
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

SuperServe: Fine-Grained Inference Serving
for Unpredictable Workloads

Alind Khare and Dhruv Garg, Georgia Tech; Sukrit Kalra, UC Berkeley;
Snigdha Grandhi, Adobe; Ion Stoica, UC Berkeley; Alexey Tumanov, Georgia Tech

https://www.usenix.org/conference/nsdi25/presentation/khare

SuperServe: Fine-Grained Inference Serving for Unpredictable Workloads

Alind Khare1, Dhruv Garg1, Sukrit Kalra2, Snigdha Grandhi∗∗3, Ion Stoica2, and Alexey Tumanov1

1Georgia Tech 2UC Berkeley 3Adobe
{alindkhare, dgarg39, sgrandhi32, atumanov}@gatech.edu

{sukrit.kalra, istoica}@berkeley.edu

Abstract

The increasing deployment of ML models on the critical path
of production applications requires ML inference serving sys-
tems to serve these models under unpredictable and bursty
request arrival rates. Serving many models under such con-
ditions requires a careful balance between each application’s
latency and accuracy requirements and the overall efficiency
of utilization of scarce resources. Faced with this tension,
state-of-the-art systems either choose a single model repre-
senting a static point in the latency-accuracy tradeoff space to
serve all requests or incur latency target violations by loading
specific models on the critical path of request serving. Our
work instead resolves this tension through a resource-efficient
serving of the entire range of models spanning the latency-
accuracy tradeoff space. Our novel mechanism, SubNetAct,
achieves this by carefully inserting specialized control-flow
operators in pre-trained, weight-shared super-networks. These
operators enable SubNetAct to dynamically route a request
through the network to actuate a specific model that meets the
request’s latency and accuracy target. Thus, SubNetAct can
serve a vastly higher number of models than prior systems
while requiring upto 2.6× lower memory. More crucially,
SubNetAct’s near-instantaneous actuation of a wide-range
of models unlocks the design space of fine-grained, reactive
scheduling policies. We design one such extremely effective
policy, SlackFit, and instantiate both SubNetAct and Slack-
Fit in a real system, SuperServe. On real-world traces de-
rived from a Microsoft workload, SuperServe achieves 4.67%
higher accuracy for the same latency targets and 2.85× higher
latency target attainment for the same accuracy.

1 Introduction

Recent advancements in machine learning (ML) techniques
have unlocked vast improvements in both accuracy and effi-
ciency of a wide-variety of tasks [5, 11, 19, 31, 41, 50]. As a

∗Work done as a student at Georgia Tech

result, ML models have been quickly deployed across a wide-
range of applications in both datacenters [26, 40, 44, 49, 62]
and the edge [6, 20, 35, 42], where they are subjected to the
stringent requirements of production applications.

Notably, ML models on the critical path of these applica-
tions must deal with unpredictable request rates that rapidly
change at a sub-second granularity. For example, web applica-
tions in datacenters increasingly rely on ML models [49, 62],
and have extremely bursty request rates, with a 50× higher
peak demand than average [34]. Similarly, request rates in au-
tonomous vehicles change rapidly as a function of the terrain
(city vs. freeway driving), time of the day etc. [20].

In the presence of these unpredictable request rates, ML
inference serving systems that cater to production applications
must strike a careful balance between three key requirements:
R1: Latency. Production applications have extremely strin-
gent latency requirements, quantified through a Service-Level
Objective (SLO) [33]. For example, both web serving [25,
44, 49] in datacenters and autonomous vehicles [20, 35] on
the edge must maximize the number of requests completed
within a specified SLO ranging from 10−100 ms [20, 60].
R2: Accuracy. Production applications demand the highest-
accuracy results possible within the latency targets of their
requests. For example, higher accuracy has been intricately
tied to a better user experience for web applications [26, 56].
Similarly, the safety of an autonomous vehicle heavily relies
on the accuracy of its different ML models [20, 21].
R3: Resource-Efficiency. Web applications at Facebook pro-
cess 200 trillion ML model requests daily [53] – a significant
fraction of datacenter usage [44]. The proliferation of ML
models and their reliance on expensive resources such as
GPUs, TPUs [1], AWS Inferentia [2] etc. has led to resource
tensions in both datacenters and the edge [42]. Thus, inference
serving systems must make judicial use of these resources.

The first-generation of inference serving systems [13, 14,
25, 32, 39, 40, 60] resolve this tension by choosing a static
point in the tradeoff space between R1-R3 and serving all
requests of an application using the chosen model. As a result,
applications either miss their SLO targets (R1) under bursty

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 739

request rates or suffer degraded accuracy (R2) under normal
conditions. More recently, state-of-the-art inference serving
systems [45, 61] enable applications to register multiple ML
models spanning the entire pareto frontier of latency (R1)
and accuracy (R2) targets, and automatically choose a model
based on the incoming request rates. To achieve this, these
systems must either keep the entire set of models in mem-
ory or rely on model switching to load the required models
at runtime [61]. As GPU memory remains the key resource
bottleneck in both datacenter and edge [34,42], these systems
choose between R3 – effectively utilizing the resources (by in-
curring the prohibitive latency penalties of switching models),
or R1 – meeting SLO targets under bursty request rates.

Conventional wisdom in inference serving literature touts
the “non-negligible provisioning time [for ML models due to
switching], which can exceed the request processing times"
as a “key characteristic of ML workloads", and "rules out re-
active techniques" for responding to bursty request rates [24].
This wisdom has been widely accepted [14, 25, 45] leading
to the development of coarse-grained scheduling policies for
inference serving that must account for the enormous latency
penalty of switching models when reacting to bursty request
rates. As a result, these coarse-grained policies typically avoid
or minimize switching models by design [45], and are hence,
unable to optimally navigate the tradeoff space between R1-
R3 under rapidly-changing, unpredictable request rates.

In this work, we challenge this conventional wisdom that
forces a choice between R1 and R3. We describe a mecha-
nism, SubNetAct, to simultaneously serve the entire range
of models spanning the latency-accuracy tradeoff space (R1-
R2) in a resource-efficient manner (R3). At the core of our
mechanism are novel control flow operators that SubNetAct
carefully inserts into trained super-network [8, 47, 58] (Su-
perNet) neural architectures. SuperNets enable a fine-grained
latency-accuracy tradeoff (R1-R2) by training a set of shared
model weights for many neural networks, without duplication.
Prior works [8, 47] propose efficient mechanisms for training
SuperNets for both vision and NLP tasks, but require each
model instance to be individually extracted for inference. This
leads inference serving systems to a similar choice as before –
either load all individual models or switch between them at
runtime. However, SubNetAct’s novel operators obviate the
need to extract individual models and load them at runtime.
Instead, SubNetAct dynamically routes requests within one
SuperNet deployment with negligible overhead, enabling near-
instantaneous actuation of different models. Thus, it unlocks
orders of magnitude improvements in the navigation of the
latency-accuracy tradeoff space (R1-R2), while substantially
reducing the memory footprint (R3) (see §2).

In addition to being resource-efficient (R3), SubNetAct’s
agility in navigating the latency-accuracy tradeoff space (R1-
R2) fundamentally changes the design space of scheduling
policies. Instead of complex scheduling policies that must
reason about future request rates in a bid to avoid paying the

latency of switching ML models dynamically under bursts,
SubNetAct enables the specification of simple policies that
directly optimize for the key success metrics: R1-R3. While
conventional wisdom deems such reactive policies infeasible,
we explore one example point in this design space with a
simple, yet effective policy that we call SlackFit. SlackFit is a
reactive scheduling policy that exploits the near-instantaneous
actuation property of SubNetAct to make fine-grained deci-
sions about how many requests to serve in a batch, and which
latency/accuracy choice to select for serving in real-time.

We summarize the contributions of this paper as follows:
• We introduce SubNetAct (§3), a novel mechanism that
enables a resource-efficient, fine-grained navigation of the
latency-accuracy tradeoff space. SubNetAct achieves this by
carefully inserting novel control flow operators that dynami-
cally route requests through a single SuperNet.
• We unlock the design of fine-grained, reactive scheduling
policies and provide a mathematical formulation of their
objective (§4.1). We then propose SlackFit (§4.2), a simple,
yet effective greedy heuristic scheduling policy , and show
how it accurately approximates the optimal objective.
• We instantiate SubNetAct and SlackFit in a real-world
system, SuperServe, a real-time asynchronous model serving
system with pluggable scheduling policies (§5).
• We evaluate SuperServe with both SlackFit and several
state-of-the-art scheduling policies (§6). We find that Super-
Serve achieves 4.67% higher accuracy for the same SLO
attainment and 2.85× higher SLO attainment for the same
accuracy on the real-world Microsoft Azure Functions trace.

2 Motivation

In §2.1, we first motivate the need for a reactive, fine-grained
scheduling policy for handling unpredictable, bursty request
rates. To meet the SLO of the requests while maximizing the
accuracy of the responses, we motivate the use of SuperNets
(§2.2) that enable a fine-grained exploration of the latency-
accuracy tradeoff space (R1-R2) for multiple latency targets.

2.1 Reactive, Fine-Grained Scheduling
Prior works in inference serving systems [34,60] have exhaus-
tively analyzed both production traces from Microsoft Azure
Functions (MAF) [48] and synthetic application traces with a
goal of highlighting their bursty request arrival patterns. For
example, Zhang et al. [60] underscore the high coefficient of
variance in request arrivals in production traces [48]. Further,
the authors claim that the bursty “sub-second request arrival
patterns [are] nearly impossible to predict", thus frustrating
the goal of meeting the stringent SLO requirements (R1) of
requests in an ML-based production applications.

A strawman solution to meeting SLOs under bursty request
rates requires these systems to load the entire set of models

740 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100 101 102

Model GFLOPs

101

102

103
La

te
nc

y
(m

s)

14.1X

501msLoading
Inference

(a) Model switching is expensive

0 100 200 300 400 500
Actuation delay (ms)

0.0

2.5

5.0

7.5

SL
O

 M
is

s (
%

)

0.1
1.5

3.0

4.5

6.2
7.5

75X

(b) SLO misses wrt. actuation delay

7 8 9 10 11

6000

6500
Traffic Act(0ms) Act(100ms)

7 8 9 10 11
Time (s)

6000

6500

Th
ro

ug
hp

ut
 (q

/s
)

(c) Fine-grained scheduling

Fig. 1: Fine-grained scheduling policies are beneficial. (a) The latency of loading convolutional neural networks [27,38,59] and transformer-
based neural networks [37] is greater than their inference latency across multiple batch sizes, making model switching expensive. This gap
widens as model sizes increase, with a peak difference of up to 14.1×. (b) The higher actuation delay (due to model loading) leads to up to 75×
higher SLO misses while serving the entire real-world, bursty MAF [48] trace. (c) A high actuation delay on a snapshot of the MAF trace shows
2% of the requests missing their SLO (R1) as request rates increase, and an inefficient utilization of resources (R3) as request rates decrease.

0 2 4 6 8
Model GFLOPs

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

SubNets in SuperNets
ResNets

Fig. 2: Enhanced, fine-grained latency-accuracy tradeoff with
SuperNets. The accuracy of SubNets extracted from OFAResNet
SuperNet [8] is vastly superior to the hand-tuned ResNets from
Fig. 1a for the same FLOP requirements (R1). Moreover, SuperNets
can instantiate vastly higher number of points in the space.

spanning the latency-accuracy tradeoff space into GPU mem-
ory and switch between them as request rate fluctuates. While
this reduces the latency of switching models, allowing serv-
ing systems to rapidly degrade accuracy (R2) under bursts to
meet SLO targets (R1), it is resource-inefficient (R3).

As a result, state-of-the-art inference serving systems [45,
61] page models in and out when required, to efficiently uti-
lize GPU memory (R3). However, Fig. 1a shows that the
loading time of ML models into GPU memory is vastly more
than the inference time, and the gap widens as the model sizes
increase. Thus, reactive approaches that either provision re-
sources or switch models upon arrival of bursty request rates
must incur an actuation delay (i.e., the latency penalty of
loading ML models) on the critical path of request serving,
leading to an order-of-magnitude increase in missed SLOs
(see Fig. 1b). In a bid to offset this latency penalty, inference
serving systems rely on predictive scheduling policies that
make coarse-grained estimations of future request arrival pat-
terns [24]. Such policies are bound to be suboptimal owing to
the difficulty of predicting the short bursts in request arrival
rates coupled with their stringent SLO requirements [60].

We believe that the key to optimally serving bursty request
rates instead lies in the ability to rapidly switch between ML

models thus obviating the need for coarse-grained predictive
scheduling policies. To validate our hypothesis, we simulate
a coarse-grained policy with an actuation delay of 100ms
and an ideal fine-grained policy with an actuation delay of
0ms. Fig. 1c plots the effects of these policies on a small
bursty subtrace from the MAF trace. We observe that the
coarse-grained policy leads to higher SLO misses (R1) under
increasing request rates and wasted resources (R3) under
decreasing request rates. Conversely, the fine-grained policy
is able to instantaneously adjust to the request rates leading
to no missed SLOs and effective utilization of the GPU.

2.2 Weight-Shared SuperNets

The problem of navigating the pareto-optimal frontier of the
latency-accuracy tradeoff space (R1-R2) by finding highest
accuracy ML models for a specific latency target is well stud-
ied in ML literature. Conventional Neural Architecture Search
(NAS) [10, 36, 51, 63, 64] couple the search and training of
ML models to produce a single architecture with the highest
accuracy for a particular latency target. To satisfy multiple
latency targets, these approaches must repeat the entire train
and search procedure, thus becoming prohibitively expensive.

To solve this issue, recent NAS works [8, 28, 47, 58] decou-
ple the search and training procedures by allowing multiple
architectures to share their weights while training. These ap-
proaches first train one SuperNet and then extract subsets of
its layers to form multiple SubNets, without requiring any fur-
ther retraining. These SubNets are extracted to target vastly
superior points in the latency-accuracy tradeoff space (R1-
R2), as compared to hand-tuned ML models. For example,
Fig. 2 highlights the accuracy benefits of SubNets extracted
from a ResNet-based SuperNet when compared to the hand-
tuned ResNets for an equivalent number of FLOPs.

SuperNets enable a fine-grained exploration of the latency-
accuracy tradeoff space (R1-R2) by yielding specialized ML
model architectures for a wide-variety of latency targets. This

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 741

is enabled by a search for multiple architectures, which relies
on the following parameters: (i) Depth (D), which describes
the depth of a SubNet, and (ii) Width Multiplier (W), which
describes the width of a SubNet i.e., the number of heads in
a multi-head attention layer or the number of channels in a
convolution layer to be used. These parameters create a com-
binatorially large architecture space, Φ (|Φ| ≈ 1019) [8], from
which SubNets are extracted statically for inference. How-
ever, this static extraction in prior work [8, 28, 47, 58] again
yields individual models that must either be simultaneously
deployed (wasting resources; R3) or paged in as request rates
fluctuate (missing SLOs; R1).

3 SubNetAct: Instantaneous Model Actuation

Motivated by §2, we seek to exploit SuperNets’ fine-grained
exploration of the latency-accuracy tradeoff to unlock the
development of reactive scheduling mechanisms. To achieve
our goal, we introduce SubNetAct, which addresses the chal-
lenges posed by static extraction of individual models in Su-
perNets, which force a choice between R1 and R3.
Key Idea. To resolve this fundamental tension, we make the
key observation that by virtue of performing architectural
search post training, a SuperNet subsumes the entire architec-
tural space of SubNets. Specifically, we follow the training
procedure of prior NAS approaches [8, 28, 47, 58] to retrieve
the architecture of the SuperNet, M , along with its weights
W 1. The architecture of the SuperNet, M , captures the set
of all layers and weights that can be used in inference. Thus,
instead of performing the search procedure and extracting
individual SubNets, SubNetAct automatically modifies M to
introduce its novel control flow operators. This allows Sub-
NetAct to deploy the entire SuperNet M , and dynamically
route requests to the appropriate SubNet. §3.1 provides an
overview of SubNetAct’s novel control flow operators, and
Appendix A.1 describes the procedure by which SubNetAct
automatically inserts these operators into M .

SubNetAct exploits the weight-sharing among the SubNets
of a SuperNet to enable a memory-efficient model actuation
mechanism (R3). Its fine-grained control flow operators near-
instantaneously switch between SubNets in order to pick the
optimal point in the latency-accuracy tradeoff space (R1-R2).

3.1 SubNetAct’s Operators
SubNetAct’s key insight lies in the introduction of the three
novel operators (Fig. 3) that enable it to route requests to the
required subnet dynamically and selectively use the trained
supernet’s weights. SubNetAct works on both convolution [8]
and transformer-based [28] supernets. The three operators
introduced in SubNetAct are as follows:

1We highlight that many NAS approaches make the trained M and W
publicly available. Our evaluation uses these trained models, and does not
require any further re-training.

LayerSelect operates at a block level in M , where each block
is a collection of multiple layers. The LayerSelect operator
enforces control flow by either passing the input activation
to the wrapped layers in the block or skipping the block and
directly forwarding the input to the next block.
• Convolution-Based SuperNet. A convolution-based super-
net [8] contains multiple stages, with each stage consisting
of set of repeating blocks (bottleneck in OFAResNets [9]).
The LayerSelect operator dynamically selects the first Dm
blocks within mth stage of the supernet. Dm is an external
input provided to SubNetAct, as shown in Fig. 3 (2nd row)
for 2-stage supernet where D takes depth values per stage
(m=2).
• Transformer-Based SuperNet. Unlike convolution-based
supernets, transformer-based supernets [28] have a single
stage. Hence, these supernets contain repeatedly stacked
transformer blocks. The LayerSelect operator selects or de-
selects transformer blocks based on a single external in-
put D that specifies the number of layers to use for infer-
ence. The block selection is based on the "every-other" strat-
egy [17, 28]. In this strategy, nth block is selected for infer-
ence if n mod L

(L−D) ≡ 0, where L is the maximum number
of stacked transformer blocks.

Overall, this operator enables layer-sharing among subnets
that differ in depth (ΦD ⊂ Φ), which helps reduce GPU mem-
ory consumption (R3). For example, in a subnet with depth
D = 1, the blocks selected for execution by SubNetAct are
shared with those in a subnet with depth D= 2.
WeightSlice operates at each layer in a block of M . For each
layer, it dynamically selects the slice of the SuperNet’s trained
weights that participate in inference.
• Convolution-Based SuperNet. Each block in this supernet
contains convolution layers. WeightSlice operator dynami-
cally selects the number of channels of the convolution layer
weights in a block (1st row and 1st column in Fig. 3). Pre-
cisely, the operator selects the first ⌈Wk ∗Ck⌉ channels in
the kth block (Ck represents the maximum channels). Wk is
an input to the operator that is specified independently for
each block. It denotes the fraction of channels to use in the
weights of the convolution layers of the kth block.
• Transformer-Based SuperNet. The blocks in this supernet
consist of multi-head attention (MHA) and feed-forward
layers [52]. WeightSlice operator dynamically selects the
number of attention heads in the MHA layers (1st row and
2nd column in Fig. 3). Particularly, WeightSlice selects the
first ⌈Wk ∗Hk⌉ heads, Hk represents the maximum heads
in the kth block. Here, Wk denotes the fraction of attention
heads to use for inference in the kth transformer block.

The operator enables partial layer-sharing among SubNets
(ΦW ⊂ Φ,), thus increasing the number of available Sub-
Net architectures. For example, for a SubNet with W0 = 0.5,
WeightSlice selects the first 50% heads and shares its weights
with the SubNet with W0 = 0.75. Together, LayerSelect and

742 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Block 1 Block 3Block 2 Block 4
True False True True True

Stage 0 Stage 1

LayerSelect Input: Depth (Per-Stage Layers) = [0,1]

Conv 1 Conv 2 Conv 3

WeightSlice Block in CNNs

Input x Output Channels
[C1 x (W*C2)] [(W*C2)x(W*C3)] [(W*C3)x(C4)] Linear

Scaled Dot Product Attention

Linear

Block in
Transformers Concat

Linear FFN

[d x d/H] [d x d/H] [d x d/H)]

[(d*W) x d]

LinearH
ea

ds
(W

*H
)

Input: W (width ratio per block)

BatchNorm
Layer (j)

SubnetNorm
Input: Subnet i, Layer j

,

Fig. 3: SubNetAct’s novel operators (LayerSelect, WeightSlice, SubnetNorm) dynamically actuate SubNets by routing requests through
weight-shared layers and non weight-shared components.

100 101 102

Memory (MB)Non
-Sha

red
Sha

red

Su
pe

rn
et

 L
ay

er
s

500x

Fig. 4: SubNetAct’s memory savings. The memory used by the
normalization statistics is 500× smaller than the non-normalization
layers. SubnetNorm decouples the normalization statistics for each
SubNet and provides accurate bookeeping thus enabling high accu-
racy (R1), with minimal increase in memory consumption (R3).

WeightSlice enable SubNetAct to dynamically actuate the
entire set of latency-accuracy options (R1-R2).
SubnetNorm is specifically implemented only for
convolution-based SuperNets. We observe that naively
introducing the LayerSelect or WeightSlice operator leads
to a significant drop in SubNet accuracy (as low as 10%) in
the convolution-based SuperNet. This is due to the incorrect
tracking of the mean (µ) and variance (σ) in normalization
layers such as BatchNorm [29]. The transformer-based
SuperNet uses LayerNorm [7] which doesn’t require tracking
of mean and variances, and hence doesn’t face this issue. To
account for the discrepancy in BatchNorm layers, SubNetAct
introduces the SubnetNorm operator that precomputes and
stores µ and σ for each possible SubNet by performing
forward pass inference on the training data. SubnetNorm
takes as input a unique SubNet ID (i) and a layer ID (j) and
outputs the pre-computed normalization statistics µi, j and σi, j.
The layer j then uses these statistics to perform normalization
of activations, effectively specializing j for each SubNet i.

Although this bookkeeping increases the memory require-
ments of deploying the SuperNet, Fig. 4 shows that the over-
head of these non-shared normalization statistics is 500×
smaller than the memory requirement of the shared layers.
SubNetAct can host thousands of SubNets in memory by only
keeping the statistics unique to each subnet and sharing the

non-normalization weights amongst all the SubNets.
Finally, we note that the input to these control flow opera-

tors (i.e., D, W) remains similar to the inputs for architectural
search in NAS [8]. Moreover, these inputs are independent
from the request served by the actuated SubNets, and are
declaratively specified by a scheduling policy (§4). Given the
arrival rate, the scheduling policy chooses a specific SubNet
for a request (by specifying the control tuple D and W), which
is then actuated by SubNetAct near-instantaneously.

3.2 Discussion: Efficacy of SubNetAct
We now highlight SubNetAct’s efficacy in achieving key ap-
plication requirements (R1-R3) under bursty request rates.
Reduced Memory Requirements. SubNetAct’s novel opera-
tors enable SubNets to share layers in place and dynamically
route requests to the appropriate SubNet based on the control
tuple (D,W). Thus, SubNetAct can simultaneously serve the
entire range of models spanning the latency-accuracy trade-
off space while drastically reducing memory requirements.
Fig. 5a demonstrates the requirements of serving the same
accuracy range by comparing: (i) four different hand-tuned
ResNets [27] (publicly available from prior literature), (ii) six
uniformly sampled individual SubNets [8] from a ResNet-
based SuperNet, and (iii) SubNetAct that enables dynamic
actuation of 500 SubNets. We highlight that SubNetAct re-
duces memory usage by up to 2.6×, while serving vastly more
fine-grained latency-accuracy tradeoff points.
Near-Instantaneous Model Actuation. While switching be-
tween individual models requires loading their weights to
the GPU, SubNetAct’s operators enable scheduling policies
to actuate any SubNet in place without incurring additional
loading overhead. Fig. 5b compares the time taken to perform
on-demand loading of individual SubNets versus in-place
actuation of a SubNet in SubNetAct. We highlight that Sub-
NetAct’s model actuation is orders-of-magnitude faster than

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 743

ResNets Subnet-zoo SubNetAct0

200

400

600
G

PU
 M

em
or

y
(M

B
)

R-18
R-34

R-50

R-101

S1
S2
S3
S4

S5

S6

S1-S500

397

531

200

(a) Reduced Memory Requirements.

2 4
Model Parameters 1e7

0

20

40

Ti
m

e(
m

s)

Subnetwork Activation
Model Loading

(b) Instantaneous Model Actuation.

74 76 78 80
Subnetwork Accuracy (%)

2500

5000

7500

Tp
ut

 (Q
P

S
)

(c) High dynamic throughput range.

Fig. 5: Efficacy of SubNetAct. (a) SubNetAct requires upto 2.6× lower memory to serve a higher-range of models when compared to the
ResNets from Fig. 1a and six individual SubNets extracted from SuperNet [8] (b) SubNetAct actuates different SubNets near-instantaneously
(< 1ms), which is orders of magnitude faster than the model switching time. (c) SubNetAct’s instantaneous actuation of models enables it to
sustain higher ingest rates thus inducing a wide dynamic throughput range (≈ 2−8k queries per second) within a narrow accuracy range.

on-demand loading of ML models. This allows scheduling
policies that use SubNetAct to rapidly actuate lower-accuracy
models under bursty conditions (R1) and switch to higher-
accuracy models under normal load (R2), without coarse-
grained predictions about future request rates.
Increased Throughput & Accuracy. Through its instant
model actuation, SubNetAct allows scheduling policies to
rapidly scale the throughput of the system, thus inducing a
broad throughput range within a narrow range of accuracy to
help meet SLOs (R1-R2). Fig. 5c compares the maximum sus-
tained ingest throughput for a point-based open-loop arrival
curve for serving the largest, smallest, and a median SubNet
on 8 GPUs. We observe that SubNetAct can serve a wide
throughput range from 2000-8000 QPS, while being able to
increase accuracy between 74% to 80%.

4 Fine-Grained Scheduling Policies

SubNetAct’s resource-efficient (R3) near-instantaneous ac-
tuation of the entire latency-accuracy tradeoff space unlocks
the development of fine-grained, reactive scheduling policies.
These policies can quickly scale an inference serving system’s
throughput upon arrival of bursty request rates to ensure that
the requests meet their SLO (R1) with the maximum possi-
ble accuracy (R2). Specifically, upon a query’s2 arrival to an
inference serving system, it invokes the scheduling policy,
which must decide the following four decision variables:
• SubNet φ from the set of all possible SubNets Φ available
for actuation by SubNetAct. As discussed in §3, a SubNet
φ ∈ Φ is uniquely identified by the control tuple (D, W).
• Batch B of size |B| which groups the queries that are exe-
cuted together on a GPU using the SubNet φ.
• GPU n upon which the batch B is executed.
• Time t at which the batch B must be executed on GPU n.

In this section, we first start with the mathematical for-
mulation of an optimal scheduling policy that decides the

2We use the term query and request interchangeably in this paper.

above parameters (§4.1). We then describe our proposed pol-
icy SlackFit that approximates the optimal policy and aims to
achieve both high accuracy and SLO attainment (§4.2).

4.1 Optimal Scheduling Policy
We formulate an optimal scheduling policy with an oracular
knowledge about all queries as a Zero-One Integer Linear
Program (ZILP). The policy’s decision is captured by the
variable I(φ,B,n, t) ∈ {0,1}, which represents the decision to
execute all queries q ∈ B (from the set of all possible batches
B) on GPU n at time t with the SubNet φ. The SubNet φ has
an accuracy Acc(φ) and a latency profile lφ(|B|), which is the
latency of φ on the batch size |B|. We use a(B) to refer to
the earliest arrival time of all the queries q ∈ B, and d(B) to
refer to the earliest deadline. Intuitively, the policy’s goal is
to maximize the accuracy of the responses (to queries) within
their SLO (R1-R2). This is represented in ZILP as follows:

maximize∑
t

∑
n

∑
φ∈Φ

∑
B∈B

Acc(φ) · |B| · I(φ,B,n, t) (1)

s.t.∑
t

∑
n

∑
φ∈Φ

∑
{B|q∈B}

I(φ,B,n, t)≤ 1, ∀q (1a)

∑
B∈B

∑
{t ′≤t≤t ′+lφ(|B|)}

I(φ,B,n, t
′
)≤ 1, ∀n, t,φ (1b)

a(B) · I(φ,B,n, t)≤ t, ∀n, t,B,φ (1c)

∑
φ∈Φ

I(φ,B,n, t)≤ 1, ∀n, t,B (1d)

∑
φ∈Φ

(lφ(|B|)+ t) · I(φ,B,n, t)≤ d(B), ∀n, t,B (1e)

I(φ,B,n, t) ∈ {0,1}, ∀n, t,B,φ (1f)

The ZILP maximizes the number of queries that satisfy their
latency SLOs with the highest possible accuracy across all the
selected query batches i.e., ∀(φ,B) : I(φ,B,n, t) = 1, Acc(φ) ·
|B| is maximized. The constraints of the ZILP denote:

744 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

82.2 83.5 84.1 84.8 85.1 85.2
Model accuracy (%)

1
2

4
8

16
Ba

tc
h

siz
e

4.95 7.33 9.72 20.1 22.2 26.8

8.36 12.4 16.4 36.5 39.4 48.9

15.1 22.3 29.7 67.4 74.2 87.7

28.7 43.7 56.5 118 131 168

54.7 84 102 228 247 327

100

200

300

In
fe

re
nc

e
la

te
nc

y
(m

s)

(a) Transformer-Based SuperNet

73.82 76.69 77.64 78.25 79.44 80.16
Model accuracy (%)

1
2

4
8

16
Ba

tc
h

siz
e

1.41 1.83 2.04 2.45 3.33 4.64

1.76 2.27 2.52 2.99 4.26 6.11

2.53 3.15 3.53 4.29 6.54 10.4

4.09 5.08 5.88 6.64 11.7 19.3

7.35 9.38 10.6 11.5 18.6 30.7

10

20

30

In
fe

re
nc

e
la

te
nc

y
(m

s)

(b) Convolution-Based SuperNet

Fig. 6: SlackFit control parameter space. Latencies for six dif-
ferent (uniformly sampled w.r.t. FLOPs) pareto-optimal SubNets in
SubNetAct as a function of accuracy (x-axis) and batch size (y-axis)
shown for transformer and convolution-based SuperNet. The latency
increases monotonically with batch size (P1) and accuracy (P2).

(1a) A query q can be assigned to at most one batch B.
(1b) A GPU n can only execute a single SubNet φ on a single
batch B at a particular time t.
(1c) Batch B can only execute after its arrival time a(B).
(1d) Each batch B can be served with a maximum of one
SubNet φ on a GPU n at a time t.
(1e) The batch B should complete before its deadline d(B).
(1f) The choice variable I(φ,B,n, t) is a boolean indicator.

Given that solving the above ZILP is NP-Hard [43, 60]
and it is impractical to expect oracular query arrival knowl-
edge, it cannot be used to serve models online. Instead, we
approximate its behavior with a heuristic, online scheduling
policy.

4.2 SlackFit: Online Scheduling Policy

We introduce SlackFit—a simple yet effective scheduling
policy that aims to maximize the accuracy (R1) with which
the requests meet their latency SLO (R2). SlackFit approxi-
mates the ILP-based policy in Eq. (1) and makes the decision
making tractable by operating in two phases:
Offline Phase triggered upon the registration of a SuperNet
M modified by SubNetAct (Appendix A.1) that the inference
serving system must serve. This phase consists of two stages:
1. Profile pareto-optimal SubNets Φpareto: To make Sub-

Net choices in reasonable time, SlackFit makes the design
decision to operate on Φpareto instead of Φ. Φpareto is the set
of pareto-optimal SubNets w.r.t. latency and accuracy ob-
tained by using the search stage of prior NAS methods [8]3.
The size of |Φpareto| ≈ 103 is orders of magnitude smaller
than |Φ| ≈ 1019, contributing to rapid scheduling decisions.
2. Bucketize SubNet φ and batch size |B| choices: As dis-
cussed in §4, SlackFit must decide the SubNet φ ∈ Φpareto
and the batch size |B| for the incoming queries. To reduce the
search space for this decision, SlackFit relies on three key
properties of SubNets in Φpareto (visualized in Fig. 6): P1:
the latency increases monotonically with batch size as ob-
served by prior works [13, 14, 25], P2: the latency increases
monotonically with accuracy due to the choice of SubNets
retrieved by NAS in Φpareto, and P3: lower accuracy Sub-
Nets can serve higher batch sizes at similar latencies to lower
batch sizes in higher accuracy SubNets, due to the SubNet’s
FLOPs distribution shown in Appendix A.2.
These properties enable SlackFit to reduce the search space
of choices for φ and |B| to a single dimension – batch la-
tency. Thus, SlackFit constructs evenly-spaced buckets be-
tween the minimum and maximum latency of all SubNets in
Φpareto (i.e., lφmin(|B| = 1) and lφmax(|B| = 16) respectively,
where φmin and φmax are the lowest and highest accuracy Sub-
Nets; using properties P1-P2). Within each bucket, SlackFit
chooses the (φ′, |B′|) with the highest |B′| such that lφ(|B′|)
is less than the bucket’s latency. By P3, low latency buck-
ets contain lower accuracy φ, higher |B| (leading to higher
throughput), and higher latency buckets contain higher accu-
racy φ and lower |B| (leading to lower throughput).

Online Phase of SlackFit is triggered upon the arrival of
queries or the availability of a GPU n to the serving system.
The key insight of the online phase is that the remaining slack
of the query with the earliest deadline provides a proxy to
changes in the traffic. Specifically, bursts in traffic increase
queuing delays which reduces the available slack, while slack
remains high under normal conditions.

Thus, SlackFit chooses a bucket (φ, |B|), where lφ(|B|) is
closest to but less than the slack of the query with the earliest
deadline. It then packs |B| queries with the earliest deadline
into a batch B and executes it on an available GPU n at time t.

By making decisions based on the minimum remaining
slack, SlackFit can automatically adjust accuracy (R2) and
throughput of the system by choosing appropriate latency
bucket on variable arrival traffic to maintain high SLO attain-
ment (R1). Under normal conditions, a higher slack leads to
the choice of buckets with higher lφ(|B|), which is strongly
correlated with the choice of higher accuracy models (P2).
Conversely, bursty request arrivals lead to buckets with lower
lφ(|B|), as SlackFit operates under reduced latency slack.
These buckets maximize |B| (due to P3), thus opportunis-
tically maximizing accuracy while satisfying SLO.

3It takes ≤ 2 minutes to perform this NAS profiling on SuperNets.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 745

4.2.1 SlackFit’s Approximation of Optimal Offline ZILP

We now provide insights on how SlackFit emulates behavior
of the optimal offline ZILP. To understand the behavior of
ZILP, we formulate a proxy utility function that captures the
inner-term of the ZILP objective function in Eq 1, the utility
function is defined for a SubNet φ, batch size |B| and the
earliest deadline dB among all queries:

U(φ, |B|,dB) =

{
Acc(φ) · |B|, if lφ(|B|)< dB

0, otherwise
(2)

This utility is non-zero iff SubNet φ performs inference on
batch size |B| within the deadline dB, and is zero otherwise.
This maximizes both the number of queries processed within
their SLO (R1) and the accuracy of their responses (R2).
A. ZILP and SlackFit prefer pareto-optimal SubNets.
SlackFit’s key design choice is to operate on pareto-optimal
SubNets w.r.t. latency, accuracy (Φpareto) (§4.2). We claim
that the ZILP also tends towards pareto-optimal SubNets , as
these SubNets yield higher utility.

Lemma 4.1. The utility of pareto-optimal SubNets is higher
than non pareto-optimal SubNets if they have similar infer-
ence latency for a batch of queries.

U(φp, |B|,dB)> U(φq, |B|,dB), ∀B,dB

s.t. φp ∈ Φpareto, φq ∈ {Φ\Φpareto}, lφp(|B|)≈ lφq(|B|)

This validates SlackFit’s design choice to operate on pareto-
optimal SubNets only.
Proof By Contradiction. Assume a non-pareto optimal subnet
(φq) such that it has higher utility than pareto optimal subnet
(φp) for a batch B and lφp(B) ≈ lφq(B) i.e., U(φp,B,dB) <
U(φq,B,dB). Now, due to the pareto optimal property
Acc(φp)> Acc(φq), this implies Acc(φp) · |B|> Acc(φq) · |B|
which implies U(φp,B,dB) ≥ U(φq,B,dB) for any delay dB
as lφp(B)≈ lφq(B). This is contradiction. Hence Proved.
B. ZILP and SlackFit prioritize lower accuracy & higher
batch sizes under bursts. We make a key observation that
the utility of a lower accuracy, higher batch size (φlow, |Bhigh|)
configuration is higher than a higher accuracy, lower batch
size (φhigh, |Blow|) configuration in Φpareto.

This is because the factor difference in accuracy of SubNets
in Φpareto (< 1) is less than the factor differences of batch

sizes as seen in Fig. 6 i.e., Acc(φhigh)

Acc(φlow)
≤ |Bhigh|

|Blow|
⇒ Acc(φhigh) ·

|Blow| ≤ Acc(φlow) · |Bhigh|. Therefore, U(φlow, |Bhigh|,dq)≥
U(φhigh, |Blow|,dq) may hold true under bursts, in cases where
the query q with the earliest deadline in a batch of k queries
(q ∈ Bk) can be served either by: a) low accuracy model (φmin)
with batch size |Bk| or b) higher accuracy model (φmax) on a
subset of queries (say m, q∈ Bm) with remaining queries (Bk \
Bm) missing the deadline due to high load. In such cases, the
optimal offline ILP will tend to option (a), similar to SlackFit.

GPU

GPU

Router EDF Queue

Su
pe

rn
et

w
or

k
Su

pe
rn

et
w

or
k

Worker2

Worker1

Scheduler
batch (B)?

 subnetwork ()?
latency
profile

slack: ms,

D
ispatcher

B=4,

B=2,
Prediction

Prediction

SLO: 36ms

Supernetwork Profiler

Te
st

 A
cc

ur
ac

y

Latency

Pareto-optimal
subnetworks

Subnetw
ork A

ctivation
Subnetw

ork A
ctivation

Absolute deadlines D1D2 Current Time

= -D2 = -D1

D = + 36

Result Queue

1

2
3

3

4

4

5

5

6

6

7

0

0

Fig. 7: SuperServe’s Architecture comprises of a SuperNet
profiler, a router, a fine-grained scheduler (SubNetAct), and GPU-
enabled workers. Clients register SuperNets for SuperServe to serve,
whose profiling and insertion of control-flow operators is done before
queries arrive. Clients submit queries to the router with a specified
SLO asynchronously. The query follows the critical path ❶ - ❼.

C. ZILP and SlackFit prefer higher accuracy under nor-
mal conditions. The utility of serving more requests with a
high-accuracy subnet and fewer requests with a low-accuracy
subnet is more than serving all the requests with a medium-
accuracy subnet.

We make another observation from the latency pro-
files of SubNets from Φpareto in Fig. 6. For a batch size
|B|, such that |B| = |B1| + |B2| where |B1| > |B2|, the
following holds true in many cases - B1 · Acc(φhigh) +
B2 ·Acc(φlow)> B ·Acc(φmid). Therefore, U(φhigh,B1,dq)+
U(φlow,B2,d(B2))≥U(φmid ,B,dq), may hold true under low
load, where the query q in batch B can be served by either: a)
mid accuracy model (φmid) with batch size B, or b) high accu-
racy model (φhigh) with larger partition B1 (q ∈ B1) with rest
of the queries in batch B2 served with the low accuracy model
(φlow) and meeting deadline d(B2). In such cases, ILP will
tend to option (b) i.e., an option with higher average accuracy,
simiar to SlackFit (as described in §4.2).

5 SuperServe: System Implementation

SuperServe is a system that instantiates both the SubNetAct
mechanism and the SlackFit policy. SuperServe’s architecture
is illustrated in Fig. 7. Clients first register the SuperNet that
they want SuperServe to serve, which invokes SubNetAct to
automatically insert the control flow operators for dynamic
actuation of SubNets (Appendix A.1). SuperServe then pro-
files the SuperNet to enable SubNetAct to operate on the
pareto-optimal SubNets.
SuperNet Profiler. The profiler employs neural architecture
search (NAS) [8] to find pareto-optimal SubNets from the Su-

746 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

perNet for each latency target. The latency of each SubNet is
a function of the batch size and the environment of execution
(i.e., the GPUs on the available workers). NAS and the model
profiling is efficient, taking ≤ 2 minutes to complete, and
providing significant benefits for the online phase of SlackFit.

Post SuperNet registration, the clients submit queries to the
SuperServe router with a deadline via RPC asynchronously.
These queries are enqueued to a global earliest-deadline-first
(EDF) queue (❶). As soon as any worker becomes available,
SuperServe’s fine-grained scheduler is invoked (❷). It decides
on the query-batch (B) and the subnet (φ) which are then dis-
patched to the worker (❸). Upon receiving this query-batch,
the worker that instantiates the supernet instantaneously actu-
ates the chosen subnet in-place on the GPU using SubNetAct
(❹), performs inference (❺), and returns predictions for the
query-batch (❻). The router redirects these predictions to the
client (❼). We discuss the components of SuperServe below:
Router. The router runs the fine-grained scheduling policy
and interacts with workers via RPCs. All queries are received,
enqueued, and dequeued asynchronously in the router. It main-
tains pending queries in a global EDF queue, ordered by query
deadlines (SLOs). The router invokes the scheduler whenever
(a) a worker signals availability and (b) the EDF queue is not
empty. It sends query-batches decided by the scheduler to
workers and returns the predictions to the clients.
Fine-grained Scheduler. The scheduler’s control decision is
a batch-size and subnet (φ = (D,W)). The scheduler provide
pluggable APIs for different policy implementations. SlackFit
is one such policy implemented in the scheduler. All policies
in scheduler leverage two key properties to make control
decisions: (a) predictability of DNN inference latency, (b)
fast actuation of SubNetAct on the query’s critical path.
Worker. The DNN worker employs the SubNetAct mecha-
nism to host a SuperNet (R3). SubNetAct’s operators are
implemented in TorchScript’s intermediate representation
(IR) [16]. After receiving a query-batch and subnet (D, W)
from the router, the worker actuates the desired SubNet using
SubNetAct. A forward pass on the actuated SubNet produces
predictions that are returned to the router.

6 Evaluation

We assess SuperServe’s end-to-end performance i.e., its abil-
ity to maximize SLO attainment (R1) and accuracy (R2) un-
der a variety of traffic conditions, on a real-world Microsoft
Azure Functions (MAF) trace (§6.2) and synthetic traces
(§6.3). SuperServe is resource-efficient (R3) due to the use
of SubNetAct mechanism, already established in §3.2. We
conclude with microbenchmarks (§6.4).

6.1 Experimental Setup
Success metrics. SLO attainment is the fraction of queries
that finish within the deadline (R1). Mean serving accuracy

is calculated for queries meeting their SLO and is the average
of models’ profiled accuracy used to serve them (R2).

Traces. We evaluate SuperServe on three sets of traces: real-
world, bursty and time-varying. MAF [48] provides a real-
world trace. Bursty and time-varying traces are synthetic,
similar to those used in InferLine [13]. Bursty traces have a
base traffic with mean ingest rate λb (CV 2 = 0) and a variant
traffic with mean ingest rate λv drawing inter-arrival times
from a gamma distribution (Fig. 13a). We vary λb, λv and CV 2.
Time-varying traces differ from bursty by varying the mean
ingest rate over time. We change the mean from µ = 1/λ1
to µ = 1/λ2 at rate τ q/s2 with a fixed CV 2

a . Higher ingest
acceleration τ q/s2 denotes faster change from λ1 → λ2.

Baselines. We compare SuperServe with the single model
serving systems that don’t perform accuracy trade-offs (and
the models are manually selected by users, non-automated
serving systems in §7). These systems are represented as
Clipper+ baseline and include systems like Clipper [14],
Clockwork [25], and TF-serving [40]. Clipper+ is manually
configured to serve six different accuracy points (SubNets)
that uniformly span the SuperNet’s accuracy range and result
in its six different versions. We also compare SuperServe with
INFaaS and note that INFaaS is designed to “pick the most
cost-efficient model that meets the [specified] accuracy con-
straint” [18,45,46]. However, in the presence of unpredictable,
bursty request rates, the choice of the model accuracy to serve
in order to meet the SLO requirements is unknown. Since, un-
like SuperServe, INFaaS does not automatically discover the
accuracy of the model to serve under unpredictable request
rates and instead requires queries to be hand-annotated with
accuracy thresholds, we choose to run INFaaS with no accu-
racy thresholds provided (§6.3.1,§6.3.2). In such a scenario,
it reduces to serving the most cost-efficient model (which is
the model with the minimum accuracy). We confirmed this
behavior with the INFaaS authors, who agree that “[our] rep-
resentation of INFaaS as a baseline that always chooses the
same model is correct in the absence of an accuracy threshold,
or a fixed (never changing) accuracy threshold.” [18].

Subnet-Profiling. We use a ResNet-based SuperNet trained
on ImageNet [15] and Transformer-based SuperNet trained
on MNLI [55]. We extract pareto-optimal SubNets (Φpareto)
by running NAS (publicly released by [8]) on the trained
SuperNet. The pareto-optimal SubNets in the ResNet-based
and Transformer-based SuperNet span accuracy ranges of
73−80% and 82−85% respectively. The SubNets are pro-
filed with varied batch sizes on Nvidia RTX2080Ti.

Test bed. SuperServe is implemented in 17.5k lines of C++.
gRPC [23] is used for communication between the client, the
router and workers. The experiments use 8 RTX2080Ti GPUs
and 24 CPU cores, with each worker assigned one GPU.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 747

74 76 78 80
Mean serving accuracy (%)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

 a
tta

in
m

en
t

0.99999

4.67%

2.85x

Clipper+(73.82)
Clipper+(76.69)
Clipper+(77.64)
Clipper+(78.25)
Clipper+(79.44)
Clipper+(80.16)
InFaaS
SuperServe

(a) Serving CNNs on MAF Trace

83 84 85
Mean serving accuracy (%)

0.0

0.2

0.4

0.6

0.8

1.0

SL
O

 a
tta

in
m

en
t

1.0

1.72%

1.2x
Clipper+(82.2)
Clipper+(83.5)
Clipper+(84.1)
Clipper+(84.8)
Clipper+(85.1)
Clipper+(85.2)
InFaaS
SuperServe

(b) Serving Transformers on MAF Trace

0 50 100 150 200

6k

8k

T
p

u
t

(q
/s

)

20 40 60 80 100

77

78

79

A
cc

u
ra

cy

20 40 60 80 100

14

16

B
a

tc
h

 s
iz

e

Timeline (s)

(c) SuperServe System Dynamics

Fig. 8: SuperServe on Real World Trace. SuperServe on Microsoft Azure Functions (MAF) [48] trace. (a, b) SuperServe achieves the best
tradeoffs w.r.t. SLO attainment and accuracy when serving both Convolution and Transformer neural networks. (c) System dynamics w.r.t.
batch size and subnet activation control decisions over time in response to ingest rate in (a).

6.2 End-to-End: Real Workloads

We investigate if: (a) SlackFit is capable of achieving a better
trade-off between SLO attainment and mean serving accuracy
on real workloads (R1-R2), and (b) SubNetAct contributes to
serve highly unpredictable workloads at high SLO attainment.
We use the MAF trace [48] to evaluate SuperServe (similar to
Clockwork [25]). The trace is collected on Microsoft’s server-
less platform and serves as a reasonable workload to evaluate
SuperServe as serverless ML inference is an active research
area [30, 57]. It consists of number of invocations made for
each function per minute and contains nearly 46,000 differ-
ent function workloads that are bursty, periodic, and fluctuate
over time. We use 32,700 function workloads from the MAF
trace. The 24-hour-long trace is shrunk to 120 seconds using
shape-preserving transformations to match our testbed. We
use the mean ingest rate of 6400 qps and 1150 qps to serve
convolution and transformer networks respectively on MAF.
Result. Fig. 8a compares SuperServe with Clipper+ and In-
FaaS when convolution and transformer networks are served
on the real-world MAF trace. While serving CNNs, Super-
Serve achieves an SLO attainment (R1) of 0.99999 (five ’9’s).
Compared to Clipper+ and InFaaS , SuperServe is 4.65%
more accurate (R2) at the same level of SLO attainment. It
also achieves a 2.85x factor improvement in SLO attainment
at the same mean serving accuracy. While serving transform-
ers, SuperServe achieves a 1.2x factor improvement in SLO at-
tainment at the same mean serving accuracy or 1.72% higher
accuracy at the same SLO attainment level.
System Dynamics. Fig. 8c shows the ingest throughput (qps),
serving accuracy, and batch size control decisions made by
SlackFit for serving CNNs on the MAF trace. As seen in the
figure, the trace contains periodic short-interval spikes that
reach upto 8750 qps, demonstrating the agility of the system.
SlackFit selects both smaller accuracy model and higher batch
size during the load spikes to meet the deadline (R1). SlackFit
makes such control decisions because it uses query’s slack as
a signal to maximize batch size. As the query slack decreases,
it selects maximum batch size control parameters in the lower

latency buckets. Furthermore, these control decisions increase
the system throughput instantly through SubNetAct. Lastly,
SlackFit serves higher accuracy models when the ingest rate
is low and hence, achieves better mean serving accuracy (R2).

6.3 End-to-End: Synthetic

We aim to answer the following questions, whether Super-
Serve (a) automatically serves queries using appropriate mod-
els (accuracy) for different traces (R2), (b) achieves a better
trade-off w.r.t. the success metrics (R1-R2), (c) withstands
sharp bursts while maintaining high SLO attainment (R1) and
(d) instantaneously changes system throughput. To answer
these questions, we evaluate SuperServe by serving CNNs on
the bursty and time-varying traces (§6.1).

6.3.1 Baseline comparison with burstiness

Fig. 9 compares SuperServe with the baselines over a range
of traces increasing mean ingest rate λv across and CV 2

a down.
All traces are configured with 36ms SLO. Achieving high
SLO attainment (R1) and high mean serving accuracy (R2) is
desirable, which implies the best trade-off is in the top-right
corner of the graph. We demonstrate that no single choice
of a model is sufficient for different mean arrival rates and
CV 2

a . For instance, the SLO attainment of Clipper+(76.69)
decreases as the CV 2

a increases for λv = 5550 (row 3). Simi-
larly, the SLO attainment of Clipper+(78.25) decreases with
increase in λv for CV 2

a = 2 (column 1). We draw the follow-
ing takeaways: (1) SuperServe achieves a significantly better
trade-off between SLO attainment and accuracy (R1-R2) than
the baselines (Clipper+ and InFaaS). It is 4.33% more accu-
rate than the baselines at an SLO attainment level of 0.9999
and 2.06x higher SLO attainment at the same accuracy level.
SuperServe is consistently at the top-right corner in Fig. 9
across all the traces. (2) SlackFit automatically selects ap-
propriate models for sustaining different traffic conditions.
As λv increases, SuperServe reduces serving accuracy while
maintaining high SLO attainment (columns).

748 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=2950 QPS, CV2

a =2
1.0

0.81%

1.35x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=2950 QPS, CV2

a =4
1.0

0.78%

1.35x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=2950 QPS, CV2

a =8
1.0

0.7%

1.31x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=4900 QPS, CV2

a =2
1.0

1.8%

1.43x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=4900 QPS, CV2

a =4
1.0

1.76%

1.41x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=4900 QPS, CV2

a =8
0.9997

1.66%

1.37x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=5550 QPS, CV2

a =2
0.9999

4.33%

2.09x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=5550 QPS, CV2

a =4
0.9996

4.29%

2.06x

74 75 76 77 78 79 80
0.0

0.5

1.0
λv=5550 QPS, CV2

a =8
0.9992

4.11%

1.87x

Mean serving accuracy (%)

S
LO

 a
tta

in
m

en
t

Clipper+(73.82) Clipper+(76.69) Clipper+(77.64) Clipper+(78.25) Clipper+(79.44) Clipper+(80.16) InFaaS SuperServe

Fig. 9: SuperServe with variable burstiness. SuperServe outperforms Clipper+ and INFaaS baselines by finding better tradeoffs and
consistently achieving > 0.999 SLO attainment on bursty traces. Variable ingest rate λv = { 2950, 4900, 5550} q/s increases vertically (down).
CV 2

a = {2,4,8} increases horizontally (across). SuperServe achieves a better trade-off in SLO attainment (y-axis) and mean serving accuracy
(x-axis) in all cases. SuperServe consistently achieves high SLO attainment > 0.999.

Note that, across all the traces, InFaaS achieves an opti-
mal SLO attainment but with a significantly smaller mean
serving accuracy (by up to 4.33%) than SuperServe. InFaaS’s
policy serves the min-cost (and hence min accuracy) model
for the trace without accuracy constraints. Whereas, Super-
Serve achieves a better trade-off between the success met-
rics because (a) SubNetAct allows in place activation of dif-
ferent subnetworks without affecting SLO attainment (R1);
(b) SlackFit opportunistically selects higher accuracy models
based on query’s slack (R2). Also, the difference between
SuperServe and Clipper+ narrows w.r.t. accuracy as CV 2

a in-
creases, since SlackFit switches to lower accuracy models
more frequently with burstier traffic. The system dynamics
are detailed in Appendix A.3.

6.3.2 Baseline comparison with arrival acceleration

Fig. 10 evaluates SuperServe’s performance at different levels
of arrival rate change (i.e., arrival acceleration). Traces start
at λ1 and increase to λ2 with acceleration τ. Traces fix λ1 =
2500qps and CV 2

a = 8 but change λ2 and acceleration τ .
The τ and λ2 are chosen to demonstrate that single, pre-

configured model choices are inadequate to sustain different
rates of arrival (mean λ) and acceleration (τ). Clipper+(79.44)
starts diverging as τ increases (λ2 is 6800 qps (row 2)). Sim-
ilarly, Clipper+(79.44) starts diverging with increase in λ2

(τ = 250 q/s2 (column 1)). The key takeaways are:
• SuperServe rapidly scales system throughput and achieves
a high SLO attainment (0.991-1.0) even with high values of
τ (5000 q/s2). The experiment demonstrates two key proper-
ties of SuperServe— (a) the actuation delay in SuperServe is
indeed negligible, (b) the lower actuation delay helps achieve
higher SLO attainments for time-varying traces (R1). Super-
Serve empirically demonstrates “agile elasticity” (§2), and
withstands high acceleration in arrival rate (τ).
• SlackFit dynamically adjusts the serving accuracy over
time (R2) and achieves a better trade-off between success
metrics (R1-R2). When the mean ingest throughput is low
(λ1), SuperServe uses higher accuracy models. It quickly
switches to lower accuracy models when mean arrival rate is
high (λ2), as evident in system dynamics Fig. 13b.

Fig. 10 experiments exhibit interesting trends. As the τ in-
creases, the gap between SuperServe and Clipper+ w.r.t. mean
serving accuracy narrows. This is because SlackFit selects
smaller accuracy sooner with the increase in τ. Lower τ val-
ues give enough time to SuperServe to serve intermediate
mean arrival rates with higher accuracy models while grad-
ually moving to lower accuracy models as mean ingest rate
increases to λ2 qps. Whereas, InFaaS continues to serves min
accuracy model for all traces as its policy doesn’t maximize
accuracy by design.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 749

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=250 QPS2, λ2=4800 QPS

1.0

0.77%

1.22x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=500 QPS2, λ2=4800 QPS

1.0

0.76%

1.23x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=5000 QPS2, λ2=4800 QPS

1.0

0.74%

1.23x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=250 QPS2, λ2=6800 QPS

0.9995

1.89%

1.5x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=500 QPS2, λ2=6800 QPS

0.9993

1.81%

1.42x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=5000 QPS2, λ2=6800 QPS

0.9992

1.74%

1.33x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=250 QPS2, λ2=7400 QPS

0.9929

3.28%

1.55x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=500 QPS2, λ2=7400 QPS

0.9913

3.16%

1.6x

74 75 76 77 78 79 80
0.0

0.5

1.0
τ=5000 QPS2, λ2=7400 QPS

0.991

3.14%

1.62x

Mean serving accuracy (%)

S
LO

 a
tta

in
m

en
t

Clipper+(73.82) Clipper+(76.69) Clipper+(77.64) Clipper+(78.25) Clipper+(79.44) Clipper+(80.16) InFaaS SuperServe

Fig. 10: SuperServe with arrival acceleration. SuperServe outperforms Clipper+ and INFaaS baselines by finding better tradeoffs on
time varying traces. Mean ingest rate accelerates from λ1 to λ2 q/s with τ q/s2. τ = {250,500,5000} increases horizontally (across), while
λ2 = {4800,6800,7800} increases vertically (down) with λ1 = 2500 q/s and CV 2

a = 8 staying constant. SuperServe finds a better trade-off in
SLO attainment (y-axis) and mean serving accuracy (x-axis).

0.9
0.99

0.999
0.9999

S
LO

 A
tt.

78
79

A
cc

.

8
7
6
5
4 #

W
rk

s.

0 10 20 30 40 50 60
Timeline (s)

3450

3600

Tp
ut

 (q
/s

)

(a) Fault-Tolerance

1 2 4 8 16 32
Number of workers

1000

4000

7000
10000

20000
30000

60000

S
ys

te
m

 th
ro

ug
hp

ut
 (q

ps
)

33060

Ideal
Actual (0.999 SLO att.)

(b) Scalability

0.950

0.975

1.000

77.90 77.95 78.00 78.05 78.10 78.15 78.20

0.00

0.02

0.04

CV2
a =2

CV2
a =4

CV2
a =8

Mean serving accuracy (%)

S
LO

 a
tta

in
m

en
t

MaxAcc MaxBatch SlackFit

(c) Policy-SE

Fig. 11: SuperServe’s Micro-benchmarks. (a) SuperServe resiliency to faults. The system maintains high SLO attainment by dynamically
adjusting served accuracy as workers drop out over time. The trace stays statistically the same (λ = 3500 qps, CV 2

a = 2 (last row)). (b)
SuperServe scales linearly with the number of workers, achieving up to 33000 qps while maintaining high .999 SLO attainment. (c) SlackFit
finds the best tradeoff on the SLO attainment/ accuracy maximization continuum automatically (§6.4).

6.4 Microbenchmarks

Fault Tolerance. SubNetAct mechanism provides an addi-
tional advantage of transparent fault tolerance. We run Super-
Serve with 100% capacity (8 workers) with a bursty traffic
trace (λ = 3500 qps, CV 2

a = 2) for 60 seconds and gradually
kill a worker every 12 seconds to simulate faults. SuperServe
shows resilience to decreases in system throughput to as low
as 50% by maintaining SLO attainment as high as 0.999 for
the unchanging trace as it leverages subnetwork activation to
serve lower accuracy models automatically. Similar method-

ology was used in [54]. Fig. 11a shows SLO attainment as
a function of time (along with other system dynamics). As
the faults occur (workers killed, dotted red lines), SuperServe
automatically transitions to lower accuracy models to main-
tain high SLO attainment. We attribute SuperServe’s fault
tolerance to (a) a wide-dynamic throughput range afforded by
SubNetAct (Fig. 5c) that allows SuperServe to serve the work-
load even with 50% capacity, and (b) SubNetAct’s low actu-
ation delay that provides agility to rapidly increase system-
throughput (during faults) without SLO violations (R1).
Scalability. We assess if SuperServe reaches high SLO attain-

750 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ment at scale. To show this, we scale the number of workers
and observe the maximum throughput SuperServe sustains
to reach SLO attainment of 0.999. We serve ResNet-18 [27]
across all the workers with clients providing a batch of 8 im-
ages4. Scalability experiments are conducted with CV 2

a = 0.
Fig. 11b shows sustained ingest throughput with the increase
in workers. SuperServe achieves an SLO attainment of 0.999
while reaching throughputs as high as ≈ 33000 qps.
Policy Space Exploration. We compare different policies
implemented in SuperServe (Fig. 11c). We show that Slack-
Fit achieves the best tradeoff w.r.t. our success metrics com-
pared to both MaxAcc (greedily maximizes accuracy) and
MaxBatch (greedily maximizes throughput) as CV 2

a is varied.
Details of the policies and the experiment are in §A.5.

7 Related Work

Training SuperNets was first proposed by OFA [8]. Recent
works such as CompOFA [47] and BigNAS [58] propose im-
provements to the SuperNet training. CompOFA makes the
training of SuperNets faster and more accurate by training a
fewer number of SubNets simultaneously. On the other hand,
BigNAS trains the SuperNet in one-shot with a wider range
of SubNets. DynaBERT [28] trains a SuperNet based on the
Transformer architecture for text datasets. Similarly, Auto-
Former [12] trains SuperNets derived from vision transform-
ers. NasViT [22] trains the SuperNet for semantic segmenta-
tion tasks and achieves a better trade-off between accuracy
and latency. SuperServe provides system support for serving
Supernets trained using any existing technique. We believe
that SuperNets are an emerging phenomenon, and system
support for serving them is the need of the hour.
Model serving systems can be divided into two categorizes —
a) Non-Automated, and b) Automated. Non-automated serv-
ing system expect developers to provide the prediction models
and make explicit choices in the accuracy-latency trade-off
space. TensorFlow Serving [40] serves the models trained in
TensorFlow framework while Clipper [14] and Triton [39]
support models trained from multiple frameworks. Clock-
work [25] guarantees predictable tail latency for DNN infer-
ence by making cross-stack design decisions explicitly for
worst case predictability. Inferline [13] provides support for
provisioning inference pipelines that consist of multiple mod-
els, but the models are still hard coded in the pipeline vertices.
Prior works in this category are complementary to SuperServe.
For instance, SuperServe’s workers can be made more pre-
dictable by consolidating choices like Clockwork. Inferline’s
autoscaling policy can be used on top of SuperServe. Triton’s
model optimizations can be done to the SuperNet itself.
In contrast, automated serving systems [3, 4, 45, 61] automate
the navigation of the accuracy-latency trade-off space with
a policy, resulting in automatic DNN selection at runtime.

4We don’t perform adaptive batching for this experiment

However, both [45] and [61] use state-of-the-art DNNs (e.g.,
ResNets, MobileNets) and rely on model loading mechanisms
instead of SuperNets, which offers better pareto-optimality
and orders of magnitude faster model switching enabled via
proposed SubNetAct. More importantly, these mechanisms
implicitly bias their policies to avoid model switching, which
limits their ability to respond to bursty request rates in an
agile fashion. Specifically, InFaaS’s DNN switching policy is
biased towards selecting the least accurate DNNs that satisfy
accuracy constraints, as the goal of the stated goal of the sys-
tem is to satisfy constraints instead of treating accuracy as an
optimization objective. Proteus [3] formulates the accuracy
scaling problem as an MILP. However, the accuracy scal-
ing action remains coarse-grained as MILP solver is invoked
every 30 seconds in Proteus. Such coarse-grained decision-
making has limitations like InFaaS: SLO violations with high
actuation delays. Moreover, Proteus’s batching technique is
complementary to SlackFit. It introduces a delay in schedul-
ing to account for heterogeneous resources. Such delays can
be introduced in SlackFit to extend it to heterogeneous re-
sources. Loki [4] tackles accuracy and hardware selection
for ML inference pipelines. Extending fine-grained decision-
making to ML inference pipelines is future work. SuperServe
supports model serving via SubNet activation, thus address-
ing the model switching overhead and enabling fine-grained
decision-making for bursty workloads.

8 Conclusion

We describe a novel mechanism SubNetAct that carefully in-
serts specialized control flow operators into SuperNets to
enable a resource-efficient, fine-grained navigation of the
latency-accuracy tradeoff space. SubNetAct unlocks the de-
sign space of reactive scheduling policies. We design a simple,
yet effective greedy heuristic-based scheduling policy Slack-
Fit. SuperServe, which uses SubNetAct and SlackFit, achieves
4.67% better accuracy at the same level of SLO attainment
or 2.85x better SLO attainment at the same level of accuracy
compared to state-of-the-art inference serving systems.

Acknowledgments

This material is based upon work partially supported by the
National Science Foundation (NSF) under Grant Number
CNS-2420977 as well as a sponsored research award from
Cisco Research. We would also like to sincerely thank the
NSDI reviewers and, especially, our shepherd, Seo Jin Park,
for their insightful comments that significantly improved the
quality of this paper.
Disclaimer: Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and don’t necessarily reflect the views of the NSF.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 751

References

[1] Accelerate ai development with google cloud tpus.
https://cloud.google.com/tpu.

[2] Aws inferentia. https://aws.amazon.com/
machine-learning/inferentia/.

[3] Sohaib Ahmad, Hui Guan, Brian D. Friedman, Thomas
Williams, Ramesh K. Sitaraman, and Thomas Woo. Pro-
teus: A high-throughput inference-serving system with
accuracy scaling. In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
1, ASPLOS ’24, page 318–334, New York, NY, USA,
2024. Association for Computing Machinery.

[4] Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman.
Loki: A system for serving ml inference pipelines with
hardware and accuracy scaling. In Proceedings of the
33rd International Symposium on High-Performance
Parallel and Distributed Computing, volume 1 of HPDC
’24, page 267–280. ACM, June 2024.

[5] Waleed Ali, Sherif Abdelkarim, Mahmoud Zidan, Mo-
hamed Zahran, and Ahmad El Sallab. Yolo3d: End-to-
end real-time 3d oriented object bounding box detection
from lidar point cloud. In Proceedings of the European
Conference on Computer Vision (ECCV) Workshops,
pages 0–0, 2018.

[6] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík,
Krishna Chintalapudi, Matthai Philipose, Lenin Ravin-
dranath, and Sudipta Sinha. Real-time video analytics:
The killer app for edge computing. computer, 50(10):58–
67, 2017.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer normalization, 2016.

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. In International
Conference on Learning Representations, 2020.

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai
Zhang, and Song Han. Ofa pretained models.
https://drive.google.com/drive/folders/
10leLmIiMtaRu4J46KwrBaMydvQt0qFuI?usp=
sharing, 2022.

[10] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas:
Direct neural architecture search on target task and hard-
ware. arXiv preprint arXiv:1812.00332, 2018.

[11] Liang-Chieh Chen, George Papandreou, Florian Schroff,
and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[12] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual
recognition. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 12270–
12280, 2021.

[13] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xi-
angxi Mo, Joseph E. Gonzalez, Ion Stoica, and Alexey
Tumanov. Inferline: ML inference pipeline composition
framework. CoRR, abs/1812.01776, 2018.

[14] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper: A
Low-Latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[16] Facebook. Torchscript. https://pytorch.org/docs/
stable/jit.html, 2022.

[17] Angela Fan, Edouard Grave, and Armand Joulin. Re-
ducing transformer depth on demand with structured
dropout. In International Conference on Learning Rep-
resentations, 2020.

[18] Romero Francisco, Qian Li, and Christos Kozyrakis.
Personal Communication, December 2022.

[19] Shen Gao, Xiuying Chen, Piji Li, Zhaochun Ren, Li-
dong Bing, Dongyan Zhao, and Rui Yan. Abstractive
text summarization by incorporating reader comments.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6399–6406, 2019.

[20] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E
Gonzalez, and Ion Stoica. D3: a dynamic deadline-
driven approach for building autonomous vehicles. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 453–471, 2022.

[21] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew A
Wright, Joseph E Gonzalez, and Ion Stoica. Pylot: A
modular platform for exploring latency-accuracy trade-
offs in autonomous vehicles. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 8806–8813. IEEE, 2021.

[22] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen,
Zhicheng Yan, Yuandong Tian, Vikas Chandra, et al.
Nasvit: Neural architecture search for efficient vision
transformers with gradient conflict aware supernet train-
ing. In International Conference on Learning Represen-
tations, 2021.

752 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://cloud.google.com/tpu
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://drive.google.com/drive/folders/10leLmIiMtaRu4J46KwrBaMydvQt0qFuI?usp=sharing
https://drive.google.com/drive/folders/10leLmIiMtaRu4J46KwrBaMydvQt0qFuI?usp=sharing
https://drive.google.com/drive/folders/10leLmIiMtaRu4J46KwrBaMydvQt0qFuI?usp=sharing
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html

[23] Google. gRPC. https://grpc.io/docs/languages/
cpp/quickstart/, 2022.

[24] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S.
McKinley, and Björn B. Brandenburg. Swayam: Dis-
tributed autoscaling to meet slas of machine learning
inference services with resource efficiency. In Proceed-
ings of the 18th ACM/IFIP/USENIX Middleware Con-
ference, Middleware ’17, page 109–120, New York, NY,
USA, 2017. Association for Computing Machinery.

[25] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 443–462. USENIX Association,
November 2020.

[26] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. Ap-
plied machine learning at Facebook: A datacenter in-
frastructure perspective. In 2018 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 620–629. IEEE, 2018.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[28] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. Dynabert: Dynamic bert with adap-
tive width and depth. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33,
pages 9782–9793. Curran Associates, Inc., 2020.

[29] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In International conference on
machine learning, pages 448–456. PMLR, 2015.

[30] Vatche Ishakian, Vinod Muthusamy, and Aleksander
Slominski. Serving deep learning models in a serverless
platform. CoRR, abs/1710.08460, 2017.

[31] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong
Liu, Jianfeng Gao, and Tuo Zhao. SMART: Robust
and efficient fine-tuning for pre-trained natural language
models through principled regularized optimization. In
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 2177–2190,
Online, July 2020. Association for Computational Lin-
guistics.

[32] Ameet V Joshi. Amazon’s machine learning toolkit:
Sagemaker. In Machine Learning and Artificial Intelli-
gence, pages 233–243. Springer, 2020.

[33] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache,
Shravan Matthur Narayanamurthy, Alexey Tumanov,
Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, et al. Morpheus: towards
automated SLOs for enterprise clusters. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 117–134, 2016.

[34] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E Gonzalez, et al. AlpaServe: Sta-
tistical multiplexing with model parallelism for deep
learning serving. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23),
pages 663–679, 2023.

[35] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt
Skach, Md E Haque, Lingjia Tang, and Jason Mars. The
architectural implications of autonomous driving: Con-
straints and acceleration. In Proceedings of the Twenty-
Third International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 751–766, 2018.

[36] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[38] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Fe-
ichtenhofer, Trevor Darrell, and Saining Xie. A convnet
for the 2020s. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
11976–11986, 2022.

[39] Nvidia. Triton inference system. https:
//github.com/triton-inference-server/
server/tree/v2.21.0, 2020.

[40] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[41] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim,
Jeremy Fowers, Karin Strauss, and Eric S Chung. Ac-
celerating deep convolutional neural networks using

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 753

https://grpc.io/docs/languages/cpp/quickstart/
https://grpc.io/docs/languages/cpp/quickstart/
https://github.com/triton-inference-server/server/tree/v2.21.0
https://github.com/triton-inference-server/server/tree/v2.21.0
https://github.com/triton-inference-server/server/tree/v2.21.0

specialized hardware. Microsoft Research Whitepaper,
2(11):1–4, 2015.

[42] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh
Ananthanarayanan, Yuanchao Shu, Nikolaos Karianakis,
Guoqing Harry Xu, and Ravi Netravali. Gemel: Model
merging for memory-efficient, real-time video analytics
at the edge. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
973–994, 2023.

[43] Christos H Papadimitriou and Kenneth Steiglitz. Com-
binatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

[44] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer
Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth
Malani, Andrey Malevich, Satish Nadathur, et al. Deep
learning inference in facebook data centers: Characteri-
zation, performance optimizations and hardware impli-
cations. arXiv preprint arXiv:1811.09886, 2018.

[45] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less
inference serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 397–411, 2021.

[46] Francisco Romero, Qian Li, Neeraja J Yadwadkar,
and Christos Kozyrakis. InFaaS policy’s deci-
sions with respect to accuracy constraints. https:
//github.com/stanford-mast/INFaaS/blob/
02ad2b86bcbc66d55b17baaef608c4e864b03918/
src/master/queryfe_server.cc#L342-L356,
2022.

[47] Manas Sahni, Shreya Varshini, Alind Khare, and Alexey
Tumanov. CompOFA – Compound Once-For-All Net-
works for Faster Multi-Platform Deployment. In In-
ternational Conference on Learning Representations,
2021.

[48] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 205–218, 2020.

[49] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Ying-
nan Li, Yuxiong He, Elton Zheng, Adi Oltean, Maya
Mosyak, Chris Barnes, et al. Deep learning inference
service at microsoft. In 2019 USENIX Conference on
Operational Machine Learning (OpML 19), pages 15–
17, 2019.

[50] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
LSTM neural networks for language modeling. In Thir-
teenth annual conference of the international speech
communication association, 2012.

[51] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2820–2828,
2019.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[53] Prahlad Venkatapuram, Zhao Wang, and Chandra Malli-
pedi. Custom silicon at facebook: A datacenter infras-
tructure perspective on video transcoding and machine
learning. In 2020 IEEE International Electron Devices
Meeting (IEDM), pages 9–7. IEEE, 2020.

[54] Stephanie Wang, John Liagouris, Robert Nishihara,
Philipp Moritz, Ujval Misra, Alexey Tumanov, and Ion
Stoica. Lineage stash: fault tolerance off the critical
path. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 338–352, 2019.

[55] Adina Williams, Nikita Nangia, and Samuel Bowman.
A broad-coverage challenge corpus for sentence under-
standing through inference. In Proceedings of the 2018
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1112–1122. Association for Computational Linguistics,
2018.

[56] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-
ing at Facebook: Understanding inference at the edge.
In 2019 IEEE international symposium on high perfor-
mance computer architecture (HPCA), pages 331–344.
IEEE, 2019.

[57] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang,
Jie Li, Mingyang Zhao, Xingzhen Chen, and Keqiu Li.
Infless: A native serverless system for low-latency, high-
throughput inference. In Proceedings of the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’22, page 768–781, New York, NY, USA, 2022.
Association for Computing Machinery.

[58] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang,

754 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/stanford-mast/INFaaS/blob/02ad2b86bcbc66d55b17baaef608c4e864b03918/src/master/queryfe_server.cc#L342-L356
https://github.com/stanford-mast/INFaaS/blob/02ad2b86bcbc66d55b17baaef608c4e864b03918/src/master/queryfe_server.cc#L342-L356
https://github.com/stanford-mast/INFaaS/blob/02ad2b86bcbc66d55b17baaef608c4e864b03918/src/master/queryfe_server.cc#L342-L356
https://github.com/stanford-mast/INFaaS/blob/02ad2b86bcbc66d55b17baaef608c4e864b03918/src/master/queryfe_server.cc#L342-L356

Xiaodan Song, Ruoming Pang, and Quoc Le. Big-
NAS: Scaling up neural architecture search with big
single-stage models. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Com-
puter Vision – ECCV 2020, pages 702–717, Cham, 2020.
Springer International Publishing.

[59] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

[60] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 787–808, 2023.

[61] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta,
and Siddharth Garg. Model-Switching: Dealing
with fluctuating workloads in Machine-Learning-as-a-
Service systems. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20), 2020.

[62] Minjia Zhang, Samyam Rajbandari, Wenhan Wang, El-
ton Zheng, Olatunji Ruwase, Jeff Rasley, Jason Li, Jun-
hua Wang, and Yuxiong He. Accelerating large scale
deep learning inference through DeepCPU at microsoft.
In 2019 USENIX Conference on Operational Machine
Learning (OpML 19), pages 5–7, 2019.

[63] Barret Zoph and Quoc V Le. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 8697–8710, 2018.

A Appendix

A.1 SubNetAct: Automatic Operator Insertion

We introduce SubNetAct’s control flow operators automati-
cally. Specifically, the LayerSelect operator is introduced at
every stage of M , and each block within the stage (such as
Bottleneck in OFAResNets [8] or TransformerBlock in Dyn-
abert [28]) is converted to a boolean module whose boolean
handle is tracked by the LayerSelect operator. Each convolu-
tion or attention layer of M is modified by wrapping it with
the WeightSlice operator. Finally, all the batchnorm layers
in M are converted to the SubnetNorm operator with addi-
tional information provided to it about each subnet’s tracked
statistics. The algorithm to automatically enable control flow
operations in M is provided in Alg. 1.

Input: Supernet Arch. M , Supernet Weights W , Tracked
Mean and Variances TrackedStats

1 newOperators = {}
2 for s ∈ STAGES(M) do
3 // layerSelect operator selects layers within each stage
4 ls = LAYERSELECT()
5 newOperators[s] = {}
6 for m ∈ GETMODULES(M ,s) do
7 if m.type == Bottleneck || m.type ==

TransformerLayer then
8 bool selectm // boolean switch for layer
9 mnew = TOBOOLMODULE(m,selectm)

10 // layerSelect controls boolean of stage’s layers
11 ls.REGISTERBOOL(selectm)
12 end
13 else if m.type == Attention || m.type == Conv then
14 // WeightSlice applied to attn or conv layers
15 mnew = WEIGHTSLICE(m.type,W [m.id])
16 newOperators[s][m.id] = mnew

17 end
18 else if m.type == BatchNorm then
19 // SubnetNorm only applied to BatchNorm
20 mnew=SUBNETNORM(W [m.id],TrackedStats)
21 newOperators[s][m.id] = mnew

22 end
23 MODIFYMODULE(M ,m,mnew)
24 newOperators[s]["layerSelect"] = ls
25 end
26 end
27 REGISTERCONTROLFLOWOPS(M ,newOperators)

Algorithm 1: Introducing SubNetAct Operators in Super-
nets. The algorithm introduces control-flow operates to enable
SubNetAct for latency/accuracy navigation. The pre-requisites
to enable SubNetAct are trained weights and architecture of
the supernet that are obtained from existing NAS approaches
[8, 28, 47, 58].

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 755

A.2 SubNet Profiled GFLOPs

As discussed in §4.2, SlackFit bucketizes SubNet φ ∈ Φpareto
and batch size |B| using three properties. While Fig. 6 showed
that inference latency increases monotonically with both batch
size (P1) and accuracy (P2), the analytical basis for it is shown
in Fig. 12. This heatmap of GFLOPs (Giga Floating Point Op-
erations) quantifies the computational demand for each pair
of neural network model architecture (SubNet φ) and batch
size (|B|). Fig. 12a and Fig. 12b demonstrate that the compu-
tational demand for any SubNet φ increases as its batch size
increases. Moreover, SubNets with higher accuracy require
more FLOPs in both Transformer-based and Convolution-
based SuperNets. Thus, given a specific hardware (in our case
NVIDIA RTX2080Ti GPU), the inference latency increases
as computational demand from (SubNet φ, |B|) increases, val-
idating properties P1 and P2.

Finally, the FLOPs distribution also shows multiple in-
stances where the FLOP count for lower accuracy SubNet
with higher batch size is similar to or less than the FLOP
for a higher accuracy SubNet with lower batch size. For e.g.,
in Fig. 12b, (73.82, BS16) requires FLOPs slightly less than
(80.16, BS2). This reduced GFLOP demand influences the
inference latency, and allows lower accuracy SubNets to serve
higher batch sizes at similar latencies as higher accuracy Sub-
Nets with lower batch sizes, validating P3.

A.3 System Dynamics: Synthetic Traces

We also derive key observations from the dynamics to un-
derstand how SuperServe achieves high SLO attainment and
better trade-offs (R1-R2) for synthetic traces.

Fig. 13 shows the system dynamics of SuperServe for both
bursty and time-varying traces. The mean ingest rate of the
bursty traces is 7000 qps and they vary in CV 2

a = {2, 8}. Sim-
ilarly, in case of the time-varying traces, the ingest rate is
increased from λ1 qps to λ2 qps at varying accelerations τ =
{250 q/s2, 5000 q/s2}. The control decisions made by Slack-
Fit (subnetwork (accuracy) and batch size) are shown over
time.

Fig. 13a shows system dynamics for the bursty traces. The
trace with CV 2 = 8 (blue line) has higher spikes than the trace
with CV 2 = 2 (orange line). First, note that SuperServe op-
erates at an accuracy range of 76− 78% and never selects
a higher accuracy subnetwork such as the subnetwork of
80.16% accuracy. This is because the subnetwork of 80.16%
accuracy diverges at the mean ingest rate of 7000 qps (also
seen in Fig. 9 last row). Hence, SuperServe automatically se-
lects appropriate subnetworks for different mean ingest rates.
Moreover, SuperServe uses lower accuracy models more fre-
quently with increasing CV 2

a . This is because increased jitter
reduces query slack, causing SlackFit to pick lower latency
buckets more often. This corroborates the trend seen in Fig. 9
where the mean serving accuracy of SuperServe monoton-

ically decreases as CV 2
a increases. Lastly, during the load

spikes, SlackFit usually selects control parameters with high
batch size and smaller subnetwork (§4.2.1). This control deci-
sion allows SuperServe to drain the queue faster, resulting in
a high SLO attainment on the traces (R1).

Fig. 13b shows the system dynamics for the time-varying
traces. τ = 5000 q/s2 (blue line) increases the ingest rate
from 2500 qps to 7400 qps faster than τ = 250 q/s2. For
both the traces, SuperServe dynamically changes the accu-
racy from ≈ 79.2 to ≈ 77.5 as mean ingest rate increases.
SuperServe’s ability to dynamically adjust accuracy helps it
achieve a higher mean serving accuracy (R2) compared to
serving a single model statistically. Moreover, for τ = 5000
q/s2, SuperServe jumps to lower accuracy and higher batch
size control parameters quickly. While, for for τ = 250 q/s2,
SuperServe uses intermediate models to serve the intermedi-
ate ingest rate during ≈ 60− 80 seconds. A higher τ value
forces query’s slack to reduce drastically. Hence, SlackFit
rapidly switches to selecting control parameters of smaller
subnetwork and higher batch size from the low latency buck-
ets (§4.2) to satisfy deadlines (R1). Therefore, increase in τ

decreases mean serving accuracy (a trend observed in Fig. 10
across the rows).

A.4 Scheduling policies
The core functionality of the SuperServe’s scheduler is to max-
imize (a) SLO attainment and (b) prediction accuracy for any
arrival trace dynamics. The scheduler offers a pluggable pol-
icy framework to support any application sensitivity to these
metrics by allowing arbitrarily different trade-offs between
them. SuperServe policy interface dictates that control deci-
sions are made w.r.t. the batch size and subnetwork to activate.
Both of these control parameters affect SLO attainment and
serving accuracy. This is because the scheduler a) perpetually
operates under a latency constraint and b) these control deci-
sions have a cumulative effect over time (e.g., higher accuracy
affects queue build-up later). Finding a globally optimal set of
batch size and subnetwork control tuples over time is NP-hard.
As our control decisions must be made on the critical path
of queries’ end-to-end latency, quick sub-millisecond control
decision making is a key performance requirement. Thus,
to meet the real time requirements, we primarily consider
scheduling policies that are greedy w.r.t. time. The policies
decide the batch size and subnetwork based on the remaining
slack of the most urgent query. The slack is calculated using
a fast (sub-ms) O(1) EDF queue lookup operation.

A.5 Policy Design Space
MaxBatch Policy. This policy first maximizes the batch size
and then the accuracy. It greedily finds a maximal batch size
(b) for the smallest accuracy subnetwork that fits within la-
tency slack θ.Within the chosen batch size MaxBatch finds

756 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

82.2 83.5 84.1 84.8 85.1 85.2
Model accuracy (%)

1
2

4
8

16
Ba

tc
h

siz
e

11.23 22.84 34.45 67.12 68.14 89.49

22.46 46.68 68.9 134.2 135.3 179

44.92 93.36 138.8 268.5 269.6 358

89.84 187.7 277.6 537 538.2 715.9

179.7 376.4 555.2 1074 1076 1432

500

1000

GF
LO

Ps

(a) Transformer-Based SuperNet

73.8276.6977.6478.2579.4480.16
Model accuracy (%)

1
2

4
8

16
Ba

tc
h

siz
e

0.9 2.05 3.6 3.95 5.05 7.55

1.8 4.1 7.2 7.9 10.1 15.1

3.6 8.2 14.4 15.8 20.2 30.2

7.2 16.4 28.8 31.6 40.4 60.4

14.4 32.8 57.6 63.2 80.8 120.8
25

50

75

100

GF
LO

Ps

(b) Convolution-Based SuperNet

Fig. 12: SlackFit control parameter space. FLOPs for six different pareto-optimal SubNets in SubNetAct as a function of accuracy (x-axis)
and batch size (y-axis) shown for both transformer and convolution-based supernet. The FLOPs are monotonic with batch size and accuracy.
This trend in FLOPs forms the analytical basis of the trend in the inference latency of these models (as shown in Fig. 6).

0 50 100 150 200 250 300

6.5k

7k

7.5k
Tp

ut
 (q

/s
)

50 100 150 200

77.5

78.0

78.5

A
cc

ur
ac

y

CV2
a =8

CV2
a =2

50 100 150 200
14

16

B
at

ch
 s

iz
e

Timeline (s)

(a) Dynamic accuracy and batch size control: bursty traces

0 50 100 150 200 250 300

2.5k

5k

7.5k

Tp
ut

 (q
/s

)

τ=5000 QPS2

τ=250 QPS2

50 100 150 200

77

78

79

A
cc

ur
ac

y

50 100 150 200

10

15

B
at

ch
 s

iz
e

Timeline (s)

(b) Dynamic accuracy and batch size control: time-varying

Fig. 13: System Dynamics on Synthetic Traces. Accuracy and
batch size control decisions shown over time in response to ingest
throughput (q/s). (a) bursty traces λ = 7000 = (λb = 1500)+(λv =
5500) with burstiness of CV 2

a = 2 (orange) and CV 2
a = 8 (blue). (b)

time varying traces accelerate from λ1 = 2500 q/s to λ2 = 7400 q/s
with acceleration τ = 250q/s2 (orange) and τ = 5000q/s2 (blue).
Batch size and subnetwork activation control choices over time show
how SuperServe reacts to each of the four plotted traces in real time.
This illustrates dynamic latency/accuracy space navigation.

the maximum accuracy subnetwork (s) such that the profiled
latency L(b,s)< θ . It returns the control choice (b,s). This
policy leverages insights (I1) and (I2). It takes O(log(B))

operations to find b and O(log(S)) operations to find s (bi-
nary search on monotonically increasing latency w.r.t. batch
size and accuracy). As a result, this lightweight policy scales
well with the profile table, taking only O(log(B)+ log(S))
operations to make control decisions.

MaxAcc Policy. MaxAcc first maximizes the accuracy and
then the batch size. Mirroring MaxBatch, MaxAcc performs
a binary search for the largest accuracy (s′) with L(1,s′)< θ

first. Then, it finds the maximal batch size (b′) keeping the
subnetwork choice fixed to the chosen s′, such that L(b′,s′)<
θ ms. Similarly to MaxBatch policy, it leverages insights (I1)
and (I2) and takes O(log(B)+ log(S)) operations to return
the control choice (b′,s′).

The proposed SlackFit Policy. This is our best perform-
ing policy. At a high level, SlackFit partitions the set of feasi-
ble profiled latencies into evenly sized latency buckets. Each
bucket consists of control tuples (b,s) with L(b,s) within the
range of bucket width. Then the policy chooses a bucket with
latency ≤ θ. Finally, from the choices within the selected
bucket, it picks the control choice that maximizes batch size.
Intuitively, selecting control parameters closest to slack θ

configures the system to operate as close to capacity as possi-
ble.In other words, choices with latency less than that either
reduce the throughput capacity or the serving accuracy, even-
tually lowering system’s SLO attainment and accuracy. This
draws on the monotonicity insights (I1) and (I2). SlackFit’s
novelty is in insight (I3). We observe that SlackFit dynami-
cally detects and adapts to the runtime difficulty of the trace.
A well-behaved trace (e.g., low ingest rate, variation, accel-
eration) results in higher θ. Higher θ leads to the choice of
higher latency buckets. And higher latency buckets are cor-
related strongly with fewer control tuple choices (Fig. 6),
maximizing the probability of choosing higher accuracy mod-
els. Conversely, mal-behaved traces (higher ingest rate, varia-
tion, acceleration) lead to lower latency bucket choices, as the
scheduler is operating under much lower θ conditions. There

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 757

are more control choices in lower latency buckets, which leads
to control tuples within those buckets to favor higher batch
sizes. This leads to processing the queue faster.

Experiment Result. In Fig. 11c we show that SlackFit
achieves the best tradeoff w.r.t. our success metrics compared
to both MaxAcc – a policy that greedily maximizes accuracy
and MaxBatch — a policy that greedily maximizes batches.
The traces used mean λ = 7000 qps ((λb = 1500)+ (λv =
5550)) and CV 2

a ∈ {2,4,8}. SlackFit reaches the highest SLO
attainment(0.999) for all CV 2

a . MaxBatch starts under per-
forming w.r.t. SLO attainment with CV 2

a increase. The Slack-
Fit and MaxBatch difference is most pronounced at the high-
est CV 2

a , eventually causing a significant 5% drop in the SLO
attainment. Both policies maximize the batch size within
latency slack θ when operating under small θ. When θ in-
creases, however, MaxBatch continues to maximize the batch
size unconditionally—a greedy choice that leads to packing
larger batches. This greedy decision causes more time to be
spent in a worker compared to SlackFit, which adaptively
shifts to higher accuracy models under larger θ conditions
with compound effect on queued queries, eventually miss-
ing their SLOs. maxAcc is unable to keep up with this trace.
It never switches to policy decisions that process the queue
faster. This policy comparison shows a continuum between
faster queue processing and serving higher accuracy, with
SlackFit automatically finding the best point in this contin-
uum.

758 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation
	Reactive, Fine-Grained Scheduling
	Weight-Shared SuperNets

	SubNetAct: Instantaneous Model Actuation
	SubNetAct's Operators
	Discussion: Efficacy of SubNetAct

	Fine-Grained Scheduling Policies
	Optimal Scheduling Policy
	SlackFit: Online Scheduling Policy
	SlackFit's Approximation of Optimal Offline ZILP

	SuperServe: System Implementation
	Evaluation
	Experimental Setup
	End-to-End: Real Workloads
	End-to-End: Synthetic
	Baseline comparison with burstiness
	Baseline comparison with arrival acceleration

	Microbenchmarks

	Related Work
	Conclusion
	Appendix
	SubNetAct: Automatic Operator Insertion
	SubNet Profiled GFLOPs
	System Dynamics: Synthetic Traces
	Scheduling policies
	Policy Design Space

