Method-
ology and experience. IEEE/ACM Transactions On
Networking, 9(3):265–279, 2001.

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, 2015.

[13] Bernard Fortz and Mikkel Thorup. Internet traffic en-
gineering by optimizing ospf weights. In Proceedings
IEEE INFOCOM 2000. conference on computer com-
munications. Nineteenth annual joint conference of the
IEEE computer and communications societies (Cat. No.
00CH37064), volume 2, pages 519–528. IEEE, 2000.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya
Akella, and Ratul Mahajan. Fast control plane analysis
using an abstract representation. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 300–313,
2016.

[15] Nick Giannarakis, Devon Loehr, Ryan Beckett, and
David Walker. Nv: An intermediate language for ver-
ification of network control planes. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 958–973,
2020.

[16] Timothy G Griffin and Gordon Wilfong. On the correct-
ness of ibgp configuration. ACM SIGCOMM Computer
Communication Review, 32(4):17–29, 2002.

[17] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and
Mark Handley. On low-latency-capable topologies, and
their impact on the design of intra-domain routing. In
Proceedings of the ACM SIGCOMM 2018 Conference,
page 88–102, 2018.

[18] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
WAN. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, 2013.

[19] Geoff Huston. Measuring BGP in 2023—have we
reached peak ipv4? APNIC Blog, Jan 2024.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1281

[20] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Ex-
perience with a Globally Deployed Software Defined
WAN. In Proceedings of the ACM SIGCOMM Confer-
ence, Hong Kong, China, 2013.

[21] Peyman Kazemian, George Varghese, and Nick McK-
eown. Header space analysis: Static checking for
networks. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages
113–126, 2012.

[22] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. Veriflow: Verifying network-wide
invariants in real time. In Proceedings of the first work-
shop on Hot topics in software defined networks, pages
49–54, 2012.

[23] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys
Bowden, and Matthew Roughan. The internet topology
zoo. IEEE Journal on Selected Areas in Communica-
tions, 29(9):1765–1775, 2011.

[24] Gottfried Köthe and Gottfried Köthe. Topological vec-
tor spaces. Springer, 1983.

[25] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, and
Robert Soulé. Semi-oblivious traffic engineering: The
road not taken. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18),
pages 157–170, 2018.

[26] Ruihan Li, Fangdan Ye, Yifei Yuan, Ruizhen Yang,
Bingchuan Tian, Tianchen Guo, Hao Wu, Xiaobo Zhu,
Zhongyu Guan, Qing Ma, Xianlong Zeng, Chenren Xu,
Dennis Cai, , and Ennan Zhai. Reasoning about net-
work traffic load property at production scale. In 21st
USENIX Symposium on Networked Systems Design and
Implementation, 2024.

[27] Ruihan Li, Yifei Yuan, Fangdan Ye, Mengqi Liu,
Ruizhen Yang, Yang Yu, Tianchen Guo, Qing Ma, Xi-
anlong Zeng, Chenren Xu, Dennis Cai, and Ennan Zhai.
A General and Efficient Approach to Verifying Traffic
Load Properties under Arbitrary k Failures. In Proceed-
ings of the ACM SIGCOMM 2024 Conference, page
228–243, New York, NY, USA, 2024. Association for
Computing Machinery.

[28] Hongqiang Harry Liu, Srikanth Kandula, Ratul Maha-
jan, Ming Zhang, and David Gelernter. Traffic engineer-
ing with forward fault correction. In Proceedings of the
2014 ACM Conference on SIGCOMM, page 527–538,
New York, NY, USA, 2014. Association for Computing
Machinery.

[29] Michael Markovitch, Sharad Agarwal, Rodrigo Fonseca,
Ryan Beckett, Chuanji Zhang, Irena Atov, and Somesh
Chaturmohta. TIPSY: predicting where traffic will
ingress a WAN. In Proceedings of the ACM SIGCOMM
2022 Conference, page 233–249, New York, NY, USA,
2022. Association for Computing Machinery.

[30] Alaitz Mendiola, Jasone Astorga, Eduardo Jacob, and
Marivi Higuero. A survey on the contributions
of software-defined networking to traffic engineering.
IEEE Communications Surveys & Tutorials, 19(2):918–
953, 2016.

[31] Jakub Mikians, Amogh Dhamdhere, Constantine Dovro-
lis, Pere Barlet-Ros, and Josep Solé-Pareta. Towards
a statistical characterization of the interdomain traffic
matrix. In NETWORKING 2012: 11th International
IFIP TC 6 Networking Conference, Prague, Czech Re-
public, May 21-25, 2012, Proceedings, Part II 11, pages
111–123. Springer, 2012.

[32] Jakub Mikians, Nikolaos Laoutaris, Amogh Dhamd-
here, and Pere Barlet-Ros. Itmgen—a first-principles
approach to generating synthetic interdomain traffic ma-
trices. In 2013 IEEE International Conference on Com-
munications (ICC), pages 2507–2512. IEEE, 2013.

[33] John Moy. OSPF Version 2. RFC 2328, Internet
Engineering Task Force, April 1998.

[34] Dave Oran. OSI IS-IS Intra-domain Routing Protocol.
RFC 1142, Internet Engineering Task Force, February
1990.

[35] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth
Kandula, Ishai Menache, Michael Schapira, and Aviv
Tamar. {DOTE}: Rethinking (predictive){WAN} traffic
engineering. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1557–1581, 2023.

[36] Robert Raszuk, Bruno Decraene, Christian Cassar, Erik
Aman, and Kevin Wang. BGP Optimal Route Reflection
(BGP ORR). RFC 9107, Internet Engineering Task
Force, August 2021.

[37] Yakov Rekhter, Susan Hares, and Tony Li. A Bor-
der Gateway Protocol 4 (BGP-4). RFC 4271, Internet
Engineering Task Force, January 2006.

[38] Matthew Roughan. Simplifying the synthesis of internet
traffic matrices. ACM SIGCOMM Computer Communi-
cation Review, 35(5):93–96, 2005.

[39] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever.
Snowcap: Synthesizing network-wide configuration up-
dates. In Proceedings of the 2021 ACM SIGCOMM
Conference, pages 33 – 49, New York, NY, 2021-08.
Association for Computing Machinery.

1282 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[40] Tibor Schneider, Roland Schmid, Stefano Vissicchio,
and Laurent Vanbever. Taming the transient while recon-
figuring BGP. In Proceedings of the ACM SIGCOMM
2023 Conference, 2023.

[41] João L Sobrinho. Algebra and algorithms for qos path
computation and hop-by-hop routing in the internet. In
Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications
Society, volume 2, pages 727–735. IEEE, 2001.

[42] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent
Vanbever, and Martin Vechev. Probabilistic verification
of network configurations. In Proceedings of the An-
nual ACM SIGCOMM Conference of the ACM Special
Interest Group on Data Communication, Online, 2020.
Association for Computing Machinery.

[43] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution
for modern networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 314–327, 2016.

[44] Kausik Subramanian, Anubhavnidhi Abhashkumar,
Loris D’Antoni, and Aditya Akella. Detecting net-
work load violations for distributed control planes. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI 2020, page 974–988, New York, NY, USA, 2020.
Association for Computing Machinery.

[45] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Ja-
yaraman, Tejas Patil, Todd Millstein, and George Vargh-
ese. Lightyear: Using modularity to scale bgp control
plane verification. In Proceedings of the ACM SIG-
COMM 2023 Conference, pages 94–107, 2023.

[46] Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta,
and David Walker. Kirigami, the verifiable art of net-
work cutting. IEEE/ACM Transactions on Networking,
2024.

[47] Jim Uttaro, Pierre Francois, Keyur Patel, Jeffrey Haas,
Adam Simpson, and Roberto Fragassi. Best Practices
for Advertisement of Multiple Paths in IBGP. Internet-
Draft draft-ietf-idr-add-paths-guidelines-08, Internet En-
gineering Task Force, April 2016. Work in Progress.

[48] Virginie Van den Schrieck, Pierre Francois, and Olivier
Bonaventure. Bgp add-paths: the scaling/performance
tradeoffs. IEEE Journal on Selected Areas in Communi-
cations, 28(8):1299–1307, 2010.

[49] Stefano Vissicchio, Luca Cittadini, Laurent Vanbever,
and Olivier Bonaventure. iBGP deceptions: More ses-
sions, fewer routes. In Proceedings of the IEEE INFO-
COM Conference, 2012.

[50] Dan Wang, Peng Zhang, and Aaron Gember-Jacobson.
Expresso: Comprehensively Reasoning About External
Routes Using Symbolic Simulation. In Proceedings of
the ACM SIGCOMM 2024 Conference, page 197–212,
New York, NY, USA, 2024. Association for Computing
Machinery.

[51] Ning Wang, Kin Hon Ho, George Pavlou, and Michael
Howarth. An overview of routing optimization for
internet traffic engineering. IEEE Communications
Surveys & Tutorials, 10(1):36–56, 2008.

[52] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi,
Yin Zhang, Lili Qiu, and Yang Richard Yang. R3:
resilient routing reconfiguration. In Proceedings of
the ACM SIGCOMM 2010 Conference, page 291–302,
New York, NY, USA, 2010. Association for Computing
Machinery.

[53] Fatai Zhang, Oscar Gonzalez de Dios, Matt Hartley,
Zafar Ali, and Cyril Margaria. RSVP-TE Extensions
for Collecting Shared Risk Link Group (SRLG) Infor-
mation. RFC 8001, Internet Engineering Task Force,
January 2017.

[54] Peng Zhang, Dan Wang, and Aaron Gember-Jacobson.
Symbolic router execution. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 336–349, 2022.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1283

A Exception Paths

In the following, we first proof Theorem 2 that pretains to we
handle exception paths. We then present the algorithm that
relies on Theorem 2 to find the worst-case link loads under
optimal and exception paths.

A.1 Proof of Theorem 2
Proof. Consider edge e = (u,v), and let b ∈ B be an egress
router preferred by v. Now, take any node n∈Ne that forwards
traffic along the edge e for destination d. We distinguish two
cases:

1. Paths of n that traverse e are optimal (i.e., are not excep-
tion paths), and by Theorem 1, n will not decrease the
traffic it sends along edge e.

2. n forwards traffic along exception paths in ρd . Then, n
will use the same forwarding paths for egresses {b}∪T ∩
B as all destinations of n’s forwarding paths are within
T and B. Thus, n will still forward the same amount of
traffic over link e.

It follows that the traffic on e cannot decrease for egresses
{b}∪T ∩B, proving Theorem 2.

A.2 Algorithm for Exception Paths
Algorithm 2 shows the algorithm for finding the worst-case
loads for all network links in the presence of exception paths,
i.e., paths that don’t follow the optimal paths according to the
strictly isotone routing protocol.

The function selected_combinations iterates over all
combinations of egress routers within T and all individual
routers in NB \T . It further, checks whether there exists a set
of advertisements for all egresses to be selected simultane-
ously based on the LocalPref values.

B Clustering Error Bounds

In the following, we formally proof that the clustering error
bounds the approximation error of the worst-case link load.
To that end, we first introdoce two lemmas the pertain to
linearity and the superposition of maximum link loads before
proofing Theorem 3.

Lemma 1 max load(e,M) is linear in terms of M, i.e.,

∀a≥ 0 : a ·max load(e,M) = max load(e,a ·M)

Proof. Intuitively, Lemma 1 holds, because scaling the traffic
matrix does not affect the worst-case routing state, and thus,
the forwarding paths in the worst case and the link loads
remain unchanged. More formally, the worst-case routing
state is obtained using a set of inequalities over sums of traffic

Algorithm 2: Find the worst-case link load for all
links for optimal or exception paths.

Data: Graph G = (N,E), border routers NB ⊆ N, link
weights w : E 7→ R, traffic Md , paths ρd

Result: maximum link loads y[e] for all links e ∈ E

T ←{b | (s, · · · ,b) ∈ ρd}
y[u,v]← 0 ∀(u,v) ∈ E
Gdag[b]← ForwardingDAG(G,w,root = b) ∀b ∈ NB

for B ∈ selected_combinations(NB,T) do

y′[u,v]← 0 ∀(u,v) ∈ E
l[s]←Ms,d ∀s ∈ N
G f w← merge(Gdag[b] ∀b ∈ B)

for path = (s,n1, · · · ,ni,b) ∈ ρd do

if s forwards to b in G f w then

y′[u,v]← y′[u,v]+ l[s] ∀(u,v) ∈ path
l[s]← 0

for u ∈ TopoSort(Gdag) do

dout ← |out(Gdag,u)|
for v ∈ out(Gdag,u) do

l[v]← l[v]+ l[u]/dout
y′[u,v]← y′[u,v]+ l[u]/dout
y[u,v]←max(y[u,v],y′[u,v])

volumes (see Algorithm 1). Scaling each entry in the traffic
matrix does not influence these inequalities. The link loads in
that routing state are computed by adding individual entries in
the matrix, which itself is a linear operation. Thus, max load
is linear in terms of M.

Lemma 2 max load(e,M) is equal the superposition of the
maximum link loads for all columns of M. In other words,

max load(e,M) = ∑
d

max load(e,Md)

Proof. Lemma 2 is intuitively true because the forwarding
decision for one destination is independent of the routing
state of another destination. In other words, we can tweak
the worst-case routing input for destination d1 independently
of d2 to obtain the maximum load on link e for destinations
d1 and d2. Then, the load on link e is equal to the sum of all
traffic for all individual destinations, including d1 and d2.

Theorem 3 The approximation error δ of computing the
maximum link loads for the approximated traffic matrix A is
bounded by ε. More formally,

δ = max
e∈E
|max load(e,M)−max load(e,A)| ≤ ε. (3)

1284 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Proof. We prove Theorem 3 by considering each individual
destination d and its contribution to both the clustering and
the approximation error. To that end, we define Md as the
approximation of d’s traffic Md , and express both the approx-
imation error δ and the clustering error ε in terms of M.

Since the approximated matrix A is of a different shape
than M, we first describe how to relate the contribution of
any destination d ∈ ci to its cluster centroid Ai. To that end,
we define Md = |Md | ·Ai/ |Ai| as the approximated traffic for
destination d. Notice, that the clustering error ε, defined in
Equation (2), can be rewritten as:

ε =
1
2 ∑

ci∈C
∑

d∈ci

∣∣∣∣Md−|Md |
Ai

|Ai|

∣∣∣∣= 1
2 ∑

d∈P

∣∣Md−Md
∣∣ .

Further, the maximum link load max load(e,A) can expressed
in terms of M by relying on the definition of Ai in Equa-
tion (2), and the linearity and decomposition of maximum
link loads. We prove both properties in Appendix B.

max load(e,A) = ∑
ci∈C

max load(e,Ai)

= ∑
ci∈C

∑
d∈ci

max load(e,Ai) · |Md |/ |Ai|

= ∑
d∈P

max load(e,Md)

Now, let’s focus on the maximum link load for Md and Md
on link e. To that end, we consider traffic x+d that is part in
the approximation Md but not in the original Md , and traffic
x−d of Md that is not part in Md :

x+d =∑
s

max(0,Ms,d−Ms,d) x−d =∑
s

max(0,Ms,d−Ms,d)

Let’s first focus on x+d , but the argument for x−d is symmet-
rical by swapping M and M. The difference of maximum link
loads for Md and Md is at most the additional traffic x+d of
Md , i.e., max load(e,Md)−max load(e,Md) ≤ x+d . That is
because max load(e,Md) by definition is the maximum load
achievable on link e, and adding traffic x+d cannot increase that
maximum by more than x+d . Therefore, δ≤ x+d and δ≤ x−d .

Finally, we show that ∑d x+d = ∑d x−d = ε. This is because,
by definition of the L1 norm, x+d + x−d =

∣∣Md−Md
∣∣, and

that the centroid Ai = ∑d∈ci Md contains equal positive and
negative errors, i.e., x+d = x−d . This proves Theorem 3.

C Methodology for Table 1

The following elaborates on the Methodology for Table 1.
Specifically, we detail how we find the attraction, repulsion,
and friction parameters from a (real or synthetic) traffic matrix,
and our processing that was required to obtain the real traffic
matrices from aggregated netflow statistics.

C.1 Characterizing a Traffic Matrix

We characterize a traffic matrix according to the three distribu-
tions of the gravity model. Specifically, we assume the matrix
was generatred from a gravity model, with repulsion, attrac-
tion, and friction sampled independently from LogNormal
distributions. We then obtain the most likely σ parameter.

To characterize the attraction, we compute the total traffic
to each destionation d, normalized to have a mean of 1:

∀d ∈ P : Md =
|P|
|M|∑s

Ms,d .

We then assume {Md | d ∈ P} ∼ LogNormal(σ,µ = 0) to
be sampled from a LogNormal distribution with µ = 1 (the
expected value in log-space) and find the most likely σ param-
eter. Similarly, we repeat the same process for the repulsion,
but with traffic from each ingress router:

∀s ∈ N : Ms =
|N|
|M|∑d

Ms,d .

For the friction, we use the traffic from each source and
to each destination to find the variance for each element in
the matrix. In other words, we find find the most likely σ
assuming { f s,d | (s,d)∈N×P}∼ LogNormal(σ,µ= 0) with

fs,d =
Ms,d

Ms ·Md
, f s,d =

|N| · |P|
∑s,d fs,d

fs,d .

By dividing each element Ms,d by the total traffic from
source s to destination d, we are left with the variation factor
friction(s,d) from the gravity model.

C.2 Real Traffic Matrices

The ISP samples traffic on all links towards external peers and
providers, but not on links to their customers. The collected
netflow data consists of byte counters aggregated by souce and
destination IP addresses (either /24 or /48), and the specific
egress link on which the packet was sampled, including its
direction (whether it leaves or enters the ISP).

To construct the inter-domain traffic matrix (i.e., byte coun-
ters per ingress router and destination prefix), we must as-
sociate destination addresses of ingress traffic (and source
addresses of egress traffic) to the customer associated with
that prefix. Together with the operators, we constructed a map-
ping from prefixes to customers. Unfortunately, this mapping
is neither complete nor unique. Some prefixes are related to
multiple customers that did not obtain full /24 or /48 prefixes.
Further, some prefixes could not be assigned to customers
due to time constraints. This affects around 30% of the total
traffic volume3.

3We plan to improve this mapping for the final version.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1285

50 100 150 200

10 ms

1 sec

1 min

1 hour

Network size (# edges)

R
un

ni
ng

tim
e

QARC, l = 3
QARC, l = 4
Velo, k = 0, l = 3
Velo, k = 0, l = 4

Figure 7: For l = 3 and l = 4, Velo still outperforms QARC,
yet the performance gap decreases.

The data further allows us to reconstruct the routing state
(i.e., the selected egress routers) at time of measurement.
For ingress traffic, the traffic is always routed towards the
respective customer. For egress traffic, the egress interface on
which the traffic is observed is the selected egress point.

D Supplementary evaluation

We provide additional measurements to support §6.

D.1 Comparison with QARC

Figure 7 compares the running time of Velo with QARC for
finding worst-case link loads under three and four simultane-
ous link failures. In 15% of these scenarios, QARC timeouts
after running for one hour, while Velo can find the worst-case
within 20 minutes for networks up to twice as large.

D.2 Clustering Time vs. Analysis Time

Velo’s total running time can be separated into the clustering
time to find the approximate traffic matrix and the time to
find the maximum link loads, which we call the analysis
time. Figure 8 shows both the clustering and the analysis
time for the largest 75 networks on a log-log plot, for both
l = 1 and l = 2. We use the same parameters as described in
§6.1. We find that the clustering time dominates the running
time for small networks, while it can be neglected for large
networks. Further, both the analysis time and the clustering
time appear as straight lines in the log-log plot, indicating they
scale polynomially in the network size. The analysis time
scales roughly quadratically for l = 1 and cubic for l = 2,
as Velo considers |E| additional failure scenarios. Finally,
the clustering time scales linearly in the network size which
corresponds to the dimensionality of the clustering problem.

100 1000 1790

1 sec

1 min

1 hour

Network size (# edges)

R
un

ni
ng

tim
e

(6
4

th
re

ad
s) analysis time (l = 1)

analysis time (l = 2)
clustering time

Figure 8: The running time of Velo in terms of the time to
perform the clustering and the time to find the worst-case link
failures.

Table 2: Velo’s accuracy and running time for varying number
of clusters

error bound ε approx. error δ
|C| time 0 20% 0 3%

100 178 s 16.23% 2.66%

300 210 s 7.34% 0.88%

600 268 s 4.95% 0.39%

1000 343 s 3.71% 0.22%

D.3 Performance–Accuracy Tradeoff

Velo can be configured to an arbitrary number of clusters.
Increasing the number of clusters will yield more accurate
results at the expense of longer running times, as Algorithm 1
is executed for each cluster.

To evaluate the performance–accuracy tradeoff, we run
Velo on the same 6 topologies as in §6.2, choose the traffic
matrix using the same baseline distributions, and choose l = 2,
k = 10, and |NB|= 30.

Table 2 shows both Velo’s running time and accuracy for
100, 300, 600, and 1 000 clusters. We identify a substantial im-
provement in accuracy when increasing |C| from 100 to 300,
especially in terms of the error bounds. However, increasing
|C| to 1000 yields a much smaller accuracy improvement at
the expense of a 1.6× increase in running time.

Based on the results in Table 2, we choose |C| as a reason-
able tradeoff between accuracy and running time. Yet, the
number of clusters can be tuned to the operator’s use case to
either reduce the running time or improve the accuracy.

1286 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10.4% 16.6% 36.2%
0

100%

50%
90%

δ/ε

CDF

Figure 9: The approximation error δ is typically over 100×
smaller than the error bounds ε. This plot shows the CDF of
the fraction δ/ε, a measure of how “tight” ε bounds δ.

D.4 Tightness of error bounds.
Table 1 shows that the clustering error ε typically 10 times
larger than the approximation error δ. This demonstrates how
our error bounds is pessimistic, as it sums the absolute values
of all the clustering errors as if all the traffic would traverse
every single link. In practice, however, differences in a single
destination’s traffic distribution do not necessarily cause the
worst-case routing state for that destination to change. Further,
if a few destinations in that cluster have different worst-case
routing state, their impact on the resulting load can be both
positive or negative, likely canceling each other out.

Figure 9 displays the CDF of the approximation error δ
divided by the error bounds ε to visualize how tight the the-
oretical and real errors are. In 50% of our experiments, the
approximation error δ is within 10.4% of the error bounds ε.
In 90%, it is within 16.6%.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1287

	Introduction
	Overview
	Problem Statement
	Velo in a nutshell

	Model and Notation
	Finding Maximum Link Loads
	Per-Destination Worst-Case Link Loads
	Strictly Isotonic Routing
	Exception Paths for Traffic Engineering

	Restricting the Number of Route Changes

	Approximating the Traffic Matrix
	Evaluation
	Running Time
	Accuracy

	Case Study
	Related Work
	Discussion
	Conclusions
	Exception Paths
	Proof of Theorem 2
	Algorithm for Exception Paths

	Clustering Error Bounds
	Methodology for Table 1
	Characterizing a Traffic Matrix
	Real Traffic Matrices

	Supplementary evaluation
	Comparison with QARC
	Clustering Time vs. Analysis Time
	Performance–Accuracy Tradeoff
	Tightness of error bounds.

