
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Mitigating Scalability Walls
of RDMA-based Container Networks

Wei Liu, Tsinghua University and Alibaba Cloud; Kun Qian, Alibaba Cloud;
Zhenhua Li, Tsinghua University; Feng Qian, University of Southern California;
Tianyin Xu, UIUC; Yunhao Liu, Tsinghua University; Yu Guan, Shuhong Zhu,

Hongfei Xu, Lanlan Xi, Chao Qin, and Ennan Zhai, Alibaba Cloud

https://www.usenix.org/conference/nsdi25/presentation/liu-wei

Mitigating Scalability Walls of RDMA-based Container Networks

Wei Liu1,2, Kun Qian2, Zhenhua Li1�, Feng Qian3, Tianyin Xu4, Yunhao Liu1

Yu Guan2, Shuhong Zhu2, Hongfei Xu2, Lanlan Xi2, Chao Qin2, Ennan Zhai2
1Tsinghua University 2Alibaba Cloud 3University of Southern California 4UIUC

Abstract
As a state-of-the-art technique, RDMA-offloaded container
networks (RCNs) can provide high-performance data com-
munications among containers. Nevertheless, this seems to
be subject to the RCN scale—when there are millions of
containers simultaneously running in a data center, the perfor-
mance decreases sharply and unexpectedly. In particular, we
observe that most performance issues are related to RDMA
NICs (RNICs), whose design and implementation defects
might constitute the “scalability wall” of the RCN. To vali-
date the conjecture, however, we are challenged by the limited
visibility into the internals of today’s RNICs. To address the
dilemma, a more pragmatic approach is to infer the most likely
causes of the performance issues according to the common
abstractions of an RNIC’s components and functionalities.

Specifically, we conduct combinatorial causal testing to
efficiently reason about an RNIC’s architecture model, effec-
tively approximate its performance model, and thereby proac-
tively optimize the NF (network function) offloading sched-
ule. We embody the design into a practical system dubbed
ScalaCN. Evaluation on production workloads shows that
the end-to-end network bandwidth increases by 1.4× and the
packet forwarding latency decreases by 31%, after resolving
82% of the causes inferred by ScalaCN. We report the perfor-
mance issues of RNICs and the most likely causes to relevant
vendors, all of which have been encouragingly confirmed; we
are now closely working with the vendors to fix them.

1 Introduction
Containers have become a pivotal technology in cloud com-
puting and serverless computing [34, 35, 56, 70], which allow
developers and service operators to deploy applications or
functions onto the cloud rapidly and conveniently. Different
from a heavyweight and full-fledged virtual machine, a con-
tainer is merely a lightweight and standalone software bundle
that includes all the code and dependencies needed by a spe-
cific application [30, 43]. The portability, lightweight, and
isolation characteristics make containers an ideal choice for
running a variety of tasks in the cloud, such as training foun-
dation models [27,31,64] and building microservices [51,53].

Container networks enable containers to communicate with
each other seamlessly based on their hosts. To achieve high-
performance data communications, almost all of today’s con-
tainer service providers (CSPs) utilize RDMA NICs (RNICs)
to offload data traffic and network functions (NFs) from the

host OS to dedicated hardware (RNICs) [35, 57]. The result-
ing RDMA-offloaded container network (RCN) is reported
to have at least three times of performance gain compared to
the traditional network stack inside the host OS [35, 39, 40],
paving an efficient and generic network runtime for cloud
applications and stateful/statelss functions.

Nevertheless, as a mainstream CSP, we observe that the
performance gain of the RCN seems to be subject to its scale.
During our two-year (03/2021 – 03/2023) operations on a
production RCN (which involves ∼8K hosts equipped with
∼40K RNICs, serving 0.5M active containers simultaneously
on average and ∼1M containers at peak hours), we notice that
the end-to-end performance in terms of bandwidth and latency
often decreases sharply and unexpectedly. For instance, when
the number of active containers grows from 0.4M to 0.8M, the
end-to-end bandwidth can decrease by 87%, and the packet
forwarding latency can increase by 34×. In other words, there
are “scalability walls” in the production RCN, which is rarely
understood as existing studies mostly examine the RCN in
small-scale and controlled settings [35, 58].

From Phenomena to Symptoms. To deeper understand the
problem, we built a continuous monitoring infrastructure on
top of our production RCN. It gathers cross-layer runtime
data on each host, such as container resource consumptions,
virtual switch flow tables, kernel logs, and RNIC statistics,
during our monitoring period from 04/15/2023 to 04/15/2024.

The collected data reveal that the scalability wall of the
RCN mainly (94%) manifests eight symptoms as listed in
Table 1. They occur when an RNIC’s aggregated throughput
or latency is not at the expected level as in their official specifi-
cations (referred to as a performance issue). These symptoms
come from different RCN layers such as the virtual switch
(i.e., Open vSwitch), the kernel driver, and hardware, but are
surprisingly all related to RNICs. In total, they have caused
13,396 performance issues during our monitoring period.

• Symptom S1 manifests on the virtual switch when there
are 7K+ container flows running over an RNIC. The victim
flows repetitively fall back to software processing, thus
incurring significant performance degradation (>18×).

• The interactions between the RNIC’s driver and hardware
can cause kernel stagnation (S2) or crash (S3), especially
when the driver creates or deletes flows, thus blocking the
execution of all containers on the victim host.

• The remaining five symptoms occur at the layer of RNIC

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1049

Table 1: RNIC-related symptoms of the “scalability wall” in our production RCN, as well as their most likely causes.

No. Symptom Layer Ratio Most Likely Cause (C1 – C8)

S1 Repetitive flow re-offloading Virtual Switch 17.1% Flow entries in the RNIC are deleted although they are not aged.
S2 Kernel stagnation RNIC driver 5.9% The driver cannot handle the timeout of the RNIC’s executing an operation.
S3 Kernel crash on new flows RNIC driver 5.2% The driver frees a null pointer when the RNIC fails to create a flow entry.
S4 Slow flow state maintenance RNIC hardware 11.4% Flow deletion in the RNIC takes much longer (9×) time than expected.
S5 Intermittent software forwarding RNIC hardware 15.3% Flow counters are not updated timely. The virtual switch reads a “dirty” value.
S6 Poor performance of specific flows RNIC hardware 29.9% Flow entries with different masks are queried sequentially in the RNIC.
S7 PCIe link down when unbinding VFs RNIC hardware 8.4% Race condition emerges when the RNIC cleans up allocated resources.
S8 RNIC unresponsiveness RNIC hardware 6.8% VXLAN encapsulation contexts exceed the RNIC’s buffer capacity.

hardware. For example (S6), a specific flow’s performance
can be persistently poor when ∼10K flows are offloaded to
the RNIC hardware (we did not discover any anomalies in
the software stack). Even if the workload drops off greatly
(e.g., from ∼10K to 600 flows) afterwards, the performance
cannot recover in a short time.

From Symptoms to Causes. Given the various symptoms,
we wish to figure out their root causes, so that we can take
measures to proactively optimize the performance or at least
prevent further degradation. Unfortunately, we encounter a
key challenge that we have very limited visibility into the in-
ternals of today’s commodity RNICs [32,36]. The internal de-
sign of RNICs is mostly close-sourced and hardly mentioned
in their specifications. Resorting to the vendors also turns out
to be ineffective in most cases, since they have neither encoun-
tered nor understood such “elusive” symptoms. After all, these
symptoms are only manifested in large-scale deployments that
involve extremely complicated workloads/environments and
push the RNIC’s capability to its limit, which are not easy for
the vendors to reproduce and analyze. Furthermore, we are
not allowed to share real-world workloads with the vendors,
making their troubleshooting difficult, if not impossible.

To address this, a more pragmatic approach is to infer
the most likely causes according to common abstractions
of an RNIC’s components and functionalities. An RNIC on
a host provides RDMA verb functionalities (e.g., read and
write) to each hosted container, which allow the container
to operate on the resources in the RNIC’s conceptual com-
ponents (e.g., send/receive queues). Besides, today’s RNICs
in data centers all implement match-action based embedded
switch (or eSwitch for short) components to support hardware-
accelerated packet switching [38, 41, 55], which are widely
used for efficient container network virtualization. Our ap-
proach fundamentally differs from the existing blackbox test-
ing techniques [67] or whitebox analyses [54], as it leverages
the domain knowledge of RNICs’ common architecture to
construct a highly likely RNIC model for actual testing and
optimization, and thus is more of a “greybox” approach.

With the common abstractions of an RNIC, however, we
are still confronted with a prohibitively enormous search
space, stemming from the components’ possible combinations
and the functionalities’ possible configurations. For example,
highly configurable eSwitch tables can have O(kn) possible
matchers, where n is the number of tables and k is the average

number of table entries. We conduct combinatorial causal
testing to overcome the difficulty in a principled way. First,
we leverage topological restrictions across components to
efficiently construct valid component combinations (i.e., the
architecture model of the RNIC). This is achieved by inspect-
ing components’ dependencies to filter out the combinations
that lead to packet loops or unreachability, which reduces the
magnitude of combinations to a quadratic polynomial level.

We then test the RNIC’s functionalities with real and syn-
thetic workloads on each valid architecture model. Once a
symptom occurs, we perform a local sensitivity analysis [19]
to deduce the causal relations between the RNIC’s input
(workload) and manifested performance. Specifically, we
strategically tune the value of each dimension (e.g., the num-
ber of table entries) in the workload to test whether the symp-
tom can be eliminated or alleviated. If so, the component(s)
related to this dimension are a likely cause of the symptom,
which might lie in a critical path of the RNIC’s packet process-
ing pipeline. Next, we fine-check each concerned component
in the critical path by means of permutation removal [15],
which eliminates the component whose removal would not
influence the performance. In this way, we sort out the crit-
ical path(s), pinpoint the most likely causes, and effectively
approximate the RNIC’s performance model for a valid archi-
tecture model. Eventually, we choose the architecture model
that best matches the actual performance as the final reference.

Optimization, Evaluation, and Validation. Based on the
above efforts, we are able to proactively optimize the NF
offloading schedule for every RNIC, by reorganizing the of-
floaded flows to minimize the estimated processing time over
the critical path for each flow. Also, we avoid triggering the
inferred design/implementation defects of the RNIC by trans-
forming the risky functionality inputs to their equivalents that
are unlikely or less likely to cause performance issues.

We implement the whole design into a practical system
dubbed ScalaCN, and conduct extensive experiments based
on real-world production workloads with six different kinds of
RNIC devices (NVIDIA ConnectX-4, -5, -6, -7, BlueField-3,
and Intel E810). On average, ScalaCN improves the end-to-
end bandwidth by 1.4× and reduces the latency by 31%, after
resolving 82% of the inferred causes of performance issues
(the remaining 18% are due to hardware limits). Its major
overhead comes from continuous monitoring and optimiza-

1050 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion operations, with <5% usage on a single CPU core.
We have reported all performance issues and their most

likely causes to relevant vendors, all of which have been en-
couragingly confirmed. In detail, the vendors have released
patches on the driver and firmware to fix the root causes C1,
C2, C3, and C5. For the remainder (C4, C6, C7, and C8), we
are now closely collaborating with the vendors to fix them as
they involve the intricate co-tuning of software and hardware.

Contribution. This work makes the following contributions.
• We conduct the first study to uncover the scalability wall in

a large-scale RCN, and pinpoint the culprit to be RNICs.
• We conduct combinatorial causal testing based on RNICs’

common abstractions, to efficiently approximate their in-
ternals and infer the root causes of performance issues.

• We devise an effective method to accommodate RNICs to
RCN scaling. Evaluation on real-world workloads and the
feedback from vendors confirm its efficacy. We are now
gradually deploying ScalaCN over the production RCN.
The code and data involved in this work have been released

in part at https://scala-cn.github.io.

2 Background
Container networks enable transparent data communica-
tions among containers, and they are currently realized in
three major approaches [35, 70] as listed in Table 2. Different
approaches provide different levels of connectivity among
containers and different levels of isolation with the host net-
work. Today’s mainstream container services widely adopt
the overlay (or overlay-like) mode to organize container net-
works [2, 4, 7, 13, 26], since this mode enables accessibility
across hosts while preserving isolation.

Figure 1 shows the typical architecture of an overlay-based
container network. Two hosts (A and B) are connected via
physical switches/routers in the underlay network. Each over-
lay container on a host has its own IP address within the same
VXLAN [42] subnet. For example, a container on Host A
has the IP address 172.16.122.1 within the VXLAN subnet
172.16.122.0/24. When two containers communicate with
each other, the software virtual switch on the host OS will de-
termine to which port the packet should be forwarded, and per-
form VXLAN encapsulation for packets (if needed). For con-
tainer communications across hosts, the encapsulated packets
will go through the hardware NIC and the underlay network.

Hardware Offloading with RDMA NICs. In practice, ma-
nipulating and forwarding container packets with software
switches is resource-consuming. This is because container
applications (e.g., large model training) often generate a large
volume of network traffic which is processed by the ker-
nel [3, 6] and the user-space software switch, incurring signif-
icant CPU overhead and processing latency [22, 39].

To alleviate the packet processing overhead on the host OS,
today’s mainstream container service providers (CSPs) take

Table 2: Different modes of container networking, where “iso-
lation” refers to network isolation from the host OS.

Mode Mechanism Connectivity Isolation

Bridge Virtual bridge Host only In-bridge
Host Namespace sharing Cross-host No isolation

Overlay VXLAN Cross-host In-overlay

10.1.1.2/2410.1.1.1/24

Overlay

Underlay

Physical Switches/Routers

Host A

172.16.122.0/24

Software Switch

Containers

Hardware NIC

Host B

172.16.206.0/24

Software Switch

Containers

Hardware NIC

Figure 1: Example of overlay-based container networks.

advantage of the hardware offloading functionality [38, 47]
with the single-root IO virtualization (SR-IOV) technique of
RDMA NICs (RNICs) [28, 63]. This brings two significant
performance benefits. First, all the containers can communi-
cate with each other through the RDMA protocol, without
needing the intervention of the OS. Second, the CPU-intensive
tasks such as packet forwarding and VXLAN encapsulation
also bypass the software stack, i.e., they are all moved from
CPUs to RNICs for more efficient processing.

The resulting RDMA-offloaded container network (RCN)
significantly improves the network performance. A represen-
tative example is illustrated in Figure 2. When the traffic
is delivered using TCP, the average end-to-end bandwidth
is 21.17 Gbps and the average packet forwarding latency is
87.31 us. When VXLAN encapsulation and packet switching
are offloaded to an NVIDIA ConnectX-6 RNIC, the band-
width grows to 50.31 Gbps, and the latency drops to 54.51 us.
If we further use the RDMA protocol to transmit packets,
the bandwidth remarkably increases to ∼180 Gbps and the
latency decreases to merely 2.7 us.

3 Motivation
Despite the merits of RNIC offloading, an RCN’s perfor-
mance seems to be subject to its scale—during our one-year
operations, we noticed that once the network workload hits
a “scalability wall”, a variety of performance issues occurred
and severely hurt the QoS (Quality of Service).

3.1 Continuous Monitoring Infrastructure
To deeply understand the scalability wall, we built a continu-
ous monitoring infrastructure on top of our large-scale produc-
tion RCN, which carries ∼1,500 PB of traffic for ∼0.5 million
containers every day during our monitoring period (from Apr.
15th, 2023 to Apr. 15th, 2024).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1051

https://scala-cn.github.io

TCP VXLAN Off. RDMA Off.

30

60

90

120

150

180

Ba
nd

w
id

th
 (G

bp
s)

0

25

50

75

100

125

La
te

nc
y

(u
s)

Bandwidth
Latency

Figure 2: Performance comparison with and
without hardware offloading (Off.) in a con-
tainer network.

5

15

Container 1

5

15

Th
ro

ug
hp

ut
 (G

bp
s)

Container 2

16:00 17:00 18:00 19:00 20:00
Time (hh:mm)

5

15

Container 3

Figure 3: Performance issues caused
by S1, where the virtual switch repet-
itively re-offload flows.

CX-4
(2015)

CX-5
(2016)

CX-6
(2019)

E810
(2021)

CX-7
(2022)

BF-3
(2022)

10
1

10
2

10
3

FP
Y

Error Message Unresponsiveness Crash

Figure 4: Kernel instability in terms
of failures per year (FPYs). Here the
RNICs are sorted by release date.

All containers in our RCN are Docker [9] containers. We
use Kubernetes [10] to orchestrate Docker containers together
with the container network interface (CNI) [8] plugin that we
developed in-house. Each host in our RCN is equipped with
one to eight RNICs, which are NVIDIA ConnectX-4 (CX-4),
ConnectX-5 (CX-5), ConnectX-6 (CX-6), ConnectX-7 (CX-
7), BlueField-3 (BF-3), or Intel E810 (E810). We balance the
load of these RNICs when binding them to containers. We
deploy Open vSwitch (OVS) [46] on each host as the software
virtual switch to handle packet forwarding. When containers
initiate a flow, the OVS will use the TC [5] utility to offload
packet processing tasks to the RNIC.

Our continuous monitoring infrastructure gathers basic per-
formance data across different layers on each host as follows,
so that we can be aware of the RCN status in time. These data
are transformed into concrete states of network components,
and indexed in our log services for aggregation and analysis.

• RNIC and Kernel Statistics. We collect packet sending and
receiving rates as well as packet drops of the RNIC through
Linux sysfs. We also collect logical flow entries recorded
by the kernel using netfilter and conntrack to track
the states of all RDMA connections.

• OVS Offloading Status. The OVS determines what packet
manipulations should be applied to an RCN flow and
whether it needs to be offloaded to the RNIC. To mon-
itor these events, we gather OVS information including
table hits, misses, and losses of flow lookups [46].

• CNI Events. We collect crucial events on resource alloca-
tions triggered by the CNI plugin. We monitor the creation
of containers, as well as the allocations of VXLAN subnets,
IP addresses, and VFs (virtual functions that containers are
one-to-one bound to) of RNICs.

3.2 Symptoms of Performance Issues
Our collected data reveal 14,251 performance issues regarding
the scalability wall of the production RCN during our moni-
toring period. The eight major symptoms are listed in Table 1,
accounting for 94% of the performance issues. Although these
symptoms come from different layers of the RCN, such as

the virtual switch, the kernel driver, and the hardware, they
are all related to the RNICs which were supposed to bring
high-performance data communications among containers.

Virtual Switch. When the number of flows offloaded to
an RNIC increases to a threshold, e.g., 7K+ over a CX-6
RNIC, the virtual switch would repetitively re-offload the
flows (Symptom S1). This accounts for 17.1% of RNIC-
related performance issues. When this occurs, the end-to-end
performance on the affected containers greatly fluctuates.

Figure 3 shows our production traces regarding S1. The
three containers are used for training the same AI model
with the same configurations (e.g., QoS and VF quotas). The
throughput of Container 1 keeps stable at around 15 Gbps,
which is the expected performance. However, Container 2
and Container 3 both suffer from performance degradation
and present two different patterns of performance issues. The
throughput of Container 2 periodically drops to <1 Gbps
(which is nearly 18× worse) and then recovers to ∼15 Gbps.
The throughput of Container 3 becomes unstable, sometimes
fluctuating between 5 Gbps and 10 Gbps for an hour. These
issues significantly affect the training process of AI models
and oftentimes lead to users’ complaints.

By analyzing the logs of the OVS, we find that the OVS
repetitively re-offloads the flows for Containers 2 and 3 due
to constant lookup misses in the RNIC’s flow tables, as if the
RNIC is “refusing” to handle them under the high workload.

RNIC Driver. We also find that in our production RCN,
the RNIC’s driver often makes the kernel unstable when it
interacts with the RNIC’s hardware, which manifests as S2
and S3 in Table 1. When handling a large number of flows
offloaded in a short time (e.g., 1K per second), the kernel can
become stagnated (S2) after the driver sends certain operation
codes to the RNIC. Through detailed timing on the driver’s
call stack in the kernel, we observe that the driver seems to
be always waiting for the RNIC’s response, which however
cannot be received in time under the high workload. Worse
still, the kernel can even crash (S3) when the driver fails to
offload the flows to the RNIC. Even though these symptoms
occur less frequently (11.1% in total) than the symptom oc-

1052 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

25 50 75 100 125 150 175
Time (s)

0
10
20
30
40
50
60
70

La
te

nc
y

(u
s)

Flow 1
Flow 2
Flow 3
Flow 4

Figure 5: Latency increases when a
specific flow (Flow 4) is offloaded.

0 5 10 15 20 25 30
Time (minute)

4K

6K

8K

N
um

be
r o

f F
lo

w
s

90

120

150

180

Ag
gr

eg
at

ed
 B

an
dw

id
th

 (G
bp

s)

RNIC Limits
7.2K Flows

Offloaded Flows
Bandwidth

(a) Aggregated bandwidth.

0 5 10 15 20 25 30
Time (minute)

4K

6K

8K

N
um

be
r o

f F
lo

w
s

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

La
te

nc
y

(u
s)

RNIC Limits
7.2K Flows

Offloaded Flows
Latency

(b) Average packet forwarding latency.

Figure 6: Workload impacts on the RDMA write performance of the CX-6 RNIC.

curring at the virtual switch layer, they are more severe since
they make all the containers over the host unavailable.

Figure 4 shows the kernel’s failures per year (FPY) with
regard to different (models of) RNICs in production. RNICs
released recently (e.g., E810, CX-7, and BF-3) bring much
more FPYs than those released eight years ago (e.g., CX-4
and CX-5) – note that the Y-axis uses a log scale. The reasons
are mainly two folds: 1) newer RNICs have more data to be
synchronized, and 2) newer RNICs’ kernel drivers are more
complex but not time-tested enough. In fact, undesired symp-
toms regarding the RNIC’s driver have not been discovered
by the vendors as they did not (and have no means to) test the
driver and RNICs under a large-scale production RCN.

RNIC Hardware. The majority (71.8%) of RNIC-related
performance issues occur at the hardware layer, which are
mainly due to the RNIC’s internal defects as we did not find
any anomalies in the software stack (i.e., the virtual switch
and the driver) when these issues occur. Their root causes are
much harder to locate and identify, since today’s commodity
RNICs are usually a black box to their users.

When network flows are offloaded to an RNIC, the software
stack needs to maintain the flow states (e.g., to invalidate the
flows when they are aged). During this process, we find that
state synchronizations from the control plane to the RNIC’s
hardware can become extremely slow, making the software
unable to offload new flows in time and therefore causing
performance degradation (S4). Further, even if the control
plane has offloaded the flows to the RNIC, these flows can
intermittently go into the software stack for being processed,
indicating that the RNIC is not functioning properly (S5).

Moreover, when the workload on the RNIC reaches a cer-
tain threshold, the performance of specific flows can become
extremely poor, which would in turn affect the performance of
other flows (S6). As shown in Figure 5, before the offloading
of Flow 4, Flows 1–3 all have a desired latency of ∼4 us on
the CX-7 RNIC. When the new Flow 4 is offloaded at around
75s, it does not reach the desired packet forwarding latency of
∼4 us but instead bears a high latency of ∼60 us. Meanwhile,
the latencies of Flows 1–3 also increase by 3×.

Another example of S6 is shown in Figure 6. It depicts the
performance of the RDMA write verb of the CX-6 RNIC

with different levels of workloads on it. When there are fewer
than 7,200 flows offloaded to the RNIC, the performance is
in general negatively correlated with the workload. In con-
trast, when over 7,200 flows are offloaded, as shown in the
shadowed areas of Figure 6a and Figure 6b, the RNIC’s ag-
gregated bandwidth instantly drops by 13%–37% and the
average latency increases by 27%–34%. Even when the work-
load drops off to a very low level (e.g., only 600 flows), the
performance of the RNIC can hardly recover in quite a while
(e.g., 6 minutes) but continues to degrade (cf. §4.2).

For the last two symptoms at the hardware layer (S7 and S8
in Table 1), they are more severe than S5 and S6 since they can
make all the containers over the host unavailable. For example,
when we de-allocate the VFs of an RNIC from the containers,
we observe that the PCIe link state sometimes goes down.
Also, when we offload too many VXLAN encapsulations
to the RNIC (e.g., 10K on the BF-3 RNIC), the RNIC can
become unresponsive and unable to handle any flows. Since
our RCN supports multi-tenancy, the number of flows can
easily reach 10K+ on a single RNIC, which makes this issue
very common in production.

3.3 Challenges
According to the long-term monitoring experiences, we no-
tice quite a few performance issues regarding the scalability
of the RNICs in production, where RNICs present undesired
performance compared with their official specifications. Thus,
CSPs desire an effective approach to understanding the prac-
tical limitations of RNICs to prevent performance issues in
large-scale deployments. Unfortunately, we have very lim-
ited visibility into today’s RNICs as their internal design and
implementations are usually non-public. Although some of
the existing studies have conducted comprehensive tests on
commodity RNICs [32, 36, 37, 67], they can only discover
performance issues but can hardly tell the root causes and the
solutions. Besides, it is rather difficult for RNIC vendors to re-
produce and understand such “elusive” symptoms happening
in large-scale data centers that involve extremely complicated
workloads and environments. In addition, we are not allowed
to share real-world workloads with the vendors, making their
troubleshooting very difficult.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1053

Offline

RNIC

Runtime

LTL Model
Checking

Unexpected
PerformanceCross-Layer

Monitoring

Predicted
Performance

Architecture Model

Performance Data

Performance
Model

Flow Table Re-Optimization

Component Combinations

Flow Table
Matching Mask

FE FE FE

Flow Table

FE FE FE

Action
List

Forwarding

Action
List

Container A

Container B

VXLAN

…

…

RCN
Packets

Packet
Queue

Context
Buffer

Common RNIC Abstractions

Critical Path

Hyper Mask
Activation

Combinatorial Causal Testing

Hyper Mask

FE 7 FE 2FE 1

Cascading Mask 2

FE 9 FE 5 FE 6FE 8FE 4FE 3

Cascading Mask 1

Hyper Mask

FE 2FE 1

FE 5 FE 6FE 4FE 3

Cascading Mask 2Cascading Mask 1

Influencing
Components

Matching Mask

Figure 7: Architectural overview of ScalaCN, a scalable RCN based on the efficient approach of combinatorial causal testing.
The blue color of the entities in the offline phase represents their causal relations as a typical example.

4 Design and Implementation

We present ScalaCN, an effective and efficient system for
understanding and optimizing RNIC performance in a large-
scale RCN through a greybox-like approach. Our key insight
obtained from §3 is that the widely existing performance is-
sues on the RNIC’s scalability originate from the design and
implementation defects of RNICs, which highlights the im-
portance of dissecting the RNICs’ internals when these issues
occur. Due to the usually non-public implementations of the
RNICs, we strive for a more pragmatic approach by inferring
the most likely causes of the issues according to the common
abstractions of an RNIC’s components and functionalities.

Figure 7 shows the architecture of ScalaCN, which consists
of the offline phase where the combinatorial causal testing
is conducted on the RNIC, as well as the runtime phase for
RNIC performance prediction and optimization.

• Combinatorial Causal Testing (§4.1). In the offline phase,
our goal is to reason about the architecture model and ap-
proximate the performance model of RNICs based on their
common abstractions. However, we are confronted with a
prohibitively enormous search space of an RNIC’s possi-
ble component and functionality combinations. To address
this, we first use the topological restrictions among the
components to filter out invalid combinations. This sig-
nificantly reduces the complexity of building architecture
models for an RNIC. With respect to each valid architecture
model, we further approximate the RNIC’s performance
model by inferring probable critical paths of the RNIC’s
packet processing through local sensitivity analysis [19]
and permutation removal [15]. Eventually, the most likely
performance model becomes our final choice.

• Performance Interpretation and Prediction (§4.2). Based
on the approximated RNIC’s performance model, ScalaCN
collects the runtime data of the RNICs and makes the actual
predictions on the performance. In this way, ScalaCN pre-
pares to proactively schedule the offloaded network func-
tions. The guidance of the performance model inferred by
the combinatorial causal testing enables us to achieve a high

prediction accuracy of 98%. We further repair the 2% false
predictions by temporal-logic model checking [18, 49].

• On-Demand Performance Optimization (§4.3). We do not
need the RNIC to always work in its perfect status, but
once it is anticipated to undergo a noticeable (empirically
set as 5%) performance degradation, we optimize the net-
work function offloading by reorganizing its flow rules to
minimize the possible critical path of packet processing in
the RNIC hardware. This is achieved by reordering flows
with a strong locality into the headmost matching masks in
the flow tables that have the lowest delay.

4.1 Combinatorial Causal Testing

Common Abstractions of RNIC Components. As we have
mentioned in §2, an RNIC in a production RCN accelerates
data communications among containers mainly from two as-
pects, i.e., RDMA support and packet switching offloading.
Specifically, an RNIC provides RDMA verbs (such as the
send/receive and read/write primitives) to enable each
hosted container to use the RDMA protocol to transmit pack-
ets without the need for the intervention of the OS. This is
typically achieved with the SR-IOV technique [28,63], where
the RNIC is virtualized into multiple virtual functions (VFs)
and each VF can be bound to a container.

Besides, an RNIC accelerates the packet switching tasks
involved in the RCN. Recall that in Figure 1, an RCN host
must be equipped with a virtual switch to decide to which
containers a packet should be forwarded (i.e., the switching
rules). Also, the virtual switch needs to encapsulate the packet
with the VXLAN header (i.e., the applied action) to ensure
the packet can cross the underlay network if necessary. These
tasks could incur significant overhead if they are all processed
in the software stack. Thus, they are offloaded to the RNIC’s
hardware in the RCN through TC or DPDK utilities [48].

In other words, the RNIC acts as a programmable switch
with RDMA supports to forward packets among the overlay
and the underlay. In fact, today’s RNICs in data centers all
implement match-action based embedded switch (or eSwitch

1054 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Matching Table
Matching Table

Container A

Container B

VXLAN

…

···

RX
Queues

RX
Dispatch

Matching Table
src = 10.0.0.1/24 action list…
protocol = ipv4 action list…
… …

Encapsulation Context
tunnel set src = 192.168.0.1, dst = 192.168.0.2
tunnel unset src, dst
…

TX
Dispatch

TX
Queues

Egress Ports

···

···

···

···

···

Container A

Container B

VXLAN

…

Ingress Ports

Figure 8: An RNIC’s common (abstracted) components in the
RCN. The packets come from containers or VXLAN, which
are processed by the RNIC and sent to destination ports.

for short) components to support hardware-accelerated packet
switching [38, 41, 55]. This has become the de-facto standard
industrial practice and conforms with the kernel’s switchdev
model [1] for handling the data plane in the hardware while
keeping the control plane unmodified [12].

Given the above functionalities, we abstract the RNIC’s
components as shown in Figure 8. Note that we only focus
on the data path of the RNIC (i.e., the pipeline that processes
the packets) since it is the most related to the packet pro-
cessing performance. Specifically, each container binds to
one or more VFs of the RNIC, with which the container can
use the RDMA verbs to request the RNIC resources (e.g.,
queue pairs) and transmit packets through high-performance
RDMA protocols. When a packet from the container is re-
ceived by the RNIC through the VF, it will be enqueued into
the container’s requested queue pairs and then dispatched to
the RNIC’s eSwitch component. The eSwitch component is
composed of a number of flow tables to match the packets
and then apply the recorded actions on them. These tables are
offloaded from the control plane in the software stack.

Search Space on Component Combinations. After ab-
stracting the RNIC’s components, we aim to infer the likely
architecture models of the RNIC. In particular, we need to
search for the combinations of components/configurations
that are valid inside the RNIC under the environment of our
production RCN. If we have such information, we can further
reason about the more detailed performance impacts of the
RNIC’s (abstracted) components and configurations.

Unfortunately, we are faced with a combinatorial explo-
sion of the possible combinations of the RNIC’s compo-
nents. Today’s RNICs are highly programmable and can be
offloaded with a large number of combinations of flow tables
and RDMA flows. Even for a single flow table offloading, the
RNIC can have hundreds of flow entries, each of which can
have multiple matching rules and actions. For example, the
matcher of a flow entry for NVIDIA CX series RNICs is at
least 192 bits long [12], which can cover different protocols,
sources, and destinations, from the MAC layer to the transport
layer. Each bit of the matching mask is individually config-
urable. Further, flow tables can be chained together through
the forwarding action in each entry of the table for a more
flexible packet processing pipeline in the data path, resulting
in a more complex structure of the RNIC’s components and
their interactions during the RCN packet processing.

Matching Table (T2)
dst: 172.16.206.0/24 action: ENC 4, FWD VXLAN
dst: 172.16.122.0/24 action: drop
… …

Matching Table (T3)
… …
protocol = ipv6 action: FWD T1
… …

Matching Table (T1)
src = 172.16.122.0/24 action: FWD T2
protocol = ipv6 action: FWD T3
src = vxlan action: ENC 5, FWD T2
… …

Encapsulation Context
… …
3 tunnel set src = 192.168.0.1, dst = 192.168.0.2
4 tunnel set src = 10.1.1.1, dst = 10.1.1.2
5 tunnel unset src, dst
… …

Container A

Ingress Ports

…

VXLAN

Container A

Egress Ports

…

VXLAN✗
Packet Loop!

✓

✗
Unreachable!

Figure 9: Examples of topological restrictions on the combi-
nations of components.

When putting all possible combinations together, the search
space of the combinations is prohibitively large, i.e., O(kn)
possible matchers, where n is the number of tables and k is
the average number of table entries. Note that in a production
RCN, the actual value of n and k can all be as large as 100.

Efficient Searching with Topological Restrictions. In order
to reduce the probable combinations of the abstracted RNIC’s
components and their configurations, we leverage the topo-
logical restrictions among the components to filter out invalid
combinations. Our key idea is that the RNIC’s components
and configurations are not independent but have strong depen-
dencies and restrictions among them. These restrictions are
brought by the network topology and packet reachability.

As shown in the examples of Figure 9, not all the combi-
nations of rules in the table can correctly deliver the packets
to the desired destinations. The only valid combination in the
figure is the entries of flow tables that packet A goes through.
These flow rule configurations enable the RNIC to deliver
the packet from container A to the VXLAN interface (i.e.,
the underlay network). In contrast, the table entries related
to Packets B and C violate the topological restrictions. For
Packet B, the example combination on flow entries leads to
packet loops between flow tables T1 and T3. This is because
the IPv6 packets will be forwarded to flow table T3 when they
are matched by flow table T2, while T3 will then forward the
packet back to T2. Thus, such a combination of flow table
entries is not valid in practice. Similarly, Packet C will be
forwarded to an unreachable destination, and as a result the
corresponding combinations are also invalid. Eventually, we
can simply test the eSwitch and queue pair combinations that
enable correct end-to-end packet delivery among the contain-
ers (i.e., the architecture models of the RNICs), thus reducing
the magnitude of component combinations and configurations
to O(k · n2), where k is the number of subnets and n is the
average number containers in each subnet.

After pinpointing the valid architecture models in our pro-
duction RCN for the RNIC, ScalaCN generates test traffic
to search for relevant symptoms as we have encountered in
Table 1 on each architecture model. To this end, ScalaCN
starts to test the flow table combinations from a simple case,
i.e., only one flow table. Then, it continuously adds new flow
entries to the table with different matching masks, IPs, ports,

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1055

0 5 10 15 20
Number of Matching Mask

80

100

120

140

160

B
an

dw
id

th
 (G

bp
s)

Send (Local)
Write (Local)
Read (Local)

Send (Remote)
Write (Remote)
Read (Remote)

(a) Aggregated bandwidth.

0 5 10 15 20
Number of Matching Mask

3

4

5

6

7

8

9

La
te

nc
y

(u
s) Send (Local)

Write (Local)
Read (Local)
Send (Remote)
Write (Remote)
Read (Remote)

(b) Packet forwarding latency.

Figure 10: Sensitivity analysis on the number of matching masks for CX-6.

Send Write Read
250

275

300

325

350

375

Ba
nd

w
id

th
 (G

bp
s)

0 Avg. Matches 10 Avg. Matches 20 Avg. Matches

Figure 11: Impacts of the avg. flow table
queries of concurrent in-flight packets.

protocols that are reachable in our production RCN, so as
to test the RNIC’s performance. It also adds forwarding ac-
tions to the packet processing rules to connect two flow tables.
These rules are installed to the RNIC through the TC [5] utility.
All these manipulations are conducted with a guarantee that
the packets can be correctly delivered. Since we have already
filtered out the invalid combinations of the RNIC’s compo-
nents, such testing can be done efficiently and effectively.

Causal Inference. Once the above searching process finds
the symptoms (i.e., the performance issues) to occur, ScalaCN
conducts a local sensitivity analysis to pinpoint the causal re-
lations between the components and the performance issues.
ScalaCN incrementally changes each dimension of the input
configurations and tests the performance fluctuations. These
dimensions come from the test configurations as we men-
tioned above. During this process, ScalaCN uses the spring-
based control model [66] for congestion avoidance to achieve
efficient bandwidth testing. If the performance issues can be
alleviated or exacerbated after changing the configurations
(e.g., increasing or reducing flow tables), we can infer that the
corresponding components related to this dimension are likely
to lie in the critical path of the RNIC’s packet processing.

Here we show an example of the use of local sensitivity
analysis to find the possible components that are located in
the critical path of the RNIC’s packet processing. At first, the
searching process of ScalaCN finds that the CX-6 RNIC’s
performance degrades for certain flows when the number
of flow tables increases, whose symptom is similar to S6 in
Table 1. However, it is not easy to infer which configurations
are likely to be the root cause of the performance issue.

ScalaCN then incrementally changes each testing dimen-
sion and examines the resulting performance. Figure 10 shows
the performance of CX-6 when a single dimension (i.e., the
number of matching masks in offloaded flow tables) of the
workload is changed. ScalaCN quickly finds that the RDMA
write and send bandwidth of the CX-6 RNIC is significantly
affected by the number of the matching masks in the flow
tables, while the read verb is hardly affected.

Specifically, the match-action table in RNICs matches pack-
ets based on the packet patterns and determines how to process

the packet. The offloaded table entries consist of two parts,
i.e., the matching mask1 and (multiple) matching values. The
mask indicates which fields of the packets should be matched,
while the values specify the content that the packet fields
should be if matched. Flow entries with the same mask are
grouped and queried together. When the number of masks
offloaded to the RNIC increases, ScalaCN finds new flows
matched by the newly offloaded masks (i.e., the mask has not
been offloaded before) will have a lower performance in the
packet processing. Thus, we can infer that the matching masks
in the flow tables are likely to lie in the critical path in the
RNIC’s packet processing. Nevertheless, till now we are still
not able to pinpoint the exact components or configurations
that really form the critical path in the RNIC.

In order to refine the probable components in the inferred
critical path of the RNIC, ScalaCN further performs permu-
tation removal. The key idea of this step is to eliminate the
components lying in the possible critical path whose removal
does not affect the performance of the RNIC. It first sets up
a hypothesis H0 that assumes a specific dimension d is sig-
nificant to the performance. Then, it permutates the concrete
values of the other dimensions, and records the corresponding
RNIC’s performance. If the probability of the performance
degradation is >95% compared with the tests when d is not
set to the current value, we determine that the dimension d
is significant (i.e., accept the hypothesis H0), otherwise we
remove the dimension d (i.e., reject the hypothesis H0)

In this way, we make the critical path more concrete and
sort out the real critical paths of the RNIC’s packet processing,
which guide us to reason about the performance issues and
optimize the RNIC’s performance. We choose the architecture
model with the best accuracy as the final reference.

4.2 Performance Interpretation & Prediction
In this section, we provide detailed interpretations for the
symptoms in Table 1, which are then used to predict the

1Different vendors have different terminologies on flow tables. NVIDIA
names the matching mask as the flow group, while Intel names it as the
matching recipe. Although we use the term “matching mask” throughout the
paper, its actual meaning is the same as flow group and matching recipe.

1056 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RNIC’s performance. We conduct a sequential analysis [60]
on the packet processing pipeline of the RNICs to validate
how packets are delivered and coordinated inside the RNICs.

Flow State Maintenance. We find the possible causes of
the state inconsistency problem in the RNICs. First, we note
that the flow deletion in the RNICs can sometimes take a
much longer time than expected. This symptom is caused
by the flow table organization – when a flow is deleted, the
RNIC must search the flow table to find the possible flow
table dependencies on the specific flow; as a result, if the flow
table is large, the deletion process becomes slow, causing S4.
Similarly, the flow counters are not updated in time when
the RNIC is handling a large number of flows. This makes
the software stack determine that the corresponding flow is
inactive. Thus, it may delete the offloaded flow from both the
software and hardware by mistake, which leads to S1 and S5.
These issues mostly happen to the NVIDIA devices.

Flow Tables. With the understanding of matching masks
and flow table queries, we demystify the RNIC’s performance
in Figure 10. For the read verb, the local host first requests
the remote host’s memory address [65]. Its latency increases
when the number of local hosts’ egress (or remote’s ingress)
matching masks increase since requesting the addresses in-
volves sending request packets from the local to the remote,
which sequentially examines the matching masks for the
packet’s local encapsulation and remote decapsulation.

After the remote host’s addresses and keys are requested,
the read verb only involves packet transmission from the
remote to the local [65]. As the number of the remote host’s
egress-direction masks (or the local host’s ingress-direction
masks) does not increase, the read bandwidth remains sta-
ble at 165 Gbps. In contrast, for send and write verbs, all
packets are from the local to the remote. Their bandwidth and
latency all degrade when egress-direction masks at the local
or ingress-direction masks at the remote increase.

The above also explains the S6 in Table 1. When a matching
mask is created, the RNIC sequentially queries the flow table
entries. A new mask is queried after the old one, which incurs
additional mask query latency. Even if the workload drops
off later, the new flow still belongs to the new mask (i.e., it
cannot be moved back to the old one which has a lower delay)
and the performance cannot recover. We have observe such
issues in all the examined NVIDIA and Intel devices. Besides,
although the flow tables and matching masks are examined
sequentially in the RNIC, the performance of flow matching
under the same mask is nearly the same. This indicates that
matching values in the RNIC are organized by hash maps
under the same group partitioned by the matching mask.

The above micro behaviors of RNICs are actually invisible
to the software stack (e.g., OVS) without ScalaCN. As a result,
it is difficult for the software stack to schedule the optimal
offloading of flow tables and matching masks, which often
leads to inferior networking performance in the RCN.

Packet Queuing. We note that before a packet queries flow
tables inside the RNIC, it will go through the requested queue
in the RNIC. Packet queuing limits concurrent packets pro-
cessed by an RNIC at the same time. When there is only
one flow passing the RNIC, all packets of this flow fill the
queue resources and fully utilize the RNIC capacity. However,
when there are many flows, queue resources are shared by
these flows’ requested queue pairs. The bandwidth of a flow
is proportional to its allocated queue pairs.

The queued packets affects the RNIC’s overall performance
jointly with matching mask queries. Figure 11 shows the
impacts of queued packets of the CX-7 RNIC. When the
average matching mask queries of queued packets increase,
the send and write performance degrades, while that of the
read verb is still hardly affected as CX-6. For latency, all
three verbs are affected by the average matching mask queries
similar to the one-flow case (not shown). In other words,
an RNIC’s overall performance is influenced by the average
matching mask queries of queued in-flight packets.

Action Lists and Resource Management. When a packet
is matched to a flow table entry, the RNIC applies actions
(e.g., encapsulation and forwarding) recorded in the entry.
Action lists incur additional delay on packet processing. We
notice that VXLAN encapsulation and decapsulation incur
performance loss (e.g., ∼6% on throughput and ∼3% on
latency of all examined RNICs). More actions applied on the
packet lead to a lower performance. However, as all packets
in the overlay-based RCN only require VXLAN actions and
port forwarding, such performance loss is constant in our
scenario. Further, when the number of offloaded VXLAN
actions increases, the corresponding buffers in the RNIC can
be exhausted, leading to RNIC unresponsiveness (S2 and S8).

We have reported all the above findings and the inferences
on the RNIC’s hardware to the relevant vendors, which have
been all confirmed. In particular, the inferred causes of S1, S2,
S3, and S5 have all been fixed with the driver and firmware
updates from the vendors. For the remaining causes, we are
closely collaborating with the vendors to fix them.

Performance Prediction. The above combinatorial causal
testing provides explainable models for us to understand
where the performance issues of RNICs come from. ScalaCN
employs the results as a proactive performance predictor to
forecast performance degradation. ScalaCN predicts RCN per-
formance on an RNIC basis, i.e., we only focus on monitoring
the overall performance of an RNIC.

We use statistical fitting to enable performance prediction
on RNICs at runtime. After testing diverse fitting functions
including linear functions, polynomial functions, exponential
functions, radial basis function [21], and so on, we find that
the expected bandwidth BW of various RNIC models can be
best fitted with a radial basis function as follows

BW (Ql ,Qr) = u · e
−(Ql−m)2+(Qr−n)2

2·v2 +w, (1)

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1057

0 25 50
75

100

Local Matching Mask
0

25
50

75
100

Rem
ote

 M
atc

hin
g M

as
k

50

100

150

B
an

dw
id

th
 (G

bp
s)

Fit Function Samples

50

100

150

Figure 12: Fitting bandwidth perfor-
mance of CX-6 with matching masks.

Hyper Matching Mask

Mask 0x10: All Header Fields

FE 0x1: IP_SRC=172.16.122.1, IP_DST= 172.17.206.2, PORT=4789, …

FE 0x2: IP_SRC=172.10.31.98, IP_DST=172.8.30.1, PORT=8472, …

…

Cascading Matching Masks

Mask 0x12: IP_SRC (0xFFF0), IP_DST (0xFF00)

FE 0x21: IP_SRC=172.16.122.0/24, IP_DST= 172.17.0.0/16

FE 0x22: IP_SRC=172.10.31.0/24, IP_DST=172.8.0.0/16

…

Mask 0x13: IP_SRC (0xFFF0)

FE 0x31: IP_SRC=172.16.122.0/24

FE 0x32: IP_SRC=172.10.31.0/24

…

Mask 0x14: IP_DST (0xFF00)

FE 0x41: IP_DST= 172.17.0.0/16

FE 0x42: IP_DST=172.8.0.0/16

…

Hyper FE
Activation

Figure 13: Optimizing RNIC performance
by activating the flow entries (FEs).

0 5K 10K 15K
Number of Offloaded Flows

50
100
150
200
250
300
350

B
an

dw
id

th
 (G

bp
s) ScalaCN (CX-4)

Default (CX-4)
ScalaCN (CX-5)
Default (CX-5)
ScalaCN (CX-6)
Default (CX-6)

ScalaCN (CX-7)
Default (CX-7)
ScalaCN (BF-3)
Default (BF-3)
ScalaCN (E810)
Default (E810)

Figure 14: RNIC aggregated bandwidth
with and without ScalaCN.

Table 3: Fitting parameters for different RNIC models, where
GD represents goodness of fit.

RNIC u v m n w a b c GD

CX-4 78.86 39.14 -28.25 -43.19 4.91 0.049 0.063 5.02 0.94
CX-5 148.97 42.34 -29.37 -45.14 12.43 0.051 0.074 4.93 0.93
CX-6 324.47 42.13 -26.92 -49.71 26.28 0.047 0.068 2.69 0.93
CX-7 739.52 48.66 -33.53 -52.88 29.32 0.036 0.045 2.57 0.94
BF-3 748.52 48.01 -33.40 -52.42 30.65 0.037 0.043 2.56 0.94
E810 335.64 43.54 -27.01 -49.55 25.16 0.042 0.069 2.74 0.92

where Ql and Qr are average matching mask queries of in-
flight packets on local and remote hosts’ packet queues, e
is the natural base, u, v, m, n, and w are fitting parameters.
In particular, u and w control the maximum and minimum
bandwidth that an RNIC can reach, and m, n, and v jointly
determine the sensitivity of bandwidth changes towards the
matching mask queries in the RNIC. Although other packet
processing processes in RNICs such as access control also add
to performance impacts, they are less dynamic and less sig-
nificant according to our testing, and thus are also considered
as a constant influencing factor w.

The above fitting function conforms with our observation
that the bandwidth of RNICs is usually non-linear with a high
degree of rotational symmetry [24] among the input variables
as shown in Figure 10a, where the numbers of matching masks
on the local and remote hosts have similar performance im-
pacts. Figure 12 shows the fitting process of CX-6 bandwidth
with a high goodness of 0.93.

For the latency of studied RNICs, it can be predicted with
a linear function (cf. Figure 10b)

LAT (Ql ,Qr) = a ·Ql +b ·Qr + c, (2)

where a, b, and c are fitting parameters. Similarly, a and b
jointly determine the sensitivity of latency change towards
the matching mask queries, and c implies the constant perfor-
mance influence of action lists. In fact, a linear function is
sufficient for latency prediction as it is the simplest function
that can achieve a >90% accuracy. Table 3 shows the fitting
parameters of our studied RNIC models.

The average flow table query Q of in-flight packets at time
t is calculated as Q(t) = 1

n ∑
n
i=1 qt

i , where n is the total number
of queued packets, and qt

i is the number of flow table queries

that need to be performed on packet i by the RNIC at time
t. The number of in-flight packets is measured by the virtual
switch statistics. ScalaCN uses a control-theoretic method,
i.e., MPC [45], to keep its monitoring overhead under an ac-
ceptable threshold, while quickly responding to RCN events.

4.3 On-Demand Performance Optimization
With the performance predictor, ScalaCN monitors and fore-
casts RCN performance and states. Recall that the results of
combinatorial causal testing indicates the matching masks on
flow table queries are the key bottleneck of the performance in
all the studied RNICs (cf. §4.1 and §4.2). Thus, once ScalaCN
predicts that the performance is about to decline, it optimizes
the network function offloading schedule by reorganizing the
flow tables so as to reduce the flow table queries.

An RCN can have many packet header patterns for masked
matching (cf. §4.1). In our production RCN, a host could
have different lengths of IPv4 subnet masks. In practice, the
OVS and the kernel offload the corresponding matching mask
simply in one shot—once there is a new flow pattern, they
will create a matching mask in the RNIC without coordinating
with the previous ones (as they are not aware of the RNIC’s
internals). Thus, the RNIC increases matching masks and
degrades performance when flow patterns increase.

Hyper/Cascading Masks. ScalaCN optimizes RNIC per-
formance by minimizing matching mask queries on RNIC
packet switching, so as to accommodate RCN scale changes.
As shown in Figure 13, ScalaCN reorganizes the RNIC’s
matching masks in an offloaded flow table into two types, i.e.,
a hyper matching mask and cascading matching masks. These
two types of masks act like a multi-level cache in a CPU. Each
flow table has only one hyper mask ahead of all cascading
masks, so that it is queried first with minimum delay.

When there is a new flow pattern offloaded from the OVS
and the performance is anticipated to noticeably degrade by
an empirical threshold of 5%, ScalaCN creates a correspond-
ing cascading matching mask for it. For example in Figure 13,
Mask 0x13 and 0x14 match two new flow patterns (i.e., /24
and /16 IP segments). Once ScalaCN detects a packet be-
tween two specific containers matched by existing cascading

1058 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

matching masks, it will activate the concrete flow into the
hyper matching mask (e.g., FE 0x1 in Mask 0x10). The hyper
matching mask performs an exact match on packet headers
and is faster than cascading matching masks since it is located
at the headmost. In this way, flow packets always only need
to query the hyper matching mask after flow creation.

The first several packets of newly created flows can go
through cascading matching masks. To further minimize
packet queries on cascading matching masks, we re-prioritize
them based on two metrics, i.e., the length of its matching
masks (LM) and the number of packets in the past 60 seconds
it matched (PM). A longer matching mask (which matches
packets with a more specific pattern and a narrower range)
and a larger number of matched packets indicate that the cas-
cading matching mask handles many packets with a strong
locality. We thus use the locality score LS = PM ·LM to quan-
tify the priority of cascading matching masks. We move the
cascading mask with a higher LS to the front so that an aver-
age packet can query the least number of entries. Besides, we
warm up the RNIC’s flow tables (i.e., offload probable flows)
to accelerate flow creation in case of bursty traffic. This is
achieved based on a Gaussian mixture model [52] deriving
from our long-term analysis of production traffic patterns.

A hyper matching mask can be filled up by flow entries
more quickly since each entry can only exactly match one
flow. Thus, ScalaCN needs to deactivate aged flow entries
from the hyper mask to preserve the on-chip memory for
new flows. Here we utilize the least recently used (LRU)
policy to update the flow entries in the hyper matching mask.
Similarly, we remove a cascading mask in the flow table
when it has no active packets for ten minutes. According to
our measurements, removing aged entries in the two types
of the matching masks will not affect the performance of the
RNICs. This is understandable because most packets will hit
the hyper matching mask or higher-level cascading matching
masks first when lower-level masks are removed.

4.4 Generalizability
Other RNIC Components. We also observe the perfor-
mance degradation incurred by the resource contention of
on-chip SRAM like queue pair context (QPC), which has
been reported in previous studies [62, 67]. ScalaCN can also
be used to locate the contention of the on-chip memory. To
achieve this, we only need to add a configurable “capacity”
dimension on the original queue abstractions before modeling
the RNIC’s components. Our combinatorial causal testing
can then be used on these new dimensions by differentiating
the tested performance under different workloads. Neverthe-
less, as a CSP, we can only optimize the RNIC’s performance
within the scope of the configurable components of the RNICs,
while the on-chip memory contention is usually the inherent
hardware limits that require re-architecting the RNICs.

Reusability. ScalaCN is designed to be reusable as it is

based on the common abstractions of the RNIC’s components
involved in an RCN. Specifically, all RNICs provide the sup-
port for common RDMA verbs and eSwitch, which can be
manipulated through the same set of APIs. Also, ScalaCN
builds the performance model for the tested RNIC to val-
idate the modeling accuracy in a closed-loop manner, and
each fitting parameter in the model can be individually tuned
based on the tested performance of the RNIC. The only man-
ual operation is determining the common abstractions of the
RNICs in an RCN (which is a one-shot effort), while the
rest of the processes can all be automated through ScalaCN’s
testing framework. With the above principled methodologies,
ScalaCN can be easily adapted to new RNICs.

4.5 Implementation
We implement ScalaCN in 38K lines of C/C++ code and 13K
lines of Python code. In order to monitor RCN states, we
make use of the OVS command line utilities including dpctl,
appctl, and ofctl to acquire data path information. In addi-
tion, to transform LTL policies into an automaton, we use the
LamaConv tool [11] to generate Moore state machines [16].
ScalaCN does not create new RCN flow rules, but works be-
tween the OVS and the RNIC kernel driver to determine the
equivalent flow table offloading strategies that maximize the
RNIC performance. We modify the OVS module for replacing
the offloaded rules on the fly.

5 Evaluation
ScalaCN is gradually used in production, so it is evaluated
using both microbenchmarks and production workloads.

5.1 Experiment Setup
The basic settings of the experiments are similar to those in
§3.1. For microbenchmarks, we use a middle-scale RCN with
50 hosts, each of which is equipped with four RNICs including
either CX-4, CX-5, CX-6, CX-7, BF-3, or E810. We directly
use real-world traffic generated by the hosted applications
(e.g., large model training and microservices) for evaluation.
These applications initiate O(4M) different flows in a day on
average and carry out 150–400 Gbps aggregated throughput
on each RNIC. We measure the packet forwarding bandwidth
and latency of RNICs using the RDMA perftest utility [14].
Note that we only measure performance among the same
model of RNICs since the inter-operation across different
models could result in instability or RNIC failures [67]. In
fact, the inter-operations of different models of RNICs are
avoided in our production RCN.

5.2 Microbenchmarks
Scalability. Figure 14 and Figure 15 show the scalability in
terms of the RNIC’s aggregated bandwidth and packet for-
warding latency. When the number of flows on the RNIC

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1059

0 5K 10K 15K
Number of Offloaded Flows

0

20

40

60

80

100

120

La
te

nc
y

(u
s)

ScalaCN (CX-4)
Default (CX-4)
ScalaCN (CX-5)
Default (CX-5)
ScalaCN (CX-6)
Default (CX-6)

ScalaCN (CX-7)
Default (CX-7)
ScalaCN (BF-3)
Default (BF-3)
ScalaCN (E810)
Default (E810)

Figure 15: RNIC latency with and with-
out ScalaCN.

0 5K 10K 15K
Number of Offloaded Flows

0
5

10
15
20
25
30
35
40

S
ta

rtu
p

D
el

ay
 (m

s)

All
OVS
ScalaCN
Driver

Figure 16: Startup delay of different
software-stack components.

30 20 10 0 10 20 30
Normalized Bias (%)

0.2

0.4

0.6

0.8

1.0

C
D

F

Max=3.42
Min=-3.20

Max=5.66
Min=-3.41

Max=2.82
Min=-2.12

Max=42.07
Min=-53.98

Max=76.76
Min=-63.81

Bandwidth
Latency
Packet Queue
Bandwidth (Baseline)
Latency (Baseline)

Figure 17: Prediction bias on RNICs’
performance.

0 10 20 30 40 50
Bandwidth Improvement (%)

0.2

0.4

0.6

0.8

1.0

C
D

F

Max=43.93
Mean=21.59

Max=37.89
Mean=18.60

Max=41.82
Mean=17.03

Max=28.51
Mean=14.53

Max=31.22
Mean=14.96

CX-4
CX-5
CX-6
CX-7
BF-3

Figure 18: Bandwidth improvement on
RNICs in real-world workloads.

0 10 20 30 40 50
Latency Reduction (%)

0.2

0.4

0.6

0.8

1.0

C
D

F
Max=39.01
Mean=18.85

Max=34.10
Mean=15.62

Max=35.91
Mean=14.45

Max=27.23
Mean=13.86

Max=26.86
Mean=13.29

CX-4
CX-5
CX-6
CX-7
BF-3

Figure 19: Latency reduction on RNICs
in real-world workloads.

8K 16K 24K 32K 40K
Number of Host Flows

3.0

3.5

4.0

4.5

5.0

5.5

C
P

U
 U

til
iz

at
io

n
(%

)

Figure 20: CPU utilization under real-
world workloads.

increases, the send bandwidth significantly drops on all mod-
els with the default OVS offloading strategy. For example,
the aggregated bandwidth of the CX-4 RNIC drops by 41%,
and the absolute bandwidth drop of the E810 RNIC reaches
70 Gbps. This is because offloading flows to the RNIC inten-
sifies the resource contention inside the packet queue. Mean-
while, the increasing offloaded flows lead to many matching
masks created in the RNIC, which increases the processing
delay of a packet and thus degrades the throughput. Further,
all RNICs present a threshold after which the performance
drops more quickly (e.g., 8K for CX-6). Similar trends exist
for the RDMA send latency as well as read and write verbs.

In contrast, RNICs’ overall aggregated bandwidth with
ScalaCN hardly drops. Compared to the default RCN settings
with 15K offloaded flows, ScalaCN improves the average
aggregated bandwidth of the RNIC by 40.4% and reduces the
average packet forwarding latency by 30.5%. This is because
ScalaCN proactively reorganizes the RNIC’s flow tables when
performance degradation is about to happen.

Flow Startup Delay. We measure the startup delay of new
flows to show the impacts of ScalaCN on flow initiation with
flow table reorganization. Figure 16 depicts the breakdown of
the flow startup delay under different numbers of flows. As
the RCN scale increases, the startup delay of a flow gradually
increases. Nevertheless, most (70%) of the delay is attributed
to the OVS, which determines packet forwarding rules in the
user space. The additional delay incurred by ScalaCN merely
accounts for 18%, which is close to that of the driver (12%).
Since the startup delay only affects a couple of packets on

flow creation, we feel that such an increase is acceptable given
the significant performance improvements of ScalaCN.

Prediction Accuracy. We measure the prediction bias of
ScalaCN on the RNIC’s performance, and compare it with
a baseline prediction method that uses mainstream machine
learning techniques (e.g., SVM) with representative flow fea-
tures like packet loss rate and the number of flows [44, 69].
As shown in Figure 17, ScalaCN achieves a high accuracy
on predicting the RNIC’s packet queue utilization, with the
maximum bias being only +2.82%. Based on this, ScalaCN
can further predict the bandwidth and latency with a high
accuracy of 98.9% and 98.5%, respectively. In contrast, the
baseline method presents poor accuracy, with the maximum
bias being -53.98% and +76.76% for bandwidth and latency.

5.3 Real-world Production Workloads
Performance Benefits. We measure the bandwidth improve-
ment and latency reduction on the RNICs that carry our
production RCN workloads. As shown in Figure 18 and
Figure 19, ScalaCN improves the bandwidth by 17% on
an average RNIC, and reduces the average latency by 15%.
Also, the maximum bandwidth improvements reach 43.9%,
37.9%, 41.8%, 28.5%, and 31.2% for CX-4/5/6/7, and BF-3,
respectively. The latency reductions are 39.0%, 34.1%, 35.9%,
27.2%, and 26.9%, respectively. Similar results exist for the
Intel device E810 (not shown due to the space limit).

Different RNIC models benefit differently from ScalaCN.
The CX-4 RNIC which was released early benefits the most
from ScalaCN. We assume that this is because the early de-

1060 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sign of RNICs has a longer delay for each flow table query
due to their inferior hardware components. Thus, reducing
the number of queries substantially improves efficiency. Note
that for the more advanced CX-7 and BF-3 RNICs, ScalaCN
still provides considerable performance improvements (i.e.,
105 Gbps) since it resolves the hardware bottleneck and re-
duces the processing complexity for RCN packets.

On the other side, ScalaCN can induce minor performance
drops in some cases, in particular the computation-intensive
tasks that involve few data communications among containers.
The performance drop mainly derives from the flow entry in-
sertion to the hyper matching mask on frequent flow creation.
Nevertheless, such a performance drop is trivial (<5%) and
only occurs to <0.03% RNICs in our RCN.

Overhead. ScalaCN needs to continuously monitor the cru-
cial information from software and hardware stacks for perfor-
mance optimization. As shown in Figure 20, ScalaCN incurs
low CPU overheads on different scales of flow offloading.
When the host carries more flows, ScalaCN needs to mon-
itor more flow states, and therefore will incur higher CPU
overhead. Such overhead is linear to the number of offloaded
flows and will finally converge to ∼5% on a single core. In
the real-world production RCN, the overhead is negligible
given the usually tens of CPU cores running on a host.

6 Lessons Learned
Abstraction before Testing. For the performance testing
of networking devices such as RNICs and switches, it would
be more efficient if we prepare a general abstraction before
the actual testing. Such an abstraction can be derived from
the hardware datasheet, open-source drivers, and common
network APIs. With this abstraction, we can efficiently infer
the potential performance bottlenecks and the root causes of
the performance issues inside the hardware of commodity
devices. In particular, the abstraction helps us identify combi-
natorial restrictions of the device’s input, so that the search
space of the performance testing can be largely reduced.

Blackbox Hardware Is Practically Understandable. Al-
though commodity RNICs are mostly close-sourced, we can
still shed light on their basic architecture and performance
models by concentrating on their critical packet processing
pipeline. Based on this realistic insight, CSPs like us can
take proactive measures (e.g., optimizing the flow offloading
schedule) to mitigate unexpected issues of the RNICs, with-
out the need to modify or re-architect the RNIC (which is
costly and at least takes time). Even if we cannot accurately
profile the behavior of an RNIC, we can validate some of its
key metrics like bandwidth and latency to determine whether
a performance degradation is within the acceptable range.

7 Related Work
RNIC Performance Enhancement. Over the past decade,

RNICs have gone through a remarkable evolution. Many stud-
ies focus on enhancing the performance and scalability of
RNICs [25, 29, 33, 59, 62, 63]. SRNIC [63] is a scalable archi-
tecture based on FPGA, which minimizes on-chip data struc-
tures. StaR [62] balances state maintenance between two com-
munication ends to improve scalability. These studies mostly
focus on addressing resource contentions (i.e., hardware lim-
its) of the on-chip memory, while ScalaCN focuses on the
on-chip packet processing pipeline that is rarely touched in
previous work but is more important for the large-scale use
of RNICs. Unlike hardware limits that require re-architecting
the hardware, focusing on the packet processing pipeline pro-
vides us with an opportunity to enhance the performance even
if we have limited visibility into the RNIC’s internals.

Troubleshooting Data Center Networks. There have been
plenty of studies on troubleshooting data center networks.
Most of them focus on verifying the correctness of control-
plane rules [17, 20, 23, 50, 61, 68]. Minesweeper [17] and
Plankton [50] are two representative approaches to validating
network configurations. However, these methods all assume
that the underlying RNICs will not fail, and the states as well
as performance statistics in the software stack always stay
consistent. Such an assumption in fact does not always hold in
the production RCN, since RNICs’ capability limits can only
be discovered in large-scale settings. In contrast, we dissect
the RNICs’ scalability walls in a large-scale production RCN.
This enables us to design ScalaCN to practically address the
performance issues when the network quickly scales up.

8 Conclusion
This work presents our efforts towards understanding and mit-
igating the scalability limit of RCN in a large-scale production
environment. In particular, we leverage the efficient approach
of combinatorial causal testing to interpret the performance
issues of RNICs. The derived architecture and performance
models guide us to reliably infer the bottlenecks inside RNICs
and devise an effective method to overcome the bottlenecks.
RNIC vendors’ feedback validates our multifold findings and
comprehensive evaluation results confirm the efficacy of our
solution. In a broader sense, our work provides a principled
approach to extracting the high-level mechanisms of propri-
etary hardware devices, which can benefit a wider range of
fields such as hardware testing, verification, and security.

Acknowledgments
We acknowledge Container Network and High-Performance
Network teams in Alibaba Cloud that contributed to the suc-
cess of ScalaCN. We thank our shepherd, Mariano Scaz-
zariello, and the anonymous reviewers for their valuable
comments and suggestions. This work is supported in part
by the National Key R&D Program of China under grant
2022YFB4500703, the NSFC under grants 62332012 and
62472245, and the Alibaba Research Intern Program.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1061

References

[1] Ethernet Switch Device Driver Model (switchdev) —
The Linux Kernel Documentation. https://docs.ker
nel.org/networking/switchdev.html, 2015.

[2] Introducing Cloud Native Networking for Amazon ECS
Containers | AWS Compute Blog. https://aws.amaz
on.com/blogs/compute/introducing-cloud-nat
ive-networking-for-ecs-containers/, 2017.

[3] Advanced Traffic Control - ArchWiki. https:
//wiki.archlinux.org/title/advanced_traffi
c_control, 2023.

[4] Configure Azure CNI Overlay networking in Azure
Kubernetes Service (AKS) - Azure Kubernetes Ser-
vice. https://learn.microsoft.com/en-us/azur
e/aks/azure-cni-overlay, 2023.

[5] Flow Hardware offload with Linux TC flower — Open
vSwitch 3.3.90 documentation. https://docs.ope
nvswitch.org/en/latest/howto/tc-offload/,
2023.

[6] tc-flower(8) - Linux Manual Page. https://man7
.org/linux/man-pages/man8/tc-flower.8.html,
2023.

[7] Compare network models in GKE | Google Kubernetes
Engine (GKE). https://cloud.google.com/kuber
netes-engine/docs/concepts/gke-compare-net
work-models, 2024.

[8] Container Network Interface (CNI). https:
//kubernetes.io/docs/concepts/extend-kuber
netes/compute-storage-net/network-plugins/,
2024.

[9] Docker: Accelerated Container Application Develop-
ment. https://www.docker.com/, 2024.

[10] Kubernetes. https://kubernetes.io/, 2024.

[11] LamaConv—Logics and Automata Converter Li-
brary. https://www.isp.uni-luebeck.de/lamacon
v, 2024.

[12] NVIDIA Mellanox ConnectX-6 SmartNIC Adapter |
NVIDIA. https://www.nvidia.com/en-sg/netwo
rking/ethernet/connectx-6/, 2024.

[13] Overview - Container Service for Kubernetes - Alibaba
Cloud Documentation Center. https://www.alibab
acloud.com/help/en/ack/ack-managed-and-ack
-dedicated/user-guide/overview-18, 2024.

[14] perftest. https://github.com/linux-rdma/perfte
st, 2024.

[15] André Altmann, Laura Toloşi, Oliver Sander, and
Thomas Lengauer. Permutation Importance: A Cor-
rected Feature Importance Measure. Bioinformatics,
26(10):1340–1347, 2010.

[16] Andreas Bauer, Martin Leucker, and Christian Schall-
hart. Runtime Verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodol-
ogy, 20(4):1–64, 2011.

[17] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A General Approach to Network Configuration
Verification. In Proc. of ACM SIGCOMM, 2017.

[18] Arthur Bernstein and Paul K. Harter. Proving Real-Time
Properties of Programs with Temporal Logic. In Proc.
of ACM SOSP, 1981.

[19] Emanuele Borgonovo and Elmar Plischke. Sensitiv-
ity Analysis: A Review of Recent Advances. Euro-
pean Journal of Operational Research, 248(3):869–887,
2016.

[20] Tobias Bühler, Romain Jacob, Ingmar Poese, and Lau-
rent Vanbever. Enhancing Global Network Monitoring
with Magnifier. In Proc. of USENIX NSDI, 2023.

[21] Martin Dietrich Buhmann. Radial Basis Functions. Acta
Numerica, 9:1–38, 2000.

[22] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
Host Network Stack Overheads. In Proc. of ACM SIG-
COMM, 2021.

[23] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan
Kostić, and Jennifer Rexford. A NICE Way to Test
OpenFlow Applications. In Proc. of USENIX NSDI,
2012.

[24] Sagun Chanillo and Michael Kiessling. Rotational Sym-
metry of Solutions of Some Nonlinear Problems in Sta-
tistical Mechanics and in Geometry. Communications
in Mathematical Physics, 160(2):217–238, 1994.

[25] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on Reliable Connection with Efficient Re-
source Sharing. In Proc. of ACM EuroSys, 2019.

[26] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan
Arefin, Anshuman Gupta, Brian Fahs, Dima Rubinstein,
Enrique Cauich Zermeno, Erik Rubow, James Alexander
Docauer, et al. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In
Proc. of USENIX NSDI, 2018.

1062 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://docs.kernel.org/networking/switchdev.html
https://docs.kernel.org/networking/switchdev.html
https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/
https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/
https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/
https://wiki.archlinux.org/title/advanced_traffic_control
https://wiki.archlinux.org/title/advanced_traffic_control
https://wiki.archlinux.org/title/advanced_traffic_control
https://learn.microsoft.com/en-us/azure/aks/azure-cni-overlay
https://learn.microsoft.com/en-us/azure/aks/azure-cni-overlay
https://docs.openvswitch.org/en/latest/howto/tc-offload/
https://docs.openvswitch.org/en/latest/howto/tc-offload/
https://man7.org/linux/man-pages/man8/tc-flower.8.html
https://man7.org/linux/man-pages/man8/tc-flower.8.html
https://cloud.google.com/kubernetes-engine/docs/concepts/gke-compare-network-models
https://cloud.google.com/kubernetes-engine/docs/concepts/gke-compare-network-models
https://cloud.google.com/kubernetes-engine/docs/concepts/gke-compare-network-models
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://www.docker.com/
https://kubernetes.io/
https://www.isp.uni-luebeck.de/lamaconv
https://www.isp.uni-luebeck.de/lamaconv
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/overview-18
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/overview-18
https://www.alibabacloud.com/help/en/ack/ack-managed-and-ack-dedicated/user-guide/overview-18
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest

[27] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marcaurelio Ranzato, An-
drew Senior, Paul Tucker, Ke Yang, Quoc Le, and An-
drew Ng. Large Scale Distributed Deep Networks. In
Proc. of NIPS, 2012.

[28] Yaozu Dong, Yu Chen, Zhenhao Pan, Jinquan Dai, and
Yunhong Jiang. ReNIC: Architectural Extension to SR-
IOV I/O Virtualization for Efficient Replication. ACM
Transactions on Architecture and Code Optimization,
8(4), 2012.

[29] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. RDMA
Over Commodity Ethernet at Scale. In Proc. of ACM
SIGCOMM, 2016.

[30] Alexander Van’t Hof and Jason Nieh. BlackBox: A
Container Security Monitor for Protecting Containers
on Untrusted Operating Systems. In Proc. of USENIX
OSDI, 2022.

[31] Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient Distributed
Training of Large Models Using Pipeline Templates. In
Proc. of ACM SOSP, 2023.

[32] Tao Ji, Divyanshu Saxena, Brent E Stephens, and Aditya
Akella. Yama: Providing Performance Isolation for
Black-Box Offloads. In Proc. of ACM SoCC, 2023.

[33] Anuj Kalia, Michael Kaminsky, and David G Andersen.
FaSST: Fast, Scalable and Simple Distributed Transac-
tions with Two-Sided (RDMA) Datagram RPCs. In
Proc. of USENIX OSDI, 2016.

[34] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu,
Karthick Rajamani, Alexandre Ferreira, and Aditya
Akella. Iron: Isolating Network-based CPU in Con-
tainer Environments. In Proc. of USENIX NSDI, 2018.

[35] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow:
Software-Based Virtual RDMA Networking for Con-
tainerized Clouds. In Proc. of USENIX NSDI, 2019.

[36] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R. Lebeck, and Danyang Zhuo. Understanding
RDMA Microarchitecture Resources for Performance
Isolation. In Proc. of USENIX NSDI, 2023.

[37] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding Performance Anomalies in RDMA Subsystems.
In Proc. of USENIX NSDI, 2022.

[38] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin
Wang, Aditya Akella, Michael M. Swift, and T. V. Lak-
shman. UNO: Uniflying Host and Smart NIC Offload
for Flexible Packet Processing. In Proc. of ACM SoCC,
2017.

[39] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. SocksDirect: Datacenter Sockets Can Be Fast
and Compatible. In Proc. of ACM SIGCOMM, 2019.

[40] Qiang Li, Yixiao Gao, Xiaoliang Wang, Haonan
Qiu, Yanfang Le, Derui Liu, Qiao Xiang, Fei Feng,
Peng Zhang, Bo Li, Jianbo Dong, Lingbo Tang,
Hongqiang Harry Liu, Shaozong Liu, Weijie Li, Rui
Miao, Yaohui Wu, Zhiwu Wu, Chao Han, Lei Yan,
Zheng Cao, Zhongjie Wu, Chen Tian, Guihai Chen, Den-
nis Cai, Jinbo Wu, Jiaji Zhu, Jiesheng Wu, and Jiwu Shu.
Flor: An Open High Performance RDMA Framework
Over Heterogeneous RNICs. In Proc. of USENIX OSDI,
2023.

[41] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance Programmable NIC for Multi-Tenant Net-
works. In Proc. of USENIX OSDI, 2020.

[42] Xu Liu, Peng Zhang, Hao Li, and Wenbing Sun. Modu-
lar Data Plane Verification for Compositional Networks.
Proceedings of the ACM on Networking, 1(CoNEXT3),
2023.

[43] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM Is Lighter (and
Safer) Than Your Container. In Proc. of ACM SOSP,
2017.

[44] Mariyam Mirza, Joel Sommers, Paul Barford, and Xi-
aojin Zhu. A Machine Learning Approach to TCP
Throughput Prediction. In Proc. of ACM SIGMETRICS,
2007.

[45] Manfred Morari and Jay H Lee. Model Predictive Con-
trol: Past, Present and Future. Computers & Chemical
Engineering, 23(4-5):667–682, 1999.

[46] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Jonathan Stringer, Pravin Shelar, Keith Amidon,
and Martın Casado. The Design and Implementation of
Open vSwitch. In Proc. of USENIX NSDI, 2015.

[47] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous
NIC Offloads. In Proc. of ACM ASPLOS, 2021.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1063

[48] Nikolai Pitaev, Matthias Falkner, Aris Leivadeas, and
Ioannis Lambadaris. Characterizing the Performance of
Concurrent Virtualized Network Functions with OVS-
DPDK, fd.io VPP and SR-IOV. In Proc. of ACM ICPE,
2018.

[49] Amir Pnueli. The Temporal Logic of Programs. In Proc.
of IEEE FOCS, 1977.

[50] Santhosh Prabhu, Kuan-Yen Chou, Ali Kheradmand,
P Brighten Godfrey, and Matthew Caesar. Plankton:
Scalable Network Configuration Verification Through
Model Checking. In Proc. of USENIX NSDI, 2020.

[51] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM: An
Intelligent Fine-Grained Resource Management Frame-
work for SLO-Oriented Microservices. In Proc. of
USENIX OSDI, 2020.

[52] Douglas A Reynolds et al. Gaussian Mixture Models.
Encyclopedia of Biometrics, 741(659-663), 2009.

[53] Junxian Shen, Han Zhang, Yang Xiang, Xingang Shi,
Xinrui Li, Yunxi Shen, Zijian Zhang, Yongxiang Wu,
Xia Yin, Jilong Wang, Mingwei Xu, Yahui Li, Jiping
Yin, Jianchang Song, Zhuofeng Li, and Runjie Nie.
Network-Centric Distributed Tracing with DeepFlow:
Troubleshooting Your Microservices in Zero Code. In
Proc. of ACM SIGCOMM, 2023.

[54] Jacopo Soldani and Antonio Brogi. Anomaly Detection
and Failure Root Cause Analysis in (Micro) Service-
Based Cloud Applications: A Survey. ACM Computing
Surveys, 55(3), 2022.

[55] Brent Stephens, Aditya Akella, and Michael M. Swift.
Your Programmable NIC Should Be a Programmable
Switch. In Proc. of ACM HotNets, 2018.

[56] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and
Josep Torrellas. MXFaaS: Resource Sharing in Server-
less Environments for Parallelism and Efficiency. In
Proc. of ACM ISCA, 2023.

[57] Qiang Su, Chuanwen Wang, Zhixiong Niu, Ran Shu,
Peng Cheng, Yongqiang Xiong, Dongsu Han, Chun Ja-
son Xue, and Hong Xu. PipeDevice: A Hardware-
Software Co-Design Approach to Intra-Host Container
Communication. In Proc. of ACM CoNEXT, 2022.

[58] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. An Anal-
ysis and Empirical Study of Container Networks. In
Proc. of IEEE INFOCOM, 2018.

[59] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In Proc. of ACM
SOSP, 2017.

[60] Abraham Wald. Sequential Analysis. Courier Corpora-
tion, 2004.

[61] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana,
Ang Chen, and T S Eugene Ng. Closed-loop Network
Performance Monitoring and Diagnosis with Spider-
Mon. In Proc. of USENIX NSDI, 2022.

[62] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bo-
jie Li, Binzhang Fu, and Kun Tan. StaR: Breaking the
Scalability Limit for RDMA. In Proc. of IEEE ICNP,
2021.

[63] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang
Zeng, Wenxue Li, Xinchen Wan, Peng Xie, Tao Feng,
Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin
Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanxiong
Guo. SRNIC: A Scalable Architecture for RDMA NICs.
In Proc. of USENIX NSDI, 2023.

[64] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and
Xin Jin. Transparent GPU Sharing in Container Clouds
for Deep Learning Workloads. In Proc. of USENIX
NSDI, 2023.

[65] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
FileMR: Rethinking RDMA Networking for Scalable
Persistent Memory. In Proc. of USENIX NSDI, 2020.

[66] Xinlei Yang, Xianlong Wang, Zhenhua Li, Yunhao Liu,
Feng Qian, Liangyi Gong, Rui Miao, and Tianyin Xu.
Fast and Light Bandwidth Testing for Internet Users. In
Proc. of USENIX NSDI, 2021.

[67] Zhuolong Yu, Bowen Su, Wei Bai, Shachar Raindel,
Vladimir Braverman, and Xin Jin. Understanding
the Micro-Behaviors of Hardware Offloaded Network
Stacks with Lumina. In Proc. of ACM SIGCOMM, 2023.

[68] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar
Jeyakumar, Mickey Ju, Junda Liu, Nick McKeown, and
Amin Vahdat. Libra: Divide and Conquer to Verify For-
warding Tables in Huge Networks. In Proc. of USENIX
NSDI, 2014.

[69] Qizhen Zhang, Kelvin K. W. Ng, Charles Kazer, Shen
Yan, João Sedoc, and Vincent Liu. MimicNet: Fast
Performance Estimates for Data Center Networks with
Machine Learning. In Proc. of ACM SIGCOMM, 2021.

[70] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu,
Hongqiang Harry Liu, Matthew Rockett, Arvind
Krishnamurthy, and Thomas Anderson. Slim: OS
Kernel Support for a Low-Overhead Container Overlay
Network. In Proc. of USENIX NSDI, 2019.

1064 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Appendix

A Design Details

State Validation. While the performance predictors en-
able ScalaCN to predict RNIC performance, we still need
an effective approach to validating whether the RCN is run-
ning in the correct states to make up for possible predic-
tion errors. We take advantage of the linear temporal logic
(LTL) [18, 49] to model the expected behaviors RNICs ac-
cording to the causal testing results. We choose LTL because
it can describe the transitions of system states over time. It
acts as a test oracle to validate the state correctness and ac-
tual performance of the RCN. For example, we use LTL
policies “if a flow is offloaded, the RNIC should create a
flow entry for it.” and “a new flow entry should not be cre-
ated until a flow is offloaded” to validate the states of RNIC
flow entry creation. These two policies can be represented in
LTL formulas [49] as FL_OFFLD → #FE_CREAT E and
¬FL_CREAT E U FE_OFFLD. ScalaCN encodes LTL poli-
cies to build the LTL validation automaton.

Figure 21 shows the example for the above two specifica-
tions. States S0 and S1 are undetermined states, S2 is the error
state (i.e., an RCN state inconsistency is detected), and S3 is
the accept state (i.e., the RCN stays correct). If a flow entry
is created at the initial state S0 (without flows offloaded), the
automaton goes into the error state and indicates a state incon-
sistency. If a flow is offloaded to RNICs twice, ScalaCN also
determines an inconsistency. Only when the OVS offloads
a flow and the RNIC creates the corresponding flow entry,
ScalaCN will determine that the RCN stays correct.

It is also possible that ScalaCN cannot identify any issues
in the software and hardware stack, but the performance is still
very poor (e.g., due to the hardware aging, erosion, or some
other environmental factors). To handle these unexpected
scenarios, we have a passive monitor on the container network
besides ScalaCN. Such a monitor will notify the control plane
immediately about the unexpected performance degradation,
and the control plane will temporarily disable the allocations
of these RNICs to the containers.

Flow Table Manipulations. The flow table policies are ini-
tially generated by the software switch. For example, when
a new flow is created, it cannot be found in the flow table
of an RNIC. In this condition, the RNIC cannot handle the
new packet pattern and will transfer the processing of the
packet to the software OVS, which will cause a lookup miss
event [46] to the OVS. The OVS will then determine which
port (i.e., VFs or VXLAN interfaces) this new packet should
be sent to and whether it needs encapsulations or decapsula-
tions. After processing the first packet of a new flow, the OVS
also offloads the corresponding processing rules to the RNIC
hardware. The key problem here is that the OVS is not aware
of the RNIC’s hardware architecture, and thus cannot offload
the optimal flow rule schedule. In particular, it cannot well

S2
S0

S1
S3FL_OFFLD

FE_CREATE

FL_OFFLDSTART

FE_CREATE

Figure 21: An example automaton from LTL specifications.

determine if the flow tables should be reorganized when the
number of flow patterns increases. In contrast, ScalaCN can
proactively transform these flow rules to the equivalent ones
that minimize the overall flow processing delay for the RNIC.

Flow Table Locality. The concept of “locality” of a flow
rule/table in ScalaCN means that it is frequently hit by the
RCN packets. Matching masks with more bits set to “true”
indicates that it can match more concrete flows if the table
capacity is unlimited. However, it also occupies more flow
table entries as each entry is more concrete (e.g., an extreme
case is that the full-bit matching of the hyper mask requires
each entry to match exactly one specific five-tuple). So the
flow table is filled up more quickly for the hyper mask. Con-
sidering these two aspects, ScalaCN prioritizes the masks that
have a wider range of pattern matching capability and a higher
hit rate to the front of the flow table.

B Additional Evaluation Results
Convergence Speed of Causal Testing. ScalaCN completes
the entire testing and discovers the performance bottlenecks
for each of the tested RNIC models in 3.6 hours on average,
which is 60× faster than the brute-force testing that goes
through all the possible configurations in more than 9 days.
Since our testing is based on the common abstractions of
the RNICs in an RCN, the convergence speed for different
RNICs is similar. These results demonstrate the effectiveness
of our combinatorial causal testing approach in building a
high-quality model for the RNICs in a greybox manner.

Impacts on Small Bursty Flows. As we have discussed in
§4.3, the introduction of a hyper mask may cause a certain
degree of performance degradation for small bursty flows,
since their flow rules are not initially prioritized in the whole
flow table. We conduct a set of experiments to evaluate the
performance of ScalaCN on these small bursty flows, and
find that the negative impacts are negligible compared with
the performance without ScalaCN. This is because by de-
fault the OVS still needs to process the first packet of these
small bursty flows without ScalaCN, which usually incurs the
same high delay (e.g., tens of milliseconds) due to the lookup
miss as in the case with ScalaCN. Also, the first packet of
these small bursty flows has a higher probability to be pro-
cessed by the first cascading mask in ScalaCN due to mask
re-prioritizing. Thus, the first-packet latency is still acceptable
(e.g., <5 us increase) with RNIC offloading. After the new
flow is offloaded to the hyper mask (i.e., the second packet),
such a performance degradation will be eliminated.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1065

	Introduction
	Background
	Motivation
	Continuous Monitoring Infrastructure
	Symptoms of Performance Issues
	Challenges

	Design and Implementation
	Combinatorial Causal Testing
	Performance Interpretation & Prediction
	On-Demand Performance Optimization
	Generalizability
	Implementation

	Evaluation
	Experiment Setup
	Microbenchmarks
	Real-world Production Workloads

	Lessons Learned
	Related Work
	Conclusion
	Design Details
	Additional Evaluation Results

