
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

SIRD: A Sender-Informed, Receiver-Driven
Datacenter Transport Protocol

Konstantinos Prasopoulos, EPFL; Ryan Kosta, UCSD; Edouard Bugnion, EPFL;
Marios Kogias, Imperial College London

https://www.usenix.org/conference/nsdi25/presentation/prasopoulos

SIRD: A Sender-Informed, Receiver-Driven Datacenter Transport Protocol

Konstantinos Prasopoulos
EPFL

Ryan Kosta
UCSD ∗

Edouard Bugnion
EPFL

Marios Kogias
Imperial College London

Abstract
Datacenter congestion control protocols are challenged

to navigate the throughput-buffering trade-off while relative
packet buffer capacity is trending lower year-over-year. In this
context, receiver-driven protocols — which schedule packet
transmissions instead of reacting to congestion — excel when
the bottleneck lies at the ToR-to-receiver link. However, when
multiple receivers must use a shared link (e.g., ToR to Spine),
their independent schedules can conflict.

We present SIRD, a receiver-driven congestion control pro-
tocol designed around the simple insight that single-owner
links should be scheduled, while shared links should be man-
aged with reactive control algorithms. The approach allows
receivers to both precisely schedule their downlinks and to co-
ordinate over shared bottlenecks. Critically, SIRD also treats
sender uplinks as shared links, enabling the flow of congestion
feedback from senders to receivers, which then adapt their
scheduling to each sender’s real-time capacity. This results
in tight scheduling, enabling high bandwidth utilization with
little contention, and thus minimal latency-inducing buffering
in the fabric.

We implement SIRD on top of the Caladan stack and show
that SIRD’s asymmetric design can deliver 100Gbps in soft-
ware while keeping network queuing minimal. We further
compare SIRD to state-of-the-art receiver-driven protocols
(Homa, dcPIM, and ExpressPass) and production-grade re-
active protocols (Swift and DCTCP) and show that SIRD
is uniquely able to simultaneously maximize link utilization,
minimize queuing, and obtain near-optimal latency.

1 Introduction

Datacenter workloads like ML training [32, 62] and disaggre-
gated resource management [30] increasingly demand high-
throughput and low-latency networking. While datacenter
hardware continues to offer higher link speeds, switch packet
buffer capacity is failing to keep up, and SRAM density trends

∗Work done while at EPFL.

show that this is unlikely to change [17,24]. The combination
imposes a challenge for congestion control, which generally
relies on buffering to deliver high throughput. The challenge
is compounded by other important concerns such as hardware
heterogeneity and cost of operations [23, 35].

The most established approach to managing congestion is
by reactively slowing down sender transmission rates after
detecting a problem. This is the approach of sender-driven
(SD) protocols [4, 8, 9, 12, 44, 47, 50, 54, 67, 69, 73, 74] like
DCTCP [8] and Swift [44] in which senders make decisions
based on network feedback. The reactive nature of SD proto-
cols often requires several roundtrips to address congestion; a
limitation for workloads dominated by small flows [16,33,56].
Further, the flow abstraction makes it difficult to reduce la-
tency through message-centric scheduling [10, 13].

To address these limitations, a recent line of work [16, 20,
31, 36, 39, 56, 61] proactively schedules packet transmissions
instead of reacting to congestion buildup. Scheduling is typ-
ically implemented by having receivers send credit packets
to senders, which the latter consume to send back data. This
enables tight control over ToR-to-Host ports which are usu-
ally the most congested [33,65,72]. The receiver-driven (RD)
approach enables high throughput with limited buffering in
dcPIM [16] and near-optimal latency in Homa [56].

The fundamental tension in the design of receiver-driven
schemes is how to schedule packets over shared links. Each re-
ceiver has exclusive control of its downlink but must share the
bandwidth of the network’s core and that of sender uplinks
with other receivers. In a distributed protocol, this creates
scheduling conflicts if receivers do not coordinate. Proposed
solutions for this problem include explicit pre-matching of
senders and receivers (dcPIM [16]), in-network credit throt-
tling (ExpressPass [20]), and the overcommitment of receiver
downlinks (Homa [56]). Despite impressive results, each of
these approaches makes a sacrifice in either message latency,
protocol complexity, or packet buffer utilization.

We propose SIRD, a receiver-driven design based on the
following simple insight: exclusive links (receiver downlinks)
should be managed proactively, and shared links (sender up-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 451

links and switch-to-switch links) should be managed reac-
tively. In practice, this means that receivers gather congestion
feedback from shared links which gives them the means to
coordinate, while still explicitly controlling their downlinks.
By deducing the bandwidth availability of shared links, and
especially that of senders, receivers can be more precise in
their credit allocation. This allows them to drive high link
utilization without inducing contention and the corresponding
queuing in the network. Low queuing, in turn, enables fast
message delivery as the network does not introduce head-of-
line blocking.

SIRD implements receiver-driven scheduling that reacts to
shared-link congestion feedback using 1) end-host signals to
detect congestion on sender uplinks, and 2) ECN [63] to de-
tect congestion in the network’s core. Congestion information
flows via data packets to receivers and is fed into two indepen-
dent control loops, with the most congested determining how
much credit can be allocated to any given sender. SIRD’s de-
sign is end-to-end and does not require the use of in-network
priority queues or unconventional switch configuration.

We implement SIRD in 4300 SLOC within Caladan [29],
a state-of-the-art dataplane operating system. We show that
SIRD can efficiently allocate credit, minimize queuing, and
implement round-robin and SRPT policies at 100Gbps.

We use network simulation to systematically compare
SIRD to three state-of-the-art proactive protocols (Homa [56],
dcPIM [16], and ExpressPass [20]) and two production-grade
reactive protocols (DCTCP [8] and Swift [44]). Our evalu-
ation shows that SIRD can simultaneously maximize link
utilization, minimize queuing, and obtain near-optimal la-
tency. Specifically: (1) SIRD causes 12× less peak top-of-
rack (ToR) buffering than Homa yet achieves competitive
latency and utilization. (2) Compared to dcPIM, SIRD has
no message exchange rounds before sending and outperforms
it in link utilization, peak ToR buffering, and tail latency by
9%, 43%, and 46%. (3) SIRD achieves 10× lower tail latency
and 26% higher utilization than ExpressPass. (4) SIRD out-
performs DCTCP and Swift across the board, especially in
incast-heavy scenarios.

2 Background

The main goal of congestion control (CC) is to allocate net-
work resources in a work-conserving manner while avoiding
packet loss. There are also other, at times conflicting, CC
goals, e.g., fairness, flow completion time or deadlines, and
multi-tenancy.

Existing datacenter CC schemes for Ethernet networks can
be broadly split into two categories: reactive and proactive. In
reactive (also sender-driven (SD)) schemes [8–10, 44, 47, 50,
54, 67, 74], senders control congestion by participating in a
distributed coordination process to determine the appropriate
transmission rates. Senders obtain congestion information

through congestion signals like ECN [8,63,67], delay [44,54],
and in-network telemetry [47, 69].

In proactive schemes [5, 13, 16, 20, 31, 36, 46, 56, 61] band-
width is allocated explicitly, either globally, or in a distributed
manner. Global approaches [46, 61], use a centralized arbiter
that controls all transmissions and hence face scalability chal-
lenges. Distributed proactive designs operate either end-to-
end [13, 16, 31, 56] or with switch involvement in credit man-
agement [5, 20]. In end-to-end protocols, which are receiver-
driven (RD), each receiver explicitly schedules its downlink
by transmitting special-purpose credit tokens to senders. The
credit rate can be explicitly controlled by a pacer [20, 36] or
be self-clocked [16, 31, 56].

2.1 Exclusive and shared links

Packets flowing to a receiver host can experience congestion
either at the ToR-host link, which is exclusive to the receiver,
or at host-ToR uplinks and the network core, which are shared
among multiple receiving hosts.

Exclusive links: In the context of RD protocols, ToR-to-Host
links (downlinks) can be seen as exclusively controlled by
a single entity, the receiver. By controlling the rate of credit
transmission, a receiver can explicitly control the rate of data
arrival - assuming the bottleneck is the downlink. In fact,
downlinks are the most common point of congestion in data-
center networks [33, 44, 65, 72]. Congestion at the ToR down-
link is the result of incast traffic from multiple senders to
one receiver. In turn, incast is the result of the fan-out/fan-in
patterns of datacenter applications [25].

RD schemes excel in managing incast traffic because each
receiver explicitly controls the arrival rate of data [13, 16, 20,
31, 36, 56]. This level of control also allows RD schemes
to precisely dictate which message should be prioritized
at downlinks and can even factor-in application require-
ments [60]. Recent work has delivered significant message
latency improvements by scheduling messages based on their
remaining size (SRPT policy) [31, 39, 56]. In contrast, SD
schemes [8–10, 44, 47, 50, 54] treat downlinks as any other
link. Senders must first detect incast at a receiver’s downlink
and then independently adjust their rates/windows such that
the level of congestion falls below an acceptable target.

Shared links: Unlike exclusive downlinks, core and sender-
ToR link bottlenecks pose a challenge for RD schemes. Shared
link bottlenecks can appear when multiple receivers concur-
rently pull data packets over the same link. Before discussing
existing approaches to deal with this key challenge, we delve
deeper into the specifics of shared-link congestion.

When congestion occurs in the network core, multiple
flows from unrelated senders and receivers compete for band-
width on core links. Note that although the core may comprise
multiple tiers, it is fundamentally shared infrastructure. Con-
gestion at the core of a fabric is less common than at down-

452 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

links [33, 56, 65] but can still occur due to core network over-
subscription. Oversubscription can be permanent to reduce
cost [65] or transient due to component failures. Congestion
at the core can also occur because of static ECMP IP routing
decisions that cause multiple flows to saturate one core switch
and one core-Tor downlink, while other core switches have
idle capacity [7, 35].

Uplink congestion occurs due to the fan-out of multiple
flows to different receivers or due to bandwidth mismatch
between the sender’s uplink and the receiver’s downlink. Be-
cause the resulting packet buffering is in hosts and not in the
fabric, sender congestion is a less severe problem from the
perspective of packet loss. For RD schemes, uplink congestion
is known as the unresponsive sender problem [56] and leads
to degraded throughput as independent scheduling decisions
of receivers may conflict, wasting downlink bandwidth. For
example, two receivers may both decide to schedule the same
sender A at the same time, even if one of the receivers could be
receiving data from sender B. Whereas the term unresponsive
has been used in the context of SRPT scheduling, where mes-
sages are transmitted to completion, we will use congested
sender as a general description of uplink congestion.

RD protocols have proposed various mechanisms for over-
coming the tension between independent receiver scheduling
and the fact that some links are shared. One of the earli-
est designs, pHost [31], employs a timeout mechanism at
receivers to detect unresponsive senders and direct credit
to other senders. NDP [36] employs very shallow buffer
switches and eagerly drops packets, using packet trimming
to recover quickly. NDP receivers handle uplink sharing by
only crediting senders if they transmit data packets - whether
dropped or not. pHost and NDP do not explicitly deal with
core congestion and, further, analysis by Montazeri et al. [56]
showed that neither of the two achieves high overall link uti-
lization. Homa [56] introduced controlled overcommitment
in which each receiver can send credit to up to k senders
at a time. Homa achieves high utilization as it is statisti-
cally likely that at least one of the k senders will respond.
However, it trades queuing for throughput by meaningfully
increasing the amount of expected inbound traffic to each
receiver. To let short messages bypass network queues, Homa
leverages switch priority queues, which are typically used for
application-level QoS guarantees [12,37,44]. dcPIM [16] em-
ploys a semi-synchronous round-based matching algorithm
where senders and receivers exchange messages to achieve
a bipartite matching. This coordinates the sharing of sender
uplinks but congestion at the core is only implicitly addressed
by the protocol’s overall low link contention. The downside of
this link-sharing approach is message latency. dcPIM delivers
small messages quickly by excluding them from the matching
process. However, messages larger than the bandwidth-delay-
product (BDP) of the network must wait for several RTTs
before starting transmission. ExpressPass [20] manages all
links, exclusive and shared, via a hop-by-hop approach which

configures switches to drop excess credit packets, which in
turn rate limits data packets in the opposite direction. To re-
duce credit drops, ExpressPass uses recent credit drop rates
as feedback to adjust the future sending rate, and in this way
also improves utilization and fairness across multiple bottle-
necks. Out of the designs discussed so far, ExpressPass is
the only one that explicitly manages core congestion and can
operate with highly oversubscribed topologies. ExpressPass’s
hop-by-hop design helps it achieve near-zero queuing [20]
but is more complex to deploy and maintain due to its switch
configuration and path symmetry requirements.

2.2 The impact of ASIC trends on buffering

Congestion control protocols depend on buffering to offset
coordination and control loop delays and, as a result, face a
throughput-buffering trade-off. Maximum bandwidth utiliza-
tion can trivially be achieved with high levels of in-network
buffering, but at the cost of queuing-induced latency and
expensive dropped packet retransmissions. Conversely, low
buffering can lead to throughput loss for protocols that are
slow in capturing newly available bandwidth.

High-speed packet buffering is handled by small SRAM
buffers in switch ASICs, the size of which is not increasing
as fast as bisection bandwidth. For example, nVidia’s top-end
Spectrum 4 ASIC has a 160MB buffer, which corresponds
to 3.13MB per Tbps of bisection bandwidth [58]. The pre-
vious 12.8Tbps and 6.4Tbps top-end Spectrum ASICs were
equipped with 5MB and 6.6MB per Tbps respectively [52,53]
(full list in Appendix A). Unfortunately, future scaling of
SRAM densities appears unlikely given CMOS process limi-
tations [17, 24]. In parallel, datacenter round-trip times (RTT)
are not falling as they are dominated by host software pro-
cessing, PCIe latency, and ASIC serialization latencies. Con-
sequently, as link speeds increase, CC protocols must handle
higher BDPs with less switch buffer space at their disposal.

To better absorb instantaneous bursts of traffic, switch
packet buffers are generally shared among egress ports. Some
ASICs advertise fully shareable buffers while others imple-
ment separate pools or statically apportion some of the space
to each port [33]. On top of the physical implementation, var-
ious buffer-sharing algorithms dynamically limit each port’s
maximum allocation to avoid unfairness [8]. However, if a
large part of the overall buffer is occupied, the per-port cap
becomes more equitable, limiting burst absorbability [33].

Figure 1 provides some context by comparing the buffer use
of Homa, a state-of-the art RD protocol, with recent switch
buffer capacities under the Websearch workload [10]. The
dotted lines represent the per-port (left) and completely shared
(right) buffer capacities of the hypothetical switches, adjusted
on a per-unit basis to the port radix of our simulation method-
ology (§6.2). In practice, the buffer is neither partitioned nor
fully shared; however, between the two extremes, hardware
trends are constraining the throughput-buffering trade-off.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 453

0.0 0.5 1.0 1.5
Per port queuing (MB)

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 F

ra
c
ti
o

n S
p

e
c
tru

m
 4

 S
ta

tic

S
p

e
c
tru

m
 3

 S
ta

tic

25% load

70% load

95% load

0 5 10 15
Total ToR queuing (MB)

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 F

ra
c
ti
o

n

S
p

e
c
tru

m
 4

 S
h

a
re

d

S
p

e
c
tru

m
 3

 S
h

a
re

d

Figure 1: Homa queuing CDFs under various network loads for
workload Websearch [10]. The dotted lines represent the switch
buffer size adjusted to the actual radix of our simulated ToR; see
§6.2.

3 SIRD Design Pillars

SIRD is an end-to-end receiver-driven scheme that manages
exclusive links proactively and shared links reactively. In prac-
tice, this means that receivers perform precise credit-based
scheduling when the bottleneck is their downlinks and use
congestion feedback to coordinate over shared links. SIRD
does not face the limitations of prior work as it:

• is end-to-end, with all decision-making happening at end
hosts, and does not rely on advanced switch features or
configuration.

• achieves high throughput by using sender and core link
congestion feedback to allow receivers to direct credit to
links with spare capacity.

• causes minimal buffering in the network by drastically
reducing the need for downlink overcommitment.

• does not need switch priority queues to deliver messages
with low latency, thanks to minimal buffering.

• can start message transmission immediately without a
prior matching stage.

• explicitly tackles core congestion through its shared link
management approach.

Efficient credit allocation: SIRD’s design allows receivers
to send the appropriate amount of credit depending on the
real-time availability of the bottleneck link. For downlinks the
task is trivial as the link’s capacity is managed by one receiver.
However, when the bottleneck is shared (sender uplink or core
link), SIRD receivers detect competition for bandwidth and
adjust the amount of issued credit dynamically. For example,
if a sender is the bottleneck for two receivers, each will al-
locate the appropriate amount of credit for their share of the
sender’s bandwidth. This approach makes the distribution of
credit efficient because it is given to hosts that can promptly
use it rather than being accumulated by congested senders.
As a result, SIRD can achieve high link utilization using a
small amount of credit, i.e., with little overcommitment.

SIRD combines efficient credit allocation and overcommit-
ment in informed overcommitment. Each receiver is allotted
a limited amount of available credit B. The minimum valid
value of B is 1×BDP as this is the amount of credit required

60 65 70 75 80 85

Max Goodput (Gbps)

0

2

4

6

M
e

a
n

 Q
in

g
 (

M
B

)

k = 4

B = 1.0
k = 2 B = 2

k = 5
k = 6

k = 3

k = 1 B = 1.5B = 1.25

k = 7

13x

Controlled Overcommitment

Informed Overcommitment

Figure 2: Mean buffering at ToRs versus maximum achieved good-
put when sweeping the overcommitment parameter for SIRD (in-
formed overcommitment) and Homa (controlled overcommitment).
Results obtained in simulation by running the Websearch workload
at 95Gbps on 100Gbps links across 144 servers; see §6.2.

to pull 1×BDP of inbound traffic and fully utilize the down-
link. Higher values of B lead to downlink overcommitment,
which increases tolerance to congested shared links but also
increases expected queuing.

Figure 2 highlights the benefit of efficient credit alloca-
tion in SIRD by comparing the throughput-buffering trade-
off across equivalent overcommitment levels for Homa (k),
which introduced and uses RD overcommitment, and SIRD
(B) under maximum network load. Informed overcommit-
ment yields the same overall goodput despite overcommitting
downlinks 14× less, which leads to 13× lower queuing. The
goodput-queuing trade-off benefit is maximum at high net-
work load, under which congestion and loss are most likely,
and naturally fades as load lessens.

SIRD implements informed overcommitment through a
control loop at each receiver, which dynamically adjusts credit
allocation across senders based on sender and network feed-
back. When a sender is concurrently credited by multiple
receivers, the sender receives credit faster than it can con-
sume it, causing it to accumulate. This is undesirable as re-
ceivers have a limited amount of credit to distribute. Equiva-
lently, limiting accumulation makes credit available to other
senders that can actually use it. SIRD’s control loop rebal-
ances credit by setting an accumulated credit threshold, ST hr,
that is similar in spirit to DCTCP’s marking threshold [8],
Swift’s target delay [44], or HPCC’s η [47]. At each sender,
while the amount of accumulated credit from all receivers ex-
ceeds ST hr, a bit is set in all outgoing data packets. Based on
arriving bit values, each receiver adjusts the maximum amount
of credit that can be allocated to the congested sender in an
additive-increase/multiplicative-decrease (AIMD) manner. In
this paper, we use DCTCP’s [8] AIMD algorithm.

SIRD uses the same mechanisms to handle core congestion
with ECN as the signal. Receivers read the CE bit of data
packets and adjust per-sender credit limits using AIMD.

Each receiver runs two AIMD algorithms in parallel, one
for senders and one for the core, each with its own input signal.
The algorithm instance of the most congested area determines
credit allocation. This separation of signals allows SIRD to
use different signal/algorithm combinations to handle bot-

454 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tlenecks at hosts and switches. Beyond ECN, SIRD can use
signals such as end-to-end delay on infrastructures with times-
tamping support [44] or In-Band Telemetry [47, 69]. In this
paper, we use the same proven and simple combination for
both and leave the exploration of more complex algorithms
and signals to future work.

Starting at line rate: Prior work [31, 36, 39, 56] has demon-
strated the latency benefits of starting transmission at line rate,
without a gradual ramp-up or preceding control handshakes
that take at least one RTT. SIRD’s credit allocation mecha-
nism operates while transmission progress is made, and thus,
senders immediately start at line rate, sending the first BDP
bytes unscheduled (without waiting for credit).

We further optimize the design based on the following
simple observation: small messages benefit the most from
unscheduled transmission since their latency is primarily de-
termined by the RTT while throughput-dominated messages
see minimal gain. For example, in the absence of queuing,
delaying transmission by one RTT increases the end-to-end
latency of a message sized at 10×BDP by 9% compared
to 200% for a single-packet message. Therefore, to reduce
unnecessary bursty traffic and queuing, SIRD senders do not
start transmitting messages larger than a configurable thresh-
old (UnschT) before explicitly receiving credits from the
receiver. For messages smaller than UnschT, senders send the
first min(BDP,msg_size) bytes without waiting for credit.

Switch priority queues not required: By efficiently allocat-
ing credit, SIRD achieves high link utilization with minimal
fabric queuing, thereby largely eliminating its impact on la-
tency. Thus, SIRD can be deployed without any in-network
QoS support, though it can benefit in terms of tail latency
from having a total of two priority levels.

4 SIRD Design

At a high level, SIRD is an RPC-oriented protocol, similar
to other recently proposed datacenter transports [16, 31, 56].
SIRD may be used to implement one-way messages or re-
mote procedure calls [42, 43, 56]. SIRD assumes that the
length of each message is known or that data streams will be
chunked into messages. SIRD further assumes that ECN is
configured in all network switches, with the ECN threshold
set according to DCTCP best practices [8]. SIRD is designed
to be layered on top of UDP/IP for compatibility with all
network deployments. The UDP source port is randomly se-
lected for each packet for fine-grain load balancing, allowing
an ECMP network to behave as effectively as random packet
spraying [26]. We make no assumption of lossless delivery,
in-network priority queues, or smart NICs and switches.

SIRD defines two main packet types: (1) DATA: a packet
that contains part of the payload of a message. Data packets
can be scheduled, requiring credit to be sent, or unscheduled.
Messages with size > UnschT are scheduled and make an

initial credit request by sending a zero-length DATA packet;
(2) CREDIT: a control packet sent by the receiver to the sender
to schedule the transmission of scheduled DATA.

Generally, the flow of packets consists of credit flowing
from receivers to senders and data flowing in the opposite
direction. Credit leaves the receiver in a CREDIT packet, is
used by the sender, and returns with a scheduled DATA packet.

4.1 Credit Management

Each SIRD receiver maintains two types of credit buckets
that limit the amount of credit it can distribute: a global credit
bucket and per-sender credit buckets.

The global credit bucket B controls overcommitment by
capping the total number of outstanding credits that a receiver
can issue. Configuring B≥ BDP is necessary to enable link
saturation. Further, B bounds the queuing length from sched-
uled packets to B−BDP bytes at the ToR’s downlink. Our
analysis (§4.2) and evaluation (§6) show that setting B as low
as 1.5×BDP is sufficient for high link utilization.

Each receiver also maintains a credit bucket per sender
machine it communicates with. The per-sender credit bucket
caps the number of outstanding credits the receiver can issue
to a sender. Informed overcommitment is implemented by
adjusting the size of the per-sender credit bucket according
to the level of congestion at the core and the sender (max
1×BDP). Reducing the bucket size means that less of the
receiver’s total credit can be allocated to a congested source
or path, and thus, more is available for other senders.

4.2 Informed Overcommitment

Informed overcommitment uses two input signals that commu-
nicate the extent of congestion in the network and at senders.
The signals are carried in DATA packets and are the ECN bit in
the IP header set by the network and a bit in the SIRD header
set by the sender. Each receiver runs two separate AIMD
(additive-increase, multiplicative decrease) control loops and
uses the most conservative of the two (similar to Swift [44])
to adjust per-sender credit bucket sizes. Each control loop is
configured with its own marking threshold (NT hr and ST hr).
NT hr should be set according to DCTCP best practices [8] to
limit queuing in the network core. Note that NT hr is much
higher than the maximum allowed B− BDP of persistent
queueing at ToR switches. Thus, ToR switches never have to
mark ECN.

ST hr should be set to limit the amount of credit a sender can
accumulate, thus allowing receivers to efficiently distribute
their limited aggregate credit. Intuitively, ST hr determines
the level of accumulated credit the control loop is targeting
when a sender is congested, i.e., receiving credit faster than it
can use it. Setting it too high means each sender can accumu-
late substantial amounts of credit, and consequently, B would

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 455

need to be configured higher to increase aggregate credit avail-
ability. Conversely, setting ST hr too low does not allow the
control loop any slack when converging to a stable state and
can cause throughput loss.

To understand the relationship between ST hr and B, we an-
alytically examine a simple congested-sender scenario from
the perspective of a receiver R to find: how much total credit
(B) does R need when receiving from k congested senders,
to still have enough credit available to saturate its downlink.
Assuming each congested sender sends to f receivers in total,
its available uplink bandwidth for R is BW/ f . Assuming uni-
form link speeds, we are interested in the case where senders
are the bottleneck and cannot saturate R, or:

BWsupply_k < BWdemand_R =>
BW

f
<

BW
k

=> f > k (1)

In this case, each of the k senders accumulates up to ST hr
credit in stable state, or ST hr/ f from each receiver assuming
an equal split (see §4.4). Therefore, to be able to saturate
its downlink, R’s B must be large enough to allow 1xBDP
of credit to be in flight despite accumulation at congested
senders, or:

B≥ BDP+∑
k

ST hr
f

; f ≥ 2, f > k (2)

If kmax is the number of congested senders that maximizes
the right side of the inequality, then fmax = kmax + 1 (f in
denominator) and the maximum value of the term is:

kmax

∑
k

ST hr
kmax +1

=
ST hr

kmax +1

kmax

∑
k

1 = ST hr
kmax

kmax +1
< ST hr (3)

It follows that, in steady state, R can account for any number
of congested senders as long as B ≥ BDP+ ST hr. Under
dynamic traffic patterns (see §6.2.4) higher values of B can
help increase the supply of credit in transient phases. Further,
policies other than fair sharing can loosen this property. For
example, if senders strictly prioritize some receivers, then,
in the worst case where R is de-prioritized by all k senders,
Equation 2 loses f from the denominator and B depends on
the number of worst-case congested senders.

Table 1: Core configuration parameters.

UnschT Messages that exceed UnschT in size ask for
credit before transmitting.

B Per-receiver global credit bucket size. Caps
credited-but-not-received bytes.

NThr ECN threshold, configured as for DCTCP.
SThr Sender marking threshold (sird.csn).

Algorithm 1 Receiver Logic
Variables:

• bbb: consumed credit from global receiver bucket of size B,
• sssbbbiii: consumed credit from the bucket of sender i,
• ssseeennndddeeerrrBBBkkkttt iii,,,nnneeetttBBBkkkttt iii: Sender and network credit bucket size,
• rrreeemmmiii: Requested but not granted credit for sender i.

1: procedure onDataPacket(pkt, i) . i:sender
2: credit← getCredit(pkt)
3: b← b− credit
4: sbi← sbi− credit
5: senderBkti← SenderAIMD(senderBkti, pkt.sird.csn)
6: netBkti← NetAIMD(netBkti, pkt.ip.ecn)
7: end procedure
8: procedure onSendCreditTick() . Runs when b+min(remi,MSS)≤ B
9: senderList← activeSenders. f ilter(

sbi +min(remi,MSS)≤ min(senderBkti,netBkti))
10: s← policySelect(senderList)
11: credit← min(remi,MSS)
12: sendCredit(s,credit)
13: b← b+ credit; sbi← sbi + credit; remi← remi− credit
14: end procedure

Algorithm 2 Sender Logic
Variables: cccrrr: available credit for outbound messages to receiver r

1: procedure onCreditPacket(r,credit)
2: cr ← cr + credit
3: end procedure
4: procedure sendData()
5: rcvrList← activeReceivers. f ilter(cr > 0);
6: (r,dataPkt)← policySelect(rcvrList)
7: dataPkt.sird.csn← (∑ i(ci)≥ ST hr)
8: cr ← cr−dataPkt.size
9: send(r,dataPkt)

10: end procedure

4.3 Congestion Control Algorithm
Algorithm 1 describes the behavior of a SIRD receiver. When
credit is available in the global bucket and on the command of
the credit pacer (§4.4), the receiver tries to allocate credit to
an active sender (ln. 8). It first selects one of the senders with
available credit in the per-sender bucket (ln.9) based on policy
(ln.10). The receiver sends a CREDIT packet (ln. 12) and re-
duces the available credit in the global and per-sender buckets,
and updates the remaining required credit for that message
(ln. 13). Whenever a DATA packet arrives (ln. 1), if it is sched-
uled, the receiver replenishes credit in the global bucket (ln. 3)
and the per-sender bucket (ln. 4). Then, it executes the two in-
dependent AIMD control loops to adapt to a congested sender
(ln. 5) and a congested core network (ln. 6), respectively. The
receiver sets the size of the per-sender bucket as the minimum
of the two values (ln. 9).

Algorithm 2 describes the implementation of the sender-
side algorithm for scheduled DATA packets. A host can send

456 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

data to a receiver only if it has credit from said receiver.
Congested senders mark the congested sender notification
(sird.csn) bit if the total amount of accumulated credit exceeds
ST hr (ln. 7). The sender can send unscheduled DATA packets
at any point in time. It is worth noting that SIRD senders
naturally handle scenarios where a meaningful portion of up-
link bandwidth is consumed by unscheduled packets. Since
senders limit credit accumulation by informing receivers to
allocate less credit, the transmission rate of scheduled packets
converges to the leftover bandwidth.

4.4 Other Design Concerns
SIRD can be configured to schedule for fairness e.g., by
crediting messages in a round-robin manner, or for latency
minimization, e.g., by crediting smaller messages first (SRPT),
or to accommodate different tenant classes. SIRD implements
policies at the receiver (ln .10), which is the primary enforcer,
and at the sender (ln. 6). By minimizing queuing in the fabric,
SIRD does not need to enforce policies there, simplifying the
design. Regardless of which policy is configured at senders,
SIRD allocates part of the uplink bandwidth fairly across
active receivers, as to ensure a regular flow of congestion
information between sender-receiver pairs.

SIRD receivers pace credit transmission to match their
downlink’s capacity. Pacing improves message latency by re-
ducing downlink queuing from scheduled packets even below
the tight B−BDP bound but is not needed for correctness.

If switch priority queues are available, CREDIT packets are
sent over a higher priority lane to further reduce RTT jitter.
The unscheduled prefixes of messages smaller than UnschT
also use this lane to bypass transient network queueing. SIRD
does not require in-network priority queues to deliver high per-
formance but sees tail latency benefits in some cases (§6.2.4).

Packet loss in SIRD will be very rare by design, but the
protocol must still operate correctly in the presence of CRC
errors or packet drops due to faults or restarts. SIRD employs
Homa’s [56] retransmission design in which receivers infer
loss when no new packets are received for an incomplete mes-
sage after a period of a few milliseconds. Upon detecting the
loss of a scheduled segment, receivers also reclaim the credit
allocated for said segment. SIRD’s modest credit overcom-
mitment (e.g., 50%) ensures that receivers can continue fully
utilizing their bandwidth even in the improbable event where
a sizeable chunk of packets is lost. Finally, SIRD incurs no
performance penalties from out-of-order packet deliveries as
it does not rely on packet order for loss detection and only
delivers completed messages to applications.

5 Caladan Implementation

SIRD, with its message-level API and simple credit man-
agement design, can be implemented in NIC hardware or in
software. The former eliminates PCIe latencies from the RTT,

reducing the BDP, and allows for nanosecond-scale pacing
and delivery of packets on the wire. We demonstrate that the
latter is also possible, at 100Gbps, by implementing SIRD
in 4300 SLOC as a UDP-based transport protocol in Cal-
adan [29], a state-of-the-art kernel-bypass dataplane operat-
ing system and CPU scheduler. We chose Caladan because of
its mature network stack and its lightweight green thread ab-
straction, suitable for building latency-sensitive applications.
SIRD is open source and available on GitHub [1].

The SIRD stack follows an asymmetric design where ded-
icated spinning threads perform specialized tasks. On the
receiver-side, each SIRD node has one dedicated thread that
runs the control loops and implements downlink scheduling
policies, like round-robin or SRPT, by transmitting paced
CREDITs according to Algorithm 1. SIRD reduces network
queuing by pacing credit at slightly less than the line rate,
as proposed in Hull [9]. Dedicated receiver cores read from
RX rings and adjust credits, ensuring the system can quickly
replenish new credits for redistribution. Each dedicated re-
ceiver core has two RX rings, one for packets of scheduled
messages and one for packets of unscheduled messages; this
helps avoid drops of scheduled packets during high rates of
unscheduled traffic. For efficiency, and to sustain 100Gbps
line rates, memory allocation and data copying operations are
removed from the credit replenishment path to a small set of
dedicated threads which copy packets, reassemble messages
from packets, which can be received out of order, and deliver
messages to applications via inline callbacks.

The sender-side implementation also has a central thread,
which accepts CREDIT packets and schedules the transmission
of all DATA packets, whether these are unscheduled or sched-
uled. This thread implements Algorithm 2 which marks the
sird.csn bit of DATA packets by comparing the amount of ac-
cumulated credit to ST hr. Like the central receiver thread, this
thread paces itself to ensure that packets are not given to the
NIC faster than it can consume them. The thread accepts new
message requests via asynchronous shared-memory queues,
where the application API returns error codes if resource
limits are exceeded.

6 Evaluation

We evaluate SIRD using our Caladan implementation and
through simulation to answer the following questions: (1) Can
a software implementation of SIRD deliver 100Gbps along
with minimal queuing under incast (§6.1.1) and efficient credit
management under outcast (§6.1.2)? (2) How well does SIRD
navigate the throughput-buffering-latency trade-off in larger
scale workloads compared to existing work (§6.2.1)? (3) Is
SIRD’s congestion response robust at high load pressure and
can it handle core congestion (§6.2.2)? (4) Can SIRD deliver
messages with low latency in large scale workloads (§6.2.3)?
(5) How important is SIRD’s sender-informed design in max-
imizing utilization with minimal buffering? How sensitive is

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 457

0 20 40

Latency (us)

0.0

0.5

1.0

Unloaded

Incast

0 200 400 600 800

Latency (us)

0.0

0.5

1.0

Unloaded

Incast-SRPT

Incast-SRR

Figure 3: Incast: CDF of message latency under incast compared
to an unloaded baseline for 8B requests (left) and 500KB requests
(right). The incast is formed by six senders transmitting 10MB mes-
sages in an open loop.

SIRD to its parameters (§6.2.4)?

6.1 System Evaluation
We evaluate SIRD at a small scale using Cloudlab’s [27]
sm110p machines equipped with 100Gbps ConnectX-6 DX
NICs and Xeon 4314 CPUs, all located in the same rack. Our
implementation uses 9KB jumbo frames and the unloaded
RTT of the SIRD-Caladan stack is approximately 18 µs. La-
tency measurements are end-to-end, measured by the client,
and include four request/reply copies to/from the application
layer. We sample other system metrics every 2ms. While the
size of requests may vary from experiment to experiment,
replies are of minimal size.

We configure SIRD parameters as follows: BDP = 216KB
(24 jumbo frames), B = 1.5× BDP, ST hr = 0.5× BDP,
UnschT = 1.0×BDP. We do not use switch priority queues.

6.1.1 Receiver Congestion

SIRD’s main objectives when handling incast are eliminating
queuing-induced latency for small messages and being able
to reduce latency for larger messages through credit-based
scheduling. To evaluate this, we run an experiment where six
senders saturate a receiver by sending 10MB requests at a rate
of 17Gbps each. A seventh sender periodically transmits either
8B or 500KB requests and captures the latency distribution.

Figure 3 (left) plots the round-trip latency experienced by
short requests, which are unscheduled. When the receiver is
saturated, we observe only a few microseconds of additional
latency compared to when the receiver is unloaded, which
corresponds to a couple of packets of queuing, either at the
ToR or at the host stack. For context, the median latency
under load for the same experiment using kernel TCP Cubic
was above 1ms. SIRD achieves this result because it limits
the number of scheduled inbound bytes to B and thus the
extent of downlink queuing to B−BDP. Further, since in
this case senders respond to credit immediately, credit pacing
effectively eliminates downlink queuing, while still achieving
96Gbps in this experiment.

Figure 3 (right) shows the latency of scheduled 500KB
requests under two receiver scheduling policies. Under SRPT,

SThr=0.5xBDP SThr=Inf

0 5 10

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

C
re

d
it
 (

x
B

D
P

)

1

2 3

0 5 10

Time (s)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
re

d
it
 (

x
B

D
P

)

Figure 4: Left: credit accumulated at congested sender. Right: sum
of credit available at the three receivers - initial total: 4× 1.5 =
4.5×BDP. 100ms moving average. The circled numbers indicate
the number of receivers at that stage of the experiment.

the receiver allocates credit to the message with the fewest
remaining bytes and thus quickly prioritizes 500KB over
10MB requests, leading to near-unloaded latency despite the
saturated downlink. SIRD can also implement fairer policies
like per-sender round robin ("SRR") as shown. Finally, as it
causes minimal network queuing, SIRD can implement such
policies without in-network QoS support.

6.1.2 Sender Information

When senders are the bottleneck (outcast), SIRD tackles the
congested sender problem by providing congestion feedback
to receivers and allowing them to adjust their credit alloca-
tion. To evaluate the mechanism’s efficacy at 100Gbps, we
run an outcast experiment where a single sender sends 10MB
messages at full rate to three receivers in a time-staggered
manner. Figure 4 (left) shows that, without informed over-
commitment ("ST hr = In f "), the level of credit accumulated
at the congested sender increases with every new receiver.
This is because each receiver independently gives the sender
1×BDP worth of credit to achieve full rate. Through conges-
tion feedback ("ST hr = 0.5×BDP"), receivers coordinate and
scale down their credit allocation until credit accumulation at
the sender is less than ST hr = 0.5×BDP, on average. Credit,
instead, stays at receivers, and can be used to schedule other
senders. Figure 4 (right) shows the sum of credit available at
the three receivers, each receiving a max-min fair share of the
sender’s bandwidth. Without informed overcommitment, each
receiver allocates 1×BDP worth of credit to the congested
sender. With it, each allocates (BDP+ST hr)/num_rcvers.

6.2 Simulations
We use network simulation to evaluate SIRD on large-scale
workloads and compare it to other protocol designs.

We compare SIRD to 5 baselines: DCTCP [8], a widely
deployed sender-driven scheme [33], Swift [44], a state-of-
the-art production sender-driven scheme, Homa [56], because
of its near-optimal latency and its use of overcommitment,
ExpressPass [20], as it employs a hop-by-hop approach to
managing credit, and dcPIM [16], as a unique point in the

458 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

design space as it explicitly matches senders and receivers.
We do not extend Homa with Aeolus [39] for the reasons dis-
cussed in [40]. Note that the Homa and dcPIM papers [16,56]
already include favorable comparisons to NDP [36], Aeo-
lus [39], PIAS [13], pHost [31], and HPCC [47], thus we did
not include them in our evaluation.

We implement SIRD on ns-2 [11], reuse the original ns-2
DCTCP implementation (using the same parameters as [10],
scaled to 100Gbps) and the original ns-2 ExpressPass imple-
mentation [21], and port the published Homa simulator [55] to
ns-2 using the same parameters as in [56] scaled to 100Gbps.
The published Homa simulator does not implement the incast
optimization [56], which further relies on two-way messages.
We use a community Swift simulator, kindly made public [3],
and configure its delay parameters to achieve similar through-
put to DCTCP, respecting the guidelines [44]. Finally, we
use the published dcPIM simulator [15]. SIRD’s simulator is
open source and available on GitHub [2].

Table 2 lists protocol parameter values. DCTCP and Swift
use pools of pre-established connections (40 for each host
pair). SIRD approximates SRPT scheduling like Homa
and dcPIM. SIRD, Homa, and dcPIM use packet spraying,
DCTCP and Swift use ECMP. Homa uses 8 network priority
levels, dcPIM 3, and SIRD 2 (§4.4). The initial window of
DCTCP and Swift is configured at BDP like in [10]. The RTT
latency is similar to prior work.

Topology: We simulate the two-tier leaf-spine topology used
in previous work [8, 10, 16, 31, 56] with 144 hosts, connected
to 9 top-of-rack switches (16 hosts each) via 4 spine switches,
with link speeds of 100Gbps to hosts and 400Gbps to spines.
We simulate switches with infinite buffers, i.e., without packet
drops (1) to avoid making methodologically complex assump-
tions as drop rates and thus latency and throughput are very
sensitive to switch buffer sizes, organization, and configura-
tion [33,40] (see §2.2); and (2) to study the intended mode of
operation of the protocols that leverage buffering to achieve
high link utilization and operate best without drops. The in-
tentional dropping of credit packets to adjust sender rates by
ExpressPass is maintained. SIRD never uses more than a
small fraction of the theoretical capacity (§6.2.1) and is not
affected by this setup.

Workload: Each host operates both as client and server, send-
ing one-way messages according to an open-loop Poisson
distribution to uniformly random receivers (all-to-all). We
simulate 3 workloads: (1) WKa: an aggregate of RPC sizes
at a Google datacenter [28]; (2) WKb: a Hadoop workload at
Facebook [64]; (3) WKc: a web search application [10]. We
select them to test over a wide range of mean message sizes
of 3KB, 125KB, and 2.5MB respectively.

We simulate these 3 workloads on 3 traffic configurations,
for a total of 9 points of comparison. The configurations
are: (1) Balanced: The default configuration described above.
We vary the applied load, which does not include protocol-

dependent header overheads, from 25% to 95% of link capac-
ity. (2) Core: Same as (1) but ToR-Spine links are 200Gbps
(2-to-1 oversubscription). Due to uniform message target
selection, 128/144≈ 89% of messages travel via spines, turn-
ing the core into the bottleneck. We consequently reduce the
load applied by hosts by ×0.89 ∗ 2 to reflect the network’s
reduced capacity. This is not meant to reflect a permanent
load distribution, but we hypothesize that it is possible tran-
siently. (3) Incast: We use the methodology of [16, 47] and
combine background traffic with overlay incast traffic: 30 ran-
dom senders periodically send a 500KB message to a random
receiver. Incast traffic represents 7% of the total load.

We report goodput (rate of received application payload),
total buffering in switches, and message slowdown, defined
as the ratio between the measured and the minimum possible
latency for each message. In the incast configuration, we
exclude incast messages from slowdown results.

6.2.1 Performance Overview

Figure 5 shows how protocols navigate the trade-offs between
throughput, buffering, and latency by plotting their relative
performance across all 9 workload-configuration combina-
tions. The best-performing protocol on each of the 9 scenarios
gets a score of 1.0 (per metric) and the others are normalized
to it, so that goodput is always ≤ 1.0 whereas queuing and
slowdown are always ≥ 1.0. We report the highest achieved
goodput and peak queuing over all the levels of applied load.
We report 99th percentile slowdown across all messages of
each workload at 50% applied load which is a level most
protocols can deliver in all scenarios. The following figures
and calculations do not include cases where a protocol cannot
satisfy a specific load level or cannot stop network buffers
from growing infinitely.

Overall, SIRD is the only protocol that consistently
achieves near-ideal scores across all metrics. Specifically,
SIRD causes 12× less peak network queuing than Homa
and achieves competitive latency and goodput performance.

Table 2: Default simulation parameters for each protocol.
Prot. Parameters

all •RTT(MSS): 5.5µs intra-rack, 7.5µs inter-rack
•BDP = 100KB; link@100Gbps

SIRD •B : 1.5×BDP, •UnschT : 1×BDP
•NT hr = 1.25×BDP, •ST hr = 0.5×BDP

DCTCP •Initial window: 1×BDP, •g=0.08
•Marking ECN Threshold: 1.25×BDP

Swift
•Initial window: 1×BDP

•base_target: 2×RT T , •fs_range: 5×RT T
•h̄ : 1.25×BDP, •fs_max: 100, •fs_min: 0.1

XPass •α = 1/16 •winit = 1/16 •loss_tgt = 1/8
Homa Same as [56] at 100Gbps (incl. priority split)
dcPIM Same as [16]

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 459

DCTCP(1) Swift xPass(3) Homa dcPIM SIRD

0

5

10

N
o
rm

.
9
9
p
 S

lo
w

d
o
w

n

(a) Slowdown
DCTCP Swift xPass Homa dcPIM SIRD

0.0

0.5

1.0

N
o
rm

.
M

a
x
 G

o
o
d
p
u
t

(b) Goodput
DCTCP(3)Swift(6) xPass(1) Homa dcPIM SIRD

0

100

200

N
o

rm
.
M

a
x
 Q

u
e

in
g

(c) Queuing
Figure 5: Normalized goodput, queuing, and slowdown across all 9 configurations. Each metric is normalized based on the best-performing
protocol for the given metric and configuration. For queuing and slowdown, lower is better. For goodput, higher is better. Normalized slowdown
and buffering are capped at 10× and 200×, respectively, and higher values are plotted in the overflow area. The numbers in parentheses show
the number of unstable configurations for each protocol which are not plotted. X-axis jitter is added for visibility. Find the data in Table 4.

SIRD outperforms dcPIM in message slowdown, and peak
goodput and queuing by 46%, 9%, and 43% respectively. Ex-
pressPass causes practically zero queuing thanks to its hop-by-
hop design, and 88% less than SIRD, but SIRD delivers 10×
lower slowdown and 26% more goodput. Even under full fab-
ric saturation, SIRD induces at most 0.8MB of ToR queuing
in receiver-bottleneck scenarios and 2.3MB in core-bottleneck
scenarios. Given a packet buffer capacity of 3.13MB/Tbps
(see §2.2), these values correspond to a maximum buffer oc-
cupancy of 8% and 23%, respectively.

6.2.2 Congestion Response

We now zoom in on how each protocol manages congestion
across various levels of applied stress. Figure 6 plots maxi-
mum buffering across ToR switches as a function of achieved
goodput for balanced (top), core (middle), and incast (bot-
tom) configurations. The reported goodput is the mean across
all 144 hosts and reflects the rate of message delivery to ap-
plications. ToR queuing covers both downlinks and links to
aggregation switches (core).

Overall, SIRD consistently achieves high goodput while
causing minimal buffering across load levels, even under high
levels of stress. Through informed overcommitment, SIRD
makes effective use of a limited amount of credit and achieves
high goodput while reducing the need for packet buffer space
by up to 20× compared to Homa’s controlled overcommit-
ment. Further, SIRD displays a more predictable congestion
response compared to dcPIM and ExpressPass. As expected,
based on Figure 5a, DCTCP and Swift cause meaningful
buffering without achieving exceptional goodput. Mean queu-
ing is qualitatively similar (appendix Figure 13).

dcPIM and ExpressPass sometimes compare favorably to
SIRD but only when the mean message size is not small.
They both struggle in terms of achieved goodput and buffer-
ing in WKa for all three configurations (left column). In
WKa, ≈ 99% of messages are smaller than 1×BDP and are
responsible for ≈ 40% of the traffic. ExpressPass’s behavior
is known and discussed in [20]: more credit than needed may
be sent for a small message which may then compete for band-
width with productive credit of a large message. For dcPIM,
the likely reason as discussed in [41] is that to send a small

DCTCP

Swift

ExpressPass

Homa

dcPIM

SIRD

25 50 75

3

6

9

Q
in

g
 (

M
B

)
(a) WKa Balanced

25 50 75

3

6

9

(b) WKb Balanced
25 50 75

3

6

9

(c) WKc Balanced

20 40

3

6

9

Q
in

g
 (

M
B

)

(d) WKa Core
20 40

3

6

9

(e) WKb Core
20 40

3

6

9

(f) WKc Core

25 50 75
Achieved Goodput

(Gbps)

3

6

9

(g) WKa Incast

25 50 75
Achieved Goodput

(Gbps)

3

6

9

(h) WKb Incast

25 50 75
Achieved Goodput

(Gbps)

3

6

9

(i) WKc Incast
Figure 6: Maximum ToR queuing vs. achieved goodput. Configura-
tions: Balanced (top), Core (middle), Incast (bottom).

message, a sender has to preempt the transmission of a larger
message which can cause the receiver of the latter to remain
partially idle. SIRD’s behavior is consistent across workload
message sizes thanks to slight downlink overcommitment
which absorbs discontinuities in large message transmission.

In the core configuration (Figure 6 - middle row), where
the core is the bottleneck, we observe that SIRD’s reactive
congestion management, despite sharing the same ECN-based
mechanism as DCTCP, achieves steadier behavior because it
limits the number of bytes in the network. Homa, though lack-
ing an explicit mechanism to regulate queing at the core, does
constrain peak queuing below 19MB (6MB/Tbps of switch
BW) because it limits outstanding bytes to the aggregate over-
commitment level of receivers. The same applies to dcPIM

460 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DCTCP

Swift

ExpressPass

Homa

dcPIM

SIRD

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

1

5

10

15

20

S
lo

w
d
o
w

n

(a) WKa Balanced

B
(55%)

C
(10%)

D
(35%)

all
(100%)

1

5

10

15

20

(b) WKc Balanced

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

1

5

10

15

S
lo

w
d
o
w

n

(c) WKa Core

B
(55%)

C
(10%)

D
(35%)

all
(100%)

1

5

10

15

(d) WKc Core

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

Message Size Group

1
5

10

15

20

25

30

S
lo

w
d
o
w

n

(e) WKa Incast

B
(55%)

C
(10%)

D
(35%)

all
(100%)

Message Size Group

1
5

10

15

20

25

30

(f) WKc Incast
Figure 7: Median and 99th percentile slowdown at 50% offered appli-
cation load. Each bar group contains the messages in the following
size ranges: 0 ≤ A < MSS ≤ B < 1×BDP ≤ C < 8×BDP ≤ D.
Also shown is the percentage of messages that belong to each group.
WKc has no sub-MSS messages. Protocols that cannot deliver 50%
load are not shown.

though queuing is much lower as it does not overcommit.
Last, the incast configuration (bottom row) illustrates the

relative advantage of RD schemes over DCTCP and Swift.
Homa’s results would be different if the incast optimization
described in [56] was implemented and the workload con-
sisted of request-response pairs instead of one-way messages.

6.2.3 Message Latency

Figure 7 shows the median and 99th percentile slowdown
for different message size ranges across configurations at
50% applied load (except WKb results which fall between the
other two and can be found in appendix Figure 12). Across
each workload as a whole (rightmost bar cluster "all"), SIRD
is generally on par with Homa, and generally outperforms
dcPIM in terms of tail latency. For small, latency-sensitive
messages < BDP (100KB - groups A and B), SIRD, dcPIM,
and Homa offer close to hardware latency. Both in aggregate
and for small messages, DCTCP and Swift perform an order
of magnitude worse at the tail because they cause meaningful
buffering without having a bypass mechanism like Homa.

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

1

5

10

15

20

25

S
lo

w
d

o
w

n

(a) WKa Balanced

B
(55%)

C
(10%)

D
(35%)

all
(100%)

1

5

10

15

20

25

(b) WKc Balanced

Figure 8: Median and 99th percentile slowdown at 70% offered
application load. Protocols that cannot deliver 70% load are not
shown. Legend same as in Figure 7.

For messages larger than 1×BDP (groups C and D), SIRD
comes closest to near-optimal Homa and strongly outperforms
the other protocols. SIRD achieves up to 4× lower latency
than dcPIM in this size range because it does not wait for
multi-RTT handshakes before sending a message as discussed
in §3. Note that Figure 7b is comparable to Figure 3d in [16].
Similarly, SIRD outperforms ExpressPass on latency because
it does not take multiple RTTs to capture the full link band-
width, and because it implements SRPT.

The differences in latency for protocols other than dcPIM
and ExpressPass, which wait before ramping up transmission,
can be explained through their effective scheduling policies.
That is, assuming that a protocol manages to deliver enough
messages to achieve 50% goodput, lowering latency is a mat-
ter of appropriately ordering the transmission of messages
(assuming no conflicting application concerns). For example,
DCTCP achieves equivalent or better latency than Swift in all
but the incast scenarios. We argue that this is because Swift is
better at fairly sharing bandwidth between messages thanks to
its faster-converging control loop. Latency-wise, fair sharing
is inferior to SRPT since it delays individual messages in fa-
vor of equitable progress. Along the same lines, SIRD cannot
always match the latency of Homa because it approximates
SRPT less faithfully: (1) unlike Homa, a portion of the sender
uplink is fair-shared (50% in this case). (2) To avoid credit
accumulation in congested senders, informed overcommit-
ment adjusts per-sender credit bucket sizes equitably. This
mostly impacts the latency of group C, as the bucket size may
be small due to sender congestion and not grow during the
lifetime of a message smaller than 8×BDP. Consequently,
compared to near-optimal Homa in the Balanced configura-
tion, SIRD’s 99th percentile slowdown in group C is 1.85×
and 2.68× higher at 50% and 70% application load respec-
tively, while it outperforms the other protocols.

Figure 8 shows slowdown under a higher applied applica-
tion load of 70% for the protocols that can deliver it. At this
load level, message scheduling becomes more important and
Homa’s near-optimal SRPT implementation sees its relative
performance improve in some cases.

In summary, SIRD delivers messages with low latency,
outperforms dcPIM, ExpressPass, DCTCP, and Swift, and is
competitive with Homa, which nearly optimally approximates

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 461

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

B (BDP)

50
55
60
65
70
75
80
85
90

M
a

x
 G

p
u

t
G

b
p

s

SThr=0.5

SThr=1.0

SThr=inf

0.5x 1.0x Inf

0%

25%

50%

75%

Senders

In-Flight

Figure 9: Left: Max goodput across values of B and ST hr. Right:
Credit location at max goodput as a function of ST hr. B= 1.5×BDP.
"In-flight" is CREDIT and DATA. Credit at receivers is low at this load.

SRPT [56].

6.2.4 Sensitivity Analysis

In this section, we explore SIRD’s sensitivity to its key pa-
rameters: B, ST hr, and UnschT , as well as to the availability
of switch priority queues. SIRD’s sensitivity to NT hr is the
same as DCTCP’s to K [8].

Informed overcommitment: Equation 2 introduced the lin-
ear steady-state relationship between B and ST hr, the two
key parameters of informed overcommitment. Figure 9 (left)
shows the measured maximum achieved goodput in Balanced
WKc as a function of B and ST hr.

We observe that the presence of informed overcommitment
increases achievable goodput by ∼25%, confirming that the
introduced sender-informed mechanism is necessary to fully
utilize the network with a limited amount of credit, and thus
low queuing. When the mechanism is disabled (ST hr = inf),
there is stranded and unused credit at congested senders,
which prevents receivers from achieving the full rate. Fig-
ure 9 (right) shows where in the topology credit is under max
goodput. Lower ST hr values reduce the credit accumulation
at senders, and improves throughput by increasing the number
of in-flight CREDIT and DATA packets.

With the mechanism enabled, the curves asymptotically
converge to the same maximum goodput of 90Gbps. Reach-
ing the plateau with a lower value of B also demands lower-
ing ST hr to reduce credit stranded at senders (Equation 2).
Queuing increases with B as in Figure 2 and remains sta-
ble when varying ST hr. We selected B = 1.5×BDP rather
than B = 2.0×BDP for our experiments because it halves
the maximum buffering caused by scheduled packets from
1× to 0.5×BDP (= B−BDP). We do not configure ST hr
lower than 0.5×BDP as we deem it unrealistic to implement
in software, as it may cause unwanted marking due to batch
credit arrivals. The minimum correct value for this topology
is 0.15×BDP, as per the guidelines [8].

Unscheduled transmissions: SIRD allows the unscheduled
transmission of the BDP prefix of messages ≤UnschT . Fig-
ure 10 explores the sensitivity to this parameter using work-
loads WKa and WKc. Setting UnschT = MSS meaningfully
increases median and tail latency for messages with sizes in

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

Message Size Group

1
2
3
4
5
6
7
8
9

10
11
12

S
lo

w
d
o
w

n

MSS

BDP

2xBDP

4xBDP

16xBDP

inf

B
(55%)

C
(10%)

D
(35%)

all
(100%)

Message Size Group

1
2
3
4
5
6
7
8
9

S
lo

w
d
o
w

n

MSS

BDP

2xBDP

4xBDP

16xBDP

inf

Figure 10: Slowdown as a function of UnschT for WKa (left) and
WKc (right) at 50% application load in the balanced configuration;

[MSS,BDP] while higher values offer no appreciable net bene-
fit. This also holds at 70% load. Increasing UnschT >> BDP
in WKc has little impact on max and mean ToR buffering,
which range within [696,747]KB and [363,378]KB respec-
tively. In contrast, because 99% of messages in WKa are
unscheduled, max and mean ToR buffering scale from 501KB
to 1016KB and 220KB to 435KB, respectively, as UnschT
increases. It is worth noting that saturating the fabric’s band-
width, which is when queuing is maximized, is far less likely
with high-request-rate workloads like WKa.

The default value of UnschT = 1×BDP is a satisfying
compromise as large values do not yield latency benefits yet
can unnecessarily expose the fabric to coordinated traffic
bursts (e.g., incast). We confirm this by running WKc un-
der the incast configuration which has a high concentration
of 5×BDP message bursts. We observe the following per-
formance degradation when comparing UnschT = 4×BDP
to UnschT = 16×BDP: Overall 99th percentile slowdown
increases by 34% while maximum and mean ToR queuing
increases by 5.7× and 80% respectively. These results jus-
tify our decision to introduce a size threshold above which
messages are entirely scheduled.

In deployments with severe incast consisting of messages
smaller than BDP, UnschT can be configured to be smaller
than MSS. If, for example, 100 hosts concurrently send a 0.5×
BDP message to a single receiver, the latter will effectively
receive 100 small packets requesting credit. The receiver will
immediately start issuing credit based on its policy and ramp-
up to full bandwidth utilization one RTT after the senders
transmitted. In TCP terms, this specific scenario is roughly
equivalent to each sender starting with a window of one MSS,
and ramping to the correct window value just one RTT later.

Use of switch priority queues: SIRD may use a second
802.1p priority level for control packets and/or unscheduled
DATA. Figure 11 shows how the use of priorities impacts
message slowdown for WKa and WKc in terms of (i) possible
degradation when switch priority queues are unavailable, and
(ii) the benefit of prioritizing unscheduled DATA.

We observe that, across message sizes, median slowdown
is largely unaffected and tail slowdown benefits from high pri-
ority transmission in some cases. Small messages benefit be-
cause they bypass the small queues SIRD forms (≈ 1×BDP
per link at the 99th percentile and ≈ 0.1×BDP on average).

462 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A
(90%)

B
(9%)

C
(<1%)

D
(<1%)

all
(100%)

Message Size Group

1
2
3
4
5
6
7
8
9

10
11
12

S
lo

w
d
o
w

n

SIRD-no-prio

SIRD-cntrl-prio

SIRD-cntrl+data-prio

B
(55%)

C
(10%)

D
(35%)

all
(100%)

Message Size Group

1
2
3
4
5
6
7
8
9

S
lo

w
d
o
w

n

SIRD-no-prio

SIRD-cntrl-prio

SIRD-cntrl+data-prio

Figure 11: Slowdown as a function of priority use for WKa (left) and
WKc (right) at 50% application load in the balanced configuration;

This is more evident in WKa where 99% of messages are
unscheduled. Sensitivity to priorities is similar at 70% load
(not shown), where, compared to 50% load, group A’s tail
slowdown benefits 5% more from DATA prioritization and
group B’s 6% less.

Maximum goodput increases by 1% and 2.4% with control
packet prioritization for WKa and WKc respectively, as credit
is delivered slightly more predictably. Queuing in the network
is also insensitive to the use of priorities. Given SIRD’s low
sensitivity to the availability of switch priority queues, we ar-
gue that it can be deployed without this dependency with little
sacrifice. This differentiates SIRD from Homa, which is de-
signed around the use of priorities to bypass long in-network
queues, and dcPIM, which strongly benefits from tight control
packet delivery due to its semi-synchronous nature.

7 Related Work

The topic of datacenter congestion control has been exten-
sively explored due to the increasing IO speeds, the µs-scale
latencies, emerging programmable hardware, RPC workloads,
and host-centric concerns [4–6, 8–10, 12, 13, 19, 20, 22, 31, 34,
36, 38, 42–48, 50, 51, 54, 56, 57, 61, 66–71, 74].

SD schemes like DCQCN [74], Timely [54], HPCC [47],
Bolt [12], and PTT [67] use network signals in the form of
ECN [8, 68, 74], delay [44, 54], in-band telemetry [47, 69, 73],
and packet drops [10] to adjust sending windows [8,44,47,66]
or rates [38, 54, 70]. Some operate end-to-end with no or
trivial switch support [8, 44, 54, 67] while others leverage
novel but non-universal switch features to improve feedback
quality [47, 69, 73] or to tighten reaction times [12, 19, 71].

RD protocols attempt to avoid congestion altogether by
proactively scheduling packet transmissions [5, 16, 20, 31,
36, 39, 46, 49, 56, 61] and have already been discussed (§2).
Orthogonally to the scope of this paper, FlexPass [49] en-
ables fair bandwidth sharing among proactive and reactive
protocols. EQDS [59] enables the coexistence of traditional
protocols like DCTCP and RDMA by moving all queuing
interactions to end-hosts and using an RD approach to admit
packets into the network fabric.

Previous work has followed different approaches regarding
the desired flow/message scheduling policy. The traditional
approach is to aim for fair bandwidth allocation at the flow

level [8,44,54,74]. Alternatively, D2TCP, D3, and Karuna [18]
prioritize flows based on deadlines communicated by higher-
level services. A recent line of work [10,13,31,39,56], which
includes both proactive and reactive protocols, attempts to
approximate SRPT or SJF (shorted job first) scheduling in
the fabric which minimizes average latency [10, 14]. SIRD
can approximate a variety of policies at receivers and senders
and avoids the need for fabric policies as it keeps in-network
queuing minimal.

8 Conclusion

SIRD takes a holistic approach to datacenter congestion man-
agement by tackling the fundamental tension of receiver-
driven designs, which is the management of shared links.
SIRD applies proactive scheduling to exclusive receiver
downlinks, which are statistically the most congested, and
leverages sender and fabric congestion feedback to reactively
allocate the bandwidth of shared links. Compared to exist-
ing designs, SIRD manages to simultaneously deliver high
link utilization with hardly any network buffering, and low
message latency. SIRD does so without assuming advanced
switch ASIC features nor switch priority queues, which makes
it compatible with existing and heterogeneous datacenter net-
works. We implemented a prototype of SIRD in software, on
the Caladan stack, and showed that it can efficiently allocate
credit while delivering 100Gbps.

Acknowledgements

The authors thank John Ousterhout for numerous discussions
on the topic of receiver-driven protocols. We thank our shep-
herd Srikanth Sundaresan, Nate Foster, Katerina Argyraki,
Haitham Al Hassanieh, James Larus, Charly Castes, Neelu
Kalani, Boris Pismenny, Rui Yang, Mahyar Emami, Sahand
Kashani, Mia Primorac, Francois Costa, and all anonymous
reviewers for their insightful comments.

This work was funded in part by the Microsoft-EPFL Joint
Research Center and used CloudLab [27] for 100GbE ex-
periments. Ryan Kosta participated in EPFL’s Excellence
Research Internship Program.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 463

References

[1] SIRD implementation on Caladan. https://github.
com/epfl-dcsl/SIRD-Caladan-Impl, 2025.

[2] SIRD simulator repository. https://github.com/
epfl-dcsl/SIRD-Simulator, 2025.

[3] Sepehr Abdous, Erfan Sharafzadeh, and Soudeh Ghor-
bani. Burst-tolerant datacenter networks with Vertigo.
In Proceedings of the 2021 ACM Conference on Emerg-
ing Networking Experiments and Technology (CoNEXT),
pages 1–15, 2021.

[4] Vamsi Addanki, Oliver Michel, and Stefan Schmid. Pow-
erTCP: Pushing the Performance Limits of Datacenter
Networks. In Proceedings of the 19th Symposium on
Networked Systems Design and Implementation (NSDI),
pages 51–70, 2022.

[5] Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David B.
Shmoys, and Amin Vahdat. Harmony: A Congestion-
free Datacenter Architecture. In Proceedings of the 21st
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 329–343, 2024.

[6] Saksham Agarwal, Arvind Krishnamurthy, and Rachit
Agarwal. Host Congestion Control. In Proceedings of
the ACM SIGCOMM 2023 Conference, pages 275–287,
2023.

[7] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, and George Varghese. CONGA: distributed
congestion-aware load balancing for datacenters. In
Proceedings of the ACM SIGCOMM 2014 Conference,
pages 503–514, 2014.

[8] Mohammad Alizadeh, Albert G. Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In Proceedings of the ACM SIGCOMM
2010 Conference, pages 63–74, 2010.

[9] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Bal-
aji Prabhakar, Amin Vahdat, and Masato Yasuda. Less
Is More: Trading a Little Bandwidth for Ultra-Low La-
tency in the Data Center. In Proceedings of the 9th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 253–266, 2012.

[10] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: minimal near-optimal datacen-
ter transport. In Proceedings of the ACM SIGCOMM
2013 Conference, pages 435–446, 2013.

[11] Eitan Altman and Tania Jimenez. NS simulator for
beginners. Synthesis Lectures on Communication Net-
works, 5(1):1–184, 2012.

[12] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita
Dukkipati. Bolt: Sub-RTT Congestion Control for Ultra-
Low Latency. In Proceedings of the 20th Symposium on
Networked Systems Design and Implementation (NSDI),
pages 219–236, 2023.

[13] Wei Bai, Kai Chen, Hao Wang, Li Chen, Dongsu Han,
and Chen Tian. Information-Agnostic Flow Schedul-
ing for Commodity Data Centers. In Proceedings of
the 12th Symposium on Networked Systems Design and
Implementation (NSDI), pages 455–468, 2015.

[14] Amotz Bar-Noy, Magnús M. Halldórsson, Guy Kortsarz,
Ravit Salman, and Hadas Shachnai. Sum Multicoloring
of Graphs. J. Algorithms, 37(2):422–450, 2000.

[15] Qizhe Cai. dcpim simulator repository.
https://github.com/Terabit-Ethernet/dcPIM/
tree/master/simulator, 2023.

[16] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agar-
wal. dcPIM: near-optimal proactive datacenter transport.
In Proceedings of the ACM SIGCOMM 2022 Confer-
ence, pages 53–65, 2022.

[17] Chih-Hao Chang, VS Chang, KH Pan, KT Lai, JH Lu,
JA Ng, CY Chen, BF Wu, CJ Lin, CS Liang, et al. Criti-
cal process features enabling aggressive contacted gate
pitch scaling for 3nm cmos technology and beyond. In
2022 International Electron Devices Meeting (IEDM),
pages 27–1. IEEE, 2022.

[18] Li Chen, Kai Chen, Wei Bai, and Mohammad Alizadeh.
Scheduling Mix-flows in Commodity Datacenters with
Karuna. In Proceedings of the ACM SIGCOMM 2016
Conference, pages 174–187, 2016.

[19] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin.
Catch the Whole Lot in an Action: Rapid Precise Packet
Loss Notification in Data Center. In Proceedings of
the 11th Symposium on Networked Systems Design and
Implementation (NSDI), pages 17–28, 2014.

[20] Inho Cho, Keon Jang, and Dongsu Han. Credit-
Scheduled Delay-Bounded Congestion Control for Dat-
acenters. In Proceedings of the ACM SIGCOMM 2017
Conference, pages 239–252, 2017.

[21] Inho Cho, Keon Jang, and Dongsu Han. Express-
pass simulator repository. https://github.com/
kaist-ina/ns2-xpass, 2018.

464 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/epfl-dcsl/SIRD-Caladan-Impl
https://github.com/epfl-dcsl/SIRD-Caladan-Impl
https://github.com/epfl-dcsl/SIRD-Simulator
https://github.com/epfl-dcsl/SIRD-Simulator
https://github.com/Terabit-Ethernet/dcPIM/tree/master/simulator
https://github.com/Terabit-Ethernet/dcPIM/tree/master/simulator
https://github.com/kaist-ina/ns2-xpass
https://github.com/kaist-ina/ns2-xpass

[22] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload Con-
trol for µs-scale RPCs with Breakwater. In Proceedings
of the 14th Symposium on Operating System Design and
Implementation (OSDI), pages 299–314, 2020.

[23] Ultra Ethernet Consortium. Overview of and Motivation
for the Forthcoming Ultra Ethernet Consortium Specifi-
cation. https://ultraethernet.org/wp-content/
uploads/sites/20/2023/10/23.07.12-UEC-1.
0-Overview-FINAL-WITH-LOGO.pdf, 2023.

[24] David Schor. IEDM 2022: Did We
Just Witness The Death Of SRAM?
https://fuse.wikichip.org/news/7343/
iedm-2022-did-we-just-witness-the-death-of-sram/,
2022.

[25] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[26] Advait Abhay Dixit, Pawan Prakash, Y. Charlie Hu, and
Ramana Rao Kompella. On the impact of packet spray-
ing in data center networks. In Proceedings of the 2013
IEEE Conference on Computer Communications (IN-
FOCOM), pages 2130–2138, 2013.

[27] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[28] Bob Felderman. Personal communication to the authors
of [56], 2018.

[29] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating Interference at Mi-
crosecond Timescales. In Proceedings of the 14th Sym-
posium on Operating System Design and Implementa-
tion (OSDI), pages 281–297, 2020.

[30] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar,
João Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network Requirements for
Resource Disaggregation. In Proceedings of the 12th
Symposium on Operating System Design and Implemen-
tation (OSDI), pages 249–264, 2016.

[31] Peter Xiang Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
pHost: distributed near-optimal datacenter transport over
commodity network fabric. In Proceedings of the 2015
ACM Conference on Emerging Networking Experiments
and Technology (CoNEXT), pages 1:1–1:12, 2015.

[32] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. In-
network Aggregation for Shared Machine Learning
Clusters. In Proceedings of the 4th Conference on Ma-
chine Learning and Systems (MLSys), 2021.

[33] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu,
Neil Spring, Srikanth Sundaresan, and Sanjay Rao. A
microscopic view of bursts, buffer contention, and loss
in data centers. In Proceedings of the 22nd ACM
SIGCOMM Workshop on Internet Measurement (IMC),
pages 567–580, 2022.

[34] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Niko-
laidis, Mohammad Alizadeh, and Thomas E. Anderson.
Backpressure Flow Control. In Proceedings of the 19th
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 779–805, 2022.

[35] Albert G. Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference,
pages 51–62, 2009.

[36] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the ACM SIGCOMM 2017 Conference,
pages 29–42, 2017.

[37] Torsten Hoefler, Duncan Roweth, Keith D. Underwood,
Robert Alverson, Mark Griswold, Vahid Tabatabaee,
Mohan Kalkunte, Surendra Anubolu, Siyuan Shen,
Moray McLaren, Abdul Kabbani, and Steve Scott. Data
Center Ethernet and Remote Direct Memory Access:
Issues at Hyperscale. Computer, 56(7):67–77, 2023.

[38] Chi-Yao Hong, Matthew Caesar, and Brighten Godfrey.
Finishing flows quickly with preemptive scheduling. In
Proceedings of the ACM SIGCOMM 2012 Conference,
pages 127–138, 2012.

[39] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang,
Baochen Qiao, Kai Chen, Kun Tan, and Yi Wang. Aeo-
lus: A Building Block for Proactive Transport in Data-
centers. In Proceedings of the ACM SIGCOMM 2020
Conference, pages 422–434, 2020.

[40] John K. Ousterhout. Homa Wiki on Aeolus.
https://homa-transport.atlassian.net/wiki/
spaces/HOMA/pages/262185/A+Critique+of+
Aeolus+A+Building+Block+for+Proactive+
Transports+in+Datacenters, 2022.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 465

https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/
https://fuse.wikichip.org/news/7343/iedm-2022-did-we-just-witness-the-death-of-sram/
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/262185/A+Critique+of+Aeolus+A+Building+Block+for+Proactive+Transports+in+Datacenters
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/262185/A+Critique+of+Aeolus+A+Building+Block+for+Proactive+Transports+in+Datacenters
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/262185/A+Critique+of+Aeolus+A+Building+Block+for+Proactive+Transports+in+Datacenters
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/262185/A+Critique+of+Aeolus+A+Building+Block+for+Proactive+Transports+in+Datacenters

[41] John K. Ousterhout. Homa Wiki on dcPIM.
https://homa-transport.atlassian.net/wiki/
spaces/HOMA/pages/1507461/A+Critique+of+
dcPIM+Near-Optimal+Proactive+Datacenter+
Transport, 2022.

[42] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Datacenter RPCs can be General and Fast. In
Proceedings of the 16th Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 1–16,
2019.

[43] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs first-
class datacenter citizens. In Proceedings of the 2019
USENIX Annual Technical Conference (ATC), pages
863–880, 2019.

[44] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is Simple and Effective for Congestion Control in the
Datacenter. In Proceedings of the ACM SIGCOMM
2020 Conference, pages 514–528, 2020.

[45] Yanfang Le, Jeongkeun Lee, Jeremias Blendin, Jiayi
Chen, Georgios Nikolaidis, Rong Pan, Robert Soulé,
Aditya Akella, Pedro Yebenes Segura, Arjun Singhvi,
Yuliang Li, Qingkai Meng, Changhoon Kim, and Serhat
Arslan. SFC: Near-Source Congestion Signaling and
Flow Control. CoRR, abs/2305.00538, 2023.

[46] Yanfang Le, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Sujata Banerjee, Aditya Akella, and
Michael M. Swift. PL2: Towards Predictable Low La-
tency in Rack-Scale Networks. CoRR, abs/2101.06537,
2021.

[47] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: high precision congestion control. In
Proceedings of the ACM SIGCOMM 2019 Conference,
pages 44–58, 2019.

[48] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and
Dongsu Han. Towards timeout-less transport in com-
modity datacenter networks. In Proceedings of the 2021
EuroSys Conference, pages 33–48, 2021.

[49] Hwijoon Lim, Jaehong Kim, Inho Cho, Keon Jang, Wei
Bai, and Dongsu Han. FlexPass: A Case for Flexible
Credit-based Transport for Datacenter Networks. In
Proceedings of the 2023 EuroSys Conference, pages
606–622, 2023.

[50] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh,
Balaji Prabhakar, Mendel Rosenblum, and Anirudh

Sivaraman. Breaking the Transience-Equilibrium
Nexus: A New Approach to Datacenter Packet Transport.
In Proceedings of the 18th Symposium on Networked
Systems Design and Implementation (NSDI), pages 47–
63, 2021.

[51] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C. Evans, Steve D.
Gribble, Nicholas Kidd, Roman Kononov, Gautam Ku-
mar, Carl Mauer, Emily Musick, Lena E. Olson, Erik
Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, Xi Wang, and Amin Vahdat. Snap: a
microkernel approach to host networking. In Proceed-
ings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), pages 399–413, 2019.

[52] Mellanox. Spectrum 2 datasheet. https://nvdam.
widen.net/s/gbk7knpsfd/sn3000-series, 2017.

[53] Mellanox. Spectrum 3 datasheet. https:
//nvdam.widen.net/s/6269c25wv8/
nv-spectrum-sn4000-product-brief, 2020.

[54] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily R. Blem, Hassan M. G. Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. TIMELY: RTT-based Congestion Control
for the Datacenter. In Proceedings of the ACM SIG-
COMM 2015 Conference, pages 537–550, 2015.

[55] Behnam Montazeri. Homa simulator repository. https:
//github.com/PlatformLab/HomaSimulation,
2019.

[56] Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John K. Ousterhout. Homa: a receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the ACM SIGCOMM 2018 Conference,
pages 221–235, 2018.

[57] Mohammad Noormohammadpour and Cauligi S.
Raghavendra. Datacenter Traffic Control: Understand-
ing Techniques and Tradeoffs. IEEE Commun. Surv.
Tutorials, 20(2):1492–1525, 2018.

[58] Nvidia. Spectrum 4 datasheet. https:
//nvdam.widen.net/s/mmvbnpk8qk/
networking-ethernet-switches-sn5000-datasheet-us,
2022.

[59] Vladimir Andrei Olteanu, Haggai Eran, Dragos Du-
mitrescu, Adrian Popa, Cristi Baciu, Mark Silberstein,
Georgios Nikolaidis, Mark Handley, and Costin Raiciu.
An edge-queued datagram service for all datacenter traf-
fic. In Proceedings of the 19th Symposium on Networked
Systems Design and Implementation (NSDI), pages 761–
777, 2022.

466 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/1507461/A+Critique+of+dcPIM+Near-Optimal+Proactive+Datacenter+Transport
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/1507461/A+Critique+of+dcPIM+Near-Optimal+Proactive+Datacenter+Transport
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/1507461/A+Critique+of+dcPIM+Near-Optimal+Proactive+Datacenter+Transport
https://homa-transport.atlassian.net/wiki/spaces/HOMA/pages/1507461/A+Critique+of+dcPIM+Near-Optimal+Proactive+Datacenter+Transport
https://nvdam.widen.net/s/gbk7knpsfd/sn3000-series
https://nvdam.widen.net/s/gbk7knpsfd/sn3000-series
https://nvdam.widen.net/s/6269c25wv8/nv-spectrum-sn4000-product-brief
https://nvdam.widen.net/s/6269c25wv8/nv-spectrum-sn4000-product-brief
https://nvdam.widen.net/s/6269c25wv8/nv-spectrum-sn4000-product-brief
https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/HomaSimulation
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-switches-sn5000-datasheet-us
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-switches-sn5000-datasheet-us
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-switches-sn5000-datasheet-us

[60] Amy Ousterhout, Adam Belay, and Irene Zhang. Just In
Time Delivery: Leveraging Operating Systems Knowl-
edge for Better Datacenter Congestion Control. In Pro-
ceedings of the 11th workshop on Hot topics in Cloud
Computing (HotCloud), 2019.

[61] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan,
Devavrat Shah, and Hans Fugal. Fastpass: a centralized
"zero-queue" datacenter network. In Proceedings of
the ACM SIGCOMM 2014 Conference, pages 307–318,
2014.

[62] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya
Akella. CASSINI: Network-Aware Job Scheduling in
Machine Learning Clusters. CoRR, abs/2308.00852,
2023.

[63] K. Ramakrishnan, S. Floyd, and D. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. RFC
3168 (Proposed Standard), September 2001. Updated
by RFCs 4301, 6040.

[64] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the Social Network’s (Dat-
acenter) Network. In Proceedings of the ACM SIG-
COMM 2015 Conference, pages 123–137, 2015.

[65] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim
Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vah-
dat. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In
Proceedings of the ACM SIGCOMM 2015 Conference,
pages 183–197, 2015.

[66] Le Sun, Hai Dong, Omar Khadeer Hussain, Fa-
rookh Khadeer Hussain, and Alex X. Liu. A frame-
work of cloud service selection with criteria interactions.
Future Gener. Comput. Syst., 94:749–764, 2019.

[67] Lide Suo, Yiren Pang, Wenxin Li, Renjie Pei, Keqiu Li,
Xiulong Liu, Xin He, Yitao Hu, and Guyue Liu. PPT: A
Pragmatic Transport for Datacenters. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 954–969,
2024.

[68] Balajee Vamanan, Jahangir Hasan, and T. N. Vijaykumar.
Deadline-aware datacenter tcp (D2TCP). In Proceed-
ings of the ACM SIGCOMM 2012 Conference, pages
115–126, 2012.

[69] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam
Kumar, T. S. Eugene Ng, Neal Cardwell, and Nandita
Dukkipati. Poseidon: Efficient, Robust, and Practical
Datacenter CC via Deployable INT. In Proceedings of
the 20th Symposium on Networked Systems Design and
Implementation (NSDI), pages 255–274, 2023.

[70] Christo Wilson, Hitesh Ballani, Thomas Karagiannis,
and Antony I. T. Rowstron. Better never than late: meet-
ing deadlines in datacenter networks. In Proceedings
of the ACM SIGCOMM 2011 Conference, pages 50–61,
2011.

[71] David Zats, Anand Padmanabha Iyer, Ganesh Anantha-
narayanan, Rachit Agarwal, Randy H. Katz, Ion Stoica,
and Amin Vahdat. FastLane: making short flows shorter
with agile drop notification. In Proceedings of the 2015
ACM Symposium on Cloud Computing (SOCC), pages
84–96, 2015.

[72] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind
Krishnamurthy. High-resolution measurement of data
center microbursts. In Proceedings of the 17th ACM
SIGCOMM Workshop on Internet Measurement (IMC),
pages 78–85, 2017.

[73] Renjie Zhou, Dezun Dong, Shan Huang, and Yang Bai.
FastTune: Timely and Precise Congestion Control in
Data Center Network. In Proceedings of the 2021 IEEE
International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pages 238–245,
2021.

[74] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, pages 523–536, 2015.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 467

DCTCP

Swift

ExpressPass

Homa

dcPIM

SIRD

A
(65%)

B
(24%)

C
(8%)

D
(3%)

all
(100%)

1

5

10

15

20

(a) WKb Balanced

A
(65%)

B
(24%)

C
(8%)

D
(3%)

all
(100%)

1

5

10

15

(b) WKb Core

A
(65%)

B
(24%)

C
(8%)

D
(3%)

all
(100%)

Message Size Group

1
5

10

15

20

25

30

(c) WKb Incast
Figure 12: Median and 99th percentile slowdown at 50% offered ap-
plication load. Each bar group contains the messages in the following
size ranges: 0≤ A < MSS≤ B < 1×BDP≤C < 8×BDP≤ D.

A Appendix

Table 3: ASIC bisection bandwidth (in Tbps) and buffer sizes (in
MB). Note that buffer architectures differ regarding the extent to
which they are shared between ports.

ASIC/Model BW Buffer

B
ro

ad
co

m

Trident+ 0.64 9
Trident2 1.28 12

Trident2+ 1.28 16
Trident3-X4 1.7 32
Trident3-X5 2 32
Tomahawk 3.2 16

Trident3-X7 3.2 32
Tomahawk 2 6.4 42

Tomahawk 3 BCM56983 6.4 32
Tomahawk 3 BCM56984 6.4 64
Tomahawk 3 BCM56982 8 64

Tomahawk 3 12.8 64
Trident4 BCM56880 12.8 132

Tomahawk 4 25.6 113

nV
id

ia

Spectrum SN2100 1.6 16
Spectrum SN2410 2 16
Spectrum SN2700 3.2 16
Spectrum SN3420 2.4 42
Spectrum SN3700 6.4 42

Spectrum SN3700C 3.2 42
Spectrum SN4600C 6.4 64
Spectrum SN4410 8 64
Spectrum SN4600 12.8 64
Spectrum SN4700 12.8 64
Spectrum SN5400 25.6 160
Spectrum SN5600 51.2 160

468 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DCTCP

Swift

ExpressPass

Homa

dcPIM

SIRD

25 50 75

2

4

6

Q
in

g
 (

M
B

)

(a) WKa Balanced

25 50 75

2

4

6

(b) WKb Balanced

25 50 75

2

4

6

(c) WKc Balanced

20 40

2

4

6

Q
in

g
 (

M
B

)

(d) WKa Core

20 40

2

4

6

(e) WKb Core

20 40

2

4

6

(f) WKc Core

25 50 75
Achieved Goodput

(Gbps)

2

4

6

(g) WKa Incast

25 50 75
Achieved Goodput

(Gbps)

2

4

6

(h) WKb Incast

25 50 75
Achieved Goodput

(Gbps)

2

4

6

(i) WKc Incast
Figure 13: Mean ToR queuing vs. achieved goodput. Configurations: Balanced (top), Core (middle), Incast (bottom).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 469

Config Default Core Incast mean range
Wload WKa WKb WKc WKa WKb WKc WKa WKb WKc

DCTCP 7.69 3.19 1.91 5.02 3.18 2.58 unstable 18.88 5.54 6.0 16.97
Swift 6.68 2.98 2.92 4.92 3.16 3.53 53.5 10.23 3.57 10.17 50.58
ExpressPass unstable 14.94 8.09 unstable 15.9 11.37 unstable 12.61 8.2 11.85 7.81
Homa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.42 1.27 1.08 0.42
dcPIM 1.67 2.98 1.84 1.58 3.45 2.68 1.66 2.05 1.98 2.21 1.87
SIRD 1.32 1.43 1.1 1.15 1.27 1.18 1.3 1.0 1.0 1.19 0.43

Normalized 99th percentile slowdown of all messages at 50% load.

DCTCP 0.9 0.98 0.98 0.9 0.94 0.94 0.81 0.83 0.96 0.92 0.17
Swift 0.89 0.92 0.91 0.87 0.92 0.89 0.92 1.0 0.92 0.92 0.13
ExpressPass 0.46 0.93 0.93 0.45 0.89 0.88 0.48 0.94 0.95 0.77 0.5
Homa 1.0 1.0 0.97 0.99 0.96 0.99 1.0 0.99 0.98 0.99 0.04
dcPIM 0.71 0.92 1.0 0.74 1.0 1.0 0.71 0.92 1.0 0.89 0.29
SIRD 0.96 0.97 0.98 1.0 0.98 0.96 0.96 0.96 1.0 0.97 0.04

Normalized maximum goodput across applied load levels.

DCTCP unstable 85.81 9.71 3.68 62.13 7.94 unstable unstable 260.51 71.63 256.83
Swift unstable unstable 8.41 unstable unstable 10.12 unstable unstable 125.77 48.1 117.36
ExpressPass 1.0 1.0 1.0 unstable 1.0 1.0 1.0 1.0 1.0 1.0 0.0
Homa 137.45 115.99 30.18 7.06 434.71 79.62 143.38 150.57 145.29 138.25 427.65
dcPIM 52.07 7.76 3.1 1.04 51.24 13.09 34.25 7.18 7.41 19.68 51.03
SIRD 12.05 9.91 2.68 1.0 38.9 7.53 9.37 10.03 10.27 11.3 37.9

Normalized maximum ToR queuing across applied load levels.
Table 4: Normalized data used in Figure 5. Performance is normalized to the best performing protocol on each experiment. Experiments in
which the protocol is unable to deliver the specified throughput or network queuing grows infinitely (unstable) are excluded from the calculation
of mean and range.

470 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Config Default Core Incast mean range
Wload WKa WKb WKc WKa WKb WKc WKa WKb WKc

DCTCP 9.92 7.9 6.91 5.97 5.71 5.54 unstable 71.06 32.06 18.13 65.52
Swift 8.61 7.37 10.56 5.85 5.68 7.58 68.21 38.51 20.69 19.23 62.53
ExpressPass unstable 36.94 29.26 unstable 28.56 24.42 unstable 47.45 47.45 35.68 23.03
Homa 1.29 2.47 3.62 1.19 1.8 2.15 1.27 5.36 7.37 2.95 6.18
dcPIM 2.16 7.37 6.66 1.88 6.2 5.76 2.11 7.7 11.48 5.7 9.6
SIRD 1.7 3.53 3.99 1.37 2.28 2.54 1.65 3.76 5.79 2.96 4.42

99th percentile slowdown of all messages at 50% load.

DCTCP 74.65 83.85 83.95 43.63 48.54 47.42 67.8 70.53 80.74 66.79 40.32
Swift 74.52 78.16 78.69 42.16 47.41 45.15 76.8 85.46 77.57 67.32 43.3
ExpressPass 38.04 79.68 80.42 21.78 45.83 44.42 40.26 80.1 80.1 56.74 58.64
Homa 83.39 85.23 83.55 47.73 49.73 50.02 83.39 84.87 82.79 72.3 37.5
dcPIM 58.94 78.42 86.03 35.91 51.68 50.59 59.61 79.02 84.26 64.94 50.12
SIRD 79.74 82.27 84.71 48.27 50.47 48.75 79.7 81.98 84.13 71.11 36.44

Maximum goodput across applied load levels (Gbps).

DCTCP unstable 7.0 2.7 8.3 2.67 1.46 unstable unstable 21.06 7.2 19.6
Swift unstable unstable 2.33 unstable unstable 1.87 unstable unstable 10.17 4.79 8.3
ExpressPass 0.06 0.08 0.28 unstable 0.04 0.18 0.08 0.08 0.08 0.11 0.24
Homa 8.63 9.46 8.37 15.91 18.68 14.68 12.17 12.17 11.75 12.42 10.31
dcPIM 3.27 0.63 0.86 2.34 2.2 2.41 2.91 0.58 0.6 1.76 2.69
SIRD 0.76 0.81 0.75 2.26 1.67 1.39 0.79 0.81 0.83 1.12 1.51

Maximum ToR queuing across applied load levels (MB).
Table 5: Raw data used in Figure 5. Experiments in which the protocol is unable to deliver the specified throughput or network queuing grows
infinitely (unstable) are excluded from the calculation of mean and range.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 471

	Introduction
	Background
	Exclusive and shared links
	The impact of ASIC trends on buffering

	SIRD Design Pillars
	SIRD Design
	Credit Management
	Informed Overcommitment
	Congestion Control Algorithm
	Other Design Concerns

	Caladan Implementation
	Evaluation
	System Evaluation
	Receiver Congestion
	Sender Information

	Simulations
	Performance Overview
	Congestion Response
	Message Latency
	Sensitivity Analysis

	Related Work
	Conclusion
	Appendix

