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Abstract
Queue dynamics introduce significant uncertainty in

network management tasks such as debugging, performance
monitoring, and analysis. Despite numerous queue-monitoring
techniques, many networks today continue to collect only
per-port packet counts (e.g., using SNMP). Although queue
lengths are correlated with packet counts, deriving the precise
correlation between them is very challenging since packet
counts do not specify many quantities (e.g., packet arrival
order) which affect queue lengths.

This paper presents QUASI, a system that can answer many
queue-related queries using only coarse-grained per-port
packet counts. QUASI checks whether there exists a packet
trace that is consistent with the packet counts and satisfies a
query. To scale on large problem instances, QUASI relies on
a layered approach and on a novel enqueue-rate abstraction,
which is lossless for the class of queries that QUASI answers.
The first layer employs a novel and efficient algorithm that
generates a cover-set of abstract traces, constructs represen-
tative abstract traces from the cover-set, and efficiently checks
each representative abstract trace by leveraging a known result
on (0,1)-matrix existence. The first layer guarantees no false
negatives: if the first layer says “No”, there is no packet trace
consistent with the observed packet counts that makes the
query true. If it says “Yes”, further verification is needed,
which the second layer resolves using an SMT solver. As a
result, QUASI has no false positives and no false negatives.

Our evaluations show that QUASI is up to 106X faster
than state-of-the-art, and can answer non-trivial queries about
queue metrics (e.g., queue length) using minute-granularity
packet counts. Our work is the first step toward more practical
formal performance analysis under given measurements.

1 Introduction

Many challenging network management tasks can be reduced
to queue-related queries, as queuing delays often represent
the most significant source of uncertainty for a packet on its

journey [21]. For instance, a network operator can verify a
latency Service Level Objective (SLO) for a path by querying
the bounds for each queue’s length on that path. Similarly, a
decision about whether to increase the size of on-chip buffers
or whether to allow certain applications to share a switch could
be informed by querying how often multiple queues of the
same device experience bursts concurrently [1, 2].

While there are various techniques for measuring queue
behavior, fine-grained queue monitoring is often costly to
collect, store, and analyze, and it may even require specialized
hardware [6,9,16,18,20]. As a result, commodity data centers,
ISPs, and enterprise networks often rely on simpler, always-on
packet count monitors that track the number of incoming and
outgoing packets at each port (e.g., SNMP [7,12,19,23,25,26]).
These per-port packet counts are highly scalable and are
typically collected at coarse-grained intervals, such as every
few minutes. They are useful for estimating average utilization
and identifying traffic patterns, but the widely held assumption
is that they cannot be used for answering queue-related queries.

Upon closer examination, this assumption appears flawed.
Per-port packet counts are actually closely correlated with
queue lengths and can impose significant constraints on queue
dynamics, hence helping answer queue-related queries. For
instance, multiple packets are required for a queue to form,
and bursts only occur when multiple ports simultaneously
send to the same queue (fan-in). Additionally, there should be
a limit to the number of concurrent bursts a symmetric device
can handle. These observations motivate the question this
paper seeks to answer: Can we answer queue-related queries
using only coarse-grained packet counts?

At first glance, this task appears impossible. The first hurdle
lies in the discrepancy between the query metric (queue length)
and the available data (per-port packet counts). Although these
two are closely related, establishing a closed-form relationship
between them is not straightforward. The counts only provide
the total number of packets received and sent at each port,
without information on their timing, sequences, or routing (i.e.,
which input port’s packet was forwarded to which output port
and when). This information defines a packet trace and are
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crucial for deducing queue lengths. Hence, to answer queries
about queue lengths, one would need to consider a vast number
of packet traces, identify those consistent with the given
per-port counts, and then determine the answer based on these
traces. The search space expands significantly as the monitor-
ing interval duration increases. An alternative approach would
be to leverage FPerf [4], a system that models network com-
ponents and their queues in logic, and synthesizes workloads
that satisfy a given query. FPerf solves a different performance
analysis problem, so we modified FPerf to check if there exists
a packet trace consistent with given measurements (specified
as constraints over a workload) that satisfies a given query.
However, FPerf does not support output and dropped packet
count measurements, and quickly becomes unscalable (§7.4).
Layered approach. To navigate the search space of packet
traces more efficiently, we have developed a layered approach
called QUASI (Queue Analysis from SNMP Information),
drawing inspiration from the abstraction-refinement
paradigm [10], which has seen tremendous success in the
formal methods community [8, 17]. At its core, QUASI
provides Boolean answers to queries (e.g., answer yes or no:
could this queue have n packets?). QUASI can also handle
quantitative queries by running multiple Boolean queries (e.g.,
to answer: what is the maximum length this queue could have
reached?). The first layer of QUASI performs an efficient over-
approximate analysis using representations of packet traces
as (0,1)-matrices, such that a negative result is conclusive
and does not require further analysis – we prove that QUASI’s
first layer will not incorrectly answer a query negatively. If
this first layer is inconclusive, QUASI progresses to a second
layer that utilizes an exact but less scalable analysis based on
use of a Satisfiability Modulo Theories (SMT) solver [5, 11].
This layered strategy allows QUASI to balance efficiency and
accuracy, reserving the use of more computationally intensive
methods for situations where they are genuinely necessary.
Novel abstraction. QUASI is centered around a novel,
powerful, and lossless abstraction that we call enqueue-rate.
The enqueue-rate abstraction enables QUASI to reason about
multiple packet traces simultaneously, thereby improving
efficiency without any loss of accuracy. This abstraction is
based on the insight that the exact routing of packets between
input and output ports is not relevant for answering the
queue-related queries supported by QUASI.
Efficient over-approximate analysis. QUASI’s first layer
leverages the enqueue-rate abstraction and incorporates three
key innovations that result in high efficiency. First, QUASI
derives necessary conditions from the query, represented as
a disjunction of concise representations of sets of abstract
traces; each set can be investigated independently or in parallel
with others. Second, we show that for each such set of abstract
traces, we can construct a special abstract trace — termed the
most-uniform abstract trace — that serves as a representative
of all abstract traces in the set. In particular, we prove that
it is enough to check just the representative abstract trace

for each set. Finally, we show that we can efficiently check
each representative abstract trace using a known result from
combinatorics, specifically the Gale-Ryser theorem [13, 24].
Exact Analysis. QUASI’s second layer also uses the enqueue-
rate abstraction, using an SMT solver to precisely model the
exact (rather than necessary) conditions for an abstract trace
to be consistent with the given measurements and the query.
Summary of results. We evaluate QUASI on simulated data
and compare it against a heuristic baseline and FPerf [4] on a
variety of queries (both Boolean and quantitative). Our results
show that QUASI is useful: QUASI’s first layer finds upper
bounds on maximum queue length and buffer occupancy up to
58% tighter than bounds found by a heuristic analysis within
one second; QUASI’s second layer finds the exact value in
25 minutes. QUASI is 106x faster than FPerf and supports an
important class of burst-related queries that FPerf does not
support. QUASI scales to realistic monitoring intervals (5
mins/300 million time steps) for queue length queries.

2 Motivation

In this section, we start by describing use cases that showcase
the usefulness of provably answering queue-related queries, es-
pecially when done with coarse-grained per-port packet count
measurements. Then, we explain the shortcomings of existing
approaches to measuring and inferring queue dynamics.

2.1 Why are Queue-related Queries Useful?

Having visibility on queue lengths in a network (through direct
or indirect measurements) is critical for multiple network
management tasks. We discuss use cases related to root-cause
analysis, provisioning, and performance guarantees.

First, visibility over queue lengths makes debugging
network incidents easier. Consider, for example, an operator
debugging an incident of packet drops on a particular network
device. The operator would benefit from learning whether
the drops could have been caused by buffer pressure (i.e.,
excessive buffering on ports distinct from the one dropping),
or whether they could have been from a bursty application.
The operator could learn this by looking at the queue-length
time series of each queue on the device. Yet access to such
data via monitoring alone would require an always-on tool that
monitors all queues of all devices at a millisecond (at least)
granularity. Considering the cost, a tool that would provably
answer at least some such queries using cheap coarse-grained
packet counts would be useful.

Second, visibility over queue lengths simplifies network
planning. Consider an operator that aims to place applications
in their network avoiding bursty applications sharing the
same device, or an operator investigating whether they need to
upgrade on-device buffers. Observe that such a query needs to
run over historical queue length data spanning a good amount
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of time to contain various applications. Even if these data
were collected in the past at ms granularity, it is unlikely that
they would be currently available. Hence, a tool that would
“piggyback” queries about queues on coarse-grained packet
counts that are used for other tasks (e.g., predicting utilization,
traffic matrices) and hence are more likely to be available,
would be very useful.

Finally, answering queue-related queries could be useful
for verification. Queue management in high-speed switches
involves intricate mechanisms for flow control across multiple
queues on different ports. Implementation errors by equipment
manufacturers can result in counterintuitive outcomes, such
as high packet loss and delays even during periods of low
link utilization. Investigating whether the device’s working is
consistent with the specification is very challenging. Accurate
and fine-grained queue length monitoring would be useful but
might not be reliable. Hence, it would help to cross-check those
measurements with coarse-grained packet counts. In this case,
a tool that can provably answer queries about what queue length
values are possible given the packet counts would be useful.

2.2 Limitations of Inferring Queue Lengths
Directly measuring and storing queue lengths at a fine-grained
granularity (e.g., nanosecond level) in an always-on manner
is impractical [15], leading to the development of various
inference methods such as Zoom2Net [15] and SIMON [14].
While these methods are innovative in that they do not require
additional resources or hardware, they lack correctness
guarantees. For example, Zoom2Net generates fine-grained
telemetry guaranteed to satisfy selected constraints enforcing
consistency with coarse-grained measurements and switch
operation. However, these constraints are not sufficient, so
the generated fine-grained telemetry might be impossible in
practice. Also, it cannot prove, e.g., that a certain queue length
could not have occurred. This limitation becomes particularly
problematic when an operator needs to understand the worst-
case scenario or is concerned about a specific set of scenarios
with some property. Consider an operator troubleshooting
an incident of increased end-to-end latency: knowing the
worst-case queuing delay for each device on-path (or that the
delay has not exceeded some threshold) would help her safely
narrow down the search to a smaller set of devices. However, if
the inferred queueing delay is an underestimate, it can mislead
the operator, complicating the debugging process. Beyond
these limitations, both works assume access to coarse-grained
measurements of queue length/delay. Zoom2Net considers
periodic and maximum queue lengths (along with packet
counts), and SIMON assumes end-to-end queueing delay.

3 Overview of QUASI
After formally defining our problem (§3.1), we introduce a
running toy example that shows how leveraging coarse-grained
packet counts can be useful in deducing queue dynamics

U, set of all packet traces

set of packet traces  
consistent with  
input counts Mi

MoQ
set of packet traces  

consistent with  
output & dropped 

counts

set of packet traces  
consistent with 

query

Mi ∩ Mo ∩ Q ≠ ∅?

Figure 1: We recast the problem of answering a queue-related
query under given measurements into the problem of checking
whether the intersection of Mi, Mo, and Q is non-empty.

(§3.2). More importantly, the example showcases that even in
such a seemingly simple example, answering a queue-related
query is nontrivial. We use this example to illustrate the key
steps in how QUASI answers queue-related queries in §4.4,
after we have introduced key concepts in §4.3.

3.1 Problem Definition
We are given packet counts of received (input), sent (output),
and dropped packets for each port of a switch, aggregated over a
monitoring interval. We are also given a query describing an in-
cident/property or value depending on one or more queues dur-
ing the interval which can be answered positively or negatively.
Goal. Our goal is to build a system that can answer positively
if there exists some sequence of packets (called a packet trace)
which, if arrived at the switch during the interval, would be
consistent with input, output, and dropped counts, and would
satisfy the query. The system should answer negatively if such
a packet trace does not exist. The exact syntax of the query
language is shown in Fig. 4 (§4.2).

More concretely, we formulate the problem of answering
a queue-related query as determining whether the intersection
of three sets is non-empty, as shown in Fig. 1:
Mi : set of all packet traces consistent with the per-port input

counts of all ports of a switch.
Mo : set of all packet traces consistent with the per-port

output and dropped counts of all ports of a switch.
Q : set of all packet traces that make the query true.

There exists a packet trace consistent with the measurements
that makes the query true if and only if Mi∩Mo∩Q ̸= /0.

3.2 Motivating Example
Consider a cloud operator who receives a complaint from
a customer claiming that the latency between her silicon
servers violated the service level objective (SLO) at some
point between 9 am and 10 am on a given day. Since the
customer’s servers are connected through a single switch
(shown in Fig. 2), the operator deduces that the only way the
cloud provider might be liable is if the queueing latency at
the switch exceeded a threshold close to the SLO during that
time. Consider that the operator lacks access to fine-grained
queue-length measurements, either because the hardware
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Figure 2: Output-queued switch with per-port packet counts.

does not support such fine-grained monitoring or because
collecting and storing these measurements is only available
on-demand due to its high cost. Instead, the operator has
access to SNMP [12] packet counts i.e., per-port packet counts
aggregated over a monitoring interval of 20 time steps, where
each time step represents either a packet received or sent.1

Fig. 2 shows an output-queued switch with 4 ports. Packets
are received through input ports, forwarded to output queues,
and sent through output ports. Each port receives/sends at most
one packet in a time step, and multiple input ports can simulta-
neously forward packets to the same output queue. We assume
packet forwarding takes negligible time. Packets are dropped
if the destined queue is at its maximum size (10 packets in our
example). Fig. 2 shows per-port input, output, and dropped
counts, i.e., the number of packets received, sent, and dropped
respectively during a single interval of 20 time steps. Note that
queues could store packets at the start of the monitoring inter-
val, so the total count of sent and dropped packets can exceed
the total count of received packets. The operator’s query is:
“Could port O2’s queues have a combined queue length of 7
packets at any time during this interval?” The operator would
need to ask this query for every interval between 9 and 10 am.
Next, we focus on the query for a single interval. The query is
expressed in our query language as

∃t∈ [0,T ]. ∑
q∈O2

qlen(q,t)≥7 (1)

A naive observer would answer the query positively. If one
were to consider port O2 in isolation from the rest of the ports,
one might think that there is a packet trace which results in
a queue length of 7 packets and is consistent with its packet
counts during the interval. Fig. 5 shows such a packet trace P1,
represented as a 2-D matrix with P1[q][t] showing the packets
enqueued at queue q at time t, with packet colors denoting
the input port each packet came from; blank entries denote
no packets enqueued.

In this packet trace, O2 receives no packets until the last 3
time steps, when it receives a sequence of 4, 4, and 2 packets.
This causes the queue length to increase by 3, 3 and 1 in each
time step since the port dequeues one packet per time step
and the remaining packets are queued. Assuming port O2 is
initially empty, at the end of the interval, it has 3+3+1= 7

1we have scaled down the interval to make the example easier to follow, but
we have evaluated QUASI on an interval with 300 million time steps (§7.1).

Yes
No

QuASI-1 QuASI-2
Yes

No

YES

NOPer-port  
packet counts

Query

Figure 3: QUASI architecture.

packets queued, satisfying the query. In addition, since O2
receives packets only in the last 3 time steps, it dequeues a
total of 3 packets during the interval, matching its sent count.
Since port O2 never reaches the maximum queue size of 10, it
does not drop any packets, thereby matching its dropped count.
However, this naive reasoning is erroneous.
The correct answer to the query is negative. In fact, there
is no packet trace consistent with the observed measurements
that will make the query true, i.e., O2’s queue length is always
less than 7 during the monitoring interval. The reason that the
correct answer is negative though it appears positive at first
glance is that the packet counts of other ports constrain the
number of packets that could have been enqueued at O2.

At a high level, answering queue-related queries is
challenging because the queries involve quantities that are
not directly measured and cannot be inferred by a simple
analysis of the measurements. While a query metric (e.g.,
queue length) is correlated with measured signals (packet
counts) it also depends on information absent in packet
counts, namely on the arrival sequence of packets entering the
switch, and to which output queue each packet is forwarded.2

This information is present in a packet trace, which specifies
which port’s packet was forwarded to which port and when.
However, a huge number of packet traces could be consistent
with given packet counts, and reasoning about all these packet
traces is computationally expensive.

4 QUASI Design

This section describes the key concepts QUASI relies on and
demonstrates their usefulness on the running example (§3.2).

4.1 QUASI’s Layered Architecture

Due to the scalability limitations of an exact analysis, we
use a layered approach consisting of two layers, QUASI-1
and QUASI-2, as shown in Fig. 3. QUASI-1 is a fast, over-
approximate analysis which is guaranteed to never report a
false negative. Hence, if QUASI-1 answers "No", QUASI re-
ports "No" and terminates. If QUASI-1 answers "Yes", it could
be a false positive, so the analysis proceeds to QUASI-2 which
is a more expensive, exact analysis that reports the correct an-
swer. QUASI’s first layer is accurate enough to conclusively an-
swer non-trivial queries in a fraction of a second, as we demon-
strate in the evaluations (§7). By running the more expensive

2For context, Zoom2Net [15] does not deal with this challenge – it assumes
there is a coarse-grained version of the signal of interest.
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query ::={∃|∀} t∈ [T1,T2]. cmp

cmp ::= lhs ? rhs |
∧

lhs ? rhs

lhs ::={∃|∀}q∈Qs. m(q,t) |∑q∈Qsm(q,t)

|m(Q1,t)−m(Q2,t)

m(q,t) ::=enq(q,t) | cenq(q,t) | qlen(q,t)

rhs ::=K |K.t

Figure 4: Query language. T1,T2,K are constants, ? denotes
a comparison operator, and Q1,Q2 denote queues in a switch.

second layer only on queries that cannot be answered conclu-
sively by the fast first layer, QUASI can scale to tens of thou-
sands of time steps. This is well beyond the capabilities of ex-
isting tools [4], which take several hours even for 10 time steps.

4.2 Query Language
A query in QUASI is a comparison (or conjunction of
comparisons) involving a metric over one or more queues in
a switch; Fig. 4 shows the syntax. We consider metrics (1)
enq(q,t): number of packets received by queue q at time step
t, (2) cenq(q,t): total number of packets received by queue q
until time step t, and (3) qlen(q,t): queue length (in packets)
at queue q at time step t. Queries allow quantification over
(bounded) time steps as well as queues. Our query language
is expressive enough to allow interesting questions related
to bursts, queue lengths, and buffer occupancy, including
some queries that FPerf [4] does not support, e.g., the Burst
query used in our evaluation (§7). Our query language can
be extended with interfaces to languages like Python or SQL
to make it easier to use for operators unfamiliar with logic.

QUASI currently supports single-switch queries, but can
also be used to answer some queries over multiple switches.
For example, we can find the maximum queueing latency along
a given network path using QUASI to find the maximum queue-
ing latency at individual switches on the path and adding up
these values. Using only QUASI-1, the answer will be an upper
bound on the maximum latency along the path while QUASI-2
will report the true maximum latency.

4.3 Key Concepts
We present key concepts required to understand our approach.
Packet trace. A packet trace P is a Nq×T×N (0,1)-matrix
with entry P[q][t][i] equal to 1 if input port i forwards a packet
to queue q at time step t, and 0 otherwise. N denotes the
number of switch input ports, Nq denotes the total number
of output queues, and T denotes the number of time steps in
the monitoring interval. Fig. 5 shows packet trace P1 as a 2-D
matrix with packet color denoting the input port it came from;
blank entries are 0.
Enqueue-rate abstraction. We target queries that do not dis-
tinguish between packets in a queue based on their origin input

ports. Thus, it is safe to ignore input port information in a
packet trace. Our enqueue-rate abstraction defines an abstract
packet trace that represents the enqueue-rate, the number of
packets enqueued to each queue at each time step, ignoring
the input port each packet came from. An abstract trace repre-
sents a set of packet traces, one packet trace for each labelling
of packets with input ports. QUASI-2 uses the enqueue-rate
abstraction to reduce the number of variables in its SMT formu-
lation without any loss of precision due to abstraction, since our
query language (Fig. 4) treats all packets in a queue as identical.

Abstract trace. An abstract trace A is a Nq×T matrix with
entry A[q][t] denoting the number of packets enqueued to
queue q at time step t. An abstract trace represents a set of
packet traces. We say packet trace P is “contained” in A iff
∀q, t. ∑1≤i≤NP[q][t][i]=A[q][t]. Fig. 5 shows an abstract trace
A1 which contains both packet traces P1 and P2, which differ
in the input ports of some packets but have the same number
of packets enqueued at each queue at each time step.

Cover-set FC. In QUASI-1, we use the enqueue-rate abstrac-
tion at a coarser granularity than in QUASI-2. The first module
of QUASI-1 generates a cover-set FC =F1

C ∨ ...∨Fk
C , a finite

disjunction of components F1
C ,...,F

k
C , formulas representing

sets of abstract traces. Each component F j
C is a conjunction of

constraints involving enqueue-rate (enq); we do not enumerate
the abstract traces satisfying F j

C . A cover-set represents all
packet traces consistent with the query and output counts
and dropped counts, i.e., Mo ∩Q ⊆ C, where C denotes the
set of packet traces satisfying the cover-set formula FC. Fig. 5
shows the cover-set that QUASI generates for our motivating
example; it has only one component F1

C (i.e., k=1).

Representative abstract trace. Each (non-empty) component
F j

C in a cover-set FC has a representative abstract trace R j that
is “most-uniform” in the set of abstract traces C j satisfying
F j

C . We prove that if R j does not contain a (concrete) packet
trace consistent with input counts, then the entire C j has no
packet trace consistent with input counts (Theorem 5.3). Rep-
resentative abstract traces provide a correctness-preserving
reduction in the search space: it is enough to consider only the
representative R j in each component. The second module of
QUASI-1, MUC constructs a representative abstract trace R j

for a given F j
C . For our motivating example, Fig. 5 shows the

representative abstract trace R1 for F1
C .

Abstract trace consistency. We say abstract trace A is consis-
tent with input counts (or is input-consistent) if there exists a
labeling function Lbl that maps each packet in A to an input
port such that: (1) packets at the same time step are assigned dif-
ferent input ports (an input port can forward at most one packet
in a time step), and (2) each input port label i is used exactly
rcv[i] times, where rcv[i] is port i’s input count. We efficiently
check input-consistency of each representative abstract trace
by reducing it to checking the existence of a (0,1)-matrix with
given row sums and column sums (Theorem 5.4) and using a
known combinatorics result (Gale-Ryser theorem [13, 24]).
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C with number of components k= 1).
The MUC constructs a most-uniform abstract trace which can be used as a representative in F1

C for checking input-consistency.
For their analysis, QUASI-1 uses cover-sets and representative abstract traces, while QUASI-2 uses abstract traces.

4.4 QUASI on Motivating Example
We illustrate the key steps of QUASI on our motivating
example (§3.2). While QUASI is composed of two layers,
it reaches a conclusive negative answer already at the first
layer, which is guaranteed to be correct. QUASI’s first layer
generates a formula FC (the cover-set) that represents a set
C containing all packet traces consistent with output counts,
dropped counts, and the query, i.e., Mo∩Q⊆C.

FC = ∑
q∈O2

cenq(q,T )≥10 ∧ ∑
q∈O3

cenq(q,T )≥6

∧ ∑
q∈O4

cenq(q,T )≥12 (2)

Eqn. (2) shows FC in terms of the cumulative enqueue-rate
cenq(q,t), the number of packets enqueued at a queue q until
time step t. FC states that during the monitoring interval,
output port O2 must receive at least 10 packets, output port O3
must receive at least 6 packets and output port O4 must receive
at least 12 packets.

Next, QUASI needs to determine whether each component
F i

C in FC is consistent with input counts (here, FC = F1
C with

k=1), i.e., whether F1
C ∩Mi= /0. Note that F1

C itself represents
a large set of packet traces, so checking each individual packet
trace is impractical. QUASI constructs one representative
abstract trace, denoted R1, which satisfies F1

C . R1 specifies the
number of packets enqueued over time at each queue (or each
port, depending on the query). We prove that it suffices to check
only R1 for consistency with input counts: if R1 does not contain
a packet trace that is input-consistent, then no other abstract
trace satisfying F1

C will contain a packet trace that is input-
consistent (Theorem 5.3). Fig. 5 shows R1 for our example.

To check R1 for consistency with input counts, QUASI first
checks if the total number of packets in R1 exceeds the total

number of packets received by the switch. If yes, R1 is inconsis-
tent with input counts; otherwise, QUASI proceeds to run an
efficient matrix-based consistency check. For our example, the
total number of packets in R1 is 28, which is more than the total
number of packets received (26). Hence, QUASI answers the
query negatively, which is the correct answer for this example.

5 QUASI: Layer 1

QUASI-1 consists of three modules (Fig. 6):
1. Cover-set generator (CSG) generates a cover-set FC =

F1
C ∨...∨Fk

C which represents all packet traces consistent
with output and dropped counts that make the query true,
i.e., Mo∩Q⊆C, where C denotes the set of packet traces
satisfying FC. Fig. 6 shows C with k=4 as a yellow circle
superimposed on a Venn diagram showing the sets Mi,
Mo, and Q from our problem formulation (§3.1).

2. Most-uniform Abstract Trace Constructor (MUC)
constructs a representative abstract trace R j (shown as
a small red square in Fig. 6) that is most-uniform for each
component F j

C . We prove that it is enough to check only
each R j for consistency with input counts (Theorem 5.3).

3. Matrix-based Consistency Checker (MCC) determines
whether a given representative abstract trace contains
a packet trace that is input-consistent, i.e., whether R j
intersects with Mi. We reduce this problem to checking
the existence of a (0,1)-matrix with given row sums and
column sums (Theorem 5.4) and use the Gale-Ryser
theorem [13, 24] to solve it efficiently.

If some representative abstract trace R j is found to be
consistent with input counts, QUASI-1 answers the query
positively. QUASI-1 answers the query negatively if every
R j is inconsistent with input counts.
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Figure 6: QUASI-1 design: (1) CSG generates a cover-set formula FC representing a set C=C1∪...∪C4, with C⊇Mo∩Q, (2) MUC
constructs a representative R j for eachC j, (3) MCC checks if R j∩Mi= /0 for each R j; if true, QUASI-1 reports “No”,otherwise “Yes”.

Theorem 5.1 (QUASI-1 correctness). If QUASI-1 answers
a query negatively, there is no packet trace consistent with the
measurements that makes the query true, i.e., QUASI-1 will
never report a false negative.

Proof. Assume QUASI-1 answers a query Q negatively.
This means the MCC determined that each representative
abstract trace R j (for C j) does not contain a packet trace that
is consistent with input counts, i.e., R j∩Mi = /0. For each C j,
by Theorem 5.3, no other abstract trace in C j is consistent
with input counts, i.e., C j∩Mi = /0. Hence, there is no packet
trace in C=C1∪...∪Ck which is consistent with input counts,
i.e., C∩Mi = /0. By Lemma 5.2, C contains all packet traces
consistent with output and dropped counts that make the
query true, i.e., Mo∩Q⊆C. Since C∩Mi = /0, it follows that
Mo∩Q∩Mi= /0. Hence, there exists no packet trace consistent
with the measurements that makes the query true.

Our proof depends on Lemma 5.2 and Theorem 5.3 – these
are discussed in the related subsections.
False positives. If QUASI-1 answers a query positively,
it is possible that no trace exists which is consistent with
the measurements and query. This is because the cover-set
generated by the CSG is an over-approximation, i.e., it could
include additional packet traces not consistent with output and
dropped counts and/or the query. If one of these extra packet
traces is consistent with input counts then QUASI-1 could
incorrectly answer the query positively.

5.1 Generating a Cover-set
The CSG constructs symbolic representations (as formulas) of
two sets: (1) Q′, which contains all packet traces satisfying the
query (Q⊆Q′) and (2) M′o, which contains all packet traces
consistent with output and dropped counts (i.e., Mo⊆M′o). It
returns FC = F1

C ∨ ...∨Fk
C , obtained by performing standard

syntactical transformations on the formula for M′o∩Q′.
M′o, necessary conditions for consistency with output and
dropped counts. Each output port Oi must receive a minimum
number of packets (across all its output queues) during the
monitoring interval to be consistent with its output count

(deqi) and dropped count (drpi).

∀1≤ i≤N. ∑
q∈Oi

cenq(q,T )≥deqi+drpi−ilen_ubi (3)

ilen_ubi is an upper bound on ileni, the number of packets
queued at port Oi at the start of the interval. Note that
ilen_ubi ≤ deqi otherwise port Oi would dequeue more
than its output count. Also, ilen_ubi ≤ L, the maximum
number of packets that can be queued at a port. Hence, we set
ilen_ubi = min(L,deqi). We can improve this bound further
depending on the query, e.g., if the query asks if the queue
length can be always below some K.

Equation (3) is obtained from conservation of packets at
an output port, assuming that output and dropped counts hold.
By conservation of packets, the number of packets queued in
the port at the end of the monitoring interval ( f leni) is equal
to the difference between the number of packets received (or
were queued initially) at the port during the interval and the
number of packets that left the port (or were dropped) during
the interval. Formally,

f leni= ileni+cenq(Oi,T )−cdeq(Oi,T )−cdrp(Oi,T ) (4)

where cenq(Oi, T ), cdeq(Oi, T ) and cdrp(Oi, T )
denote the total number of packets enqueued, de-
queued, and dropped respectively at port Oi from
time step 0 until T . By consistency with output counts,
cdeq(Oi, T ) = deqi; by consistency with dropped counts,
cdrp(Oi,T ) = dropi. Using f leni ≥ 0 and rearranging, we
get cenq(Oi,T )≥deqi+drpi−ileni≥deqi+drpi−ilen_ubi.
Observing that cenq(Oi,T )=∑q∈Oicenq(q,T ), we get eqn. (3).
Q′, necessary conditions to satisfy query.

Case 1: Query metric is enq or cenq. For queries involving
the metrics enqueue-rate (enq) or cumulative enqueue-rate
(cenq) the query Q is translated into an equivalent quantifier-
free formula by eliminating quantifiers over queues and
time steps to get Q′, which is semantically equivalent to Q.
Existential quantifiers are eliminated using disjunctions and
universal quantifiers are eliminated using conjunctions.

Case 2: Query metric is qlen. Our necessary conditions
need to use a different metric (enq or cenq) from the metric in
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the query, so we cannot obtain Q′ just by eliminating quantifiers
as in the previous case. To relate queue length to enqueue-rate,
we use conservation of packets (5) at the queue(s) in the query,
setting qlen(q, t) to an appropriate value depending on the
query. We explain how we construct our necessary conditions
for the query QgeK : ∃t ∈ [st,end].qlen(q,t)≥K which asks
if queue q can have at least K > 0 packets at some time step
t∈ [st,end]; other queries are handled similarly.

By conservation of packets, the number of packets in the
queue at time step t (qlen(q, t)) is equal to the difference
between the number of packets received (or were queued
initially) at the queue and the number of packets that left the
queue (or were dropped) until t:

qlen(q,t)= il(q)+cenq(q,t)−cdeq(q,t)−cdrp(q,t) (5)

where il(q) denotes the number of packets in the queue at
the start of the monitoring interval; and cenq(q,t), cdeq(q,t),
cdrp(q,t) denote the number of packets enqueued, dequeued,
and dropped, respectively, at queue q from time step 0 until
t. For the query to be true, qlen(q,t)≥K for some t∈ [st,end];
substituting this in eqn. (5) we get

il(q)+cenq(q,t)−cdeq(q,t)−cdrp(q,t)≥K

cenq(q,t)≥K−il(q)+cdeq(q,t)+cdrp(q,t)

We replace each term on the right-hand-side by a lower/upper
bound as appropriate: an upper bound for il(q), and lower
bounds for cdeq(q,t) and cdrp(q,t).

Upper bound on initial queue length. Note that il(q)≤Lq,
the maximum queue size. In some cases, we impose further
constraints on the initial queue length to ensure consistency
with the output count deq for q’s port. For example, when
deq < T , the number of time steps in the interval, and the
output port has a single queue, the initial queue length must
not exceed deq. Otherwise, the queue would dequeue more
than deq packets, conflicting with the observed output count.

Lower bound on number of packets dequeued until
t. We calculate the minimum number of packets that q will
dequeue until t, assuming the query is true. For our example
query QgeK to be true, queue length at t must be at least K>0.
Depending on the value of K, the queue length must be non-
zero for some minimum number of time steps nz(K) before
t, during which time it will dequeue at its minimum dequeue
rate mdr. Hence, cdeq(q,t)≥nz(K)∗mdr. We calculate nz(K)
assuming the queue receives packets at the maximum possible
rate (according to the input packet counts) for as long as
possible until it reaches a queue length of K. We consider two
(exhaustive) cases to determine the initial queue length (1)
queue has a packet to send at every time step before t (queue
length must become at least K at t starting from the maximum
possible value of il(q)) and (2) queue has no packet to send
at some time step before t (in this case, queue length must
become at least K at t starting from a queue length of zero.)

Lower bound on number of packets dropped until t. We
use cdrp(q,t)≥ 0. We use a tighter lower bound if the query

specifies st=end=T (which makes t=T ) and queue q is the
only queue in its port; then, cdrp(q,T )=drpi, where drpi is
the dropped packet count for q’s port.

Lemma 5.2 (CSG correctness). CSG returns a formula FC rep-
resenting a set C that contains all packet traces consistent with
the query, output counts, and dropped counts, i.e., Mo∩Q⊆C.

Proof sketch. The set C represented by formula FC is equiv-
alent to M′o ∩Q′ (by construction). M′o is obtained from the
packet conservation equation (4) assuming consistency with
output and dropped counts, so any packet trace consistent with
output and dropped counts will satisfy M′o, i.e., Mo⊆M′o. For
queries over enq or cenq metrics, Q′ is obtained by eliminating
quantifiers in the query Q to obtain an equivalent formula, so
Q′=Q in this case. For queries over qlen, Q′ is derived starting
from the packet conservation equation (5) (which is true for all
packet traces) and enforcing bounds on terms assuming that
the query is true. Hence, any trace that satisfies the query will
also satisfy Q′. For all three metrics, Q⊆Q′. Since Mo⊆M′o
and Q⊆Q′ it follows that Mo∩Q⊆M′o∩Q′, so Mo∩Q⊆C.

5.2 Computing Representative Abstract Traces

For each component F j
C in the cover-set FC = F1

C ∨ ...∨ Fk
C

generated by the CSG, the MUC constructs a representative
abstract trace R j that satisfies F j

C .
Representative is most-uniform. We characterize a represen-
tative abstract trace R j satisfying F j

C as being “most-uniform"
among all abstract traces satisfying F j

C . A most-uniform
abstract trace has packets in columns of lowest possible height
subject to satisfying F j

C , where height of a column denotes
the sum of its entries. Formally, for all i≥ 1, the total height
of the i highest columns in R j must be no more that the total
height of the i highest columns in an arbitrary abstract trace
A satisfying F j

C .
Algorithm 2 (shown in Appendix A) takes as input F j

C , a con-
junction of constraints of three types: LB (enq(q,t)≥ lb), CLB
(cenq(q,t)≥ lb), and CUB (cenq(q,t)≤ ub). It constructs an
abstract trace R j that is most-uniform by starting with the null
matrix (with all entries 0) and incrementing appropriate matrix
entries in order to satisfy the constraints. The procedure can
be thought of as placing packets at appropriate time steps and
queues in order to satisfy the given constraints. Importantly,
the algorithm places each packet in a time step with lowest
height (i.e.,, with minimum number of packets in total across
all output queues) subject to upper bound constraints. This
allocation strategy prioritizes placing packets in time steps
that have few packets, making the resultant arrangement as
uniform as possible subject to satisfying the given constraints.

Theorem 5.3 (Reduction via representative abstract trace). If
the representative abstract trace R j of a component FC is not
input-consistent, then every abstract trace A satisfying F j

C is
not input-consistent.
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Proof sketch. Consider an arbitrary A satisfying F j
C . We

show that if A is consistent with input counts then the output of
Algorithm 2, R j, must be consistent with input counts. Since
A is consistent with input counts, by the definition of input-
consistency, there exists some labeling function mapping each
packet in A to an input port such that each input port i is used
exactly rcv[i] times (where rcv denotes the input packet counts)
and packets at the same time step in A are mapped to different
input ports. We show that is possible to transform A to R j by
shifting packets from one time step to another so that packets
at the same time step continue to be mapped to different input
ports after each shift. After performing all these shifts to reach
R j, the labels of packets in R j will be a valid labeling; hence, R j
is consistent with input counts. The full proof is in Appendix B.

5.3 Checking Consistency with Input Counts
The Matrix-based Consistency Checker (MCC) checks if a
given representative abstract trace R j contains a packet trace
that is consistent with input packet counts rcv. Recall that an
abstract trace does not specify the input port each packet came
from, and represents a set of packet traces, one packet trace
for each labeling of packets with input ports.

There could be a huge number of possible labelings of
packets in an abstract trace so it is impractical to iterate through
all labelings to check if one is consistent with input counts.
Constraint solving approaches will also have scalability
limitations due to the large search space of labelings.
Reduction to (0,1)-matrix existence. We reduce the problem
of determining if an abstract trace R j contains a packet
trace consistent with input counts to checking the existence
of a (0, 1)-matrix with given row sums and column sums.
We leverage a known combinatorics result (the Gale-Ryser
theorem [13, 24]) on matrix existence to solve it efficiently.
The idea behind this reduction is that an abstract trace can
be equivalently represented as a (0,1)-matrix with a row for
each input port and a column for each time step. The given
abstract trace R j fixes the sum of each column and the input
counts rcv fix the sum of each row of this (0,1)-matrix. R j is
consistent with input counts iff such a (0,1)-matrix exists for
input counts rcv. We prove this in Appendix C.

Theorem 5.4 (Abstract Trace Consistency). An abstract trace
R j (Nq×T matrix) is consistent with input counts rcv iff
There exists an N×T (0,1)-matrix X s.t.

∀i. rsum(X , i)=rcv[i] and ∀t. csum(X , t)=csum(R j, t)

where rsum(X , i) and csum(X , t) denote the sum of entries
in row i and column t respectively of matrix X.

Algorithm 1 checks input-consistency of an abstract trace
using the Gale-Ryser theorem [13, 24]. The Gale-Ryser
theorem [13, 24] states that there exists a (0,1)-matrix with
column sums c and row sums r, where c and r are partitions
of a positive integer, if and only if r is dominated by c′, where
c′ is the conjugate partition [3] of c.

Algorithm 1: Matrix-based consistency check
Input : R j, abstract trace (Nq×T matrix)

rcv, input counts (1×N matrix)
Output :True iff R j has a packet trace satisfying rcv

1 Function check_consistency(R j, rcv):
2 rt :1×T // Aggregate rate of R j
3 for t=0; t<T ; t++ do
4 rt[t]←∑q∈NqR j[q][t] // column sums

5 rt.sort(); rcv.sort()// descending
6 return matrix_exist(rcv, rt)

7 Function matrix_exist(r, c):
8 rsums[0]=r[0]// cumulative row sums
9 for i=0; i<r.size(); i++ do

10 rsums[i]=rsums[i−1]+r[i]

11 c′←con j(c)// conjugate partition of c
12 csums[0]=c′[0] // cumulative sums of c′

13 for i=0; i<c′.size(); i++ do
14 csums[i]=csums[i−1]+c′[i]

15 for i=0; i<r.size(); i++ do
16 if rsums[i]>csums[i] then
17 return False // c doesn’t dominate r

18 return True

6 QUASI: Layer 2

QUASI-2 models switch operation at each time step using
Satisfiability Modulo Theories (SMT) [5] constraints, with
additional constraints enforcing the observed packet counts
and the query. It uses the Z3 [11] solver to check if these
constraints are satisfiable. If satisfiable, the query is true for
some packet trace consistent with measurements; otherwise,
the query can never be true for the given measurements.
Enqueue-rate abstraction enables N times fewer variables.
QUASI-2 models a symbolic abstract trace which specifies
the number of packets entering each output queue at each
time step, requiring O(NqT ) variables. In contrast, a symbolic
packet trace (without enqueue-rate abstraction) specifies
which input port sends a packet to which output queue at
which time step and requires O(NNqT ) variables.
Enqueue-rate abstraction is lossless for our query lan-
guage, guaranteeing correctness of QUASI-2. Although the
enqueue-rate abstraction ignores input ports of packets, it does
not lose any information since our queries do not distinguish
between packets in an output queue based on their input ports.

7 Evaluation

Our evaluation demonstrates QUASI ’s usefulness by showing
that QUASI can conclusively answer queries that cannot be
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answered by our baseline, i.e., a conservative heuristic analysis
of the measurements. We go further than answering yes/no
queries, extracting quantitative bounds on metrics like queue
size and buffer occupancy from per-port packet counts. We
show that QUASI ’s bounds are significantly tighter than the
bounds inferred by our baseline, demonstrating that QUASI
can infer useful information about metrics (like queue size) that
are not directly measured. We study how QUASI scales with
the number of time steps in a monitoring interval and compare
it with an existing performance analysis tool, Fperf [4].

Our measurements admit interesting scenarios. We collect
per-port packet counts using the ns-3 simulator [22] with a
star topology consisting of a switch with 8 ports, with hosts
sending randomized UDP traffic. Each switch output port
can queue a maximum of 250 packets and the total buffer
size is 2000 packets. We ensure our collected measurements
allow the possibility of packets accumulating in queues, which
leads to interesting performance scenarios like bursts and
increased queueing latency. We evaluate QUASI on a set of 25
monitoring intervals of duration 100 time steps, each interval
corresponding to a different set of measurements. We use
example to refer to one monitoring interval. We use a smaller
interval (T = 10) for comparison with FPerf, and several in-
tervals of increasing duration to evaluate QUASI’s scalability.

We select relevant, non-trivial queries. Our queries are
drawn from real-world use cases: (1) BurstOccurrence ("Could
a burst of rate R and duration D occur sometime during the
interval?") is useful for troubleshooting poor application
performance, (2) QlenK ("Could the queue length at port Oi be
at least K?") is useful for checking latency SLO compliance,
(3) MaxQlen ("What is the maximum queue length at port Oi
during the interval?") is useful for estimating queueing latency,
and (4) MaxBuff ("What is the maximum buffer occupancy
during the interval?") is useful for buffer provisioning. Our
queries involve multiple performance metrics (queue length
and enqueue-rate) and the MaxBuff query involves multiple
queues. We demonstrate that our selected queries cannot be
easily answered by a heuristic analysis of the measurements,
implemented in our HEURISTIC baseline: HEURISTIC fails
to answer many queries that QuASI conclusively answers.

We use a strong baseline. As a baseline, we implement
a conservative analysis, HEURISTIC, that answers a query
negatively if it conflicts with a set of heuristics/rules that must
always hold. HEURISTIC incorporates several non-trivial
rules based on switch operation, including accounting for
ports not included in the query. For burst queries, it uses rules:
(1) number of packets in burst cannot exceed total number of
packets received by the switch, (2) rate of incoming packets to
an output queue cannot exceed the number of input ports that
receive packets during the interval, and (3) a burst cannot occur
in an output port if the minimum number of packets it dequeues
is larger than the port’s output count. Note that HEURISTIC
will never report false negatives but could report false positives.

Figure 7: QUASI proves latency SLO compliance in each in-
terval while HEURISTIC incorrectly reports an SLO violation.

7.1 Case Study: Checking SLO Compliance
Consider, as in §3.2, a cloud operator who receives a complaint
from a customer claiming the latency between the customer’s
servers, connected by a single switch, violated the Service
Level Objective (SLO) of 289µs between 9 am and 10 am on a
given day. The operator has SNMP [12] per-port packet counts
over 5-minute intervals, which we collect via simulation using
a switch with 8 ports, 8Gbps bandwidth, and no more than
2500 packets queued per output port. We generate randomized
traffic using 1KB packets. Packet transmission time is 1µs, so
a 5-minute interval has 300 million time steps.

To check for an SLO violation, we use the QlenK query
which asks if a port could queue at least K packets, with K set
to 290 (the SLO specifies no more than 289 queued packets).
We run QUASI and HEURISTIC on each 5-minute interval in
the specified hour. The results are shown in Fig. 7. HEURISTIC
reports that the queue length was at least 290 packets during
each interval, failing to prove SLO compliance. In comparison,
QUASI reports that the queue length was always below 290
packets during each interval, thereby proving SLO compli-
ance. QUASI-1 answers each query negatively so QUASI-
2 is not run. QUASI took only 0.03s in total to prove SLO
compliance, demonstrating that QUASI can scale to realistic
(minute-granularity) monitoring intervals.

7.2 Burst Occurrence
We evaluate QUASI on the BurstOccurrence query which asks
if a burst of given rate and duration could occur in an interval.
Fig. 8a shows the reported answer, with "yes" denoting a burst
could have occurred and "no" denoting a burst is impossible.
We have purposefully only included queries that could not
have happened to see how often QUASI-1 would have a false
positive and how long it would take for QUASI-2 to solve.
Fig. 8b shows the solving time.
QUASI proves the absence of bursts in all intervals.
QUASI-1 answers the query negatively for all examples, so
we do not run QUASI-2 (since QUASI-1 will never report
a false negative). HEURISTIC incorrectly reports that a burst
is possible for 14 out of 25 examples, demonstrating that
QUASI can conclusively negatively answer queries that
a heuristic analysis cannot. Fig. 8b shows that QUASI is
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(a) Burst occurrence (b) Solving time

Figure 8: QUASI proves the absence of bursts within 1s, while
HEURISTIC incorrectly reports some bursts are possible.

(a) Maximum queue length (b) Solving time

(c) Maximum buffer occupancy (d) Solving time

Figure 9: HEURISTIC results are consistently looser compared
to QUASI. Even QUASI-1 (i.e., the first layer alone) can
provide tighter bounds within a fraction of a second.

efficient: QUASI-1 takes less than 1s for each example. Here
we observe the benefit of a layered approach. Having a less
accurate but much more scalable first layer removes the need
for running the exact (but less scalable) analysis here.

7.3 Max Queue Length and Buffer Occupancy
We evaluate QUASI on queries MaxQlen and MaxBuff
which ask the maximum queue length and buffer occupancy
respectively during a monitoring interval.
Using QUASI to estimate quantitative bounds. We im-
plement a binary search over the value of the metric (queue
length/buffer occupancy), issuing a sequence of parameterized
Boolean queries, each query asking if the value of the metric
can be no less than a constant K. For MaxQlen, we use the
Boolean query "∃t∈ [1,T ]∑q∈Oi qlen(q,t)≥K?, which can be
read as "Can port Oi ever have at least K packets queued at some
time during the monitoring interval?", where Oi is a specified
port and K is a parameter. We initialize K to Li, the maximum

(a) Maximum queue length (b) Solving time

Figure 10: QUASI is up to 106x faster than FPerf for MaxQlen.

queue size at port Oi. The answer reported by QUASI (yes/no)
determines how K is varied (increased or decreased) in the next
Boolean query. If QUASI says "No", it means the queue length
is always below K during the interval. Hence, we decrease the
value of K in the next query. This process continues until the
binary search terminates (QUASI zeroes in on a single value
of K) or the minimum/maximum limit of the metric is reached.
The final value of K is returned as QUASI’s estimate of the max-
imum possible value of the metric for the given packet counts.

As QUASI-1 will never report a false negative, but could
report a false positive, it over-estimates the value so that the
final answer is an upper bound on the true maximum value.
QUASI-2, which is an exact analysis, will report the correct
answer to each Boolean query, so its final answer will be the
true maximum value. We use the answer returned by QUASI-2
as ground truth to evaluate the accuracy of QUASI-1.

Fig. 9 shows the reported estimates of maximum queue
length and buffer occupancy (lower is better as the estimates
are upper bounds) and solving time for 25 monitoring intervals
(each interval is a new set of measurements). We independently
evaluate QUASI’s two layers to show their difference in
running time and the effect of false positives in QUASI-1.

QUASI finds upper bounds within a second and the exact
answer within 25 minutes for both metrics. Thanks to its
layered approach, QUASI quickly finds upper bounds for both
metrics (with avg. relative error of 0.25) within a second for
each interval. QUASI finds the true maximum value over each
interval within 25 minutes for queue length, and within 15
minutes for buffer occupancy.

QUASI-1 finds bounds up to 58% tighter than bounds
found by HEURISTIC. Figs. 9a and 9c show that for both
metrics, QUASI-1 reports bounds (shown in blue) that are
consistently lower than bounds found by HEURISTIC (shown
in orange), demonstrating that QUASI’s approximate layer
provides valuable insights that cannot be obtained by a
heuristic analysis of the measurements. Our implementation of
HEURISTIC is fair: its estimates are significantly below the triv-
ial upper bounds of maximum queue size (250) and total buffer
size (2000) shown by black dashed lines in Figs. 9a and 9c.
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(a) Maximum buffer occupancy (b) Solving time

Figure 11: FPerf fails to compute the maximum buffer occu-
pancy within a day while QUASI takes less than 15 minutes.

7.4 Comparison with FPerf

To evaluate FPerf on our problem, we disable its workload syn-
thesis step and stop after FPerf checks if some trace consistent
with the base workload satisfies the query. We specify a base
workload that enforces input packet counts (FPerf does not al-
low constraints over dequeued packets, so we do not use output
and dropped packet counts). We extend FPerf to answer our
quantitative queries MaxQlen and MaxBuff. FPerf does not
support our BurstOccurrence query. We reduce the monitoring
interval to just 10 time steps (from 100 steps in preceding sub-
sections) so that Fperf terminates sometimes. We report FPerf’s
estimates after running it up to≈1 day for each interval.
QUASI computes the maximum queue length 106X faster
than FPerf. FPerf takes an average of 8.5 hours to find the
maximum queue length while QUASI takes less than a second.
The answers reported by FPerf and QUASI match when FPerf
terminates within a day (i.e., for 9 out of 10 intervals); the
difference of 1 in Fig. 10a is because FPerf calculates queue
length before dequeueing a packet rather than after.
FPerf does not complete all per-interval required queries
in 1 day, reporting an upper bound≈9 times larger than
the true maximum buffer occupancy; QUASI finds the
exact answer in under 15 minutes. We left FPerf running
for more than 2 days for one example but that did not improve
its estimate. As shown by the green curve in Fig. 11a, FPerf
finds a very loose upper bound; the purple curve shows the
exact answer found by QUASI-2. QUASI-1 is 100% accurate
on all these examples, reporting the same answer as QUASI-2
(which we regard as ground truth).

7.5 Scalability

QUASI ’s verification time increases as the number of time
steps in the monitoring interval increases. This is because a
larger number of time steps leads to larger abstract trace matrix
dimensions in QUASI-1 and more variables in QUASI-2’s
SMT encoding. Increased switch bandwidth (which decreases
packet transmission time) and longer monitoring intervals both
lead to more time steps in the monitoring interval. We evalu-
ate QUASI’s scalability with the number of time steps in the
monitoring interval for two queries: QlenK and BurstOccur-

(a) QlenK (b) BurstOccurrence

Figure 12: QUASI takes almost constant time for QlenK and
scales quadratically with interval size for BurstOccurrence.

rence; and report solving time in Fig. 12. QUASI-1 answers
all queries negatively, so QUASI-2 does not run.

QUASI’s solving time scales quadratically with number
of time steps for BurstOccurrence. For the BurstOccurrence
query, QUASI generates a cover-set with O(T ) components,
and takes about 75 minutes for 60,000 time steps. For
QlenK, QUASI’s solving time remains about the same as
the monitoring interval size is increased, answering queries
for intervals with millions of time steps within 1 sec. This
is because CSG detects that the generated cover-set does
not contain any packet traces, so subsequent components
in QUASI-1 are skipped. These queries are not trivial:
HEURISTIC incorrectly answers all of them positively.

QUASI scales to realistic monitoring intervals (5 mins)
for queue length queries. QUASI answers the queue length
query negatively within a second for an interval with 300
million time steps (i.e., 5 minutes, as packet transmission time
is 1µs). HEURISTIC answers the query positively, showing
again that QUASI can quickly answer non-trivial queries.

8 Conclusion
This paper presents QUASI, a layered approach to answering
queue-related queries using coarse-grained packet counts.
QUASI is centered around the novel and lossless enqueue-rate
abstraction. The first layer of QUASI performs an over-
approximate analysis using representations of packet traces
as (0,1)-matrices. The second layer utilizes an exact but less
scalable analysis based on use of an SMT solver. QUASI is
106X faster than state-of-the-art while answering non-trivial
queries about queue metrics.
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A MUC Algorithm

The MUC uses Algorithm 2 to construct a most-uniform
abstract trace for a given cover-set component.

Algorithm 2 takes as input a cover-set component, con-
sisting of three types of constraints, and the total number
of packets received in the interval (P). It then constructs a
representative abstract trace starting from an empty abstract
trace (with no packets) and iteratively placing packets to be
enqueued at appropriate output queues at specific time steps
in order to satisfy the given constraints.

First, lower bound (LB) constraints are satisfied (lines 2 to
4); the get_lb function returns the lower bound lb given queue
q and time step t. The algorithm sets R[q][t] to lb; this is the
minimum number of packets needed to satisfy this constraint.

Second, cumulative lower bound (CLB) constraints are
satisfied (lines 6 to 11). Note that there are many ways
to distribute packets in an interval [1, t] to satisfy such a
constraint of the form cenq(q,t)≥ lb. Algorithm 2 uses the
fill function, which places packets until the given lower bound
constraint is satisfied, or until upper bound constraints prevent
filling additional packets. Each packet is placed at time step
place∈ ts which has the minimum number of packets in total
(across output queues); ts is the set of time steps in [1,t] that can
take at least one packet without violating upper bounds. This
allocation strategy prioritizes placing packets in time steps
that have few packets, making the resultant arrangement as
uniform as possible subject to satisfying the given constraints.

If the fill function returns abstract trace R that does
not respect the lower bound lb, it means the upper bound
constraints did not allow placing any more packets. In this
case, there is no way to satisfy the lower bound constraint

Algorithm 2: MUC
Input : LB, lower bounds at given time steps

CLB, lower bounds until given time steps
CUB, upper bounds until given time steps
P, total number of packets received

Output : R j, most-uniform abstract trace
for given constraints; False if it does not exist

1 int R[Nq][T ] // Empty abstract trace
2 for t,q∈LB do
3 lb←get_lb(LB,t,q)
4 R[q][t]← lb

5 time_pts←get_sorted_time_pts(CUB,CLB)
6 for t in time_pts do
7 for q∈ [1,Nq] do
8 lb←get_lb(CLB,t,q)
9 R←fill(R,t,q,lb,CUB,N)

10 if tot(R,t,q)< lb then
11 return False

12 R←fill(R,T,anyq,P,CUB,N)
13 if tot(R,T ) > P then
14 return False

15 return R
16 Function fill(R, end, q, lb, CUB, N):

// Ensure ∑
end
t=1R[q][t]≥ lb

17 while tot(R,end,q)< lb do
18 ts← ts_with_space(R,end,CUB)
19 if |ts|= 0 then
20 break
21 place←minHeightIndex(ts)
22 R[q][place]←R[q][place]+1

23 return R

while respecting the upper bound constraints, so allocation
fails and the algorithm returns False.

After satisfying CLB constraints, the algorithm fills any
remaining packets to make the total number of packets in R
equal to P (line 12); the argument anyq indicates the packets
can be filled in any queue subject to satisfying the upper bound
(CUB) constraints. If the total number of packets exceeds P,
there are insufficient packets to satisfy the constraints and the
algorithm returns False (line 14). Otherwise, R is returned.

If Algorithm 2 returns an abstract trace, it is most-uniform.
The algorithm ensures that its output R satisfies the given
constraints (i.e., the cover-set component). The fill function
always places a packet in a time step with the fewest possible
packets subject to satisfying the constraints, hence ensuring
the output R is most-uniform. The algorithm does not return an
abstract trace if the given cover-set component is unsatisfiable,
i.e., if the lower bound constraints cannot be satisfied along
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with the upper bound constraints or if the number of packets
received P is insufficient to satisfy the given constraints.

B MUC Correctness

We present the proof of Theorem 5.3, which states that if
the representative abstract trace R j of a component FC is not
input-consistent, then every abstract trace A satisfying F j

C is
not input-consistent.

We begin by defining some notation. For an abstract trace A,
csum(A, t1) denotes the sum of entries in column t1 of A. We
will also use the term “height of t” to mean the sum of entries at
column t. We use R j to denote the most-uniform abstract trace
returned by Algorithm 2 for constraints F j

C . For an abstract
trace A, htA ∈ NT denotes the row vector of column heights
(where height of a column is the sum of its entries), sorted in
non-increasing order, i.e., htA[1]≥ ...≥ htA[T ]. We use htR j

to denote the vector of sorted column heights for R j. We use
v[: i] to denote the vector of the first i entries of v; and ∑v[: i] to
denote the sum of the first i entries in v.

Next, we define a transformation of an abstract trace, called
a balancing shift, which preserves input-consistency.

Definition B.1 (Balancing shift). For an abstract trace A, a
balancing shift moves a packet from time step t1 to time step
t2 where csum(A, t1)>csum(A, t2).

A balancing shift moves a packet from a column of higher
height to a column of lower height. A balancing shift from t1
to t2 requires that the height of t1 is larger than the height of t2,
and will never increase the height difference between t1 and t2.

Lemma B.2 (Balancing shifts preserve input-consistency).
For any abstract trace A, let A′ be the abstract trace obtained
by performing a balancing shift on A. If A is input-consistent,
then A′ must also be input-consistent.

Proof. Assume that A is input-consistent. Then there is a
labeling Lbl that associates each packet in A with an input
port such that packets at the same time step in A are mapped
to distinct input ports. Let the balancing shift be from t1 to t2
where csum(A, t1)>csum(A, t2). Since column t1 has at least
one more packet than column t2 and packets at the same time
step are mapped to different input ports, it is always possible
to choose a packet p at t1 that has an input port distinct from
all packets at t2. (If this were not the case, it would mean
that at least two packets at t1 were mapped to the same input
port, which is a contradiction). Shift packet p from t1 to t2 to
obtain abstract trace A′. The balancing shift did not change
the number of input port labels, so A′ will have each input
port label appearing as many times as the port’s input count.
Moreover, A′ has packets at each time step mapped to distinct
input ports by Lbl, so A′ is input-consistent.

We now show that the abstract trace R j returned by
Algorithm 2 is the “most-uniform” in C j, the set of abstract
traces satisfying a cover-set component F j

C .

Lemma B.3. The abstract trace R j returned by Algorithm 2
is the most-uniform in C j, i.e., for any abstract trace A∈C j,
the total height of the i largest columns in R j must be no more
than the total height of the i largest columns in A, for any i≥1.

∀A∈C j. ∀i≥1.∑htR j [: i]≤∑htA[: i] (6)

Proof. The proof is by contradiction. Assume R j is not
most-uniform (i.e., eqn. (6) does not hold). Then, there exists
some A∈C j and some i∈ [1,T ] such that

∑htR j [: i]>∑htA[: i] , and (7)

∀k< i.∑htR j [:k]≤∑htA[:k]

Note that htR j [i] > htA[i]; otherwise, ∑htR j [: i] could not be
greater than ∑htA[: i]. Let h denote the value of htA[i]. Consider
the total number of packets that A and R j pack in columns of
height no more than h.

Let P denote the total number of packets in A and R j.

P=∑htA=∑htR j (8)

Then, A packs more than P−∑htA[: i] packets in columns
of height≤ h. Since htR j [i]> htA[i] and htR j is sorted in non-
increasing order, R j packs no more than P−∑htR j [: i] packets
in columns of height≤h. From eqn. (7), ∑htR j [: i]>∑htA[: i],
so R j packs fewer packets than A in columns of height ≤ h.
Algorithm 2 constructs R j by placing each packet at the mini-
mum possible height subject to satisfying the given constraints.
This allocation strategy packs as many packets as possible in
columns of low height. Since A satisfies the constraints F j

C ,
the total number of packets in columns of height≤h in A must
be no more than the corresponding number of packets in R j.
Assuming there exists an A∈C j such that R j is less uniform
than A (eqn. (7)) implies that A packs strictly more packets
than R j in columns of height≤h, which is a contradiction.

We now present the proof of Theorem 5.3. We show that
if some A ∈ C j is input-consistent, then the most-uniform
abstract trace R j must also be input-consistent. We define a
procedure Relabel that transforms the labeling function fL
for A to construct a valid labeling function for R j, thereby
showing that R j is input-consistent.

Proof. Assume there is some A∈C j which is input-consistent.
Let fL denote the labeling function which assigns each packet
in A to an integer denoting an input port. Function fL satisfies
two conditions: (1) number of input port labels is equal to the
port’s input count; and (2) packets at the same column in A
are mapped to distinct input port labels.
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We define a procedure Relabel which transforms the
labeling function fL into a valid labeling function f ′L for the
most-uniform abstract trace R j. Relabel operates on the
sorted height vectors htA and htR j for A and R j respectively.
Relabel consists of T steps. In step i, Relabel sets entry i

of htA equal to entry i of htR j ; we use ht ′A[i] to denote the value
of htA[i] after modification. At each step, Relabel stores the
number of extra packets excess[i] = max(0,htA[i]− htR j [i]).
If htA[i]<htR j [i] it uses the extra packets so far to make htA[i]
equal to htR j [i] (we will show that there will always be enough
extra packets). After T steps, each entry of ht ′A will be equal
to the corresponding entry of htR j , i.e., ht ′A = htR j at the end
of the procedure.

We will now show that Relabel transforms htA into htR j

by only using balancing shifts.
By Lemma B.3, ∑htR j [: i]≤∑htA[: i] for all i∈ [1,T ]. In step

1, we will not have a deficit of packets since htR j [1]≤htA[1].
Consider any step i≥2 in which there is a shortage of pack-

ets in htA, i.e., where htA[i]<htR j [i]. Since ∑htA[: i]≥∑htR j [: i]
and ∑htA[: i−1]≥∑htR j [: i−1], it is guaranteed that the total
excess packets so far, htA[: i−1]−∑htR j [: i−1], is no less than
the deficit at i, htR j [i]−htA[i].

∑htA[: i]≥htR j [: i] (9)

∑htA[: i−1]+htA[i]≥htR j [: i−1]+htR j [i] (10)

∑htA[: i−1]−∑htR j [: i−1]≥htR j [i]−htA[i] (11)

Hence, we will be able to make entry htA[i] equal to htR j [i] by
using some of these extra packets.

Any extra packet is from some entry t < i where
htA[t]> htR j [t] originally (i.e., before Relabel changes htA).
Given that there is a deficit at entry i in A and both htA and htR j

are sorted in non-increasing order,

htA[t]>htR j [t]≥htR j [i]>htA[i] (12)

which implies that htA[t] > htA[i]. Hence, shifting an extra
packet to i is always from a column with greater height to a
column of lower height, i.e., it is always a balancing shift.

Since the only moves that Relabel uses are balancing
shifts, by Lemma B.2, it is always possible to choose an extra
packet to shift from entry t to entry i such that entry i will have
each packet mapped to a distinct input port. After Relabel ter-
minates, the resultant vector ht ′A will have each entry i mapped
to ht ′A[i] distinct input port labels. Since a balancing shift does
not change any input port label (it just moves labeled packets),
ht ′A will be labeled with each input port a number of times equal
to the port’s input count. Since ht ′A=htR j , each entry in ht ′A cor-
responds to some column in matrix R j. Using the labeling over
ht ′A, associating each entry with its corresponding column in
R j, we obtain a labeling that associates each packet in abstract
trace R j with an input port label satisfying the requirements
of a valid labeling function. Hence, R j is input-consistent.

C MCC Correctness

We present the proof of Theorem 5.4, which reduces the
problem of checking input-consistency of an abstract trace to
checking the existence of a (0,1)-matrix with given row sums
and column sums.

Proof. ⇒: Assume abstract trace R j is consistent with input
counts rcv. Then, there exists some labeling Lbl that associates
each packet in R j with an input port. We construct a N×T
(0,1)-matrix X from R j and Lbl with each entry X [i][t] defined
as follows:

X [i][t]=

{
1 if Lbl uses port i at t
0 otherwise

(13)

Since Lbl uses each port i exactly rcv[i] times, X will have
exactly rcv[i] 1s in row i, i.e., the sum of row i will be rcv[i]
for all i∈ [1,N]. Since Lbl labels all packets at the same time
step in R j with different ports, for each t∈ [1,T ] the tth column
of X will have csum(R j, t) 1s, i.e., csum(X , t)= csum(R j, t).
Hence, R j being input-consistent implies there exists a
(0,1)-matrix X with its row sums determined by rcv and its
column sums determined by R j.
⇐: Assume there exists a (0,1)-matrix X with its row sums

equal to the input counts rcv and its column sums equal to the
column sums of abstract trace R j. We construct a function
Lbl from X . Let AvlPorts(t) denote the set of indices of rows
which have 1 in the tth column of X . For each t ∈ [1,T ], let
Lbl pick any 1 − 1 mapping from AvlPorts(t) to packets
in the tth column of R j. Since csum(X , t) = csum(R j, t),
|AvlPorts(t)| = csum(R j, t) so each packet enqueued at t
can be labeled with a distinct input port. Since Lbl only uses
ports from AvlPorts(t) in each time step t (i.e., only ports
corresponding to entries of 1 in X for that time step), Lbl will
use port i the number of times row i has entry 1 in X . Since
rsum(X , i) = rcv[i] for all i ∈ [1,N] Lbl will use each port i
exactly rcv[i] times. Since Lbl satisfies the required properties
in the definition of input-consistency and labels each packet
in R j, R j is consistent with input counts rcv.
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