
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

CEGS: Configuration Example
Generalizing Synthesizer

Jianmin Liu, Tsinghua University; Li Chen, Zhongguancun Laboratory;
Dan Li, Tsinghua University; Yukai Miao, Zhongguancun Laboratory

https://www.usenix.org/conference/nsdi25/presentation/liu-jianmin

CEGS: Configuration Example Generalizing Synthesizer

Jianmin Liu1, Li Chen2, Dan Li1, Yukai Miao2

1Tsinghua University 2Zhongguancun Laboratory

Abstract
Network configuration synthesis promises to increase the
efficiency of network management by reducing human in-
volvement. However, despite significant advances in this field,
existing synthesizers still require much human effort in draft-
ing configuration templates or coding in a domain-specific
language. We argue that the main reason for this is that a core
capability is missing for current synthesizers: identifying and
following configuration examples in configuration manuals
and generalizing them to arbitrary topologies.

In this work, we fill this capability gap with two recent
advancements in artificial intelligence: graph neural networks
(GNNs) and large language models (LLMs). We build CEGS,
which can automatically identify appropriate configuration
examples, follow and generalize them to fit target network
scenarios. CEGS features a GNN-based Querier to identify
relevant examples from device documentations, a GNN-based
Classifier to generalize the example to arbitrary topology, and
an efficient LLM-driven synthesis method to quickly and cor-
rectly synthesize configurations that comply with the intents.
Evaluations of real-world networks and complex intents show
that CEGS can automatically synthesize correct configura-
tions for a network of 1094 devices without human involve-
ment. In contrast, the state-of-the-art LLM-based synthesizer
are more than 30 times slower than CEGS on average, even
when human experts are in the loop.

1 Introduction
Network configuration management plays a central role in
network operations (NetOps). Manually managing config-
urations is costly and susceptible to human errors that can
cause severe network downtime [13,14,35]. This is especially
important for modern large-scale networks with more than
tens of thousands of devices. To increase NetOps efficiency
and correctness, researchers have made continuous efforts
in configuration synthesis [1, 6, 7, 16, 17, 22, 39, 43, 44, 46].
With the descriptions of intents and network topology from
network operators as input, configuration synthesis systems
are expected to generate correct configurations for network

Figure 1: An instance of EFG in configuration synthesis.

devices to achieve the intents.
Despite considerable advancements in configuration syn-

thesis, existing proposals still require significant human ef-
fort. For example, NetComplete [17] requires operators to
manually provide configuration templates where some pa-
rameters are left symbolic for the synthesizer. Robotron [44]
also requires expert effort to construct suitable templates for
configuration generation. For Aura [39], operators must learn
a new domain-specific language, and code in this language to
express their high-level intents.

The main reason for human involvement, we believe, is
that a core capability is missing from all existing synthesiz-
ers: example following and generalization (EFG). In other
words, they cannot identify, follow, and generalize the exam-
ples provided by device documentation, and thus must rely
on human experts to perform the task. We show an example
of EFG in Figure 1, where the configuration example1 from
the Cisco device documentation has a topology with three
nodes for an intent, and the target scenario has a topology
with four nodes. To make use of an existing synthesizer, such
as NetComplete, experts must first look through the device

1
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/

irg-xe-16-book/connecting-to-a-service-provider-using-external-bgp.html

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1327

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/connecting-to-a-service-provider-using-external-bgp.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/connecting-to-a-service-provider-using-external-bgp.html

documentation 2 for this example, identify the appropriate
configuration snippets, assign the snippets to different devices,
and mark symbolic parameters for synthesizers to fill, so that
configuration templates can be generated for each device.

EFG is currently a human process, because it requires three
sub-capabilities: understanding of topologies in both the ex-
ample and target scenario, comprehension of natural language
description of intents, and code generation of device configu-
ration templates. However, with the recent advances of graph
neural networks (GNNs) and large language models (LLMs),
we believe that EFG can be automated. This is because 1)
GNNs have shown remarkable capability in modeling node
characteristics and similarities in many related applications,
such as knowledge graph alignment [56,62] and social recom-
mendation [18,55]; and 2) LLMs have demonstrated unprece-
dented capabilities in comprehending human intents, produc-
ing contextually relevant content, and even writing sequential
programs in systems such as CoPilot [23] and Jigsaw [28].

Inspired by these achievements, this paper investigates the
following research question: Can we automate EFG for con-
figuration synthesis? We answer this question affirmatively
with the design and implementation of a configuration syn-
thesis system that we call CEGS (Configuration Example
Generalizing Synthesizer). This involves solving three main
challenges:

C1 Accurately identifying relevant configuration exam-
ples from the manual. Given a target network scenario
consisting of user intents and target topology, we must
find the most relevant configuration examples from the
manual. Thus, we need to design a Querier to accurately
identify the configuration example that closely aligns with
the user intent and target topology from the manual.

C2 Associating the devices in the target topology with
those in the example. Establishing accurate associations
between devices in the target and example topologies is
crucial for EFG. To automate this, we need to design a
Classifier to accurately map the nodes in the example to
the devices in the target topology, so that the configuration
snippets for each node in the example can be assigned to
the devices in the target topology.

C3 Accelerating synthesis without compromising correct-
ness. As COSYNTH [36], a pioneering work that applies
LLMs to configuration synthesis, indicates, an LLM usu-
ally cannot produce the correct configurations for all de-
vices with its first attempt, and it requires multiple itera-
tions (loops) for error correction. Each loop involves call
to the LLM inference, and in some scenarios (§4), we
show that, without human intervention, COSYNTH is un-
able to generate the correct results with as many as 300
loops. Since LLM inference is costly, we intend to design
an efficient synthesis method that minimizes the number
of loops without compromising correctness.

2Documentation includes configuration manuals, guides, etc..

Figure 2: High-level workflow of CEGS.

CEGS comprehensively addresses the above challenges.
Taking natural language intents, a target network topology,
and the device documentation as input, CEGS attempts to
synthesize the correct configuration for network devices in
the target topology without human involvement. CEGS uti-
lizes GNN and LLM to achieve EFG automation, and has
six core components, namely Querier, Classifier, Syntax Veri-
fier, Local Attribute Verifier (LAV), Global Formal Verifier
(GFV), and Formal Synthesizer. The workflow (Figure 2) is
as follows: firstly, the Querier identifies the most relevant con-
figuration examples from the device documentation that align
closely with the user intents and target topology. Secondly,
the Classifier maps the nodes in configuration examples to
appropriate devices in the target topology. Thirdly, CEGS
leverages an LLM to generate configuration templates for
all devices based on configuration examples, leaving the spe-
cific parameters of network policies symbolic. Then, CEGS
utilizes the Syntax Verifier, LAV, and GFV to verify the tem-
plates. Finally, the Formal Synthesizer takes the intents, the
topology, and the templates, and attempts to fill the symbolic
parameters with values to achieve the intents. In this process,
CEGS automatically feeds any errors caught by the Syntax
verifier, LAV, GFV, and the synthesizer back to the LLM for
error correction.

We enable this workflow with the following contributions:
● We design the Querier to identify relevant examples from

the device manual, solving challenge C1. The Querier
adopts a two-stage recommendation strategy. The first
stage uses an LLM to process the natural language user
intent, and then measures the similarity of the user intent
to the descriptions of examples. In the second stage, the
Querier further incorporates topological similarity infor-
mation with a GNN, and determines the most appropriate
example. In our evaluation with 90 configuration syn-
thesis scenarios, the Querier achieves 100% accuracy in
recommending examples.
● We design the Classifier to establish accurate associations

between devices in the target and the example topologies,
solving challenge C2. Specifically, the Classifier consid-
ers both textual and topological similarities to determine
the relationships. In our evaluation with 90 configuration
synthesis scenarios, CEGS also achieves 100% accuracy
in terms of device classification.
● We propose an efficient LLM-driven synthesis method to

accelerate synthesis without compromising correctness,
solving challenge C3. Compared to prior work, our key
innovations are: 1) we guide the LLM configuration gen-
eration with appropriate examples from device documen-

1328 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tations, instead of relying solely on the "memory" of the
LLM; 2) we stipulate the LLM to only generate templates,
because they are bad at logical reasoning and analysis [33],
thus they struggle to generate specific values to achieve
user policy intents; and 3) we instead use Formal Synthe-
sizer to fill in templates, which is significantly faster than
calling LLM multiple times with expert in the loop [36].
● We evaluate CEGS using Static, OSPF, and BGP rout-

ing intents and a variety of real-world topologies ranging
from 20 to 1094 routers. Our results show that CEGS
can automatically synthesize correct configurations based
on examples, without any human involvement. Com-
pared to state-of-the-art LLM-based synthesis systems
COSYNTH, CEGS automatically synthesizes correct con-
figurations for BGP no-transit intents within 2 minutes,
while COSYNTH fails to generate correct configurations
within one hour. Even with human expert in the loop,
COSYNTH is more than 30 times slower than CEGS.

Limitations. This paper introduces the EFG capability to
network configuration synthesizers. Enabling EFG does not
solve all the challenges in configuration synthesis, and our
limitations are as follows. Firstly, we are constrained by the
coverage of device documentations: if there is no example
of a user’s intent, CEGS cannot produce a satisfactory result.
When this happens, users of CEGS should ask the vendor for
related examples. Secondly, CEGS is also subject to the capa-
bility of the Formal Synthesizer. In other words, to guarantee
correctness, we can only support intents that are also sup-
ported by the Formal Synthesizer we use (NetComplete [17]).
We consider the extension of the capabilities of the Formal
Synthesizer to be orthogonal to CEGS, and do not claim any
contribution in this aspect. Thirdly, the generated configura-
tion is correct only when an LLM can correctly convert a
natural language intent to a formal intent. While our evalu-
ation demonstrates 100% accuracy in intent formalization,
this result is specific to our evaluation dataset. The general-
izability of this accuracy to other datasets or scenarios is not
guaranteed and remains an area for further investigation.

2 BACKGROUND AND MOTIVATION
2.1 Current synthesizers require expert effort
Generating and editing configurations of devices based on
ever-changing operational intents are daily tasks of NetOps
engineers, and configuration synthesizers promise to reduce
the load on human operators by generating correct configura-
tions automatically. Recently, many efforts have been made
in configuration synthesis [1, 6, 7, 16, 17, 22, 39, 43, 44, 46].
Despite significant advancements, existing synthesizers still
require human involvement in the synthesis process.

Existing configuration synthesizers fall into two types: Do-
main Specific Language (DSL)-based synthesis, and template-
based synthesis. Both types require significant expert effort
to work. DSL-based synthesizers require experts to express
high-level intents using DSLs, such as Datalog (SyNet [16]),

RPL (Aura [39]), and regular expressions (Propane [6]). The
learning curve and the amount of code needed for large-scale
networks are both intimidating for NetOps engineers.

In this paper, we focus on reducing the human efforts for
the template-based synthesizers. These systems take a net-
work topology, high-level intents, and configuration templates
as input and automatically fill the blanks in the templates. For
example, NetComplete [17] autocompletes the configuration
templates to correct network-wide configurations. NetCom-
plete uses SMT constraints to model the semantics of network
configurations at the level of individual route advertisements
and routing policies. Specific configuration values (e.g., BGP
policy parameters) are made symbolic, allowing the SMT
solver to find a set of values that satisfy the desired policy.

For template-based synthesizers, we observe that the pro-
cess which requires the most human effort is the process of
converting a set of high-level intents into a set of templates
for all devices in the topology. For NetOps experts, this pro-
cess typically involves identifying appropriate configuration
examples in the device documentation, assigning the snippets
in the examples to devices, and marking symbolic parameters
based on intents. We name this process as example following
and generalization (EFG).

We believe that the automation of EFG can save consider-
able expert effort. However, automating EFG is challenging,
because it requires three sub-capabilities: understanding of
topology in both the example and target scenario, compre-
hension of natural language description of intents, and code
generation of device configuration templates. Fortunately, the
recent achievements of GNNs and LLMs in AI give us hope
in automating these human capabilities. Next, we briefly in-
troduce these two technologies and their prior applications in
the area of configuration synthesis.
2.2 LLMs & GNNs for configuration synthesis
GNNs and LLMs have been explored separately in the lit-
erature on configuration synthesis, but they have never been
combined, to the best of our knowledge.

Graph Neural Networks (GNNs) are tailored to process
graph-like data, thus can be useful for topology understanding
for EFG. GNNs have been shown to be capable of learning
node-level and graph-level representations by aggregating
information from neighboring nodes and edges. They are
widely applied in various reasoning tasks on graphs [58, 60].
In relation to configuration synthesis, ConfigReco [24] is a
configuration recommendation tool that uses GNN. It fea-
tures a knowledge graph to model network configurations and
adopts GNN to recommend configuration templates for man-
ual configuration. However, ConfigReco can only recommend
high-likelihood configuration snippets to NetOps engineers,
and it cannot generalize the examples to target topologies.

LLMs [3,4,9,47] have demonstrated impressive capabilities
in answering questions [41, 42], understanding user intents
[34,37,52], comprehending manuals [11,32], generating com-
mands [20, 53, 59], and even composing sequential programs

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1329

Figure 3: Configuration example and target scenarios, along
with the corresponding intent graphs.

in systems like CoPilot [23] and Jigsaw [28]. All of these
capabilities show immense potential for automating EFG in
configuration synthesis. Using LLMs for configuration syn-
thesis has already been explored in previous work. Rajdeep et
al. [36] designed COSYNTH, a configuration synthesis sys-
tem that uses LLMs to generate network configurations that
are aligned with the high-level intents. NETBUDDY [49] [51],
a LLM-based synthesis system, leverages LLM to simplify
configuration synthesis by splitting configuration generation
into multiple fine-grained steps. However, both COSYNTH
and NETBUDDY directly employs LLMs to generate con-
crete configurations based on the specified intents without
providing any configuration examples. Thus, COSYNTH and
NETBUDDY still require human involvement in the loop to
guide the synthesis. For example, as demonstrated in §4.3,
without human involvement, COSYNTH and NETBUDDY
cannot successfully compile intents into correct network con-
figurations with as many as 300 loops. PreConfig [31] is a
pretrained LLM designed for automating network configu-
ration. However, PreConfig only can generate configuration
snippets, and it still unable to synthesize network-wide con-
figuration for target network scenarios to achieve specific
high-level intents.
2.3 Motivating CEGS’s Design Decisions
With the above investigation, we design CEGS which lever-
ages GNN and LLM to automate EFG. To this end, we ad-
dress the three main challenges. In the following, we list each
challenge as C# and its related design choice(s) D#.
C1. Accurately identifying relevant configuration exam-
ples from the device documentation. Given a target network
scenario consisting of a network topology and a set of high-
level intents, we need to first identify pertinent configuration
examples from the device documentation that closely align
with the user intent and target topology.
D1. Transforming the recommendation problem into a graph
similarity problem. We observe that the most appropriate con-
figuration example should satisfy two criteria simultaneously:
1) the natural language descriptions of the example’s intent
and the user’s intent must be similar; and 2) they share topo-
logical similarities. We design a data structure called intent
graph to take both factors into account. In each intent graph,
the nodes represent devices and edges represent links between

the devices, thus they correspond directly to network topolo-
gies. We embed the high-level intent into the intent graph
by adding an attribute called "Role" to each node. We use
an LLM (GPT-4o) prompted by few-shot examples to pro-
cess the intent and generate roles for each node (details in
§3.1). In this way, we embed the high-level intent into the net-
work topology. Figure 3 illustrates a configuration example
scenario and a target scenario, along with the corresponding
example intent graph and user intent graph.

With the intent graphs, we transform the problem of finding
the most appropriate example to the problem of finding the
most similar example intent graph to the user intent graph,
which is suitable for GNN algorithms to solve. To accelerate
the search, we also propose a two-stage recommendation
strategy, and the first stage is to narrow the search space by
filtering out irrelevant examples with the help of an LLM
(GPT-4o, details in §3.1). The Querier then adopts a GNN
algorithm that solves the above graph similarity problem to
recommend the most relevant example.
C2. Associating the devices in the target topology with
those in the example. To successfully generalize, we must
obtain the correspondence between the nodes in the example
intent graph and those in the user intent graph. With this
correspondence, we can then assign the configuration snippets
from the example to the devices in the target topology.
D2. Exact matching of role description of nodes. We observe
that, in most cases, nodes can be matched using only the
"Role" attribute in the intent graph. Therefore, the Classifier
first associates nodes in the user intent graph to nodes in the
example intent graph, if their "Role" attribute matches exactly.
D3. GNN-based mapping based on neighborhood similarity.
However, in some cases, a node in the user intent graph can
be matched with multiple nodes in the example intent graph.
To solve this problem, we observe that the configuration of a
device is also highly affected by its neighbors. Taking Figure
3 as an example, router R2 and R3 in the example topology
have the same role: acting as a relay, but they have different
neighborhood: router R2 links a source and a relay, while
router R3 links a source, a destination, and a router which
does not participate in annoucement forwarding. Thus, router
R2 and R3 have different configurations of routing policies
affected by their neighborhood topologies. From Figure 3, we
observe that router RB in the target topology has the same role
as router R2 and R3 in the example topology, but router RB
has a neighborhood more similar to that of router R2 than that
of router R3, so the optimal association of RB’ in the example
topology should be R2.

Therefore, we propose a GNN-based node classification al-
gorithm in the Classifier, because GNNs can learn node-level
representations by aggregating the neighborhood information
and are well-suited to this problem. If a device is matched to
multiple nodes in the example intent graph, the GNN algo-
rithm measures the neighborhood similarity between these
nodes and recommends the node in the example intent graph

1330 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 4: Configuration template for router RA in Figure 3.

with the highest similarity.
C3. Accelerating synthesis without compromising correct-
ness. Although recent research has demonstrated that LLMs
are capable of writing network configurations [36], it is still
challenging for LLM to produce concrete network-wide con-
figurations, because it involves logical reasoning, which is not
a strong suit for LLMs [36]. As a result, COSYNTH requires
many human-in-the-loop iterations to generate the correct
configurations. Thus, we seek a new synthesis mechanism to
accelerate synthesis and reduce cost (i.e.the number of calling
LLMs). In the meantime, it is imperative to guarantee the
correctness of synthesis results.
D4. Guiding the LLM generation with appropriate examples.
LLM can better complete reasoning tasks by introducing
a few-shot prompt [12] or combining retrieval-augmented
generation (RAG) [21]. Thus, to efficiently guide the LLM in
generating the correct configuration, we provide appropriate
examples to the LLM as relevant context.
D5. Restricting the LLM to generate only templates. In our
configuration generation tasks, determining specific values of
network policy parameters for all devices in a network is a
highly complex reasoning problem that need to take the entire
network into account. To solve this problem, we restrict the
LLM to generate only configuration templates, leaving the
specific values of network policy parameters as symbols.
D6. Using the Syntax Verifier, LAV, GFV and Formal Synthe-
sizer to guarantee correctness. To guarantee the configuration
correctness, we first use the Syntax Verifier to check whether
the templates contain invalid syntax. We then utilize the LAV
and GFV to jointly verify the semantic correctness of the
templates. The LAV performs local verification on individ-
ual device templates to check whether the template follows
the target topology and user intent descriptions. The GFV
conducts global verification across all device templates to
verify whether they can collectively achieve the global net-
work policy intent. Any errors checked by the Syntax Verifier,
LAV and GFV are fed to LLM for error correction. We finally
use the Formal Synthesizer to take the target topology, user
intents, and templates for all devices to fill the network policy
parameters with concrete values to achieve the user intent.

Take the template (Figure 4) of router RA in Figure 3 as
an example, this template leaves some parameters of BGP
import or export policies symbolic, such as community value
and preference value, denoted by a question mark (?). We use
the LAV to locally verify the interface configurations and BGP
basic configurations from lines 2-22 based on the topology
and intent descriptions, and then use GFV to globally verify

Figure 5: CEGS overview.

the policy configuration templates (lines 23-33) across all
devices. Finally, the Formal Synthesizer fills the templates.

3 CEGS DESIGN
Given device documentation and a target network scenario
including a target topology Ttgt specified in a JSON dictio-
nary and a set of high-level intents F={ f 1

user, f
2
user,..., f

n
user} in

natural language, CEGS automatically synthesizes network
configurations via three phases: retrieval phase, association
phase, and generation phase, as shown in Figure 5.

In the retrieval phase, CEGS uses the Querier to retrial
relevant configuration examples from device documentation.
In the association phase, CEGS utilizes the Classifier to estab-
lish accurate associations between devices in the target and
example topologies. In the generation phase, given the user
intents, target topology, as well as configuration examples and
association relations, CEGS aims to generate correct network
configuration for all devices in target topology to achieve all
user intents. Specifically, we propose an iterative LLM-driven
synthesis method to fulfill this task. In each iteration, we first
generate configuration templates using an LLM, and validate
these templates using the Syntax Veifier, LAV, and GFV. If
any errors are checked, they are added to the prompt of the
LLM for the next iteration. This phase stops when a set of
templates are successfully generated, or when a predefined
upper limit (300 in the evaluation) of loops is reached. Finally,
we merge templates and fill in them using Formal synthesizer.
3.1 Querier
Given a set of high-level intents F and target topology Ttgt , the
Querier aims to recommend the most relevant configuration
example zi for each user intent f i

user from the device documen-
tation. To achieve this, we first parse configuration examples
from the device documentations. Since the format of device
documentations provided by different operators varies, we
develop a parsing framework similar to NAssim [11] to con-
vert them into a uniform format. The formats are a uniform
container for standardizing the diversity of manual formats.
To parse the topology represented in a figure, we utilize GPT-
4o to convert the topology figure into the predefined JSON
format, followed by manual proofreading of the topology in-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1331

Figure 6: Detailed workflow of Querier.

formation.3 We use a JSON dictionary to store the parsed
configuration examples. Each example consists of a high-
level intent in natural language, a network topology specified
in JSON dictionary and the configurations of all devices in
that topology. We process all the examples using the Querier
to obtain the corresponding example intent graphs.

To improve query efficiency and accuracy, we adopt a two-
stage recommendation strategy. Figure 6 shows the detailed
workflow. For each user intent f i

user, the Querier first adopts
text encoding and similarity measurement methods to recom-
mend top-k configuration examples that have the same type
of intent as the user intent f i

user, thus filtering out irrelevant
examples. The Querier then adopts a GNN algorithm to rec-
ommend top-1 example from the top-k examples based on
intent graph similarity. The output of the Querier is a set of
configuration examples Z={z1,z2,..,zn}, where each zi is the
example for each user intent f i

user.
3.1.1 Recommendation based on intent similarity
Problem Formulation. The intent is specified in natural lan-
guage, so recommending configuration examples with the
same type of intent can be regarded as a semantic alignment
problem. Given a user intent f i

user and example intent f j
exp,

this problem is solved by evaluating whether the semantics of
intent f i

user and intent f j
exp are consistent.

Intent preprocessing. Due to the flexibility of natural lan-
guage expression, the same intent can be expressed in various
ways. For example, a path-preference intent may be described
as "For traffic from R1 to R4, the route (R1, R3, R4) is pre-
ferred over route (R1, R2, R4)." or "Traffic from R1 to R4
prioritizing taking (R1, R3, R4) over (R1, R2, R4).". In addi-
tion, there may be some proper nouns in the intent description,
such as specific device names and IP address, which do not
impact the semantic meaning of the intent. To improve the
accuracy of example recommendation, we propose an intent
preprocessing approach that normalizes original intents into
specific unified expression formats without specific proper
nouns. Specifically, we first define a unified expression for-
mat for each intent type. We then leverage GPT-4o to convert
the original intent into a unified expression format using a
few-shot prompt (described in detail in Appendix A.1). For
example, for the example intent and user intent described in
Figure 3, we use GPT-4o to both convert them into the uni-
fied expression format "BGP routing. Traffic from source to

3Note: Manual proofreading is required only once for accurate parsing.
The parsed examples can be applied to numerous relevant target scenarios.

destination prefers path1 over path2". In this unified format,
generic terms "source" and "destination" replace specific de-
vice names, and "path1" and "path2" replace detailed path
information. We denote a normalized intent with respect to
an original intent f as norm(f).
Intent Encoding. To evaluate the semantic similarity between
two intents, Sentence-BERT (SBERT) [40] is the most popu-
lar NLP model suitable for this task, as it can efficiently map
each sentence to a vector space where semantically similar
sentences are close to each other. For each pair of normal-
ized intents of user intent norm(f i

user) and example intent
norm(f j

exp), denoted as (norm(f i
user),norm(f j

exp)), we first
use the encoder e(⋅) of SBERT to encode them into a pair of
embedding vectors (e(norm(f i

user),e(norm(f j
exp))). We then

use cosine similarity to measure the similarity between these
two embedding vectors, which is calculated by

Sim(e(norm(f i
user),e(norm(f j

exp)))= (1)

e(norm(f i
user)⋅e(norm(f j

exp))
∣∣e(norm(f i

user)∣∣×∣∣e(norm(f j
exp))∣∣

(2)

The cosine similarity calculates the cosine of the angle be-
tween two vectors, which is often used to measure the seman-
tic similarity, typically involving text data. If this similarity
exceeds a threshold τ (0.9 in the evaluation), we consider
intent f i

user and f j
exp to be semantically aligned, i.e., they be-

long to the same type of intent. Therefore, the configuration
example corresponding to intent f j

exp is regarded as a poten-
tial reference example ci

j. We define a set Ci={ci
1,c

i
2,...,c

i
k}

to denote these potential reference examples, where k is the
number of these examples. If k=1, we directly consider this
example as the most relevant example for the user intent f i

user.
3.1.2 Recommendation based on intent graph similarity
The Querier recommends the most relevant example from the
top-k examples based on the intent graph similarity.
Problem Formulation. The most relevant example should
have the similar intent to the user intent and simultaneously
share topological similarity. Thus, we construct an intent
graph for a pair of the intent and topology to consider both
the two factors at the same. In this way, we transform the
problem of recommending the most relevant example into a
graph similarity problem.
Intent Graph Construction. Given an intent and a network
topology, we first formulate the topology as an undirected
graph, where each node v and each edge denote a device
and a physical link in this topology, respectively. We then
embed the intent into the graph by adding a specific attribute
called "Role" to each node based on the intent. We refer to
the topology graph embedding the intent as the intent graph
g. We use GPT-4o to achieve this more effectively, due to
their superior natural language processing capability. We first
define a role set for each type intent. The role set should cover
all possible roles that a device may play in fulfilling that type
of intent. For example, for the path preference intent, as shown

1332 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

in Figure 3, we define the role set as {route preference, relay,
non-involvement, destination}, where route preference refers
to a device that prefers a neighbor for traffic transmission,
such as R1 and RA in Figure 3. non-involvement denotes a
device that does not participate in traffic transmission, such
as R6 in Figure 3. We then utilize GPT-4o to extract "Role"
rv for each node v from the intent using few-shot prompt.
We describe attribute extraction with GPT-4o in detail in
Appendix A.2. Under complex network scenarios, we can use
a feature combination to define a role.
Graph Encoding. Give an intent graph g, we first leverage
FastText [8], a NLP model, to encode the attribute values of
nodes into vectors. FastText is efficient to learn word embed-
ding through learning n-grams at the character level. We con-
struct a corpus including the attribute values of all intent types,
and adopt unsupervised learning to train a FastText model on
this corpus. For each node v∈V , we utilize the trained FastText
model to encode its textual attribute rv into a vector xv=e(rv),
where e(⋅) is the encoder.

We then adopt GraphSAGE [25], the most popular GNN al-
gorithm, to calculate the embedding of each node v in the
graph g. Before describing how a GraphSAGE model is
trained in this work, we show how GraphSAGE is used to per-
form node embedding. GraphSAGE uses L aggregators (de-
noted AGGREGAT El ,∀l∈{1,2,...,L}) and a set of weight ma-
trices W l ,∀l∈{1,...,L} to generate node embedding through l
loops. At each loop l, node v’s embedding is calculated by

hl
v←σ(W l ⋅CONCAT(hl−1

v ,hl
N (v))) (3)

where, σ is a nonlinear activation function, CONCAT is a
concatenation operator. N (v) is the set of neighbor nodes of
the node v. The initial value of node embedding is its feature
vector, i.e., h0

v=xv. hl
N (v) is the neighborhood representation

of node v at the l-th loop, which is calculated by
hl
N (v)←AGGREGAT El({hl−1

u ,∀u∈N(v)}) (4)

where hl−1
u is neighbor node u’s embedding at the l−1-th loop.

We use a global pooling method to aggregate the embed-
dings of all nodes in a graph g into a single vector as the
representation of the graph through a MeanPool operator. The
embedding of a graph g is represented as:

Eg=MeanPool({hv,∀v∈V}) (5)
where hv denotes the embedding of node v, which is this node
embedding obtained from the last loop L.

For each pair of user intent graph gi
user and example intent

graph gi
exp, we use euclidean distance to measure the similar-

ity between their graph embedding vectors Egi
user

and Egi
exp

. A
similarity score is calculated by

Score(Egi
user

,Egi
exp
)= 1

d(Egi
user
−Egi

exp
) (6)

where d(⋅) is the L1 distance, which is often used in graph or
node evaluation to capture the absolute differences between
corresponding features. For a user intent graph gi

user associ-
ated with the user intent f i

user and target topology Ttgt , we

Figure 7: An instance of establishing the association between
device in target and example topologies.

use the above graph similarity measurement to find the top-1
similar example intent graph, and consider the configuration
example associated with the top-1 example intent graph as
the most relevant example zi for the user intent f i

user.
3.2 Classifier
For each user intent f i

user and its corresponding configuration
example zi, the Classifier aims to establish the association
between devices in target topology Ttgt and those in topology
T i

exp of the example zi. The Classifier adopts a two-stage classi-
fication strategy to establish accurate association relationships
on intent graphs constructed in §3.1.2. The Classifier first es-
tablishes the association relation based on the device’s roles.
If a device in target topology Ttgt is associated with multiple
devices in example topology T i

exp that have the same roles,
the Classifier then adopts GraphSAGE to map this device to a
specific one among these multiple devices in example topol-
ogy T i

exp based on neighborhood similarity. Figure 7 shows an
instance of the Classifier establishing the association between
devices in the target and example topologies.
Problem Formulation. We formalize this problem as a node
classification problem on an intent graph pair of gi

user and gi
exp,

where gi
user is the user intent graph with respect to user intent

f i
user and target topology Ttgt , as well as gi

exp is the example
intent graph corresponding to the example zi of the user intent
f i
user. In an intent graph gi

user (or gi
exp), each node vuser (or

vexp) is characterized by its role rvuser (or rvexp).
3.2.1 Classification based on role description
Given a pair of user intent graph gi

exp and example intent
graph gi

user, the Classifier maps the nodes in the example
intent graph gi

user to these nodes in the intent graph gi
user

based on their roles. For each node vexp in the graph gi
exp, the

Classifier sequentially evaluates whether the role rvuser of each
node vuser in the user graph gi

user exactly match those rvexp of
node vexp, and if so, establishes an association between node
vexp and node vuser. In other words, node vuser is associated
with vexp, if and only if rvuser=rvexp .
3.2.2 Classification based on neighborhood similarity
If a node vuser in user intent graph gi

user is associated with mul-
tiple nodes in example intent graph gi

exp, the Classifier further

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1333

Figure 8: The workflow of LLM-driven synthesis method.

maps this node to a specific one among these multiple nodes.
The Classifier first uses FastText to encode the node’s textual
attribute rvuser into a vector xvuser , as described in §3.1. The
Classifier then uses GraphSAGE to calculate the embedding
hvuser of node vuser by aggregating its neighborhood embed-
dings in the graph gi

user, as described in Equation 3 and 4.
Simultaneously, for each node vexp in graph gi

exp that has the
same roles with vuser, the Classifier uses FastText and Graph-
SAGE to calculate its embedding hvexp . Finally, the Classifier
uses the Euclidean distance to measure the similarity between
two node embedding vectors. For each node embedding pair
of hvuser and hvexp , a similarity score is calculated by

Score(hvuser ,hvexp)=
1

d(hvuser−hvexp)
(7)

where, d(⋅) is the L1 paradigm. The Classifier uses the above
similarity measurement to map the node vuser to the specific
node vexp that has the highest similarity score.
3.2.3 Training GraphSAGE model
Given some intent graph pairs and node association relations
in these graphs, we can generate a training corpus for training
a GraphSAGE model. We construct positive pairs from nodes
with associated relationships and negative pairs from nodes
that are not associated. We train GraphSAGE model by mini-
mizing the following margin-based ranking loss functions:

L= ∑
(u,v)∈S

∑
(u,v′)∈S′

[d(hu,hv)+γ−d(hu,hv′)]+ (8)

where S is the set of positive pairs, S
′

denotes the set of
negative pairs of the node u. hu, hv and hv′ are the embedding
of node u, v and v

′

, which are calculated by GraphSAGE using
Equation 3 and 4. γ (set to 3 in the evaluation) is a margin
hyperparameter that separates positive and negative pairs.
3.3 An efficient LLM-driven synthesis method
To accelerate synthesis without compromising correctness,
we propose an efficient LLM-driven synthesis method. Figure
8 shows the detailed workflow, including four stages. In the
template generation, CEGS aims to generate templates with
respect to each user intent. To guarantee the configuration cor-
rectness, CEGS first verifies template correctness. Once LLM
correctly generates templates for all intents, CEGS merges
these templates and then employs the Formal synthesizer to
fill in the templates so that all intents are achieved.
3.3.1 Template generation
In this stage, CEGS leverages an LLM to generate templates
for all devices in target topology Ttgt with respect to each user
intent f i

user. Due to the limited context window of the LLM,
it cannot generate templates for all devices under large-scale

Figure 9: Configuration template for router R1 with respect
to an OSPF routing intent described in Figure 5.

typologies at once. To address this problem, we divide the
devices in the topology into multiple subsets and generate
the templates of devices in each subset in batches. We verify
the templates for all devices collectively, so generating con-
figurations for each batch separately do not compromise the
correctness of the final configuration 4. To speed up synthesis,
we parallelize the template generation for devices in each
subset, rather than processing them sequentially.

For each user intent f i
user, CEGS first uses LangChain [10]

to construct a prompt for each batch. We show an instance of
the prompt construction in Figure 14 in Appendix A.4. We
then call the LLM multiple times in parallel, feeding each
batch’s prompt to generate templates for all devices simulta-
neously. Each template is the configuration where some of
network policy parameters (e.g., OSPF cost, route-map im-
port or export parameters) are left symbolic, as illustrated in
Figure 4 and Figure 9.
3.3.2 Template verification
In this stage, CEGS verifies configuration templates with
respect to each user intent. For the templates corresponding to
the intent f i

user, CEGS first uses the Syntax Verifier to check
the template syntax correctness, and then utilizes the LAV
and GFV to jointly verify their semantic correctness.
Syntax verification. To verify template syntax correctness,
we develop a Syntax Verifier by extending the Batfish [19]
parser to treat symbols defined in the templates as valid syntax.
If Syntax Verifier checks any invalid syntax, it reports relevant
lines with invalid syntax to LLM for error correction.
Semantic verification. To speed up synthesis, it is crucial to
provide localization feedback for LLMs to rapidly correct er-
rors. To achieve this, we develop the LAV and GFV to jointly
verify template semantic correctness by performing local ver-
ification and global verification. If LAV or GFV check any
errors, it provides localized feedback in natural language.

● LAV The LLM may produce incorrect templates that do
not follow the target topology and user intent descriptions,
such as misconfiguring interfaces or incorrectly declar-
ing or missing networks or neighbors. For this, we de-
velop the LAV (that we wrote in Python) to perform local
verification on each device template, checking whether
it complies with the specified descriptions. Specifically,
for each device template, the LAV first parses device at-
tributes such as interface attributes (e.g., interface names,
IP addresses), protocol attributes (e.g., AS number, pro-

4In our experiments, the size of subset is 40.

1334 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cess id) from the topology and intent descriptions. It then
checks if the template correctly configures each attribute
following these descriptions. If the LAV checks any er-
rors, it provides localized feedback which indicates which
configuration lines on which devices may be incorrect.

● GFV The LLM may produce templates that do not follow
the intended global network policy. For this, we develop
the GFV based on the NetComplete to perform global
verification on the templates across all devices. The GFV
ensures that configurations with interdependencies and
cross-device impacts are correct. It reduces this task to a
constraint satisfaction problem that it solves with SMT
solvers [15]. The GFV uses SMT to encode the templates
and uses variables to represent the symbolic in templates.
To encode the user intents, the GFV first employs GPT-4o
to convert the user intent from natural language to formal
specification defined by the NetComplete using a few-shot
prompt. We provide an instance how to use GPT-4o to
convert natural language intents into formal specifications
in Appendix A.3 and discuss the accuracy in section.4.2.
The GFV then encodes the formal specification as SMT
constraints. The GFV attempts to find a set of values to fill
in the policy templates so that the formal specifications
are achieved. If the GFV cannot find an appropriate set
of values, it provides localized feedback indicating which
devices have incorrect network policy configuration tem-
plates. Even when the GFV finds feasible values, we do
not immediately fill in the templates. Instead, we retain the
templates and fill in them collectively during the template
filling phase based on all the intents together. 5

Taking the configuration verification for an BGP routing
intent as an example, we illustrate how our LAV and GFV
work. Figure 4 shows the configuration template of a device
with respect to a BGP routing intent (the user intent shown
in Figure 3). We use the LAV to locally verify each device’s
interface configuration (lines 2-11 in Figure 4) and BGP basic
configuration (lines 12-22 in Figure 4) including AS number
and neighbor settings. The LAV first extracts the interface de-
scription, AS number, and IP addresses of all neighbors from
the target topology description. It then checks whether the
interface configuration and BGP basic configuration follow
these descriptions. Since the routing policy configurations
of individual devices affect each other and work together to
achieve the intended global routing policy, we use the GFV to
globally perform a formal verification on policy configuration
templates (lines 23-33 in Figure 4) for all devices.

In some cases, we can complete the template verification
using only the LAV, such as for an OSPF routing intent. Fig-
ure 9 illustrates a configuration template for a device with
respect to an OSPF routing intent. Under the OSPF protocol,
achieving a specific global routing policy involves setting an

5While it is theoretically possible for both the formal specification and
the template to be incorrectly generated yet still satisfy the SMT constraints,
such cases are rare in practice. We plan to address this in future work.

appropriate OSPF cost for each link. The templates represents
the OSPF costs as symbols, which are comprehensively filled
using the Formal Synthesizer in template filling phase. Thus,
we can use the LAV to locally verify each device’s template
by checking whether the interface configuration (lines 1-8)
correctly sets interface attributes following the target topol-
ogy description and contains the OSPF cost settings (line 4
and line 8). At the same, we use the LAV to locally check
whether OSPF basic settings and network statement settings
(lines 9-13) comply with the topology description.
3.3.3 Template merging
Once the LLM correctly generates configuration templates
with respect to all intents. We merge the templates of each
device with respect to all intents into a whole. In general, the
configuration consists of multiple independent configuration
segments, each of which implements a specific function. Thus,
we merge the templates based on configuration segments. For
each device, we merges the configuration segments associated
with each specific function across all intents, and then merges
the segments corresponding to different functions.
3.3.4 Template filling
Since NetComplete [17] can support configuration synthesis
under large-scale realistic networks and cover more type of
intents, we select NetComplete as our Formal Synthesizer
(FS). We first employ GPT-4o to transform each user intent in
natural language into the formal specification defined by Net-
Complete using a few-shot prompt. We then feed the merged
templates for all devices, along with the formal specifications
associated with all intents and the target topology to Net-
Complete to generate concrete values for policy parameters,
thereby filling in the templates. The configurations gener-
ated by the Formal Synthesizer are correct and can satisfy the
specified intents, because the Formal Synthesizer uses SMT-
based formal methods to fill templates according to intent
constraints, which has been validated in [17].

4 EVALUATION
We implemented CEGS in around 8K lines of Python code.
We evaluate CEGS from three aspects: 1) How does CEGS
compare to the state-of-the-art LLM-based configuration syn-
thesis system COSYNTH [36] and NETBUDDY [49] [51]?
2) How does CEGS perform in achieving various set of in-
tents across different network scales? 3) How do the core
components of CEGS perform?
4.1 Experiment setup
We run all our experiments on a server with 80 core 2.1
GHz processors and 256GB RAM. We evaluate CEGS,
COSYNTH, and NETBUDDY in generating Cisco router
configurations that comply with the specific routing intents.
Topologies. We sampled 20 real-world ISP PoP-level net-
work topologies from Topology Zoo dataset [29], with scales
ranging from 20 to 754 routers. These topologies include 12
commercial networks and 8 educational networks, covering

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1335

various areas such as metro, region, country, and continent.
Moreover, we constructed a larger topology with 1094 routers
by merging three of sampled topologies from the region area.
Intents. We consider six types of prevailing routing intents,
covering Static, OSPF, and BGP protocols. For Static pro-
tocol, we examine static route intents. For OSPF protocol,
we evaluate ECMP and Any-path intents. For BGP protocol,
we investigate Simple, Ordered, and No-transit intents. Each
intent is defined between a randomly selected source src and
destination dst pair and feasible paths. For a static route or
a BGP Simple intent, we randomly select one feasible path
p from src to dst, specifying that traffic from src to dst must
follow the path p. For ECMP, Any-path, or Ordered intents,
we first randomly select two available paths p1 and p2 from
src to dst. For an ECMP intent, traffic from src to dst is
load-balanced among paths p1 and p2. For a Any-path intent,
traffic from src to dst can be forwarded along either path
p1 or p2. For an Ordered (i.e., path preference) intent, traffic
from src to dst prefers path p1 over path p2. We store the
source-destination pair and feasible paths for each intent to
facilitate configuration validation using Batfish in Sec.4.2. We
utilize GPT-4o to generate intent description using few-show
examples provided by NetOps experts. We describe these few
examples and prompt construction in detail in Appendix.A.5.
Configuration examples corpus. We parsed 300 configura-
tion examples from Cisco documentation and a cloud service
provider, covering 40 types of intents, such as BGP routing,
OSPF routing, and more. The examples for each type intent
cover various networks with different topological features.
LLM selection. In the following experiments, we utilize GPT-
4o to generate configurations, owing to its superior capabili-
ties in configuration generation, compared to other models,
as shown in Table 9 in Appendix B.2.
GraphSAGE model. We ask NetOps experts to help con-
struct 100 intent graphs. For each pair of matching graphs,
we ask the experts to label the associations between corre-
sponding nodes in the two graphs. We then treat the node
and its associated counterpart in the other graph as positive
node pairs, while pairing the node with other non-associated
nodes as negative pairs. These labeled pairs are used to create
a training corpus, which is then used to train a GraphSAGE
model using the loss function described in equation 8. This
model consists of two hidden layers, each with 128 neurons,
and is trained with a learning rate of 0.001.
Metrics. We present the synthesis system performance using
three metrics: loops, synthesis time, and SMT solving time.
We measure intent diversity using a semantic richness metric,
defined as the average similarity between pairs of intents of
the same type using SBERT embeddings. In our evaluation,
the semantic richness across intent types is 0.52.
4.2 Correctness evaluation
Intent Formalization Accuracy. CEGS uses formal methods
to verify and fill in templates created by LLM, which depends

Table 1: Comparison results between CEGS and COSYNTH.
U stands for unsuccessful generation.✓ (or ×) indicates that
the synthesized configurations satisfy (or do not satisfy) the
intents as verified by Batfish.

No-transit intents 3 21 55
Synthesis system CEGS COSYNTH CEGS COSYNTH CEGS COSYNTH
Automatic loops 2 300(U) 4 300(U) 5 300(U)
Synthesis time 24s 1h(U) 58s 1h(U) 1m32s 1h(U)

(SMT time) (5s) (0) (13.2s) 0 (21s) (0)
Verified × × ×

Manual loops 0 2 0 5 0 22

Table 2: Comparisons between CEGS and NETBUDDY.
ECMP intents 2 6 10
Synthesis system CEGS NETBUDDY CEGS NETBUDDY CEGS NETBUDDY
Automatic loops 1 300(U) 3 300(U) 4 300(U)
Synthesis time 42s 3h(U) 2m2s 3h(U) 3m26s 3h(U)

(SMT time) (8s) (0) (20s) (0) (32s) (0)
Verified × × ×

Manual loops 0 3 0 8 0 12

on accurately converting natural language intents into formal
specifications. CEGS handles this with GPT-4o using few-
shot prompts. To evaluate GPT-4o’s accuracy, we wrote a
Python script that converts each intent from our evaluations
into the expected formal specification. We then asked GPT-
4o to translate these intents and compared its output with the
expected results. Our results show that GPT-4o achieved 100%
accuracy in converting 1,350 intents from our evaluations.
Validation. We validate the configurations synthesized by a
synthesis system using Batfish. We wrote a Python script to
automate this verification process based on the information
collected in Section 4.1 about the source-destination pair and
feasible paths corresponding to the intent. Specifically, we
utilize Batfish "traceroute" to analyze the packet transmission
path from a source to a destination specified by the intent.
For a Static route intent or Simple intent, we check whether
the path matches the expected path. For an Any-path intent,
we first check whether the path is either path p1 or p2 as
specified by the intent. We then break a random link on the
path p1 and a random link on p2, and use Batfish "traceroute"
to verify whether there is no path for packet transmission. For
an Ordered intent, we first check whether the path matches
the preferred path specified by the intent. We then randomly
break a link on the preferred path, and use Batfish "tracer-
oute" to verify whether the transmission path is changed to
the secondary path specified by the intent. For an ECMP in-
tent, we use Batfish "multipathConsistency" to verify whether
there are equal paths as specified by the intent for traffic
transmission from its source to destination. For a No-transit
intent, we first use Batfish’s "traceroute" to verify that there
is no transmission path between two routers that should not
communicate, as specified in the intent. We then use Batfish
"traceroute" to verify whether a feasible path exists between
two routers that are expected to communicate.
4.3 Comparison to COSYNTH and NETBUDDY
Since COSYNTH and NETBUDDY limit their scopes to dif-
ferent configuration scenarios, we compare them individually.
COSYNTH does not have publicly available code, so we re-
produced it based on the provided method descriptions in its

1336 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

paper. We have verified that our reproduction aligns with the
experimental results reported in [36]. For NETBUDDY, we
use its released source code [50] for evaluation.

COSYNTH focuses on star networks and BGP no-transit
intents, so we compare it in this context. In a star network,
a central router connects to a CUSTOMER IP, while other
routers connect to various ISPs. A no-transit intent specifies
that two routers from different ISPs cannot communicate with
each other, but can communicate with the CUSTOMER. We
evaluate CEGS and COSYNTH on 3 star topologies from
a service provider, each with 4, 8, and 12 routers, and con-
taining 3, 21, and 55 no-transit routing intents, respectively.
Table 1 presents the performance of CEGS and COSYNTH.
We observe that CEGS can synthesize correct configurations
that satisfy different set of no-transit intents within 2 minutes
without human involvement. However, COSYNTH fails to
synthesize correct configuration within 300 loops and requires
extra manual loops to correct errors, taking over 3 hours. De-
spite extra SMT time due to the Formal Synthesizer, CEGS’s
total synthesis time is much shorter than COSYNTH’s. The
main reason is that COSYNTH does not fully leverage the
EFG capabilities of LLMs. COSYNTH asks LLM to com-
plete configuration synthesis which involves complex logical
reasoning based solely on user intents, without providing any
examples or leveraging formal methods for logical reasoning.
Thus, it requires human experts for correction. As a result,
COSYNTH is more than 30 times slower than CEGS, even
with expert involvement.

We compare CEGS with NETBUDDY in achieving ECMP
(i.e., load-balancing) intents under a topology with 36 routers.
To simplify configuration synthesis, NETBUDDY divides
configuration synthesis into three subtasks: translating natural
language intents into formal specifications, generating high-
level configurations (e.g., routing information), and generat-
ing network low-level configurations. However, NETBUDDY
still fails to produce correct configurations within 3 hours and
needs manual intervention, as shown in Table 2. The main
reason is that it lacks appropriate configuration examples for
LLM reasoning. In contrast, CEGS utilizes the Querier to
provide relevant configuration examples, along with formal
methods for logical reasoning. CEGS can quickly synthe-
size correct configurations within 4 minutes without human
involvement, over 45 times faster than NETBUDDY.
4.4 Performance under different set of intents and dif-

ferent network scales
In this subsection, we further evaluate the performance of
our CEGS for achieving various set of intents under different
network scales. First, we evaluate CEGS performance in syn-
thesizing configurations for varying numbers of intents across
different network sizes. Table 3 and Table 4 show the results
of our CEGS for synthesizing configurations for OSPF intents
and BGP intents, respectively. We observe that the synthesis
time and SMT time are proportional to the number of intents
and the topology size. This is because more times of LLM

Table 3: CEGS performance in synthesizing configurations
for various numbers of OSPF intents.

Network Intent
#Intents Loops

Synthesis time
Verified

size type (SMT time)

20∼50

ECMP
2 2 42.4s (4.2s) ✓

4 2 1m18s (8.1s) ✓

6 3 2m10s (18.9s) ✓

Any-path
2 2 43.5 (4.5s) ✓

4 2 1m20s (9.2s) ✓

6 3 2m15s (20.5s) ✓

150∼200

ECMP
2 4 1m30s (8.2s) ✓

4 5 2m5s (17.3s) ✓

6 5 3m10s (21.4s) ✓

Any-path
2 4 1m40s (15s) ✓

4 5 2m15s (24s) ✓

6 5 3m20s (29s) ✓

1094

ECMP
2 9 5m35s (32s) ✓

4 9 6m30s (51s) ✓

6 10 7m50s (1m3s) ✓

Any-path
2 9 6m44s (2m10s) ✓

4 10 10m33s (4m23s) ✓

6 10 14m30s (7m35s) ✓

Table 4: CEGS performance in synthesizing configurations
for various numbers of BGP intents.

Network Intent
#Intents Loops

Synthesis time
Verified

size type (SMT time)

20∼50

Simple
2 3 1m20s (10s) ✓

4 3 2m10s (12.5s) ✓

6 4 3m5s (19s) ✓

Ordered
2 4 1m40s (13s) ✓

4 6 2m28s (16s) ✓

6 6 3m25s (24s) ✓

150∼200

Simple
2 6 3m30s (45s) ✓

4 7 4m35s (58s) ✓

6 8 6m8s (1m2s) ✓

Ordered
2 8 4m15s (40s) ✓

4 11 5m40s (1m5s) ✓

6 13 6m55s (1m15s) ✓

1094

Simple
2 18 11m35s (2m50s) ✓

4 19 13m15s (3m50s) ✓

6 22 14m40s (4m40s) ✓

Ordered
2 30 18m40s (8m45s) ✓

4 34 20m35s (9m50s) ✓

6 37 24m50s (10m30s) ✓

inference are required for generating configuration templates
and more symbolic policy parameters need be calculated by
the Formal Synthesizer. The configurations synthesized by
CEGS satisfy the corresponding intents, as verified by Batfish.
On average, configurations for each device in OSPF intent
scenarios consist of about 20 lines, and those in BGP intent
scenarios consist of about 35 lines.

We then evaluate the performance of CEGS under more
complex configuration scenarios, where multiple types of in-
tents must be achieved simultaneously. We construct three
scenarios, each involving different combinations of intents
across the same or different protocols within a network of 197
routers. In Scenario Scen1, 5 BGP No-Transit and 5 Ordered
intents need to be satisfied. Scenarios Scen2 and Scen3 in-
volve different types of intents across different protocols. As
shown in Table 5, CEGS can synthesizes configurations that
satisfy multiple types of intents simultaneously. Even in the
third scenario, including 15 intents across Static, OSPF, and
BGP protocols, CEGS can synthesize correct configurations
for 197 routers within 11 minutes. Configurations of each

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1337

Table 5: CEGS performance in synthesizing configurations
for various combinations of multiple types of intents.

Scenarios Protocols Intent type #intents Loops
Synthesis time

Verified
(SMT time)

Scen1 BGP
No-transit 5

13 7m30s (45s) ✓
Ordered 5

Scen2
Static static route 5

3 4m36s (30s) ✓
OSPF ECMP 5

Scen3
Static static route 5

11 10m30s (1m42s) ✓OSPF ECMP 5
BGP Ordered 5

Table 6: Ablation study results on six core components.
Querier Classifier Syntax Verifier LAV GFV Formal Synthesizer Loops
× × ✓ ✓ ✓ ✓ 300(U)
✓ × ✓ ✓ ✓ ✓ 35
✓ ✓ × ✓ ✓ ✓ 300(U)
✓ ✓ ✓ × ✓ ✓ 300(U)
✓ ✓ ✓ ✓ × ✓ 300(U)
✓ ✓ ✓ ✓ ✓ × 50
✓ ✓ ✓ ✓ ✓ ✓ 10

device in scenario Scen1, Scen2, and Scen3 contain about an
average of 40 lines, 23 lines, and 52 lines, respectively.
4.5 Ablation Study
To evaluate the contribution of six core components in CEGS,
we conduct ablation experiments on the sampled 20 realistic
topologies, each with one BGP Ordered intent. Since the Clas-
sifier depends on the Querier, when evaluating the Querier, we
both remove Querier and Classifier, and instruct GPT-4o to
generate configuration templates without examples. For eval-
uating other components, we disable the specific component’s
functionality in CEGS. From Table 6, we observe that CEGS
achieves the best performance when all components are em-
ployed simultaneously. Without the Querier and Classifier,
CEGS fails to synthesize correct configurations within 300
loops, indicating the importance of configuration examples
for automating EFG. Compared to not using the Classifier,
CEGS can more rapidly synthesizes correct configurations
by matching examples to appropriate devices using Classifier.
Without a Formal Synthesizer, CEGS requires more loops to
synthesize correct configurations, as GPT-4o struggles to cor-
rectly specify policy parameters. Without the Syntax Verifier,
LAV or GFV, CEGS fails to synthesize correct configura-
tions within 300 loops due to the lack of error feedback. We
discuss the performance of Querier’s recommendation and
Classifier’s classification strategies in detail in Appendix B.
We discuss how to generalize CEGS in Appendix D.

5 RELATED WORK
Intent-based Networking. Intent-based networking [26, 30]
is a networking paradigm that automates network optimiza-
tion to achieve desired goals by defining high-level intents,
which has been well-adapted in Software-Defined Networks
(SDN) [38, 57, 61]. For example, LUMI [27] allows operators
to express intents in natural language, converts them into for-
mal intents and automatically generates configurations. LUMI
takes operator feedback to verify the intents are correct.
Configuration Verification. Configuration verification
tools [2, 5, 19, 45, 48, 54] aim to check whether the configura-

tions comply with the network policies in control plane using
formal methods. For example, Minesweeper [5], FSR [48]
and Bagpipe [54] uses SMT solvers for verification.
Configuration Synthesis. Configuration synthesis tools
[1, 6, 7, 16, 17, 22, 39, 43, 44, 46] aim at synthesizing net-
work configurations out of high-level intents. These tools
can be categorized into two types: DSL-based synthesizers
and template-based synthesizers. DSL-based synthesizers re-
quire operators to express intents using the customized DSL,
after which they compile these intents into correct configura-
tions. Template-based synthesizers require network operators
to provide suitable configuration templates, which then auto-
matically fill in the templates. However, these synthesizers
still require human involvement (using DSL to express in-
tents or designing appropriate configuration templates) in the
synthesis process, because they lack a core capability of EFG.
LLMs and GNNs for configuration synthesis. Confi-
gReco [24] is a GNN-based configuration recommendation
tool, which recommends high likelihood configuration snip-
pets to operators. Researchers have explored the ability of
LLM to write network configuration. NETBUDDY [49] [51]
uses a multi-stage pipeline to leverage LLMs for configu-
ration synthesis. COSYNTH [36] adopts a verified prompt
programming strategy that combines the LLM with verifiers
to translate intents into router configurations. However, NET-
BUDDY and COSYNTH still require expert involvement in
the synthesis process, as they do not fully utilize the potential
EFG capability of LLM. PreConfig [31], a pretrained model,
is designed to automate network configuration. Although it
has the potential ability to generate configuration snippets, it
cannot generate complete network-wide configurations.

6 CONCLUSIONS
We presented CEGS that leverages LLMs to automate EFG
in configuration synthesis. CEGS takes a set of high-level
intents in natural language, a network topology and the de-
vice documentation as input, and automatically synthesize
correct network configurations. Our results show that CEGS
can synthesize correct configurations for complex intents on
various realistic networks. While this paper focuses on con-
figuration synthesis, we believe that the automation of EFG
can be applied to other configuration management tasks.
This work raises no ethical concerns.

7 Acknowledgments
We thank our shepherd Sanjay Rao and the anonymous
NSDI reviewers for their constructive comments. Dan Li
and Yukai Miao are the corresponding authors. This work
was supported by National Key R&D Program of China
(2022YFB3105000), the Beijing Outstanding Young Scientist
Program (No. JWZQ20240101008), the National Natural Sci-
ence Foundation of China under Grant U23B2001, and was
supported by Zhongguancun Laboratory.

1338 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,

and Aditya Akella. Aed: Incrementally synthesizing
policy-compliant and manageable configurations. In
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
pages 482–495, 2020.

[2] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson,
and Aditya Akella. Tiramisu: Fast multilayer network
verification. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
201–219, 2020.

[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[4] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin
Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. Palm 2 technical report. arXiv preprint
arXiv:2305.10403, 2023.

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David
Walker. A general approach to network configuration
verification. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 155–168, 2017.

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Don’t mind the gap: Bridg-
ing network-wide objectives and device-level configu-
rations. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 328–341, 2016.

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra
Padhye, and David Walker. Network configuration syn-
thesis with abstract topologies. In Proceedings of the
38th ACM SIGPLAN conference on programming lan-
guage design and implementation, pages 437–451, 2017.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. Enriching word vectors with subword
information. Transactions of the association for compu-
tational linguistics, 5:135–146, 2017.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[10] Harrison Chase. Langchain.(2022). https://github.
com/langchain-ai/langchain, 2022.

[11] Huangxun Chen, Yukai Miao, Li Chen, Haifeng Sun,
Hong Xu, Libin Liu, Gong Zhang, and Wei Wang.
Software-defined network assimilation: bridging the last
mile towards centralized network configuration manage-
ment with nassim. In Proceedings of the ACM SIG-
COMM 2022 Conference, pages 281–297, 2022.

[12] Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Furu Wei,
Denvy Deng, and Qi Zhang. Uprise: Universal prompt
retrieval for improving zero-shot evaluation. arXiv
preprint arXiv:2303.08518, 2023.

[13] Richard Chirgwin. Google routing blunder sent japan’s
internet dark on friday. The Register, 2017.

[14] G. Corfield. British airways’ latest total inability to sup-
port upwardness of planes* caused by amadeus system
outage, July 2018.

[15] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[16] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. Network-wide configuration syn-
thesis. In Computer Aided Verification: 29th Inter-
national Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II 30, pages 261–
281. Springer, 2017.

[17] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever,
and Martin Vechev. NetComplete: Practical Network-
Wide configuration synthesis with autocompletion. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 579–594, Renton,
WA, April 2018. USENIX Association.

[18] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jil-
iang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web confer-
ence, pages 417–426, 2019.

[19] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
469–483, 2015.

[20] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. Pal: Program-aided language models. In In-
ternational Conference on Machine Learning, pages
10764–10799. PMLR, 2023.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1339

[21] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jin-
liu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen Wang.
Retrieval-augmented generation for large language mod-
els: A survey. arXiv preprint arXiv:2312.10997, 2023.

[22] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan,
and Hongqiang Harry Liu. Automatically repairing
network control planes using an abstract representation.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 359–373, 2017.

[23] GitHub. Github copilot: Your ai pair programmer, 2023.

[24] Zhenbei Guo, Fuliang Li, Jiaxing Shen, Tangzheng Xie,
Shan Jiang, and Xingwei Wang. Configreco: Network
configuration recommendation with graph neural net-
works. IEEE Network, 2023.

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

[26] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K
Reiter, and Vyas Sekar. Intent-driven composition of
resource-management sdn applications. In Proceedings
of the 14th International Conference on emerging Net-
working EXperiments and Technologies, pages 86–97,
2018.

[27] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro,
Ronaldo A Ferreira, Lisandro Z Granville, Walter Will-
inger, and Sanjay G Rao. Hey, lumi! using natural lan-
guage for {intent-based} network management. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 625–639, 2021.

[28] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan
Natarajan, Suresh Parthasarathy, Sriram Rajamani, and
Rahul Sharma. Jigsaw: Large language models meet
program synthesis. In Proceedings of the 44th Inter-
national Conference on Software Engineering, pages
1219–1231, 2022.

[29] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys
Bowden, and Matthew Roughan. The internet topology
zoo. IEEE Journal on Selected Areas in Communica-
tions, 29(9):1765–1775, 2011.

[30] Aris Leivadeas and Matthias Falkner. A survey on intent-
based networking. IEEE Communications Surveys &
Tutorials, 25(1):625–655, 2022.

[31] Fuliang Li, Haozhi Lang, Jiajie Zhang, Jiaxing Shen,
and Xingwei Wang. Preconfig: A pretrained model
for automating network configuration. arXiv preprint
arXiv:2403.09369, 2024.

[32] Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents:
Simulating interactions of human behaviors for llm-
based task-oriented coordination via collaborative gen-
erative agents. arXiv preprint arXiv:2310.06500, 2023.

[33] Zhiming Li, Yushi Cao, Xiufeng Xu, Junzhe Jiang,
Xu Liu, Yon Shin Teo, Shang-wei Lin, and Yang Liu.
Llms for relational reasoning: How far are we? arXiv
preprint arXiv:2401.09042, 2024.

[34] Dimitrios Michael Manias, Ali Chouman, and Abdallah
Shami. Towards intent-based network management:
Large language models for intent extraction in 5g core
networks. arXiv preprint arXiv:2403.02238, 2024.

[35] Meta. Update about the 4 october outage, October 2021.

[36] Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Mill-
stein, and George Varghese. What do llms need to syn-
thesize correct router configurations? In Proceedings
of the 22nd ACM Workshop on Hot Topics in Networks,
pages 189–195, 2023.

[37] Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Bin-
quan Zhang, Chenxue Wang, Shichao Liu, and Qing
Wang. Clarifygpt: Empowering llm-based code gen-
eration with intention clarification. arXiv preprint
arXiv:2310.10996, 2023.

[38] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-
Myung Kang, Aditya Akella, Sujata Banerjee, Charles
Clark, Yadi Ma, Puneet Sharma, and Ying Zhang. Pga:
Using graphs to express and automatically reconcile
network policies. ACM SIGCOMM Computer Commu-
nication Review, 45(4):29–42, 2015.

[39] Sivaramakrishnan Ramanathan, Ying Zhang, Mohab
Gawish, Yogesh Mundada, Zhaodong Wang, Sangki
Yun, Eric Lippert, Walid Taha, Minlan Yu, and Jelena
Mirkovic. Practical intent-driven routing configuration
synthesis. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
629–644, 2023.

[40] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019.

[41] Jaromir Savelka, Arav Agarwal, Christopher Bogart, and
Majd Sakr. Large language models (gpt) struggle to
answer multiple-choice questions about code. arXiv
preprint arXiv:2303.08033, 2023.

[42] Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu.
Prompting large language models with answer heuris-
tics for knowledge-based visual question answering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14974–14983,
2023.

1340 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[43] Kausik Subramanian, Loris D’Antoni, and Aditya
Akella. Synthesis of fault-tolerant distributed router
configurations. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 2(1):1–26,
2018.

[44] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong,
and Hongyi Zeng. Robotron: Top-down network man-
agement at facebook scale. In Proceedings of the 2016
ACM SIGCOMM Conference, pages 426–439, 2016.

[45] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Ja-
yaraman, Tejas Patil, Todd Millstein, and George Vargh-
ese. Lightyear: Using modularity to scale bgp control
plane verification. In Proceedings of the ACM SIG-
COMM 2023 Conference, pages 94–107, 2023.

[46] Bingchuan Tian, Xinyi Zhang, Ennan Zhai,
Hongqiang Harry Liu, Qiaobo Ye, Chunsheng
Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. Safely and automatically updating
in-network acl configurations with intent language. In
Proceedings of the ACM Special Interest Group on
Data Communication, pages 214–226. 2019.

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[48] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren,
Boon Thau Loo, Jennifer Rexford, Vivek Nigam, An-
dre Scedrov, and Carolyn Talcott. Fsr: Formal analysis
and implementation toolkit for safe interdomain routing.
IEEE/ACM Transactions on Networking, 20(6):1814–
1827, 2012.

[49] Changjie Wang, Mariano Scazzariello, Alireza Farshin,
Simone Ferlin, Dejan Kostić, and Marco Chiesa. Netcon-
feval: Can llms facilitate network configuration? Pro-
ceedings of the ACM on Networking, 2(CoNEXT2):1–
25, 2024.

[50] Changjie Wang, Mariano Scazzariello, Alireza Farshin,
Simone Ferlin, Dejan Kostić, and Marco Chiesa. Net-
confeval github repository. https://github.com/
NetConfEval/NetConfEval, 2024. Accessed: 2024-
04-23.

[51] Changjie Wang, Mariano Scazzariello, Alireza Farshin,
Dejan Kostic, and Marco Chiesa. Making net-
work configuration human friendly. arXiv preprint
arXiv:2309.06342, 2023.

[52] Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yil-
ing Lou. Boosting static resource leak detection via

llm-based resource-oriented intention inference. arXiv
preprint arXiv:2311.04448, 2023.

[53] Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. Codet5+:
Open code large language models for code understand-
ing and generation. arXiv preprint arXiv:2305.07922,
2023.

[54] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D
Ernst, Arvind Krishnamurthy, and Zachary Tatlock.
Scalable verification of border gateway protocol con-
figurations with an smt solver. In Proceedings of the
2016 acm sigplan international conference on object-
oriented programming, systems, languages, and appli-
cations, pages 765–780, 2016.

[55] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting
Wang, and Meng Wang. Socialgcn: An efficient graph
convolutional network based model for social recom-
mendation. arXiv preprint arXiv:1811.02815, 2018.

[56] Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song,
Zhiguo Wang, and Dong Yu. Cross-lingual knowledge
graph alignment via graph matching neural network.
arXiv preprint arXiv:1905.11605, 2019.

[57] Ze Yang and Kwan L Yeung. Sdn candidate selec-
tion in hybrid ip/sdn networks for single link failure
protection. IEEE/ACM Transactions on Networking,
28(1):312–321, 2020.

[58] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. Qa-gnn: Reasoning
with language models and knowledge graphs for ques-
tion answering. arXiv preprint arXiv:2104.06378, 2021.

[59] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. Plan-
ning with large language models for code generation.
arXiv preprint arXiv:2303.05510, 2023.

[60] Yongqi Zhang and Quanming Yao. Knowledge graph
reasoning with relational digraph. In Proceedings of the
ACM web conference 2022, pages 912–924, 2022.

[61] Ziyao Zhang, Liang Ma, Kin K Leung, and Franck Le.
More is not always better: An analytical study of con-
troller synchronizations in distributed sdn. IEEE/ACM
Transactions on Networking, 29(4):1580–1590, 2021.

[62] Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Chris-
tos Faloutsos, Xin Luna Dong, and Jiawei Han. Col-
lective multi-type entity alignment between knowledge
graphs. In Proceedings of The Web Conference 2020,
pages 2241–2252, 2020.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1341

https://github.com/NetConfEval/NetConfEval
https://github.com/NetConfEval/NetConfEval

Figure 10: Example prompt for normalizing intents.

Figure 11: Example prompt for extracting attributes for each
device in the topology from the intent.

Figure 12: Example prompt for generating intent description.

A Prompt Construction
In this section, we provide detailed examples of prompt con-
struction involved in configuration synthesis with our CEGS.
A.1 Intent preprocessing prompt
Give a user intent, we normalize it using unified expression
formats. We utilize GPT-4o to convert it into this format
using a few-shot prompt. The prompt includes three parts:
the definition of unified expression formats, few examples,
and the user intent. Figure 10 illustrates an example of such a
prompt.

A.2 Role extraction prompt
Given a pair of an intent and a topology, we leverage GPT-4
to extract a role attribute for each device in the topology from
the intent using prompts with few-shot examples to embed
the intent to the topology graph. Figure 11 shows a detailed
example prompt.
A.3 Intent conversion prompt
CEGS utilizes the formal tool to verify and fill in templates.
For this, CEGS first uses GPT-4o to convert the user intent
from natural language to formal specification defined by the
formal tool using a few-shot prompt. A example prompt is
shown in Figure 13.
A.4 Template generation prompt
Figure 14 shows an example of prompt for LLM to gener-
ate configuration templates. The prompt includes six parts:
background description, configuration example, target sce-
nario, association relation between devices in the target and
example topologies, format definition of the configuration
template, and instructions. The configuration example con-
sists of a high-level intent, a topology specified in a JSON
dictionary and the configurations of all nodes in the topology.
The target network scenario includes the user intent f i

user and
target topology Ttgt . The instruct indicates which devices in
the topology the LLM should generate templates for.
A.5 Intent construction prompt
In the evaluation in Sec.4, we generate intent description
for each target scenario using GPT-4o. We first ask NetOps
experts draft few examples for each type intent. We then
utilize GPT-4o to generate intent description using a few-shot
prompt, as shown in Figure 12.

B Detailed Experimental Results
In this section, we provide detailed experiment results of
ablation study and comparison between different LLMs.
B.1 Ablation study
We conduct detailed ablation studies on the Querier’s recom-
mendation strategies and Classifier’s classification strategies
to further evaluate the performance of Querier and Classifier.
Ablation study of recommendation strategies. Table 7
shows the ablation study results on the recommendation
strategies of the Querier. The results convey four impor-
tant insights. First, without adopting intent preprocessing,
the Querier achieves 85% accuracy in example recommen-
dations. Owing to inaccurate examples, CEGS is unable to
successfully synthesize correct configurations for all networks.
This is due to the flexibility of natural language expression,
which leads to diverse expressions of the same type intent,
posing a challenge for accurate identification. In constract,
by adopting an intent standardization preprocessing method,
the Querier shows significant improvement in recommend-
ing configuration examples with 100% accuracy, enabling
our CEGS to successfully synthesize correct configurations
for all networks within an average of 28 loops. In addition,

1342 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 13: Example prompt for converting intents into formal specifications.

compared with not using the second-stage recommendation,
the Querier uses graph similarity measurement method to
recommend the most relevant examples, allowing CEGS to
synthesize the correct configuration faster. This is because the
graph similarity method can find examples that share similar
topological features to the target topology, thus guiding the
Classifier better match the example to devices.
Ablation study on classification strategies. Table 8 shows
the ablation study results on the classification strategies of the
Classifier. We observe that the complete Classifier achieves
the best performance. The Classifier achieves 90% accuracy
by relaying on exact matching to establish association be-
tween devices in the target and example topologies based
device’s roles. This is because, in some cases, the device
configuration is also highly affected by its neighborhood
while exact matching cannot measure the neighborhood sim-
ilarity between devices. By combining exact matching with
neighborhood similarity measurement method, the Classifier
enhances association establishment accuracy and synthesis
speed, allowing CEGS to synthesize correct configurations
with an average reduction of 8 loops.
B.2 Comparison of different LLMs in configuration gen-

eration
We evaluate the performance of different LLMs for con-
figuration generation, including LLaMA-2-7B, LLaMA-2-
13B, Mixtral-8x7B-Instruct, Gemma-1.1-7B-IT, LLama-3-
70B-Instruct, and GPT-4o. Table 9 shows the comparison
results. We leverage these LLMs to generate configurations
under two target scenarios. One scenario consists of a small-
scale star network with 5 nodes, and 6 simple no-transit in-

Table 7: Ablation study results on the recommendation strate-
gies of the Querier. U stands for unsuccessful generation.

Intent Intent Intent graph
Accuracy Loops

similarity preprocessing similarity
✓ × × 85% 200(U)
✓ ✓ × 100% 28
✓ ✓ ✓ 100% 10

Table 8: Ablation study results on the classification strategies
of the Classifier.

Exact matching Neighborhood similarity Accuracy Loops
✓ × 90% 18
✓ ✓ 100% 10

tents. Another scenario consists of a larger network with
22 nodes, and one complex path-preference intent. We ob-
served that the performance of GPT-4o is the best, followed
by LLama-3-70B-Instruct. Therefore, in our evaluation, we
leverage GPT-4o to generate configuration templates, due to
its outstanding configuration generation ability.

C A case study
We provide a complete case to show our CEGS how to synthe-
size correct configurations, given a target network scenario.
Figure 15 shows a target network scenario consisting two user
intents and a target network topology.
C.1 Identifying configuration examples
We utilize the Querier to recommend the most relevant ex-
ample for each user intent. Take intent f1 as an example,
we elaborate on how we use the Querier to recommend a
configuration example. First, we normalize the intent f1 into
an unified expression format of "BGP routing. Traffic from
source to destination prefers path1 over path2" using GPT-4o

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1343

Figure 14: Example prompt for generating configuration templates.

Table 9: Comparison results of different LLMs for configuration generation. U stands for unsuccessful generation.

Target network scenario
Models

LLaMA-2-7B LLaMA-2-13B Mixtral-8x7B-Instruct Gemma-1.1-7B-IT LLaMA-3-70B-Instruct GPT-4o
5-node network,

50(U) 50(U) 50(U) 50(U) 5 2
6 no-transit intents
22-node network,

50(U) 50(U) 50(U) 50(U) 30 4
1 path-preference intent

with the few-shot prompt shown in Figure 10. The intent of
each configuration example is also normalized into a specific
expression format during the configuration example parsing
process. For example, the intents of configuration examples
shown in 16 and 17, also are normalized as "BGP routing.
Traffic from source to destination prefers path1 over path2".
These two examples, whose intent semantically match in-
tent f1 with a similarity score of 1, are considered potential
reference examples for intent f1. We then construct the cor-
responding user intent graph and two example intent graphs,
and using GraphSAGE to calculate the similarity between
them. The similarity between the example intent graph of
configuration example in Figure 16 and the user intent graph
is 0.86, while the similarity between the example intent graph
of configuration example in Figure 17 with the user intent
graph is 0.75. Thus, we select the configuration example z1 in

Figure 16 as the example associated with intent f1. Similarly,
we recommend the best configuration example for intent f2.
The configuration example in Figure 17 is chosen due to its
higher similarity between its example intent graph and the
user intent graph corresponding to intent f2. From Figures 15,
16, and 17, we can observe that when considering intent f1,
the example intent graph corresponding to example z1 is more
similar to the intent graph for f1, particularly since the nodes
RA, RB, and RD in Figure 15 closely match the node attributes
and neighborhood relations of nodes VA, VB, and VD in Figure
2. However, only node RA exhibits high similarity to node UA
in 17. Therefore, the user intent graph for f1 is closer to the
example intent graph of configuration example z1.

1344 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 15: A target network scenario.

Figure 16: Configuration example z1 for the user intent f1.

C.2 Establishing the association between devices in the
target and example topologies

For each user intent f1, we utilize the Classifier to establish
the association between the device in the target topology and
those in the topology of example zi corresponding the intent
fi. Figure 18 shows the association results with respect to
each example.
C.3 Generating configurations
We first leverages GPT-4o to generate configuration templates
for each device in the target topology with respect to each
user intent in turn. Figure 14 shows the example prompt for
generating configuration templates. Take router RD in the
target topology as an example, Figure 19 and Figure 20 show
the configuration template for router RD with respect to intent
f1 and intent f2, respectively. We use the Syntax Verifier,
LAV, and GFV to verify these templates. We then merge the
configuration templates for each device with respect to the
two user intents. Figure 21 shows the merged templates for
router RD. Finally, we use the Formal Synthesizer to specify
the specific parameters in the templates. Figure 22 shows the
full configuration of router RD.

D Discussion on user guide and generalization
for CEGS

In this section, we first provide a user guide detailing how net-
work operators can use our CEGS to synthesize configurations
in the real network setting. We then provide a comprehensive

Figure 17: Configuration example z2 for the user intent f2.

Figure 18: Association between devices in the target and
example topologies.

guide detailing the steps a network operator needs to follow
to generalize CEGS with new intents.
D.1 A user guide
To utilize CEGS to synthesize configurations for devices in
a real network, the network operator needs to prepare the
operator intents, network topology in JSON format, and the
relevant device documentation. For example, consider a cloud
network consisting of three Autonomous Systems (ASes),
as shown in Figure 23(b). The operator’s network, AS1000,
includes four routers: RouterA, RouterB, RouterC, and Rou-
terD. This network is connected to one customer peer AS2000,
and two external peers, AS3000 and AS4000. The operator
aims to manage traffic flow transmission from the customer
peer to two external peers. For this, the operator first needs
to draft routing intents in natural language for these traffic
flows. Figure 23(a) provides the intent example. The operator
then should describe the network topology in JSON format,
as illustrated in Figure 23(b). Finally, the operator needs to
prepare the device documentation, which should include a
configuration guide that contain many configuration exam-
ples. At the same time, the operator must ensure that at least
one configuration example related to each specified intent is
included in the documentation. Figure 23(c) provide a sample
documentation example from the cisco6.
D.2 How to generalize CEGS?
Our CEGS supports static route, OSPF, and BGP configura-
tions across variety of routing intents supported by the Formal
Synthesizer (NetComplete). To generalize CEGS to new in-

6https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
iproute_ospf/configuration/15-mt/iro-15-mt-book/iro-cfg.
html#GUID-EF90EB2B-A283-4F7A-B044-C44BAE9F4E0A

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1345

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/15-mt/iro-15-mt-book/iro-cfg.html#GUID-EF90EB2B-A283-4F7A-B044-C44BAE9F4E0A
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/15-mt/iro-15-mt-book/iro-cfg.html#GUID-EF90EB2B-A283-4F7A-B044-C44BAE9F4E0A
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/15-mt/iro-15-mt-book/iro-cfg.html#GUID-EF90EB2B-A283-4F7A-B044-C44BAE9F4E0A

Figure 19: Configuration template of router RD for intent f1.

Figure 20: Configuration template of router RD for intent f2.

tents for other protocols or network techniques (e.g., VLAN)
on specific vendor devices, the user extends CEGS by follow-
ing six steps:
Configuration example preparation. The user first needs to
collect relevant device documentation which contain configu-
ration guide and ensures the configuration guide cover some
configuration examples related to the target scenarios.
GraphSAGE training. The Querier and Classifier depend
on a GraphSAGE model to recommend examples and build
association between devices in the target and example topolo-
gies. To achieve this, the user needs to train a GraphSAGE
model. First, the user should construct a intent graph dataset
that contains numerous matching pairs of intent graphs. These
intent graphs should cover the relevant target scenarios, in-
cluding similar intents and topology structures. Each data in
the dataset consists of a pair of intent graphs and the labels
indicating the associations between nodes in the two graphs.
The user then trains the GraphSAGE model on this dataset
using the training method described in Sec.3.2.3. The user
may need to tune the GraphSAGE model by adjusting hyper-

Figure 21: Configuration template of router RD for intent f1
and intent f2.

Figure 22: Full configuration of router RD complying with
intent f1 and intent f2.

parameters such as the number of layers, number of neurons,
and learning rate.
Prompt crafting. The user needs to craft the prompt for the
LLM to generate configuration templates. The prompt, as
shown in Figure 14, consists of six parts: background descrip-
tion, configuration example, target network scenario, asso-
ciation relation between devices in the target and example
topologies, format definition of the configuration template,
and instructions. The users should tailor the template format
definition according to the configuration templates they need
to generate. The user can design customized instructions as
needed. In addition, the user also needs to craft other prompts,
such as those for intent normalization and role extraction, as
described in A.
LAV extension. CEGS develops the LAV to locally verify
whether each device template complies with the the target
topology and user intent descriptions, such as interface config-
urations and protocol basic configurations. The user can easily

1346 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 23: Example input for CEGS.

adapt the LAV for other protocols or network techniques by
implementing checks for the protocol-specific basic settings
or network technique settings, as well as interface attribute
settings when involved.
GFV extension. CEGS develops the GFV to perform global
verification on templates across all devices, ensuring that con-
figurations with interdependencies and cross-device impacts
are properly validated. For example, BGP route-map policy
configurations on different devices influence one another and
work together to achieve the intended global routing policy.
The user should extend the GFV to globally validate config-
urations that affect each other across all devices involved in
fulfilling the intended network behavior. The GFV provides
localized feed about configuration errors for LLM correction.
The user can replace the LAV or GFV using other verification
tools that can provide localization feedback, indicating which
specific configuration on which devices are incorrect.
Formal Synthesizer selection. The user needs to select or de-
velop appropriate Formal Synthesizer that is capable of filling
correct parameters in the templates to achieve the intent.
D.3 Why does CEGS need to use formal methods?
In configuration synthesis tasks, it is a significant challenge
for LLMs to accurately calculate network policy parameters
based on the entire network information. For example, achiev-
ing a load-balancing intent under the OSPF protocol requires
accurately calculating the cost of each link in the network,
which is difficult for LLM reasoning. Therefore, it is essential
to use formal method to calculate network policy parameters
to guarantee the configuration correctness.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1347

	Introduction
	BACKGROUND AND MOTIVATION
	Current synthesizers require expert effort
	LLMs & GNNs for configuration synthesis
	Motivating CEGS's Design Decisions

	CEGS DESIGN
	Querier
	Recommendation based on intent similarity
	Recommendation based on intent graph similarity

	Classifier
	Classification based on role description
	Classification based on neighborhood similarity
	Training GraphSAGE model

	An efficient LLM-driven synthesis method
	Template generation
	Template verification
	Template merging
	Template filling

	EVALUATION
	Experiment setup
	Correctness evaluation
	Comparison to COSYNTH and NETBUDDY
	Performance under different set of intents and different network scales
	Ablation Study

	RELATED WORK
	CONCLUSIONS
	Acknowledgments
	Prompt Construction
	Intent preprocessing prompt
	Role extraction prompt
	Intent conversion prompt
	Template generation prompt
	Intent construction prompt

	Detailed Experimental Results
	Ablation study
	Comparison of different LLMs in configuration generation

	A case study
	Identifying configuration examples
	Establishing the association between devices in the target and example topologies
	Generating configurations

	Discussion on user guide and generalization for CEGS
	A user guide
	How to generalize CEGS?
	Why does CEGS need to use formal methods?

