é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

AsTree: An Audio Subscription Architecture
Enabling Massive-Scale Multi-Party Conferencing

Tong Meng, Wenfeng Li, Chao Yuan, Changging Yan,
and Le Zhang, ByteDance Inc.

https://www.usenix.org/conference/nsdi25/presentation/meng

This paper is included in the
Proceedings of the 22nd USENIX Symposium on
Networked Systems Design and Implementation.
April 28-30, 2025 - Philadelphia, PA, USA
978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ B S————
b »

AsTree: An Audio Subscription Architecture Enabling
Massive-Scale Multi-Party Conferencing

Operational Systems Track

Tong Meng Wenfeng Li

Chao Yuan

Changqing Yan Le Zhang

ByteDance Inc.

Abstract

While operating a multi-party video conferencing system
(Lark) globally, we find that audio subscription alone may
pose considerable challenges to the network, especially when
scaling towards massive scales. Traditional strategy of sub-
scribing to all remote participants suffers from issues such
as signaling storm, excessive bandwidth and resource con-
sumption on both server and client sides. Aimed at enhanced
scalability, we share our design of AsTree, an audio subscrip-
tion architecture. By a cascading tree topology and media
plane-based audio selection, AsTree dramatically reduces the
number of signaling messages and audio streams to forward.
Practical deployment in Lark reduces audio and video stall
ratios by more than 30% and 50%. We also receive 40% less
negative client reviews, strongly proving the value of AsTree.

1 Introduction

Real-time multi-party video conferencing has been ubiquitous
in our daily lives. Lark [1], as one of a rich set of heavily used
services and products (e.g., Zoom [2], Microsoft Teams [3],
DingTalk [4]), serves tens of millions of users, and benefits
vast many industries such as online education, international
business, interactive social networking, etc.

Rather than focusing on simulcast-based video subscription
like many existing literature [5, 6], we report our experiences
of designing and deploying AsTree in Lark, an audio sub-
scription architecture targeted at massive-scale conferences
(e.g., scaling up to hundreds and thousands of participants
per room). Notably, there are several key differences between
audio and video subscription, posing challenges to the archi-
tecture for the former correspondingly.

Whether to subscribe to a stream. Subscription and unsub-
scription to video streams can be the outcome of a subscriber’s
proactive operations, e.g., when the subscriber scrolls through
the participant list, or pins/unpins a specific publisher. In com-
parison, a subscriber mostly needs to be passively subscribed
to an audio stream, as long as its publisher is actively speak-
ing. That makes the audio subscription relations between
conference participants unpredictable, because we cannot de-
terministically predict when and which participant will speak.
When to subscribe to a stream. Subscribing to a video
stream requires 4 steps: (1) a publisher broadcasts a Publish
signaling message when turning on camera, (2) a subscriber
sends an Subscribe message (not necessarily closely follow
previous step), (3) an overlay cascading path is established

between the publisher and subscriber, (4) the video stream is
cascaded and distributed. For an audio stream, however, the
above steps cannot wait until a participant becomes unmuted.
Considering that audio is generally more latency-sensitive
than video, the signaling round trip and on-demand establish-
ment of cascading path induce unwanted delay. What is worse,
there would be loss of audible information if a participant
starts talking right after clicking the unmute button.

How many streams to subscribe. Even if all participants
open their cameras, each one subscribes to a bounded number
of video streams, depending on the user interface layout. Yet
when it comes to audio subscription, the number of audio
streams for subscription may increase indefinitely, since every
participant in a room may unmute. At a massive conference
scale, subscribing to all unmuted participants may lead to con-
siderable signaling overheads and bandwidth consumption.

In the early stage of our deployment, massive conferences
where all participants are allowed to unmute themselves were
uncommon. So we assumed audio consumes much lower
bandwidth than video at that time, and employed a straight-
forward “subscribe-to-all” strategy for audio subscription (de-
noted as FullAud henceforth). To improve timeliness of audio
signal, subscription to a participant is aggressively initiated
when they joins a conference room, without waiting for them
to unmute. Since most participants start muted by default,
we expect the signaling round trip and cascading path estab-
lishment to finish before a participant actually starts talking.
Along with that, each participant keeps publishing an audio
stream while in the conference. When the microphone is
muted, the audio stream simply contains a few Discontinuous
Transmission (DTX) frames [7]. Then, the signaling message
emitted from a participant clicking the mute/unmute button
is used to toggle the displayed audio status seen by other
participants. As far as we know, at least until the pandemic,
many products also default to full audio subscription [8—10],
though their realizations may differ.

Not surprisingly, as our DAU (daily active users) continu-
ously grows and massive-scale conferences become increas-
ingly frequent, FullAud starts to face scalability issues.

* Signaling storm. Influx of participants often happen at the
start of a conference, inducing surging signaling messages
for audio subscription. As a result, both audio and video
are more likely to suffer from network and host congestion.
Besides, the signaling broadcast generated every time a

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 653

participant mutes/unmutes the microphone interferes with
cascading and distribution of media data to some extent.

* Client-side resource overheads. When a single participant
has to fetch tens or hundreds of audio streams, the last-mile
access link can be easily overwhelmed, increasing chances
of choppy audio and video rebuffering. Meanwhile, CPU,
memory, and battery power on user devices consistently
operate under excessive loads, and thus, tend to cause per-
formance issues such as overheating that eventually impair
audio/video quality, as well.

* Server-side resource overheads. A room with N partici-
pants distributes O(N?) downlink audio streams at the edge.
The quadratic scaling egress bandwidth makes FullAud sub-
stantially less affordable. In addition, the ever-expanding
conference scale urges prohibitive investment in WAN band-
width and media servers, considering that (1) individual
media servers are more likely to be overloaded in densely
populated regions, and (2) massive participants are more
geographically dispersed and cascade more server clusters.

The AsTree architecture is designed to overcome the above
issues. It is inspired by an empirical observation: at any time
during a multi-party conference, almost all critical informa-
tion comes from a small number of audio streams [10, 11].
Therefore, a majority of audio streams can be ignored from
subscription. To effectively carry out that idea in a practical
system, we should fulfill the following objectives.

* Light-weight signaling. For agile conference management,
the selection of audio streams and notification to partici-
pants should not only avoid adding new signaling messages,
but also significantly alleviate the existing signaling storm.

* No single point of failure. Audio stream selection needs to
compare attributes of all audio streams. Gathering streams
to a single server for that purpose should be avoided. Oth-
erwise, that server becomes the computing and bandwidth
bottleneck, whose failure impacts all participants in a room.

* Compatibility with simulcast. We want the new design
for audio subscription to induce minimal changes to the
already mature video simulcast architecture, and enable in-
dependent engineering development and modular upgrade.

As a large-scale system in a well-explored field, As-
Tree shares similarities with some existing works (e.g., sep-
aration of media and control planes [5], cascaded media
servers [12, 13]). Importantly, many conferencing service
providers disclose limited information on how they scale the
audio subscription architecture. To the best of our knowledge,
we are the first to provide comprehensive experiences on that.
Our main contributions are highlighted below.

» AsTree constructs a cascading tree between media servers
for each conference room to lower WAN bandwidth con-
sumption. It assigns a delegate server in each region con-
necting other intra-region media servers, and calculates an
inter-region tree cascading region delegates.

* AsTree selects a subset of audio streams composed of dom-

Others (8.4%)

Audio Stalls
(40%)

Video Stalls (15.1%)

Figure 1: Proportion of different kinds of user complaints
inant speakers at each media server, without control plane
involvement. Effectively, a subscriber only subscribes to
those audio streams containing valid vocal signal. More-
over, it eliminates the signaling broadcast when a partici-
pant mutes/unmutes the microphone.

* We present extensive results from benchmarking tests and
practical deployment. AsTree is shown to significantly out-
perform FullAud. To be specific, negative reviews are re-
duced by 50%, audio stall is reduced by 30%, and video
stall is reduced by 50%. Also, a media server can hold
conferences with an order of magnitude more participants.

This work does not raise any ethical issues.

2 Motivation

Thanks to the deployment of simulcast, Lark’s video qual-
ity of experience (QoE) has been notably improved, making
audio stall the most common category among millions of
our user complaints (as in Figure 1, collected by post-call
questionnaire with non-exclusive options). That confirms the
importance of evolving the audio subscription architecture.
To fully motivate AsTree and gain some insights, we explain
the scalability issues of our early-stage FullAud implemen-
tation in more detail, and analyze the drawbacks of several
strawman solutions.

2.1 Scalability Issues of FullAud
2.1.1 Local Signaling Overheads

A centralized signaling unit is both the gathering point of sig-
naling reports and originating source of signaling broadcasts,
e.g., so as to maintain a full picture of the conference room
and direct the establishment of cascading links, respectively.
To alleviate its pressure, we deploy local signaling units co-
located with media servers, and aggregate signaling messages
between centralized and local signaling units into O(1) per
broadcast. However, each local signaling unit generates O(N)
messages while signaling its connected participants.

As an example, Figure 2 illustrates the signaling round trip
for audio subscription. FullAud amortizes the signaling de-
lay to the moment a participant joins a conference, and thus,
merges the broadcast of Join and Publish. It also triggers a
consequent ingestion of O(N) Subscribe messages. Addition-
ally, signaling broadcasts also happen when participants (1)
click the mute/unmute button and (2) leave the room.

If combining all participants in a room, the volume of sig-
naling messages borne by local signaling units is as high as

654 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

| Centralized Signaling Unit I

| Join/Publish
Local
Signaling Unit

‘ Local ‘ Local
Participant ~ Participant Participant Participant Participant Participant

Signaling Unit Signaling Unit

Figure 2: Signaling round trip for audio subscription in FullAud

Video Stream Focus Window Thumbnail
700 Kbps 120 Kbps
. Unmuted Muted (DTX only)
Audio Stream 64 Kbps T Kbps

Table 1: Approximate bandwidth requirements of video and audio
streams (video based on Lark’s mobile app)

O(N?). Although each message does not exceed several tens
of bytes, massive-scale conferences may still suffer from sig-
naling storm and degraded user experience, especially when:

* A large number of participants join within a short time pe-
riod, which is common at the starting phase of a conference.

* Highly concurrent conferences during peak hours already
leave a high CPU usage on the edge nodes.

* Participants repeatedly unmute/mute for different purposes,
including playing with the button aimlessly.

As will be demonstrated in §6.1, the signaling storm may
consume even higher CPU than media processing. Regard-
less of the frequency of signaling storm, the possibility of its
occurrence prevents us from scheduling many participants
to the same media server. That limits the maximum num-
ber of participants a single media server can accommodate
per room under FullAud, leading to inefficient utilization of
server machine resources.

2.1.2 Client-Side Overheads

FullAud’s client-side bandwidth consumption increases lin-
early with the room size. To intuitively compare it with video
subscription, let us consider a simple scenario: a participant
joins a conference using Lark Mobile on a smartphone. As-
sume speaker layout is used, with a 720p full-screen focus
video and a 90p floating thumbnail. Referring to [14] and our
internal configurations, bandwidth requirements of individual
video and audio streams are approximated as in Table 1.

Each participant needs 0.82 Mbps to fetch the focus and
thumbnail videos, regardless of the room size. When there are
more than 12 unmuted participants at the same time, audio
will consume more bandwidth than video. Even if all partici-
pants are muted, their DTX-based audio streams will require
the same order of magnitude bandwidth as video with more
than 100 participants. We should note that this is a conserva-
tive estimation, since we do not consider possible reduction
in video resolution to resist weak networks, and needs for
higher-quality audio for increased immersion.

In addition, we leverage the stress test system at Lark to
demonstrate FullAud’s hardware loads on user devices. We

< 160 T 6
8
£ -~
E) > S S
E 120 — o 4 tr—-.f:rj;i:nfr—cf—**i
g 2
g o 4 =}
& 80T 5 = —=— FullAud (all unmuted)
g o o o -o- e 2 = FullAud (all muted) —
g 40 - q 5 —e— AsTree (all unmuted)
= = —o- AsTree (all muted)
E 1 1 1 1 1 1 1 1
5 0 0
10 20 30 40 50 10 20 30 40 50

Number of Controlled Participants Number of Controlled Participants

(a) CPU Overheads (b) Memory Overheads
Figure 3: Client-side overheads induced by FullAud

use a Redmi Note 13 smartphone to join setup conferences
with different number of controlled participants, and monitor
its CPU/memory usage (Figure 3). All controlled participants
do not publish video streams to isolate the overheads of audio
subscription. We test two extreme cases where controlled
participants are either all unmuted or all muted.

As expected, FullAud’s resource usage scales nearly lin-
early with the number of participants. Because the smart-
phone has to receive and process muted audio streams, when
the number of muted controlled participants increases from
5 to 50, it occupies more than half an additional CPU core.
It has almost the same memory usage in both cases. That
means some low-end smartphones may not even have enough
capabilities to join a conference with hundreds of participants.
For comparison, we also depict AsTree in Figure 3. In As-
Tree, the smartphone subscribes to a limited number of audio
streams, excluding any muted streams. Thus, its resource us-
age remains relatively stable with different number of muted
participants. When there are 50 muted participants, AsTree’s
CPU and memory usage are 64% and 17% lower than Ful-
1Aud, respectively. We note that all controlled participants use
the same audio track, causing the selected dominant speakers
to change frequently. That explains the increasing CPU usage
of AsTree when there are more unmuted participants.

2.1.3 Server-Side Overheads

FullAud effectively creates an overlay mesh cascading every
pair of media servers. As a result, a room that involves N par-
ticipants and M media servers consumes O(MN) and O(N?)
bandwidth on inter-server WAN and egress links, respectively.

More importantly, a larger conference scale alone can raise
server-side expenses, even with the same user population.
Assume a media server instance has the CPU, memory and
associated egress link bandwidth that are just enough to dis-
tribute 100 audio streams. Then, one such instance can hold
50 concurrent 2-party audio-only conferences, but we need
100 instances to have a single 100-party conference (e.g., each
instance serves a single participant). Moreover, the overall
egress bandwidth consumption is 99 x, and the same amount
of WAN bandwidth is needed for cascading. Although ignor-
ing the influence of many practical factors, such a comparison
illustrates the possibly forbidding costs while scaling FullAud.
Similar issue is mitigated by simulcast in video subscription,
where the number of video streams distributed to an individual
participant is capped by the user interface.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 655

Room Participant Distribution Region Delegate
Intér-Server Dela Region 1| Participant 1

Media/Server 1 <-->2[2 ms | [Region 1|Participant 3, 4 Media server 2

Medija Server 1 <--> 3|50 ms| Region 2| Participant 5 |Media server 4

Media Server 3 <--> 6|35 ms| [Region 2|Participant 2, 6|

[Eentra]ized Signaling UnitHCemralized Scheduler

Media server 1

Media server 3

Control Plane

Media Ys\/ledia Vit
Server A Media Server
Is\/Iedia Media Media Server Nodia
Ccrver B
Media Plane o Server \ Server
I T t
Y o o // o °
‘.l.- _.. ./“ -.- e aa an \. an
User Plane an 4 an an
Region 1 Region 2 Region 3 Region 4

Figure 4: Overview of the AsTree architecture (local signaling units
co-located with media servers are omitted)

2.2 Strawman Solution Analysis

Several strawman solutions can reduce the number of audio
streams subscribed by each participant. Though seemingly
simple, they come with various drawbacks.
(1) Restricted unmute privilege. The most straightforward
way to enforce subscription to fewer audio streams is to
set a hard limit on the maximum number of concurrent un-
muted participants. Many online webinars adopt that solution.
Therein, an audience member should request to unmute from
a host, and be muted after finishing. That way, subscribing to
all active speakers does not generate high overheads.
Drawbacks: Having to apply and compete for opportunities
to speak induces inconvenient manual operations. One such
interaction easily takes several seconds. Thus, the solution has
a much narrower scope other than lecture-style conferences.
It is not applicable in emerging scenarios requiring strong
interactivity, such as online social and virtual karaoke.
(2) Signaling-based audio selection. While publishing to the
local media server,' a participant also signals the attributes of
their audio stream to the centralized signaling unit. Based on
the collected audio attributes, the signaling unit leverages a
controller to select a subset of audio streams to be forwarded.
Each media server waits for instructions from the signaling
unit to determine which ingested audio streams to cascade.
Drawbacks: This solution introduces new signaling mes-
sages for audio stream selection, which should be sent fre-
quently to reflect dynamics in audio attributes (e.g., fluctuating
voice volume, efc.). That exacerbates the signaling storm is-
sue. What is worse, user experience is more vulnerable due to
the additional signaling round trip for a selected audio stream.
(3) Select before distribute A media server still pulls one
audio stream from each participant, whether they are unmuted
or not. Whereas in the downlink direction, a selection logic
is added to each media server, such that only selective au-
dio streams are distributed. Besides that, the publishing and
cascading of audio streams are kept the same as in FullAud.
Drawbacks: Compared with the previous two solutions,

! A local media server specific to a participant is the server to which the
participant is directly connected. A local media server specific to an audio
stream is the local media server of its publisher.

this solution puts no limit to applicable use cases, and avoids
complicated signaling interactions for audio selection. Yet it
is still based on full audio subscription, and media servers are
still cascaded by a mesh. An audio stream, whether selected or
not, needs to be received and processed by all media servers
involved in a conference. That provides limited help to control
server-side costs on WAN bandwidth and media servers. In
fact, that is an important reason why Jitsi had to temporarily
disable mesh cascading during the COVID-19 pandemic [15].

3 AsTree Design Overview

Figure 4 presents the high-level architecture of AsTree. Sim-
ilar to [5], it is composed of user plane, media plane, and
control plane. The user plane and media plane are divided
into separate geographical regions, and the control plane is
logically centralized.

AsTree is based on selective forwarding units (SFUs),
which has been the dominating choice by modern multi-party
conferencing providers [5, 6, 16, 17]. Participants connect to
nearby local SFU media servers. Cascaded SFUs form overlay
paths between participants, and forward media streams with-
out decoding them. Furthermore, one or more SFUs involved
in a conference room form an audio selection tree (hence
the acronym AsTree?, details in §4) as opposed to a mesh.
Each region has a single media server as the region delegate.
The other media servers are cascaded to their intra-region
delegates. Then, all the delegate servers are connected by a
spanning tree encompassing the corresponding regions. Such
an AsTree topology is calculated by a centralized scheduler in
the control plane. For that purpose, it synthesizes distribution
of participants in the same room and latency between media
servers, which are collected by the signaling unit.

Beyond that, the control plane does not participate in selec-
tion of audio streams. Instead, audio selection is conducted
hop by hop at the media plane, i.e., each media server only
selects at most L loudest active speakers (details in §5). All
participants, including those muted ones, still keep publish-
ing audio streams to their local media servers, but muted
audio streams will be excluded from audio selection. Thus,
the number of audio streams forwarded on any cascading link
and distributed to any participant is capped by a constant pa-
rameter. Moreover, no signaling broadcast is needed when a
participant mutes/unmutes the microphone. The audio status
of each participant displayed on user interface directly corre-
sponds to the results of audio selection, i.e., only those whose
audio streams are selected are displayed as unmuted.

4 Calculation of Cascading Tree

In Lark’s deployment, the division of regions is fairly static,
depending on geo-planning of server clusters. The calculation
of the AsTree topology focuses on the two hierarchies as
outlined in §3, i.e., intra-region and inter-region cascading.

2 AsTree may stand for the audio subscription architecture or the cascading
tree topology. The context where it is used can help avoid ambiguity.

656 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

4.1 Intra-Region Cascading

The core of intra-region cascading is the selection of region
delegate. To lower the implementation complexity, we do not
adopt complicated leader election algorithms (e.g., [18, 19])
from the field of distributed systems. Instead, we take a “first
comer elected” method. When a media server is the first in
its region to join a conference room, it is configured to be the
region delegate. Subsequent media servers joining the same
room in the same region are cascaded to that delegate.

The above simple method is out of three considerations.
First, the one-way latency between media servers in the same
region is usually much lower than the industrial target for
acceptable one-way latency (e.g., above 200 ms between in-
dividual participants [20-22]). Changing the elected region
delegate delivers similar audio QoE in most cases. Second,
the interaction delay between intra-region participants is kept
minimal, because their audio streams reach each other with-
out leaving the region. Third, since each media server only
forwards at most L audio streams, the region delegate will not
face a high processing load. According to our experiences, the
number of audio streams cascaded from non-delegate servers
to a region delegate rarely exceeds two dozens, because many
participants stay muted in a majority of time. That is far below
the capacity of a single media server (§6.1).

A region delegate remains in the cascading tree, unless all
participants in its region leave the room (details in §4.3).

4.2 Inter-Region Cascading

A spanning tree can connect a set of region delegates with
the fewest cascading links. Each cascading link represents
an overlay path, and the cascading links between a pair of
delegates form a cascading path. The calculation of cascading
spanning tree is formulated as follows.
Input: R = {Ri,Ry, ---,Ry}
9\[= {Nla N27 Tty NM}
D={dij[1<i<j<M}
Output: T = {x;|1 <i< j<M}
Subjectto: xjj € {0,1}, V1<i<j<M
M i—1
Zx,'jJr Zxk,~>0, V1ii<i<M
j=it+1 k=1

M-1 M

Y Y ow=M-l

i=1 j=it+1

We use R, A, and D to denote the set of M (M > 2) region

delegates, the number of participants in each region, and the
cascading link RTT between each pair of delegates, respec-
tively. They are updated by the signaling messages triggered
when a participant joins or leaves. The cascading link RTTs
are measured passively via recent media flows, or proactively
with infrequent probes. To lower complexity, dl-Lj is regarded
as undirected, and takes the larger value between the RTT
measured at R; and at R;.

The inter-region spanning tree should aim at objectives of
practical importance. Therefore, classic minimum spanning
tree (MST) algorithms that minimize the total RTT of involved
cascading links are not suitable in this case, because it may
lead to cascading paths with arbitrarily long RTTs (Figure 5d).
We provide several alternatives to generate the inter-region
spanning tree. Meanwhile, we illustrate using an example with
4 regions in Figure 5. The RTT statistics in the figure refer
to public Azure network latency [23]. Again, we defer the
discussion on updating the spanning tree along with changes
in R and N[to §4.3.

4.2.1 Minimized Longest Path RTT

In a spanning tree, the cascading path with the longest RTT
largely determines the worst-case end-to-end audio latency.
Minimizing the longest path RTT guarantees the lower bound
of QoE for all participants in a room. Given the above problem
formulation, the objective can be expressed as:

Objective : min (arg max w,-j~d5 >
1<i<j<M
where dl-‘;-) denotes the RTT of cascading path between R; and
R;. In addition, we add a path weight w;; to enable priority
control among different regions. For example, we can assign a
smaller value to wy; and w;; (k < i < j) than the other weights,
if R; is favored as the root of the spanning tree (e.g., when the
conference host is in the same region as R; and we need to
minimize the delay from the host to other participants).

As shown in Figure 5a, when all path weights equal 1,
the spanning tree rooted at West US minimizes RTT of the
longest cascading path, which is between West Europe and
East Asia (299 ms). However, if the host locates in East Asia
and the three cascading paths originating from there have a
smaller weight of 0.5, the root of the optimal spanning tree
will change to delegate server in East Asia (Figure 5b).

4.2.2 Minimized Weighted Average Path RTT

Sometimes it is commercially advantageous to enhance expe-
rience for a majority of participants. That leads to the objec-
tive of minimizing weighted average of cascading path RTTs,
based on participant distribution between regions:
Objective : min Z Wij - dl-? -(Ni+Nj)
1<i<j<M

Compared with §4.2.1, the optimal cascading spanning tree
under unity value path weights is now rooted at East Asia
(Figure 5¢), because 5x participants in East Asia can benefit
from shorter cascading paths. However, if the weights of three
cascading paths from West US is decreased to 0.5, the optimal
root delegate will still be in West US. We omit that case in
Figure 5 due to limited space.

4.2.3 One Single Master Delegate

Both objectives on above increase the calculation com-
plexity compared with classic MST algorithms. For cost-
effectiveness, we propose a simple heuristic instead of trying

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 657

West Europe 148 ms West’ US West Europe 148 ms West US
15V ms 258
189 140|ms ms

O
East Asia Australia East East Asia Australia East

(a) Min Longest Path (b) Min Longest Path (Weighted)

(100 Participants)
‘West Europe 148 ms

(100 Participants)

West US West Europe 148 ms West US

120 ms

120 ms

East Asia Australia East East Asia Australia East
(500 Participants) (20 Participants)
(c) Min Weighted Average RTT (d) MST

Figure 5: Illustrating example of inter-region cascading ((a), (c) and (d): all path weights equal 1; (b) path weights between East Asia and other
regions equal 0.5, RTTs of three corresponding cascading paths are weight-adjusted and shown in yellow text)

to find the optimal solution to the optimization objectives.
It enforces a cascading structure similar to that in the intra-
region scenario: one of the region delegates acts as the master
delegate, and directly cascades to other delegates. On that
basis, the unweighted objective in §4.2.1 is adopted while
selecting the master delegate. We postpone exploration on the
necessity and effectiveness of tuning path weights to future
work. By doing so, the needed computation is determined by
the number of regions per room, which is usually a relatively
small number in practice. We do not choose the objective in
§4.2.2, because it is sensitive to fluctuations in AL.

In Figure 5, our heuristic actually generates the optimal
spanning tree under the objective in §4.2.1 (Figure 5a&5b).

4.3 Reaction to Room Dynamics

To lower the workloads of engineering development and com-
plexity of failover, our implementation tries to avoid disas-
sembling established cascading links in reaction to dynamics
in the involved regions. Next, we elaborate on how we handle
participant joining and leaving, respectively.

4.3.1 Participant Joining

We focus on how to update inter-region cascading upon newly
joined participants. The intra-region case has been covered
in §4.1. The following is the process of constructing an As-
Tree from an initially empty room.

* There is no need for inter-region cascading, until a confer-
ence involves a second region. At that time, it suffices to
cascade the only two delegates.

* When the third region is added, one of the existing two
delegates is selected as the master delegate (§4.2.3). Then,
the third region’s delegate cascades to the master, without
influencing the established cascading link.

* As more regions join, we stick to the same master delegate,
unless the spanning tree cannot fulfill an empirical threshold
of end-to-end audio latency.

We understand that starting from the third region, the se-
lected master delegate may not be the optimal choice under
the heuristic in §4.2.3 and the objective in §4.2.1 without
changing established cascading links. Yet fortunately, in prac-
tical deployment, we find the need to change master delegate
is rare, especially considering that most participants are from

the same country as the first joiner in a majority cases [20],
and the host tends to join in the beginning of a conference.

4.3.2 Participant Leaving

Ideally, if the last participant connected to a media server in
a room goes offline, the media server can be removed from
the corresponding AsTree. For brevity, we call such a media
server an idle server specific to the AsTree topology.

It is safe to remove an idle server if it is a leaf node in the
AsTree. That is the case if it is not the region delegate, or it
is the only media server in its region but not the master dele-
gate. Meanwhile, the intra-region or inter-region cascading
connections on that idle server can as well be closed, if they
do not carry other multiplexed traffic.

Otherwise, the idle server is a region delegate or the master
delegate, and cascades other media server(s). In the former
case, if we re-select the delegate, only participants under the
new delegate will become closer to others by one intra-region
cascading link. Provided the latency requirements of confer-
encing applications nowadays, we assess that such a benefit
does not compensate for the complexity of tearing down and
re-establishing cascading links. Therefore, we retain the role
of the idle server as region or master delegate, since that does
not worsen remaining participants’ QoE anyway.

As more participants leave, those idle delegate servers can
be removed from the AsTree topology when the media servers
below them are all removed, making them the leaf nodes.

5 Select-Before-Forward Audio Selection

Different from strawman solution 3 in §2.2, AsTree expands
audio selection to all cascading links. Intuitively, “select be-
fore distribute” is replaced by more generalized “select before
forward”. In this section, we illustrate the audio selection
process, as well as how we implement dominant speaker iden-
tification and control signaling overheads.

5.1 Hop-by-Hop Audio Selection Process

All media servers adhere to a unified audio selection logic,
irrespective of their roles in the cascading tree. They always
select audio streams out of the following set:

* Those ingested from the connected participants.

* Those received from the cascading neighbors.

658 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Region 1 Region 2 Region 1

Media Server A Media Server D Media Server A

{by, ¢3, a1}

{a} {d;}

1
DL: {bj, ¢
I

s8dB |

Region 2
Media Server D

{by, e, d;}

Region 2

Region 1
Media Server A

by, er,ar}

Media Server D

{e1, di}

|l
DL {by, e}
1

|Media Server EI
i€ {by, c

|Media Server BI |Media Server CI
} {by, c3, €1}

|Media Server EI |Media Server BI |Media Server CI |Media Server E
{e)) } {by, e}, ¢y, C1} {bj, e}
T T

|Media Server BI |Media Server CI
{bi} {c), 1}
T T T
} DL: fc;j1 DL:{} DL:|{ } DL: {c,ji {DL: {b}, c5}
1 | | | | |
Participant Participant ~ Participant Participant Participant
b, c [S € b,
-30dB -30dB

DI

-60 dB -35dB

DL: {b;}
|

Participant ~ Participant
() c

-60 dB

(b, e}
T T
DL: | DL: fe,} DL: (b, e}
I I 1
Participant Participant Participant
b, [[
-30dB

DL: |{b,}
Participant Participant
€1 €1
-35dB

-35dB -60 dB

(a) Local Consensus

(b) Intra-Region Consensus

(c) Inter-Region Consensus

Figure 6: Illustrating the process of audio stream selection in AsTree

Then, when forwarding and distributing the selected audio
streams, a media server does not send them back to where
they are received. For example, a media server never sends
an audio stream to its publisher again.

Another important characteristic of hop-by-hop audio selec-
tion is that it achieves asynchronous consensus on the selected
active speakers among distributed media servers. Figure 6 ex-
emplifies 3 possible states during the process (without being
comprehensive). It depicts a scenario where participant ay,
b1, ca, and e unmute together, and each media server only
selects 2 audio streams for illustration.

Local consensus (Figure 62a): At this phase, the unmuted
audio streams are disseminated by their respective local me-
dia servers, but have not reached any cascading neighbors.
So only participant ¢ hears its sibling speaker c;.
Intra-region consensus (Figure 6b): If the inter-region cas-
cading link has much longer RTT, each region may agree on
the selected intra-region active speakers, before receiving
audio streams from other regions. Thus, participant c; is
temporarily selected within region 1.

Inter-region consensus (Figure 6¢): In the end, every media
server selects the same set of audio streams. Compared with
Figure 6b, participant e replaces c; as the second active
speaker in region 1.

Figure 6 also shows that muted participants ¢ and d; also
publish audio streams to their local media servers, which is
the same as in FullAud. However, those muted audio streams
are not considered in audio selection.

5.2 Dominant Speaker Identification

In Lark, RTP packets of an audio stream carry a header exten-
sion that indicates audio level [24]. It takes values from 0 to
127, representing O~ — 127 dB. Media servers leverage that
to select dominant active speakers, without processing raw au-
dio. To avoid interference from non-vocal noise, we compare
the weighted average audio level of each stream. It is com-
puted from the most recent 15 audio packets (about 300 ms)
of a stream, which are maintained in a per-stream ring buffer.
To limit computation overheads, a media server computes a
weighted average sample every 5 packets for each stream,
and conducts audio selection every 50 ms (pseudo-code in
Algorithm 1, with some engineering details omitted).
Instead of directly selecting L audio streams, we first pre-

Algorithm 1: Audio Selection

// Sa: set of selected audio streams
1 Pre-select at most L; loudest audio streams as set S; ;
2 foreach stream s € Sy do

3 if s € S, then
4 ‘ s.lastSelected = now ; S; = S;\ {s};
5 else if now — s.lastSelected > smoothTime then
6 | Sa=Sa\{s};
// louder stream has smaller audio level
7 foreach s € S; in order of increasing audio level do
8 if |Sa| == L then break ;
9 if |Sa| < L; or s.audioLevel + extraCushion <
GetMaxAudioLevel(S4) then
10 ‘ s.lastSelected = now ; Sp=SaU{s};

select at most L; streams each time. If there are already L;
streams in the selected set Sy4, a pre-selected audio stream is
added to S4 only if it is louder than the least loud stream in
S4 by an empirical margin (extraCushion). That limits the
occurrence of frequent switching of selected streams. Once a
stream is selected, it remains in Sy for at least a smoothTime.
In our deployment, we set L; =4 and L = 10 by default.

As defined in [24], an audio level of 127 indicates a silent
sample. Muted streams composed of silent samples are ex-
cluded from audio selection.

5.3 Signaling Overhead Mitigation

No Publish broadcast for audio. We do not broadcast Pub-
lish signaling messages specific to audio streams. The audio
subscription process is initiated by media servers instead.
Specifically, each media server caches the incoming SDP of-
fers. Whenever a new active speaker is selected, it sends an
updated SDP answer to cascaded media servers or connected
participants. Immediately following that starts the transmis-
sion of audio RTP packets. Besides lowering signaling over-
heads, that avoids the subscription signaling round trip, and
enables smooth change in the selected active speakers.

Aggregated Join. The Join message, unmerged from Publish,
is solely used to notify the arrival of a new participant. When
there are already a large number of participants in a room (e.g.,
more than 50), it is both rare and hard for us to keep a close eye
on every change to the participant list. Therefore, we do not
necessarily need a Join broadcast specific to each newly joined
participant. In that case, the local signaling unit aggregates

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

659

Room Size
690

Room Size

200 400 6?0 800 1000 200 490

8?0

80

T T
- ® - AsTree (> 200 participants)
L —®— AsTree (<200 participants) -~~~ -
—#— FullAud (< 200 particip#hts)

CPU Usage (%)
Memory Usage (%)

- ® - AsTree (> 200 participants)
~®— AsTree (< 200 participants)
—#— FullAud (< 200 participants)

|
100

50

Room Size Room Size

(a) CPU Usage

Participant Type Type Description
Type A Active speakers that open both camera
and microphone, and keep talking
Type B Participants that leave their micro-
phone unmuted but stay silent
Type C Audience that close both the camera
and the microphone

Table 2: Types of participants in benchmarking tests

newly joined participants in a short interval (e.g., every 1
second) into a single signaling message. The cancellation of
audio Publish and aggregation of Join dramatically mitigate
signaling storm in the beginning of conferences.’

No Mute/Unmute signaling. In FullAud, the displayed audio
status on user interface is updated strictly according to the
Mute/Unmute broadcast, which has to be triggered each time
a participant clicks the mute/unmute button. AsTree totally
eliminates that kind of signaling broadcast. A participant is
displayed as unmuted if and only if the corresponding audio
stream is selected. That said, an unmuted silent participant
will not be displayed as unmuted. Such a mismatch is not a
very important factor in terms of user experience. Indeed, we
do not receive any negative reviews on that front.

6 Benchmark

FullAud has been fully replaced by AsTree in Lark’s current
deployment. To compare them from a micro-level perspective,
we conduct benchmarking stress tests in our test environment.
Media servers there are co-located with but isolated from our
production environment servers, i.e., test traffic does not inter-
fere with real-world user traffic. Three types of participants
are introduced as detailed in Table 2. Through command line
parameters, we can initiate a controlled number of virtual par-
ticipants for each type, and specify audio/video files as their
microphone/camera output. Each virtual participant runs an
instance of our Linux SDK on specialized server clusters in
each region. Because we only focus on evaluation of the audio
subscription architecture, we need to eliminate the influence
of video simulcast. Thus, we use a single-resolution (360p)
video to emulate the camera video of type-A participants.
Also, we limit the number of type-A participants so that all
participants in a room subscribes to the same set of all pub-

3Leave/Unpublish in FullAud is replaced similarly.

|
100

(b) Memory Usage
Figure 7: Benchmark: AsTree uses less CPU and memory (Results of AsTree with

> 200 participants depicted in dashed line, refering to x2-axis on the top of the figures)

1000 3 AsTree (1000 participants)
< 60t
o
¥ a0l A
=] A
> b | TVVNA A~ AN NN Y
& \
5 | L
0 b—
)
80
& FullAud (125 participants)
< 60f
o
p g 40
2
125 2 20F
@]
I

0 I
0 5

Il
10
Minutes

15 20

Figure 8: Example Benchmark Trials

lished video streams. Besides, we feed two separate recorded

audio tracks to type-A and type-B participants, respectively.
Unless otherwise specified, we average results of 10 runs

in each test setup, to avoid interference of other test traffic.

6.1 Media Server Capacity

AsTree forwards and distributes fewer audio streams and
signaling messages than FullAud, and frees up considerable
CPU and memory resources on media servers. To quantify
that, we set up rooms with varying number of participants
in a single region, all of which are forced to the same media
server instance. Each conference lasts for 15 minutes, and
involves 4 type-A participants, 4 type-B participants, and
different number of type-C participants. In the beginning of
each conference, we launch 50 participants per second, until
reaching the target room size.

We first calculate average CPU and memory usage in the
last 10 minutes of each trial (Figure 7). AsTree scales approx-
imately linearly, and achieves increasingly significant gains
over FullAud. That is because FullAud enforces quadratic sub-
scriptions to all type-B and type-C participants, even though
they mostly publish DTX frames. With 125 participants in
a room, AsTree consumes 80.9% and 89.5% less CPU and
memory than FullAud, corresponding to 5.2 x conferences
that can be held on a single server. Intuitively, the CPU busy
time occupied by a 600-participant conference using AsTree
is barely not enough for 125 participants under FullAud; the
memory consumed by a 1000-participant AsTree-based con-
ference can only support 100 participants under FullAud.

Figure 7 accounts for consumption of media processing
in steady state. The capacity of a single media server also
depends on the signaling overheads upon participants joining.
We present the trend of CPU usage from a 125-participant
conference under FullAud in Figure 8. Although it stabilizes
at around 15% CPU usage, the initial peak is as high as 75%
when many participants join together. In fact, given how we
initiate a conference (i.e., participants joining in bursts of 50),
the media server instance crashes in the process of accommo-
dating 150 participants using FullAud. That is why we only
show FullAud’s results with up to 125 participants in Figure 7.
In comparison, the upper portion of Figure 8 exemplifies a
1000-participant room based on AsTree. The initial signaling
peak is not obvious, despite having 8 x participants.

660 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Cumulative Fraction (%)

100

0.1 ¢

—#— FullAud (25 participants) E

—— FullAud (50 participants)

FullAud (75 participants)]

FullAud (100 participants) 1

FullAud (125 participants) E

—o— AsTree (800 participants) 1
1 1

0.01
200

400 600 800

Encode-to-Decode Latency (ms)

(a) Audio

1000

Cumulative Fraction (%)

100

90

80 -

70

60 ¢

—%— FullAud (25 participants) |
—4— FullAud (50 participants)
FullAud (75 participants) _|
FullAud (100 participants)
FullAud (125 participants) —
—o— AsTree (800 participants)
1 1

50
200

400 600 800

Encode-to-Decode Latency (ms)

(b) Video

1000

Stall Ratio (%)

1.000 ¢
0.100 |
0.010 |

0.001

3 Audio Stall (80 ms)
3 Video Stall (200 ms)

RN

]

25 50 75 100 125
FullAud
Room Size (Number of Participants)

800
AsTree

Figure 9: Benchmark: AsTree reduces end-to-end latency

Taking both media and signaling processing into consid-
eration, AsTree can increase both the maximum conference
scale and the number of concurrent rooms supported by a
single server instance by as high as an order of magnitude,
especially when it comes to massive-scale conferences.

6.2 User Experience

The decreased volume of traffic forwarded and distributed by
AsTree mitigates cascading and last-mile congestion. That
should eventually improve both audio and video QoE. To
validate that, we test with a similar room setup as above, with
4 type-A participants, 4 type-B participants, and various type-
C participants. This time, we load-balance participants to
multiple media servers within the same region, instead of
sticking to a designated media server.

We start with end-to-end latency (Figure 9), measured as
the duration from when a media frame is encoded at publisher
to when the same frame is decoded at subscriber. For AsTree,
all audio and video frames are decoded within 200 ms. Yet due
to interference from signaling storm and super-linear number
of subscribed audio streams, the performance of FullAud
deteriorates quickly as the room size grows. For instance, with
125 participants per room, merely 0.014% of audio frames are
decoded within 200 ms, and the proportion is 51.6% for video
frames. Even when we relax the latency target to 1000 ms, a
800-participant AsTree-based conference is 312% and 2.3%
better than a 125-participant FullAud-based conference in
terms of audio and video latency, respectively.

We note that the DTX frames from type-B and type-C par-
ticipants, which have the lowest transmission and decoding
priority, are also included in calculation. That leads to the ex-
tremely high audio latency by FullAud in Figure 9a. However,
our test results still correctly reflect the performance trend of
FullAud under different room sizes. That can be confirmed
by the video latency in Figure 9b, as well.

Furthermore, lower end-to-end latency contributes to fewer
stalls. In Figure 10, we plot the audio and video stall ratios,
computed as the percentage of playback time in which the
stall is longer than 80 ms and 200 ms, respectively. FullAud
accomplishes zero audio stall only under a room size of 25
participants, while AsTree maintains zero audio stall with
800 participants. As for video stall, AsTree with 800 partici-
pants achieves a dramatic reduction of nearly two orders of

Figure 10: Benchmark: AsTree lowers stall
ratio for both audio and video

magnitude, compared with FullAud with 125 participants.

Therefore, by optimizing the architecture of audio subscrip-
tion, AsTree simultaneously delivers better audio and video
experience at a larger conference scale.

7 Deployment

AsTree’s initial deployment in Lark dates back to August
2021. It completely replaced FullAud in March 2022, and has
been running at full scale since then for over two years. To
demonstrate its effectiveness in improving user experience,
we present the trend of three key indicators over 30 weeks
ending in January 2022 in Figure 11. During that period,
Lark served more than 100 million conferences. All data
are normalized for confidentiality. We note that there were
several parallel optimizations in Lark’s audio codec starting
late January 2022. We do not show results beyond that to
isolate the gains by AsTree.
QoE Metrics. The audio and video stall ratios in Figure 11
account for stall duration longer than empirical thresholds
of 80 ms and 200 ms, respectively. Over the presented pe-
riod after AsTree was deployed, they were improved signifi-
cantly at the same time: the median and 95th percentile audio
stall ratios were reduced by more than 30% and 45%; corre-
sponding reductions in video stall ratios both exceeded 50%.
In practical deployment, an important factor contributing to
such improvements is that AsTree alleviates congestion on
participants’ access links, which usually have more limited
bandwidth than our test environment for stress tests (§6.2).
Additionally, we present the audio stall ratio partitioned in
different range of room sizes in Figure 12. It is averaged from
a recent month. We can see that a conference with more than
350 participants does not even double the audio stall ratio
over a small-scale conference with only 3 to 5 participants.
We regard that as acceptable for a global system like Lark,
considering increasingly heterogeneous participant access
bandwidth and geo-distributed regions under larger rooms.
User Satisfaction. Along with better QoE comes higher user
satisfaction. We observed a reduction of around 40% in the
ratio of negative reviews in Figure 1 1. The ratio of negative
reviews complaining specifically about bad audio or video
experience was also reduced by 40%, closely following the
trend of overall negative reviews. That indicates the QoE
gains by AsTree were the dominating reason that raised our

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

661

1.0

2
2 F“S’] 0.8
§ = 06
< E 04 Mean
el
B2 02 95th
< 00
g 10
kS E 0.8
35 0.6
A E 04 Mean
51 =]
SZ 02 95th
~ 00
" 1.0
25 08
g8
2= 06
E g 0.4 | —e— Negative Reviews
EZ 02 Negative Reviews on Audio/Video
=00
Jul Aug Seq Oct Nov Dec Jan
(2021) (2022)

Figure 11: Trend of stall ratios, and negative review ratio after AsTree was deployed (median and 95th stall ratios are normalized independently)

user satisfaction. Moreover, if we look at the ratio of negative
reviews under different room sizes (Figure 13, averaged from
a month for both architectures), AsTree effectively narrows
the gap of user experience under large and small conferences.
Cascading Complexity. A remaining concern on AsTree
is whether it induces excessive cascading links and impacts
user experience, i.e., due to selection of region and master
delegates. Enhanced user satisfaction shown above implies
that does not occur to most participants. To confirm that more
directly, we monitored the number of cascading links needed
to forward and distribute a subscribed stream for two weeks
earlier in 2024. On average, Lark only increases the number
of cascading links per stream by 5.7% compared with other
ByteDance RTC applications. Thus, the AsTree cascading
topology has restricted adverse influence on QoE, indeed.

8 Discussion

In this section, we share some practical insights drawn from
deployment experiences, and potential future work directions.

8.1 More Implementation Details

Participant aggregation. Because signaling storm is signifi-
cantly mitigated, AsTree enables us to aggregate more partic-
ipants on a single media server, so as to reduce the number
of intra-region cascading links. Participant aggregation saves
server-side costs on media servers and bandwidth, and lowers
the complexity of participant migration upon failover. While
achieving aggregation, we may need to redirect a joining par-
ticipant to a different media server from the one retrieved
through DNS. In that case, we notify the participant with
a customized signaling message. Other approaches, such as
DNS redirection as adopted by many CDN systems [12,25],
may also fulfill the same purpose. Meanwhile, to avoid over-
loading a single media server, we configure the upper limit of
aggregation to 200 participants per room per server.

Cascading connection reuse. Before forwarding audio
streams to and from a newly involved media server, we need
to establish a cascading connection and accomplish SDP ne-
gotiation. To reduce latency and start media transmission as
soon as possible, we try to reuse existing connections on the
same cascading link. That means a cascading connection may
carry audio streams of multiple conference rooms. Two corre-
sponding configuration parameters are introduced. First, we
restrict the maximum number of (RTP) streams allowed on
a cascading connection, in case they impact the processing
efficiency of the thread worker. Second, we set a timeout of
several seconds before closing an idle cascading connection,
during which it may be reused again.

Decoupled video and audio subscription. In the media
plane, the AsTree cascading tree topology is independent
of the routing and forwarding of video streams. In the con-
trol plane, the bandwidth reserved for audio streams before
allocating to video streams of different bitrates is bounded
and thus, more predictable. That ensures great flexibility for
innovations in either video or audio subscription architecture.
We do not need to worry about interfering video simulcast
while implementing and deploying AsTree. As for the syn-
chronization of video and audio streams of the same publisher,
we rely on jitter buffer on client side. That fulfills the current
latency requirements of multi-party conferencing.

Fault tolerance. Fault tolerance in AsTree is in essence the
same as in video simulcast, i.e., ensuring connectivity be-
tween each pair of participants. We mainly handle two types
of failures, which are broken cadcading link and crashed
server/cluster. The routing of each overlay cascading link
is managed by our centralized SDN controller. When we
observe abnormal RTT inflation and loss rate on a specific
cascading link, we switch to a back-up path without aware-
ness of conference participants and SFU media servers. If a

662 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

4

T T T
—®— AsTree
[—=— FullAud

S
o
T
I
S
»

e
EN
T

X 0.6 b

0.4 - 7

N
IS
T

Audio Stall Ratio
(Normalized)
(Normalized)

I
)
T
I
I
)
T

Negative Review Ratio

M b

e
o
b3

4
o

S
%
3

(Normalized)

4
»
T
L

| | | | | | |
YR SEIANEPI) SRV RN\ I\ S

05 » o) Q PN .

76 (WO s @ A \\QQ? \ 07 o0

Room Size (Number of Participants)
Figure 12: Audio stall ratio after AsTree is
fully deployed

media server or a cluster crashes, participants already con-
nected to a faulty server will go through a connection timeout,
triggering a request to the control plane for a new SFU. The
original faulty server is replaced by the new SFU in the As-
Tree topology, and overlay cascading paths are re-established.
In that process, the faulty server(s) will be blacklisted by our
scheduler until they recover from connection issues.

8.2 Other Implementation Options

Mesh vs. AsTree. The select-before-forward audio selection
as detailed in §5 can also work when media servers are cas-
caded by a mesh. In that case, each media server selects audio
streams from those injected from its connected participants,
and forwards to all the other media servers. Compared with an
AsTree, a mesh topology has shorter cascading paths on aver-
age, but induces more cascaded audio streams. For example, a
conference room involving M media servers cascades at most
2L(M — 1) audio streams with a cascading tree, which is no
larger than L- M (M — 1) when using a mesh. Considering that
AsTree can satisfy the latency requirements of multi-party
conferencing, we adopt it for lower deployment cost.

Audio stream SSRCs. Some existing service providers use a
fixed set of negotiated RTP SSRCs [26] for the selected audio
streams [27,28]. Our web SDK also adopts similar solution,
due to lower development workloads based on the WebRTC
codebase. However, that requires the media server to make
sure the participants receive consecutive sequence number
and monotonous timestamp under each SSRC. To avoid such
processing overheads, while implementing the native SDK of
Lark application, we choose to let each media server generate
a random SSRC each time an audio stream is selected, even
if it is from a speaker that is previously selected. That said,
different participants may observe different SSRCs for the
same selected audio stream at the same moment; and the same
participant may observe different SSRCs for the same speaker
during a conference. The identity of each selected speaker
is notified to participants through the updated SDP answer
triggered by the media server (§5.3).

8.3 Effectiveness and Applicability

Benefits for all conference scales. Although designed to sup-
port massive-scale conferences, AsTree achieves significant
gains in small-size conferences, as well. That is because a
muted audio stream, although requiring lower bandwidth, con-

| | | | |
D IR JPRA ST SRV NSRRI\ NPa)
[CA \sg.\“ g?w“c@?r &

Number of Cascading Links

Lark Other RTC
T S S R

e
3
a

oo Mon Wed Fri Sun Tue Thur Sat

Room Size (Number of Participants) Day
Figure 13: Negative review ratios be-
fore/after AsTree’s deployment

Figure 14: Number of cascading links per
stream subscription

sumes almost the same amount of memory and comparable
CPU as an audio stream from an active speaker. Therefore, As-
Tree can serve as a general-purpose architecture that benefits
a broad spectrum of cases, and we enable it by default.
Extended application scenarios. AsTree has been adapted
to support more advanced use cases. An example is to pro-
vide simultaneous interpretation for foreign participants in
international conferences. A channel attribute can be added
to the original and interpretation audio streams. Participants
can subscribe to the original channel, the interpretation chan-
nel, or both channels on demand from Lark user interface,
and selection of audio streams at each media server can be
conducted accordingly on a per-channel basis.

8.4 Future Directions

Joint video and audio optimization. Although audio and
video subscription are decoupled in media plane, there may
be QoE benefits to jointly optimize the cascading topology
of video and audio streams in control plane. For example,
in a typical conference where an invited speaker presents
slides via screen sharing, the audio and screen video streams
of the presenter may share a cascading tree rooted at the
corresponding local media server, which also facilitate the
synchronization of the speaker’s audio and video signals.
Dynamic AsTree topology deformation. Given latency re-
quirement of multi-party conferencing nowadays (e.g., up to
hundreds of milliseconds), we adopt a straightforward heuris-
tic to select intra-region and master delegates, and rarely
change the role of each media server (§4.3) during an on-
going conference. Yet doing so improves user experience in
some cases. In the above example with an invited speaker,
if we continue to the next speaker on the agenda who is in
another region, it lowers the latency from the new speaker to
the audience to switch the master delegate, as well. Such a
deformation may even become inevitable as we keep pursu-
ing more real-time interactivity. Therefore, we plan to work
on a highly efficient deformation mechanism based on an
established cascading topology. In the example of switching
to a new speaker, it may be triggered by dynamically assigned
cascading path weights. Besides, it can also be used for media
server migration and failover.

Formulation of AsTree calculation. Similar cascading topol-
ogy may also apply in other application scenarios such as live
streaming. Our current objectives listed in §4.2 only optimize

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

663

the cascading path latency. When aiming at more latency-
sensitive future-proof applications, we may need to refine the
problem formulation and express the QoE target more accu-
rately. For example, an additional term representing per-media
server processing latency may be added, if that accounts for a
fair proportion in the overall end-to-end latency. For compute-
intensive applications (e.g., cloud rendering [29, 30], artificial
video generation [31]), the computing resource consumption
may be explicitly captured, especially when leveraging lim-
ited computing power at the edge [32]. Furthermore, in ex-
treme cases with multiple concurrent continuous publishers, a
more complicated topology than a single tree may be needed.

9 Related Works

Dominant speaker identification (DSI). DSI is not a new
problem in the context of multi-party conferencing. Volfin
et al. identified the dominant speaker by computing per-
participant immediate, medium-term, and long-term speech
activity scores [11]. However, the computation was based on
frequency representation of audio frames. That is not available
on an SFU without decoding audio streams. Inspired by [11],
Jitsi introduced LastN [10], and computed speech activity
score directly from audio levels carried in RTP header [24].
Different from AsTree, LastN was used to make sure only
dominant speakers’ video streams are forwarded. It remained
full subscription for audio streams. Similar DSI method is
often utilized in video subscription to track and render the
active speaker view [33,34].

Audio selection. Full audio subscription was adopted by many
service providers previously, some of which stick to that till
now (e.g., Twilio [8]). As the popular conference scale con-
tinues to grow, several service providers have started to sup-
port audio selection based on DSI in recent years. The audio
mixer in early-stage WebRTC codebase mixed at most 3 au-
dio sources [35], but it ran on client side. Google Meet and
Google Duo forwarded the 3 loudest speakers with fixed SS-
RCs [27]. Jitsi introduced a “loudest” feature, which only
forwards a configured number of loudest audio streams [36].
Agora allowed audio-strength stream selection based on audio
volume [37]. Nevertheless, limited details are revealed about
those schemes. Some providers such as Jitsi and Agora still
disable audio selection in their default configuration. AsTree
is the first to share the architecture and performance of audio
selection from a large-scale practical deployment.
Conferencing architecture. For audio subscription, there are
still a few services implementing Multipoint Control Unit
(MCU) to get a single mixed audio streams [38,39]. Yet for
video subscription, SFU has been the choice by a majority of
popular conferencing providers [6, 16, 17,40], due to lower
overheads on server side. Both simulcast and SVC can rely on
the SFU architecture. In simulcast, each participant encodes
multiple video streams in different bitrates, and the SFU de-
termines which stream to forward to which participant. A
representative example is GSO-Simulcast [5], where a cen-

tralized controller orchestrated the resolution and bitrate of
video streams. SVC leverages scalable video codec [41] to
include multiple layers in a single video stream, so that it can
be adapted to multiple bitrates. Zoom is claimed to belong to
this category [42]. AsTree is compatible with the SFU-based
video subscription architecture.

In addition, focusing on routing in the media plane, existing

works such as LiveNet [12] and VIA [43] constructed overlay
cascading paths, enabling participants to access the service
through the nearby edge. Aimed at resource provisioning for
conferencing services, Switchboard [20] enforced peak-aware
server allocation and capacity provisioning. Those works are
complementary to AsTree.
Measurements of multi-party conferencing. Recognizing
the importance of multi-party conferencing and the challenges
it brings to the network, researchers conducted extensive mea-
surements of popular applications on the market [6,44-48].
On one hand, by analyzing their protocol encapsulation and
session behaviors from collected traces, they confirmed the
usage of simulcast by many conferencing applications, includ-
ing Google Meet, Microsoft Teams, WebEx [44]. On the other
hand, owing to lack of abundant resources of media servers, it
is hard to capture the global picture under massive conference
scales. For example, authors of [46] conducted small-scale
experiments with only up to 6 participants.

10 Conclusion

In this paper, we present our design of AsTree, the architec-
ture specifically for audio subscription aimed at massive-scale
multi-party conferencing in Lark. AsTree evolved from our
early-stage implementation of FullAud, which was based on
full audio subscription. For each conference room, it con-
structs a two-hierarchy (intra-region and inter-region) cascad-
ing tree composed of all involved media servers, and enforces
per-hop audio selection while forwarding audio streams. As-
Tree eliminates the signaling broadcasts triggered by partici-
pants’ muting/unmuting operations.

After serving millions of conferences in several years of
deployment, AsTree is proved to significantly improve the
scalability of Lark. Thanks to dramatically mitigated signaling
storm and fewer number of audio streams to forward, AsTree
improves the capacity of media servers by nearly an order of
magnitude compared with FullAud. Meanwhile, less conges-
tion on last-mile and cascading links results in enhanced QoE.
In our practical deployment, the median audio and video stall
ratios are reduced by 30% and 50%, respectively. That comes
with a 40% reduction in the ratio of negative reviews.

To fulfill even more stringent latency requirements, we envi-
sion more flexible and dynamic cascading topology calculated
from more realistic QoE objectives in the future.

Acknowledgements

We thank our shepherd, Kurtis Heimerl, and the anonymous
SIGCOMM reviewers for their valuable comments.

664 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Lark. https://www.larksuite.com/. Accessed:

2024.09.
Zoom. https://zoom.us/. Accessed: 2024.09.

Microsoft Teams. https://www.microsoft.com/en-
us/microsoft-teams/group-chat-software. Ac-

cessed: 2024.09.

Alibaba DingTalk.
Accessed: 2024.09.

https://www.dingtalk.com/.

Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao
Cui, Jing Li, Shi Bai, Ziyue Zhang, Dennis Cai,
Honggiang Harry Liu, and Ming Zhang. GSO-simulcast:
global stream orchestration in simulcast video confer-
encing systems. In ACM SIGCOMM, 2022.

Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi
Netravali, and Jennifer Rexford. Enabling passive mea-
surement of zoom performance in production networks.
In ACM IMC, 2022.

Jean-Marc Valin, Koen Vos, and Timothy B. Terriberry.
Definition of the Opus Audio Codec. RFC 6716,
September 2012.

Twilio Track Subscriptions.
com/docs/video/api/track-subscriptions.

cessed: 2024.09.

https://www.twilio.
Ac-

Alibaba RTC SDK. https://www.alibabacloud.
com/help/en/live/user-guide/android-
alirtcengine-class#0155f66448env.

Boris Grozev, Lyubomir Marinov, Varun Singh, and
Emil Ivov. Last N: relevance-based selectivity for for-
warding video in multimedia conferences. In ACM
NOSSDAV, 2015.

Ilana Volfin and Israel Cohen. Dominant speaker iden-
tification for multipoint videoconferencing. Computer
Speech & Language, 27(4):895-910, 2013.

Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin Li,
Jufeng Chen, Jingyu Yang, Chunli Zong, Aiyun Chen,
Qinghua Wu, et al. Livenet: a low-latency video trans-
port network for large-scale live streaming. In ACM
SIGCOMM, 2022.

Boris Grozev. Improving Scale and Media Quality with
Cascading SFUs. https://webrtchacks.com/sfu-
cascading/. Accessed: 2024.09.

Bandwidth Requirements for Lark Video Meet-
ings. https://www.larksuite.com/hc/en-
US/articles/360048488053-what-are-the-

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

bandwidth-requirements-for-video-meetings.

Accessed: 2024.09.

Boris Grozev. Bridge cascading with geo-location
is back. https://jitsi.org/blog/bridge-
cascading-is-back/, 2022.

Jitsi Videobridge. https://jitsi.org/Jjitsi-
videobridge/. Accessed: 2024.09.

Amazon Chime Video Simulcast.
//aws.github.io/amazon-chime-sdk-js/
modules/simulcast.html. Accessed: 2024.09.

https:

Sudarshan Vasudevan, Jim Kurose, and Don Towsley.
Design and analysis of a leader election algorithm for
mobile ad hoc networks. In IEEE ICNP, 2004.

Valerie King, Jared Saia, Vishal Sanwalani, and Erik
Vee. Scalable leader election. In ACM-SIAM SODA,
2006.

Rahul Bothra, Rohan Gandhi, Ranjita Bhagwan,
Venkata N Padmanabhan, Rui Liang, Steve Carlson,
Vinayaka Kamath, Sreangsu Acharyya, Ken Sueda,
Somesh Chaturmohta, et al. Switchboard: Efficient Re-
source Management for Conferencing Services. In ACM
SIGCOMM, 2023.

Recommendation ITU-T G.114. One-way transmission
time. Telecommunication standardization sector, Inter-
national Telecommunication Union, May 2003.

Twilio Glossary: What is Latency? https://www.
twilio.com/docs/glossary/what-is-latency.

Accessed: 2024.09.

Azure Network Latency. https://learn.microsoft.
com/en-us/azure/networking/azure-network-
latency. Accessed: 2024.05.

Jonathan Lennox, Enrico Marocco, and Emil Ivov. A
Real-time Transport Protocol (RTP) Header Extension
for Client-to-Mixer Audio Level Indication. RFC 6464,
December 2011.

Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres.
End-user mapping: Next generation request routing for
content delivery. ACM SIGCOMM, 2015.

Henning Schulzrinne, Stephen L. Casner, Ron Frederick,
and Van Jacobson. RTP: A Transport Protocol for Real-
Time Applications. RFC 3550, July 2003.

Gustavo Garcia. Meet vs. Duo — 2 faces of Google’s We-
bRTC. https://webrtchacks.com/meet-vs-duo-
2-faces-of-googles-webrtc/, 2022.

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

665

https://www.larksuite.com/
https://zoom.us/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.dingtalk.com/
https://www.twilio.com/docs/video/api/track-subscriptions
https://www.twilio.com/docs/video/api/track-subscriptions
https://www.alibabacloud.com/help/en/live/user-guide/android-alirtcengine-class#0155f66448env
https://www.alibabacloud.com/help/en/live/user-guide/android-alirtcengine-class#0155f66448env
https://www.alibabacloud.com/help/en/live/user-guide/android-alirtcengine-class#0155f66448env
https://webrtchacks.com/sfu-cascading/
https://webrtchacks.com/sfu-cascading/
https://www.larksuite.com/hc/en-US/articles/360048488053-what-are-the-bandwidth-requirements-for-video-meetings
https://www.larksuite.com/hc/en-US/articles/360048488053-what-are-the-bandwidth-requirements-for-video-meetings
https://www.larksuite.com/hc/en-US/articles/360048488053-what-are-the-bandwidth-requirements-for-video-meetings
https://jitsi.org/blog/bridge-cascading-is-back/
https://jitsi.org/blog/bridge-cascading-is-back/
https://jitsi.org/jitsi-videobridge/
https://jitsi.org/jitsi-videobridge/
https://aws.github.io/amazon-chime-sdk-js/modules/simulcast.html
https://aws.github.io/amazon-chime-sdk-js/modules/simulcast.html
https://aws.github.io/amazon-chime-sdk-js/modules/simulcast.html
https://www.twilio.com/docs/glossary/what-is-latency
https://www.twilio.com/docs/glossary/what-is-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://webrtchacks.com/meet-vs-duo-2-faces-of-googles-webrtc/
https://webrtchacks.com/meet-vs-duo-2-faces-of-googles-webrtc/

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Jaya Allamsetty. Improving performance on very large

calls: introducing SSRC rewriting. https://jitsi.

org/blog/improving-performance-on-very-
large-calls-introducing-ssrc-rewriting/,
2024.

Serhan Giil, Dimitri Podborski, Jangwoo Son, Gur-
deep Singh Bhullar, Thomas Buchholz, Thomas Schierl,
and Cornelius Hellge. Cloud rendering-based volumet-

ric video streaming system for mixed reality services.
In ACM MMSys, 2020.

Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao
Han. MetaStream: Live Volumetric Content Capture,
Creation, Delivery, and Rendering in Real Time. In
ACM MobiCom, 2023.

Sora: Creating video from text. https://openai.com/
index/sora/. Accessed: 2024.09.

NaLi and Yao Liu. EVASR: Edge-Based Video Delivery
with Salience-Aware Super-Resolution. In ACM MMSys,
2023.

Zoom SDK. https://zoom.github.
io/zoom-sdk-android/us/zoom/
sdk/InMeetingServicelistener.
html#onActiveSpeakerVideoUserChanged-long-.
Accessed: 2024.09.

Azure Communication Services SDK: Get active
speakers within a call. https://learn.microsoft.
com/en-us/azure/communication-services/how-
tos/calling-sdk/dominant-speaker. Accessed:
2024.09.

WebRTC Audio Mixer. https://source.
chromium.org/chromium/chromium/src/
+/main:third_party/webrtc/modules/
audio_mixer/audio_mixer_impl.h;1=50;drc=
0df0faefd5eaddf2364cccc0£8449431b£8200d0.
Accessed: 2024.09.

Jitsi Loudest: Only forward audio packets of the loudest
speakers in a conference. https://github.com/
jitsi/jitsi-videobridge/pull/1677/commits.
Accessed: 2024.09.

Agora: Audio Strength Stream Selection.
https://docs.agora.io/en/video-calling/
advanced-features/audio-strength-stream-
selection?platform=android. Accessed: 2024.09.

Amazon Chime Meeting Architecture. https:
//docs.aws.amazon.com/chime-sdk/latest/dg/
meetings-sdk.html#mtg-arch. Accessed: 2024.09.

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Quobis: Hybrid architecture based on MCUs and
SFUs. https://quobis.com/2021/05/03/sfus-
vs—-mcus-which-is-the-best-way-to-manage-
multi-conferencing/. Accessed: 2024.09.

An introduction to WebRTC Simulcast.
https://blog.livekit.io/an-introduction-
to-webrtc-simulcast-6c5£1£6402eb/, 2021.

Scalable Video Coding (SVC) Extension for WebRTC.
https://www.w3.org/TR/webrtc-svc/. Accessed:
2024.09.

A Short on How Zoom Works. https:
//highscalability.com/a-short-on-how-zoom-
works/. Accessed: 2024.09.

Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,
Philip A Chou, Venkata Padmanabhan, Vyas Sekar, Esb-
jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,
Renat Vafin, et al. Via: Improving internet telephony
call quality using predictive relay selection. In ACM
SIGCOMM, 2016.

Antonio Nistico, Dena Markudova, Martino Trevisan,
Michela Meo, and Giovanna Carofiglio. A compara-
tive study of rtc applications. In IEEE International
Symposium on Multimedia (ISM), 2020.

Insoo Lee, Jinsung Lee, Kyunghan Lee, Dirk Grunwald,
and Sangtae Ha. Demystifying commercial video con-
ferencing applications. In ACM Multimedia, 2021.

Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit
Mukherjee. Can you see me now? a measurement study
of zoom, webex, and meet. In ACM IMC, 2021.

Mehdi Karamollahi, Carey Williamson, and Martin Ar-
litt. Packet-level analysis of zoom performance anoma-
lies. In ACM/SPEC ICPE, 2023.

Albert Choi, Mehdi Karamollahi, Carey Williamson, and
Martin Arlitt. Zoom session quality: A network-level
view. In PAM, 2022.

666 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://jitsi.org/blog/improving-performance-on-very-large-calls-introducing-ssrc-rewriting/
https://jitsi.org/blog/improving-performance-on-very-large-calls-introducing-ssrc-rewriting/
https://jitsi.org/blog/improving-performance-on-very-large-calls-introducing-ssrc-rewriting/
https://openai.com/index/sora/
https://openai.com/index/sora/
https://zoom.github.io/zoom-sdk-android/us/zoom/sdk/InMeetingServiceListener.html#onActiveSpeakerVideoUserChanged-long-
https://zoom.github.io/zoom-sdk-android/us/zoom/sdk/InMeetingServiceListener.html#onActiveSpeakerVideoUserChanged-long-
https://zoom.github.io/zoom-sdk-android/us/zoom/sdk/InMeetingServiceListener.html#onActiveSpeakerVideoUserChanged-long-
https://zoom.github.io/zoom-sdk-android/us/zoom/sdk/InMeetingServiceListener.html#onActiveSpeakerVideoUserChanged-long-
https://learn.microsoft.com/en-us/azure/communication-services/how-tos/calling-sdk/dominant-speaker
https://learn.microsoft.com/en-us/azure/communication-services/how-tos/calling-sdk/dominant-speaker
https://learn.microsoft.com/en-us/azure/communication-services/how-tos/calling-sdk/dominant-speaker
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/audio_mixer/audio_mixer_impl.h;l=50;drc=0df0faefd5ea4df2364cccc0f8449431bf8200d0
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/audio_mixer/audio_mixer_impl.h;l=50;drc=0df0faefd5ea4df2364cccc0f8449431bf8200d0
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/audio_mixer/audio_mixer_impl.h;l=50;drc=0df0faefd5ea4df2364cccc0f8449431bf8200d0
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/audio_mixer/audio_mixer_impl.h;l=50;drc=0df0faefd5ea4df2364cccc0f8449431bf8200d0
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/audio_mixer/audio_mixer_impl.h;l=50;drc=0df0faefd5ea4df2364cccc0f8449431bf8200d0
https://github.com/jitsi/jitsi-videobridge/pull/1677/commits
https://github.com/jitsi/jitsi-videobridge/pull/1677/commits
https://docs.agora.io/en/video-calling/advanced-features/audio-strength-stream-selection?platform=android
https://docs.agora.io/en/video-calling/advanced-features/audio-strength-stream-selection?platform=android
https://docs.agora.io/en/video-calling/advanced-features/audio-strength-stream-selection?platform=android
https://docs.aws.amazon.com/chime-sdk/latest/dg/meetings-sdk.html#mtg-arch
https://docs.aws.amazon.com/chime-sdk/latest/dg/meetings-sdk.html#mtg-arch
https://docs.aws.amazon.com/chime-sdk/latest/dg/meetings-sdk.html#mtg-arch
https://quobis.com/2021/05/03/sfus-vs-mcus-which-is-the-best-way-to-manage-multi-conferencing/
https://quobis.com/2021/05/03/sfus-vs-mcus-which-is-the-best-way-to-manage-multi-conferencing/
https://quobis.com/2021/05/03/sfus-vs-mcus-which-is-the-best-way-to-manage-multi-conferencing/
https://blog.livekit.io/an-introduction-to-webrtc-simulcast-6c5f1f6402eb/
https://blog.livekit.io/an-introduction-to-webrtc-simulcast-6c5f1f6402eb/
https://www.w3.org/TR/webrtc-svc/
https://highscalability.com/a-short-on-how-zoom-works/
https://highscalability.com/a-short-on-how-zoom-works/
https://highscalability.com/a-short-on-how-zoom-works/

	Introduction
	Motivation
	Scalability Issues of FullAud
	Local Signaling Overheads
	Client-Side Overheads
	Server-Side Overheads

	Strawman Solution Analysis

	AsTree Design Overview
	Calculation of Cascading Tree
	Intra-Region Cascading
	Inter-Region Cascading
	Minimized Longest Path RTT
	Minimized Weighted Average Path RTT
	One Single Master Delegate

	Reaction to Room Dynamics
	Participant Joining
	Participant Leaving

	Select-Before-Forward Audio Selection
	Hop-by-Hop Audio Selection Process
	Dominant Speaker Identification
	Signaling Overhead Mitigation

	Benchmark
	Media Server Capacity
	User Experience

	Deployment
	Discussion
	More Implementation Details
	Other Implementation Options
	Effectiveness and Applicability
	Future Directions

	Related Works
	Conclusion

