
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Understanding and Profiling NVMe-over-TCP
Using ntprof

Yuyuan Kang and Ming Liu, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi25/presentation/kang

Understanding and Profiling NVMe-over-TCP Using ntprof

Yuyuan Kang and Ming Liu

University of Wisconsin-Madison

Abstract
NVMe-over-TCP (NVMe/TCP) is an emerging remote stor-

age protocol, increasingly adopted in enterprises and clouds. It
establishes a high-performance reliable data channel between
clients and storage targets to deliver block I/Os. Understand-
ing and analyzing the protocol execution details and how well
storage workloads run atop are pivotal for system developers
and infrastructure engineers. However, our community lacks
such a profiling utility, whereas existing solutions are ad-hoc,
tedious, and heuristic-driven. Realizing it is challenging due
to the unpredictable I/O workload profile, intricate system
layer interaction, and deep execution pipeline.

This paper presents ntprof, a systematic, informative, and
lightweight NVMe/TCP profiler. Our key idea is to view the
NVMe/TCP storage substrate as a lossless switched network
and apply network monitoring techniques. We model each
on-path system module as a software switch, equip it with a
programmable profiling agent on the data plane, and develop
a proactive query interface for statistics collection and anal-
ysis. ntprof, comprising a kernel module and a user-space
utility, allows developers to define various profiling tasks, in-
curs marginal overhead when co-locating with applications,
and generates performance reports based on prescribed speci-
fications. We build ntprof atop Linux kernel 5.15.143 and
apply it in six cases, i.e., end-to-end latency breakdown, in-
terference analysis, SW/HW bottleneck localization, and ap-
plication performance diagnostic. ntprof is available at
https://github.com/netlab-wisconsin/ntprof.

1 Introduction
Storage disaggregation [31, 76, 77, 92, 98] has gained signif-
icant traction recently due to independent resource scaling,
high utilization, and cost efficiency. It has been increasingly
deployed in data centers, enterprise on-premise clusters, and
edge clouds. With the rising networking speed and emerging
high performance of NVMe drives, a disaggregated SSD can
deliver millions of IOPS at tens of microseconds.

The key technology enabler is an NVMe-over-Fabric
(NVMe-oF) protocol [43] that delivers high-performance stor-

age accesses between clients (initiators) and remote NVMe
subsystems (targets). An initiator submits block I/O requests–
encapsulated into specialized fabric packets–and delivers
them to the remote side through an established protocol chan-
nel. A target receives packets from the network transport,
converts them to NVMe commands, reads/writes from the
SSD, and sends the response back. NVMe/TCP is one such
networking fabric, which is increasingly adopted and has en-
abled many real-world deployments [2, 3, 12, 25, 27, 28].

However, our community lacks a system profiling tool
to understand and analyze the execution characteristics of
the NVMe/TCP protocol. This makes answering many de-
sign, operation, testing, and deployment questions impracti-
cal. For example, how well do the storage applications run
over NVMe/TCP? How should we design the I/O merging
and pacing policies of the block layer? What are the system
bottlenecks along the protocol pipeline? How should we re-
configure the NVMe/TCP configurations if the initiator/target
processors, networks, or NVMe drives are congested?

Building such a utility is non-trivial due to the work-
load non-determinism, intricate system layer interaction, and
deep execution pipeline. First, storage workloads embody
diverse I/O profiles, including block size distribution, read-
/write mix ratio, sequential/random access pattern, and I/O
concurrency. This issue is further exacerbated by (a) emerg-
ing NVMe drives with high queue depth; and (b) dense
storage appliances, equipped with dozens of SSDs, cumu-
latively offering large data volumes (10+ terabytes) and mas-
sive bandwidth (100+ GB/s). Second, the NVMe/TCP layer
closely interacts with other system modules, including the
block layer, TCP/IP networking stack, and NVMe subsys-
tem. Each presents certain execution parallelism (e.g., multi-
queue, multi-connection, and multi-data path) with flexible
load-balancing policies (to maximize throughput and mitigate
superfluous I/O stalls). Third, an I/O has a deep pipeline with
processing stages spreading two physical hosts across the
CPU core, networking, and NVMe drive (Figure 2).

Developers thus resort to a heuristic top-down analy-
sis strategy to diagnose performance anomalies, dissect

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1117

https://github.com/netlab-wisconsin/ntprof
https://github.com/netlab-wisconsin/ntprof

overheads, and explore optimization opportunities in an
NVMe/TCP-based disaggregated storage. They combine a
sequence of development utilities (from the application and
system layer [11,16,17,23,37,38,44,45,94] to the infrastruc-
ture level [18, 39, 51, 66, 67, 85, 86]), embarrassingly combine
them based on empirical observations, and manually synthe-
size isolated profiling reports from different tools to infer
the root causes. The entire synthesis process is tedious and
inefficient, driven by a vertical view of experimental results,
requiring an esoteric understanding of the system and lots of
back-and-force test/verification. More importantly, it is gener-
ally challenging to reproduce online interleaved I/O scenarios,
which are common in a multi-tenant environment, rendering
existing approaches futile for root cause exploration.

In this paper, we design and implement ntprof to enable
systematic tracing and analyzing of the NVMe/TCP. Our key
insight is viewing the NVMe/TCP subsystem as a lossless
switched network–an initiator sends I/O requests, a target re-
turns the responses, and I/O blocks encapsulated as TCP pack-
ets are forwarded by different system entities along the I/O
path–and apply network monitoring techniques. Essentially,
we make each on-path system component a multi-queue soft-
ware switch, equip it with a programmable profiling agent on
the data plane, and develop a proactive query interface for data
collection and analysis. As such, our design resembles prior
active network-based profiling systems (like TPP [57, 58]).
ntprof consists of four system components. First, it pro-

vides a profiling task specification template that allows de-
velopers to prescribe targeted I/O workloads, deployment
environments, profiler configurations, and reporting statis-
tics, enriching profiling functionalities. Second, we develop a
lightweight programmable profiling agent based on the Linux
tracepoint mechanism, co-locate with each modeled software
switch for statistics monitoring, and take translated specifica-
tions as predicates. Third, we introduce an in-band TPP-like
profiling query protocol, which injects a special NVMe/TCP
command capsule to query and collect statistics periodically.
Last, ntprof produces an informative performance report
(including end-to-end application I/O performance, latency
breakdown, throughput bottleneck, protocol running details,
etc.) either online or offline through a sequence of steps (such
as serialization, calibration, and MapReduce-like processing).
ntprof, built atop Linux kernel 5.15.143, comprises a ker-

nel model and a user-space utility at the NVMe/TCP initiator
and target sides. We evaluate it in a typical NVMe/TCP setup
in CloudLab [40] and demonstrate its effectiveness via six
case studies. Specifically, ntprof can report the I/O latency
breakdown of the deep NVMe/TCP pipeline (§4.2) and dis-
sect the I/O interference issue under mixed workload profiles
(§4.5). Next, ntprof enables developers to locate the system
bottlenecks at both software processing pipelines (§4.3) and
the underlying I/O substrate (§4.4). Further, ntprof can help
with application performance diagnostic when deployed in an
NVMe/TCP setting (§4.6 and §4.7). ntprof is open-source

CapsuleCmd

C2H Data /
H2CData

CapsuleResp

R2T

Type(1B) Flags(1B) HDR Len(1B) Data Off. (1B) Wire Byte Len (4B)

64 B 4 B var len8 B
CH PSH HDGST

16 B 4 B var len8 B
CH PSH HDGST DATA

16 B 4 B8 B
CH PSH HDSGT

16 B 4 B8 B
CH PSH HDGST

CapsuleCmd

C2HData

CapsuleResp

CapsuleCmd

CapsuleResp

w/ InData
CapsuleCmd

CapsuleResp

w/o InData
R2T

H2CData
… …

1+
1+

Read I/O Write I/O (≤8KB) Write I/O (>8KB)

(a). PDU Packet Format

(b). Three Protocol Procedures

InData

C2HData

targettargettargetinitiatorinitiator initiatorinitiator initiatorinitiatortargettargettarget targettargettarget

Figure 1: NVMe/TCP protocol details. (a) presents the packet
format of five types of PDUs. (b) depicts the protocol procedure
of an I/O read and write. InData=In-Capsule Data.

and we will keep working with the community to improve it.

2 Background and Motivation
This section provides some background on the NVMe-over-
TCP protocol and its Linux implementation. We then discuss
the challenges and limitations of existing profiling solutions.

2.1 NVMe-over-TCP Protocol

NVMe-over-TCP (NVMe/TCP) [43] is a high-performance
data transfer protocol that defines block-level storage accesses
between clients (initiators) and remote NVMe subsystems
(targets) via TCP/IP. An initiator submits block I/O requests–
encapsulated into specialized NVMe/TCP packets–and deliv-
ers them to the remote side through an established protocol
channel. A target receives packets from the network transport,
converts them to NVMe commands, reads/writes from the
SSD, and sends the response back. NVMe/TCP makes the
remote NVMe subsystem behave similarly to a local one.

NVMe/TCP, inherited from the NVMe base protocol [41,
42], constructs reliable bidirectional communication channels
(also called NVMe/TCP session) between two sides, where
each comprises an initiator-side submission-completion
queue pair, a TCP connection, and a target-side NVMe queue
pair. The number of channels can be configured to the num-
ber of cores of an initiator’s processor, which also benefits
the multi-queue architecture of an NVMe drive. There is a
specialized channel to deliver I/O admission commands.

Protocol Data Unit (PDU) is the basic communication gran-
ularity in NVMe/TCP that carries I/O command, data, and
control status. As shown in Figure 1-a, it begins with an 8-
byte Common Header (CH), followed by a 16 or 64-byte PDU
Specific Header (PSH), a 4-byte header digest (HDGST) for
cache alignment and integrity check, and variable length in-
capsule data (optional). CH defines the PDU type, special
flags (e.g., whether digest is present in the header and data),
header length, data offset, and the total PDU transmission

1118 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

initaitor

send
queue

target

TC
P/

IP

N
St

ac
k

nvme-tcp nvmet-tcp

Block Layer

application

Physical
Devices

NVMe/PCIe
Layer

NVMe SSDNVMe SSD

cmd
buffer
cmd

buffer

nvme-pci
subsystem

N
V

M
e/

TC
P

La
ye

r

send
queue

blk_mq

NVMe/TCP sessionNVMe/TCP session

blk_mq

request
buffer
request
buffer

protocol handlerprotocol handler protocol handlerprotocol handler

Step Description
Submit a read/write I/O via system calls
Forward the request to NVMe/TCP protocol handler
Generate a CapsuleCmd PDU and insert it into the request buffer
Pop the request from the request buffer and enqueue it to sending queue
Copy the CapsuleCmd or H2CData PDU to the TCP socket buffer
Transmit over the NVMe/TCP session
Read PDUs from the TCP socket buffer
Proccess the PDU, extract an NVMe command, and submit it to the blk_mq
Submit the NVMe command to local NVMe subsystem
Receive the I/O completion from the NVMe subsystem
Send the block layer response to the protocol handler
Produce the R2H/C2HData PDU and then insert it into the command buffer
Pop the response from the command buffer and enqueue it to sending queue
Dequeue PDUs from the sending queue and copy it to the TCP socket buffer
Reply over the NVMe/TCP session
Read a C2HData/R2T/CapsuleResp PDU from the TCP socket buffer
Perform PDU protocol processing and then produce a block I/O response
Return an I/O response to the application

11
22
33
44
55
66
77
88
99
1010
1111
1212
1313
1414
1515
1616
1717
1818

11

22

33
44

55

66

NVMe/TCP sessionNVMe/TCP session

77

88

99
1010

1111

1212

1313
1414

1515

1616

1717

1818

Figure 2: The left side depicts the NVMe/TCP system architecture and I/O data path. The right side lists detailed processing stages.

byte. There are five types of PDUs defined in NVMe/TCP for
I/O: (a) CapsuleCmd PDU, issued from the initiator and trans-
mitting a command capsule that encodes a read/write request
in the PSH; (b) CapsuleResp PDU, replied from the target
and carrying a completion response capsule; (c) H2CData
PDU(C2HData PDU), used for transfer I/O data from an ini-
tiator (target) to a target (initiator); (d) R2T PDU, a control
signal from the target to notify when it is able to accept data
from the initiator. The PSH header is not consistent across
different PDUs. It encodes the NVMe-oF command capsule
submission/completion Queue Entry in CapsuleCmd PDU/-
CapsuleResp PDU, carries data in H2CData PDU/C2HData
PDU, and stores the R2T PDU’s metadata.

NVMe/TCP has three protocol procedures (Figure 1-b).
An I/O read sends a CapsuleCmd PDU and receives one or
more C2HData PDUs, ending with a CapsuleResp PDU for
completion notification. A small write (less than or equal to
8KB) uses CapsuleCmd PDU with the command and data
inlined, resulting in a CapsuleResp PDU response from the
target, which entails only one round-trip. Large writes require
one more admission control phase. First, the initiator submits
the write I/O request without data. Upon receiving an R2T
PDU, it sends multiple H2CData data transfer PDUs and waits
for a CapsuleResp PDU as an acknowledgment. Note that all
PDUs are encapsulated as TCP packets and traverse through
the corresponding TCP connection.

2.2 NVMe-over-TCP in Linux

NVMe/TCP is first officially released in Linux Kernel 5.0 [1]
by Lightbits Labs [26] with host and target drivers, conform-
ing to NVMe over Fabrics 1.1 specifications [43]. It is divided
into two kernel modules. One is nvme-tcp, staying at the ini-
tiator, which (a) instantiates and manages the NVMe/TCP
session; and (b) accepts block I/O requests, translates them to
NVMe/TCP PDU capsules, and delivers these TCP packets
to the remote storage. The other is target-side nvmet-tcp,
which (a) manages NVMe subsystems of the storage appli-

ance; and (b) executes the NVMe/TCP protocol to facilitate
I/O handling. This section describes their system architecture
and I/O path based on Linux Kernel 5.15.143 (Figure 2).
nvme-tcp (Initiator). Here’s its workflow on the submis-
sion path of a session. First, applications issue I/O requests
via system calls and insert them into the blk-mq of the
block layer (1). Next, nvme-tcp dequeues a request (2), tra-
verses the protocol handling, constructs an NVMe/TCP PDU
capsule (struct nvme_tcp_request), and pushes it into a
per-session request buffer (3). It is a LIFO (Last-In-First-
Out) lockless linked list (struct llist_head req_list)
that accepts block I/Os from all CPU cores. After that, the
nvme-tcp kernel thread pops a ready-to-transmit request and
enqueues it into a per-session LIFO sending queue (struct
list_head send_list) (4). Last, these ready capsules are
dequeued (5) and delivered to the corresponding NVMe/TCP
session (6) for transmission via the TCP/IP networking stack.
A session is represented as a transport queue (part of struct
nvme_tcp_queue), associated with a dedicated TCP socket
handler and assigned to a specific CPU core. This is realized
via either (i) the current kernel thread when the queue occu-
pancy is low (e.g., only one outstanding I/O) or (ii) a deferred
tasklet (nvme_tcp_io_work) that interleaves the sending and
receiving PDU processing to optimize throughput.

The completion path is completely handled by the
nvme_tcp_io_work routine after the networking stack pro-
cessing. It reads data from the TCP socket buffer and con-
structs an NVMe/TCP capsule (16). A corresponding PDU
handler is triggered based on the PDU type (i.e., C2HData,
CapsuleResp, or R2T), which produces a block layer response
and returns it to the block layer (17) and applications (18), or
sends an H2CData PDU for data transmission (3).
nvmet-tcp (Target). Storage traffic arrives at the
NVMe/TCP session socket, stored in the nvmet-tcp transport
queue (struct nvmet_tcp_queue). Akin to the nvme-tcp
module, there is a per-session LIFO-based response command
buffer (struct llist_head resp_list) and a per-session

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1119

LIFO-based response sending queue (struct list_head
resp_send_list). The target workflow is as follows. First,
the nvmet-tcp kernel thread (nvmet_tcp_io_work) reads
a batch (up to 64) of PDUs from the TCP socket buffer
and activates the PDU handler (7). As shown in Figure 1-
b, a large write without in-capsule data triggers the R2T
PDU processing, produces a corresponding response (struct
nvmet_tcp_cmd), and inserts it into the command buffer (12).
Otherwise, it processes data payload, extracts the NVMe com-
mand (struct nvme_command), and delivers it to blk_mq
(8). Second, the block layer then interacts with its local
NVMe system, submits an IO read/write (9), accesses the
SSD drive, and waits for an I/O completion (10). Next, simi-
lar to Steps 2–4, block I/Os traverse target-side PDU handling
(11), where the fabricated response capsules are inserted into
the command buffer (12) and delivered to the send queue (13).
Finally, the NVMe/TCP session takes response PDUs from
the send queue (14), performs TCP/IP protocol processing,
and sends data back to the initiator (15).

2.3 Challenges and Existing Solutions

Challenges. Profiling storage applications running over Linux
NVMe/TCP is non-trivial. First, applications exhibit diverse
I/O profiles regarding block size, access pattern, and I/O con-
currency. Second, the NVMe/TCP layer closely interacts with
other system modules on both control and data planes. As
shown in Figure 2, it takes I/Os from the block layer, trans-
mits requests/responses via the TCP/IP networking stack,
and submits (accepts) NVMe commands to (from) the SSD
through the NVMe subsystem. All layers have certain execu-
tion parallelism with flexible load-balancing support. Third,
each request traverses a long data path between two physical
hosts (Figure 2). An I/O can be queued at several locations in
a NVMe/TCP setting. There is the block layer [33], where (a)
a software staging queue buffers I/Os for flexible scheduling;
and (b) a hardware dispatch queue controls the submission
rate. Within the TCP/IP networking stack, we have (a) packet
pending queue (sk_write_queue) to buffer in-network data,
(b) traffic control (i.e., qdisc), e.g., the TCP Small Queues
mechanism (TSQ) limiting the number of transmitted packets
to reduce RTT and avoid bufferbloat [80]; (c) driver RX/TX
queue, i.e., fixed-sized ring buffer. Further, NVMe employs
the multi-queue interface between a host driver and an NVMe
controller to carry submitted and completed I/O commands.
Existing Solutions. There are no structured and systematic
profiling utilities in the Linux NVMe/TCP domain for perfor-
mance diagnostic, overhead analysis, and optimization explo-
ration. Developers today leverage a sequence of development
utilities, embarrassingly combine them based on empirical ob-
servations, and manually synthesize isolated profiling reports
from different tools to infer the root causes.

People usually take a top-down strategy and gradually
apply tools from the application layer to the system stack,
down to the infrastructure level. For example, one would first

Application Layer
 fio

H
ot

 S
ys

te
m

 L
ay

er

Infrastructure Layer
iperf3, qperf

Metrics Unloaded Loaded
Latency (usec) 867.1 1999.6

Throughput (MB/s) 1441.0 625.0

Metrics Unloaded Loaded
Latency (usec) 11.6 11.4

Throughput (Gb/s) 88.5 93.8

 Top-6 Function Calls Breakdown Sorted by Overhead(%)

Function Name % Function Name %
1 get_io_u 24.6 get_io_u 22.7
2 internal_get_* 7.6 __blk_queue* 6.5
3 __blk_queue* 5.9 internal_get_* 6.2
4 try_grab_* 4.1 try_grab_* 3.7
5 __bio_try_* 2.2 bio_iov_iter_* 2.6
6 bio_iov_iter_* 1.9 __bio_try_* 2.5

UnLoaded LoadedRank

Pe
rf

fio

fio

UnLoaded

Loaded

fio

fio

UnLoaded

Loaded

Figure 3: Analyzing NVMe/TCP via existing solutions. We set
up the unloaded and loaded cases on the NVMe/TCP target,
where the latter has background I/O streams contending the
SSD. In both scenarios, we run the fio workload (128KB write,
iodepth=10) and show how existing tools from different system
layers (Perf, iperf3, and qperf) fail to diagnose the issue.

use application-provided microbenchmarks (like RocksDB’s
db_bench [16] and Lustre’s lnet_selftest [11]) and trac-
ing utilities to characterize the basic I/O performance and col-
lect running logs. Next, after figuring out anomaly/unexpected
execution, she would use system tools (such as gprof [45],
JProfiler [94], cProfile [44], Valgrind [23], blktrace
[17], Oprofile [37] and Perf [38]) to examine CPU usage,
memory footprint, thread hotspot, or even some hardware
architectural events (like L2/L3 cache misses and retired in-
structions per cycle) and debug the issue. Last, she might
also need to employ low-level infrastructure utilities, e.g.,
iperf3 [39], qperf [85], iostat [18], and iometer [66], to
validate if the underlying networking fabric and I/O substrate
satisfy the deployment assumption. This process is tedious
and requires lots of expertise and trials. Worse yet, it is hard
to reproduce some interleaved I/O scenarios, especially in a
multi-tenant disaggregated storage environment.

We configure an unloaded and loaded NVMe/TCP target
and run the same fio workload atop (Figure 3). When the
SSD is congested (loaded scenario), its I/O throughput drops
from 1441.0 MB/s to 625.0 MB/s with average latency in-
creasing from 867.1 µs to 1999.6 µs. However, when using
Perf to locate the issue, it reports nearly no difference in
both cases. For example, the user-space function get_io_u
consumes the most CPU cycles, i.e., 24.6% and 22.7%,
respectively. Kernel functions __blk_queue_split and
internal_get_user_pages_fast rank second and third.
When using networking utilities (like iperf3 and qperf),
we find that the network pipe between the initiator and target
provides enough bandwidth (i.e., 88.5 GB/s and 93.8 GB/s),
ruling out the network bottleneck. Thus, using existing tools
to pinpoint the root cause is not straightforward.

Therefore, an adequate NVMe/TCP profiling utility should
(a) generate different kinds of performance reports for ar-

1120 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

bitrary I/O workloads (like average/tail latency, throughput,
queueing delay); (b) capture I/O data path execution horizon-
tally between distributed hosts and vertically through the sys-
tem stack; (c) provide diverse and efficient analysis capabili-
ties that serve either online/offline scenarios, identify ephemer-
al/persistent I/O behaviors, and incur marginal overheads for
co-located applications. We target NVMe/TCP-based storage
disaggregation due to its wide adoption [2, 3, 12, 25, 27, 28].

3 ntprof: An NVMe-over-TCP Profiler
This section describes the design and implementation of
ntprof. Our system design goals are as follows:

• Informative. ntprof should provide adequate running
statistics about NVMe/TCP processing at the prescribed
I/O granularity and profiling scope for protocol understand-
ing, performance diagnostic, and bottleneck localization;

• Profiling rich. ntprof should provide diverse end-to-
end profiling capabilities, accommodating various storage
workload profiles (e.g., IO sizes, read/write ratio, access
pattern, and concurrency), dissecting deep and pipelined
protocol handling, analyzing inter-layer interaction, and
reporting characteristics based on the task specification;

• Lightweight. ntprof should allow online and offline pro-
filing based on the developer’s need. Since ntprof operates
at the data plane and interacts with crucial system compo-
nents (§ 2.2), it is pivotal to ensure ntprof incurs minimal
system overheads in terms of memory footprint and CPU
cycles with a marginal impact on running I/O applications.

3.1 Key Idea: NVMe/TCP as a Network

ntprof treats the NVMe/TCP subsystem as a lossless
data network–an initiator sends I/O requests, a target re-
turns the responses, and PDUs encapsulated as TCP pack-
ets are forwarded by different system entities along the
I/O path. Inspired by the efficacy of network telemetry sys-
tems [32, 48, 54, 103], we model the NVMe/TCP setup as
a switched networking system and apply network monitor-
ing techniques. Essentially, we make each on-path system
component a multi-queue software switch, equip it with a
programmable profiling agent on the data plane, and develop
a proactive query interface for data collection and analysis.
As such, our design behaves similarly to active network-based
profiling [57, 58].

In active networks [95,96], switches, routers, and gateways
employ a programmable architecture, and can execute mini-
programs (also called “active capsule”) carried by network
packets. This enables several in-network capabilities, such as
application-specific multicast, information fusion, monitor-
ing, and middlebox functionalities (like address translation,
load balancing, monitoring, deep packet inspection, and in-
trusion detection). TPP (tiny packet program) [57, 58] is an
active network-based monitoring system. An Ethernet packet,
embedding a TPP code segment (based on six load/store in-

structions), can execute the TPP program on the switch to
collect runtime statistics when forwarded. The endhost then
develops the data-plane network telemetry using the TPP ex-
ecution results. ntprof employs the same approach to the
NVMe/TCP context. We use a special TPP-like I/O request
to collect statistics from each on-path system module and
reconstruct the profiling report at the end.

Figure 4 presents the overall system architecture of ntprof.
Programmers define the profiling task and specify its configu-
ration (§3.3). We then translate these specifications into dif-
ferent profiling rules and install them into the corresponding
profiling agents (§3.4), co-located with modeled switching
components (§3.2). After launching the application, ntprof
(a) bookkeeps prescribed execution statistics of traversed I/Os
at all active entities on the data plane (§3.4); (b) issues a spe-
cial query command periodically to collect temporary and
isolated profiling summary from individual layers (§3.5); (c)
reconstructs the entire I/O running profile and performs stipu-
lated analyses (§3.6). ntprof works in both offline and online
modes. The former targets in-depth analysis and diagnosis
based on full profiling data sets, whereas the latter aims for
real-time running insights through window-based monitoring.

3.2 Modeling the I/O Path

We model the NVMe/TCP-based storage substrate as a multi-
stage Clos network [36, 88], where senders (initiators) and re-
ceivers (targets) communicate via a sequence of buffered soft-
ware switches (Figure 4). Thus, the I/O path of an NVMe/TCP
submission request (completion response) consists of a chain
of switching queues. We then categorize the queueing model
of different software layers using Kendall’s notation [60].
In the following expression A/S/c/K/N/D, A is the arrival
process, S is the service time distribution, c is the number
of workers (consumers), K is the queueing capacity, N is the
number of customers (producers), and D is the queueing dis-
cipline. We summarize three models based on the execution
characteristics of different on-path software components.

• The Central-FCFS model (formally G/G/1/Q/X/FCFS)
takes requests from one or several producers (X ≥ 1) and
processes them in the first-come-first-serve (FCFS) order.
The per-core software staging queue of the blk-mq layer,
the initiator-side per-session NVMe/TCP transport queue,
and nvme-pcie submission queue belong to this;

• The Split-FCFS model (formally G/G/X/Q/1/FCFS)
partitions I/Os to multiple FCFS workers (X ≥ 1) based
on the execution mapping, such as a target-side session
transport queue and a nvme-pcie completion queue;

• The Central-PS model (formally G/G/1/Q/X/PS) is a
little complex, used to describe the networking stack han-
dling [34]. Even though NVMe/TCP packets traverse each
connection in order, the connection-core mapping happens
differently, depending on the system setup. For example,
one core could concurrently take several sessions (X ≥ 1)

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1121

S1
blk_mq

S2
NVMe/TCP
Transport

S3
TCP/IP
NStack

initiator

blk_mq

target

NVMe/PCIeNVMe/TCP
Transport

TCP/IP
NStack

SSD
Programmer

Profiling
Report

Workload Specification
• type, size, etc.

Profiler Specification
• sample frequency, etc.

Execution Specification
• application setup

Report Specification
• analyzing statistics, etc.

Analyzing
Framework

Profling Record
Colletion

S4 S5 S6 S7 S8

Profiling Analyzer

Profiling Task Specification

app1

PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA

PAPAPA PAPAPA

app3 PAPAPA PAPAPA PAPAPA

PAPAPA PAPAPA PAPAPA PAPAPA

PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA PAPAPA

app2

app4Profiling
Query

N
et

w
or

k

PAPAPA

PAPAModeled Switching Queue Profiling Agent Submission and Completion PathI/O request.

PAPAPA PAPAPA PAPAPA PAPAPA

S9

Figure 4: System overview of ntprof. PA refers to the Programmable Profiling Agent, attached to each switching queue. “S” refers to
a processing stage. The right side of the figure illustrates four example applications. The I/O paths of app1 and app2 overlap at Stage 2
because both are mapped to the same NVMe/TCP queue. App3 shares the same I/O path as app1 at Stage 4, as their TCP connections
are handled by the same core on the target side. The I/O path of app4 overlaps with app1 at Stage 8 as both mount the same SSD drive.

and load balances CPU cycles following some processor
sharing (PS) discipline. One session usually can not be
touched by more than one core at any given time.

These models allow us to abstract the software switch accu-
rately, effectively integrate profiling agents into each layer,
and enable more accurate queueing stall estimation.

3.3 Profiling Task Specification

ntprof requires a specification template (Figure 4) to define
the profiling task, including I/O workloads, running environ-
ment setup, profiler configuration, and profiling statistics.

• Workload Specification prescribes what I/Os to profile. It
tells ntprof (a) which NVMe/TCP sessions (i.e., name and
mounted address) and (b) what types of I/Os (e.g., I/O read-
/write type and I/O sizes) to trace and analyze. We support
exact match (size=4KB) and range match (size≥32KB);

• Execution Specification defines how the application is
deployed and run. This includes (a) application setup, e.g.,
whether application threads are pinned; (b) NVMe/TCP
configuration, e.g., the number and core mapping of trans-
port queues, connections, and NVMe queues; (c) hardware
limits of network and storage substrates, e.g., maximum
bandwidth of network links and NVMe drives;

• Profiler Specification determines the workflow of ntprof.
First, we support both online and offline modes, where
the former reports runtime statistics (like PAPI [19]), and
the latter provides an execution summary based on en-
tire tracing. Second, we allow users to specify the sam-
pling frequency (in terms of time epoch or the number of
I/Os) and profiling time window, e.g., the start and end
time pair being the conventional YYYY-MM-DD hh:mm:ss
format. Third, ntprof requires setting the maximum in-
memory buffer size to store the profiling record. When
exceeded, it either overwrites the old ones or dumps them
on the local drive based on user preference. Last, in the
online mode, we provide several programmable primitives
to enable more advanced statistical reporting. For example,
MIN|MAX|AVG|DIST computes the min, max, average, and
distinct value of a given profiling range or time window;

Tracepoint Triggered Condition
_queue_rq When a block I/O enters the NVMe/TCP layer

_queue_request After a block I/O is converted to a CapsuleCmd PDU
_try_send_cmd_pdu When a CapsuleCmd PDU is copied to the TCP skbuff
_try_send_data_pdu When a H2C Data PDU is copied to the TCP skbuff

_try_send_data When a chunk of data is copied to the TCP skbuff
_done_send_req When the entire PDU is copied to the TCP skbuff

_handle_c2h_data After parsing the header of a C2HData PDU
_recv_data After receiving a chunk of C2HData PDUs

_process_nvme_cqe After receiving a CapsuleResp PDU
_handle_r2t When parsing the header of an R2T PDU

Table 1: Tracepoints added in the nvme-tcp (initiator) module.

• Report Specification lists the format of profiling results.
There are two aspects. One is analyzing statistics, includ-
ing (a) I/O latency distribution, (b) end-to-end throughput,
(c) latency breakdown of different layers across the I/O
path, and (d) queueing occupancy. The other one is data
presentation. ntprof allows users to stipulate grouper and
aggregator functions to organize execution statistics, such
as grouped by the I/O type, size, and session.

3.4 Programmable Profiling Agent

We equip each modeled software switch with a profiling agent
that includes a collector capable of gathering I/O running
characteristics, and predicates to filter out irrelevant ones.
Statistics collector. We build the collector based on the Linux
tracepoint mechanism [10]. A tracepoint is a static instru-
mentation point in the kernel and exposes a hook to call a
function provided by the developers. It can take parameters
(Appendix A.1) and enrich the execution logic. This makes
collecting detailed low-level statistics at specific points of
interest possible. We add tracepoints when a request (a) enter-
s/leaves a software module; (b) traverses essential processing
stages (Figure 2). Tables 1/2 list the tracepoints that ntprof
introduces into the nvme-tcp and nvmet-tcp modules.

Upon triggering a tracepoint, ntprof creates, updates, and
seals a profiling record based on the registered function. Each
I/O is associated with one record, consisting of request meta-
data (such as type, size, tag, and command/session ID) and
time-series triggered events throughout the lifetime of an I/O
(Figure 5). An event log is a 12-byte tuple, including the event
name and activating time, which is appended to the profiling

1122 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Tracepoint Triggered Condition
_try_recv_pdu When nvmet-tcp tries to read data from a skbuff
_done_recv_pdu After reading the header of a received PDU
_exec_read_req After receiving a complete read request
_exec_write_req After receiving a complete write request
_queue_response When inserting an element into the response queue

_setup_c2h_data_pdu When starting to make a C2HData PDU
_setup_r2t_pdu When starting to make an R2T PDU

_setup_response_pdu When starting to make a CapsuleResp PDU
_try_send_data_pdu After copying the header of the C2HData PDU

_try_send_r2t After copying an R2T PDU to the TCP skbuff
_try_send_response After copying a CapsuleResp PDU to the TCP skbuff

_try_send_data After copying a chunk of data to the TCP skbuff
_handle_h2c_data_pdu After reading the header of an H2CData PDU

_try_recv_data After reading a chunk of data from the TCP skbuff

Table 2: Tracepoints added in the nvmet-tcp (target) module.

record. Generally, a record is initialized when the tracepoint
nvme_tcp_queue_rq happens and completed upon trigger-
ing nvme_tcp_process_ncme_cqe. The size of a record is
I/O-dependent. For example, a read I/O, a write I/O with-
out inline data, and a write I/O with inline data consume at
least 207, 183, and 303 bytes, respectively. Appendix A.2
presents the event list of these three cases. In ntprof, a profil-
ing record is pinned to a dedicated session that handles the I/O.
The collection of records from all sessions forms the entire
profiling statistics. Relating to Figure 4, ntprof collects the
ingress and egress times of the profiled I/O, except for Stage
3-5 and Stage 9, as in the network stack, PDUs are flattened
and packed into binary data inside TCP packets. Additionally,
ntprof also collects the length of the PDU sending queues
at Stage 2 and Stage 6. ntprof follows the kernel log design
and uses an in-memory ring buffer to store records, whose
size is configured during initialization.
Predicate. ntprof translates profiling specifications (§3.3)
into predicates to filter out uninterested I/Os, improving the
profiling efficiency. A predicate is a logical expression com-
posed of one or more conditions, often connected by logi-
cal operators such as “and”. For example, if the program-
mer specifies capturing 4K read I/Os, the predicate would
be: type = read ∧ size = 4KB. When a tracepoint is active,
the I/O is checked by one or several predicates to determine
whether a record update is needed. ntprof merges predicates
from one I/O stream and allows online editing.

3.5 Profiling Query Protocol

ntprof views the NVMe/TCP-based storage substrate as
a networking system and develops an in-bind query pro-
tocol to obtain statistics at runtime. Akin to TPP [58],
we design a special NVMe/TCP command capsule (called
ProbCmd), carrying a small program segment that states what
and where to query via basic load/store/reset primitives.
We then introduce a response capsule (ProbResp) to re-
turn the results. ProbCmd and ProbResp follow the exist-
ing PDU format (Figure 1), consisting of an 8-byte com-
mand header and other corresponding headers. The data
fields are restructured as a sequence of “query instructions”
in the format of [Query_Opcode] [Software_Switch_ID]
[Statistics_Type] [Parameters]. These two commands

_queue_request

Tracepoints

_try_send_cmd_pdu

_done_send_req
Event List

…

…

Per-session
Profiling Record

Collection

_process_nvme_cqe

_queue_rq

event
time

event
name

is_write: bool
req_tag: int
contains_c2h: bool
contains_r2t: bool

Metadata
is_write: bool
req_tag: int
contains_c2h: bool
contains_r2t: bool

Metadata

Profiling Record

Profiling Record

…

Profiling Record

…

Profiling Record

Figure 5: Tracepoints, profiling records, and per-session profiling
record collection in the nvme-tcp layer.

specify the NVMe/TCP session, not the actual logical block
address (LBA), and traverse the same path as read/write I/Os.
Our protocol works as follows across different entities:

• Requester. The ntprof host utility, co-located with storage
applications, fabricates the query request and submits it to
the block layer. We support both frequency-based (per X
I/Os) and time-based operating modes (per Y seconds).
Upon receiving the responses, it then extracts the query
results and delivers them to the profiling analyzer;

• Executor. When receiving the probe command, the soft-
ware switch extracts the embedded program, teases out
belonging instructions (based on the switch ID), and ex-
ecutes them sequentially. It blocks the profiling agent
temporarily, collects all profiling records associated with
the NVMe/TCP session, and manipulates their profiling
records based on the statistic type field. For a load primi-
tive, we copy the statistics, build the response capsule, and
then directly push it to the completion path. A store/reset
opcode causes updating/clearing up the profiling record
and sending an acknowledgment back. Since there might
be multiple I/O paths for one session, when forwarding
a probe request, our switch would duplicate the special
command and submit them to all traversed egressed paths,
resembling the switch port mirroring technique [14];

• Responder. Unlike TPP which relies on the destination
node to construct a reply packet and piggyback queried
results, ntprof allows each software switch to reply di-
rectly due to the large memory usage of profiling records.
This indicates that one ProbCmd capsule incurs ProbResp
capsules back. Further, when the probing request reaches
the NVMe/PCIe layer at the target side (Figure 2), we send
back a probing completion response to notify the controller.

3.6 Profiling Analyzer

During the querying phase, the host sends profiling queries
and buffers the received results. ntprof then processes and
analyzes the data. The analysis involves four steps:

First, ntprof provides different ways to organize profiling
records, such as by NVMe/TCP session, I/O path, issuing core,
target NVMe drive, or request category. We first categorize

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1123

these records based on the prescribed criteria (defined in the
report specification), wherein each is further serialized based
on the I/O submission timestamp (tagged when entering the
block layer). Second, ntprof performs statistics calibration.
End-to-end profiling results are obtained directly at the initia-
tor host. The latency breakdown gathers statistics from all on-
path agents which contain event processing time and queueing
delay. We timestamp the enqueue and dequeue events when-
ever possible and use our abstracted queueing model (§3.2)
with the queueing occupancy and I/O concurrency distribu-
tion for validation. Third, ntprof encodes grouper/aggregator
functions into a multi-threaded map-reduce framework. We
spawn several mappers based on the profiling data volume
and group records based on the mapper keys (e.g., 4KB I/O).
Intermediate results are shuffled to a couple of reducers that
perform the aggregation; Fourth, we output profiling results
in the JSON format, which could also be visualized.

3.7 Implementation

ntprof requires kernel patches, adds a new kernel module,
and provides a user utility, ∼10K LOCs in total.
Kernel Modifications. Tracepoints are the key approach en-
abling our programmable profiling agent. Here is an example
showing how we track the enqueue event at the NVMe/TCP
transport layer. It defines three parameters: a pointer to a
request struct, the NVMe command, and the queue id.

1 /* TRACE_EVENT Example */
2 TRACE_EVENT(nvme_tcp_queue_request ,
3 TP_PROTO(struct request *req ,
4 struct nvme_command* cmd,
5 int qid),
6 TP_ARGS(req , cmd, qid),
7 TP_STRUCT__entry (...),
8 TP_fast_assign (...),
9 TP_printk (...));

We insert this tracepoint into the nvme-tcp module when
trace_nvme_tcp_queue_request function is called.

1 trace_nvme_tcp_queue_request(
2 blk_mq_rq_from_pdu(req),
3 req->req.cmd,
4 nvme_tcp_queue_id(queue));

Kernel Module and User-space Utility. ntprof introduce
new kernel modules at the initiator and target side. Here is
an example of the callback function for the above tracepoint.
It is registered during the module initialization, and it will
be executed once the tracepoint is triggered. The user-space
utility provides a CLI interface, and it takes the developer’s
inputs, interacts with kernel modules, and reports profiling
results.

1 void on_nvme_tcp_queue_request(
2 void* ignore , struct request* req ,
3 struct nvme_command* cmd, int qid) {...}

Implementation Alternative. ntprof might also be imple-
mented using eBPF [6] instead of a standalone kernel module.

One could (1) define and insert the tracepoints to the kernel
as described earlier; (2) define eBPF programs, which are
functions attached to the predefined tracepoints using the SEC
macro; (3) implement a user-space analyzer to read profiling
records through the eBPF maps and generate the final profil-
ing results. The eBPF programs can retrieve the tracepoint’s
parameters and store profiling records in eBPF maps [7].
Extension. One could also extend ntprof to support the
kernel-bypass storage stack. For example, over SPDK NVMe-
oF, we can use its tracing framework to define corresponding
tracepoints [5,21,22], capture them via the eBPF mechanism,
and reuse some of ntprof’s building blocks, like profiling
agent, query protocol, and profiling analyzer.

4 Case Studies
4.1 Experimental Methodology

Testbed. We use two hardware setups. The first (testbed-1)
consists of 2 sm110p servers from CloudLab [40]. Each node
has a 32-core Intel Xeon Silver 4314 CPU, 128 GB DDR4,
1 NVIDIA/Mellanox CX6 25GbE NIC, 1 NVIDIA/Mel-
lanox CX6 100GbE NIC, 1 Intel SATA SSD, and 4 Samsung
(MZQL2960HCJR-00A07) 960GB NVMe SSDs. We config-
ure its network MTU to 9KB. The second (testbed-2) includes
2 m510 servers from Cloudlab. Each node has a 16-core Intel
Xeon D-1548 CPU, 64 GB of DDR4 memory, 1 Mellanox
CX3 10 GbE NIC, 1 TOSHIBA (THNSN5256GPU7) 256
GB NVMe SSD. We disable the turbo boost and set the CPU
frequency governor to “performance” in both cases. All nodes
run Ubuntu 20.04 with kernel v5.15.143.
Workloads. Case studies 1–4 use synthetic workloads gener-
ated by fio v3.36. Case 5 runs the TSBS benchmark [20]
over Apache IoTDB [4, 99] v1.2.0 in a write-heavy scenario.
Case 6 runs the Filebench’s [75] videoserver workload over
F2FS [65] issuing read-heavy I/Os. We mainly examine I/O
latency and throughput in each case. To demonstrate how
ntprof reacts to different hardware settings, we conduct use
case 1 on both testbeds. Due to space limitations, the results
for the remaining use cases are presented only for testbed-1.
The results for testbed-2 are presented in the Appendix A.3.

4.2 Use Case 1: Latency Breakdown

Description. ntprof can break down the end-to-end I/O la-
tency into different stages (Figure 4) and provide useful sys-
tem execution insights. Developers often complain about the
unexpected poor performance in NVMe/TCP [15,24], but the
issue is sometimes unrelated to the protocol. More often, it’s
due to misconfigurations, such as having insufficient paral-
lelism in the NVMe subsystem or mismounting a hard drive.
Latency breakdown is helpful in these scenarios to pinpoint
the root cause. Further, when introducing new software layers
in the I/O path [55, 56, 77] or upgrading hardware, latency
breakdown can help assess the impact of these changes.
Experimental Setup. On testbed-1, we break down the la-
tency of a 4KB random read and 128KB sequential write

1124 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 8 16 32
iodepth(#)

0

50

100

150

200

250

La
te

nc
y(

µs
)

S1(S)
S2(S)
S3-S5(S+C)
S6-S9(S+C)
S2(C)

(a) 4K Random Read.

1 2 3 4 8 16 32
iodepth(#)

0

500

1000

1500

2000

2500

3000

La
te

nc
y(

µs
)

S1(S)
S2(S)
S3-S5(S+C)
S6-S9(S+C)
S2(C)

(b) 128K Sequential Write.

Figure 6: Latency breakdown for the 4K random read and 128K
sequential write as increasing the IO depth on testbed-1. We
report the five most time-consuming parts. S1(S) refers to the
time an I/O stays at the S1 stage on the submission path. S2(C)
captures the time spent at the S2 stage on the completion path.
S3–S5(S+C) aggregates the time spent in the S3, S4, and S5 stages
across the submission and completion paths.
while increasing the iodepth from 1 to 32. We configure fio
to run 1 job and issue requests to the Samsung drive in a direct
I/O mode. The I/O engine is set to libaio for asynchronous
operations. On testbed-2, we set the iodepth to 1, but increase
the number of jobs from 1 to 32. We define the profiling task
specification as follows: read(write) type, 4KB(128KB) block
size, NVMe session named “nvme4n1” (the remote storage
subsystem), a maximum of 10,000 profiling records, sampling
frequency=1 per 1,000, grouping by NVMe session (all I/O
sent to “nvme4n1” treated as one group), and AVERAGE as the
aggregator. We launch the fio job with ntprof, which col-
lects and analyzes profiling records and generates the report.

Result Analyses. Figure 6a illustrates the latency breakdown
for 4K random read requests. As the iodepth varies from
1 to 32, “S3-S5(S+C)” increases the most, from 14.3 µs to
127.0 µs, indicating that queue is built up the networking
substrate at both the initiator and target side. For example,
when the iodepth equals 32, the above aggregated stages ac-
count for 92.2% of the total latency. The reason why ntprof
can capture it is because our installed profiling agent takes
timestamps at two tracepoints at the NVMe/TCP initiator
(_try_send_data and _handle_c2h_data) and two trace-
points (_done_recv_pdu and _try_send_reponse) at the
target, which allows the profiling agent to dissect the latency
contribution from one or several stages (Figure 4). Figure 6b
shows the latency breakdown for 128K sequential writes.
“S6-S9(S+C)” becomes the most time-consuming part, ris-
ing from 79.2 µs to 2234.9 µs, as the iodepth increases from 1
to 32. ntprof is capable to further break down “S6-S9(S+C)”
and reveal that the “S5-S9(S+C)” on the target side takes
95.9% of the time when iodepth is 32. Similarly, such ca-
pability comes from the fact that ntprof records the trig-
gering time of the two key tracepoints (_exec_write_req
and _queue_response) at the target side. Figure 11a (Ap-
pendix A.3) presents the I/O latency breakdown on testbed-2.

Takeaways. ntprof models the NVMe/TCP data path as
a chain of software switches, where each can be equipped
with a programmable profiling agent that uses tracepoints to
collect statistics. This allows us to dissect the path segment
and perform time accounting in a fine-grained way, and makes
ntprof to operate across a wide range of hardware models.

4.3 Use Case 2: Software Bottleneck Localization

Description. NVMe/TCP interacts with several vital OS ker-
nel modules (e.g., block layer, TCP/IP networking stack, and
NVMe subsystem). Any system bottleneck from multi-core
execution, TCP connection, or NVMe submission/completion
command delivery could throttle the achieved I/O throughput,
yielding a drastic latency increase. These issues are sometimes
subtle, but hard to detect and reproduce, especially given that
(a) application I/O ordering is not preserved; (b) multi-tenant
deployments are common. Accurate software stack bottleneck
localization is a demanding feature for developers.
Experimental Setup. We configure two bottleneck scenarios.
One is at the NVMe/TCP target core, where each NVMe drive
is provisioned with one target core regardless of the I/O load.
We launch a 4KB random read stream and gradually increase
the iodepth. The other is at the TCP connection, which carries
an increasing number of I/O streams. We spawn multiple fio
jobs (iodepth=16) and make sure they are pinned to different
cores on the initiator side. Both cases are common in an
enterprise/cloud disaggregated setting for cost efficiency. The
profiling task specification is similar to the first case (§4.2),
except for the generated report format.
Result Analyses. Figure 7a depicts the performance when
iodepth varies from 1 to 32. We observe a marginal throughput
increase (from 252.4 MB/s to 284.9 MB/s) when the iodepth
is beyond 16, while latency rises significantly, from 238.7
µs to 431.0 µs, indicating that a system bottleneck occurs.
ntprof introduces a new metric called Latency Amplifica-
tion Degree (LAD)–defined as Tcong/Tbase, where Tcong and
Tbase refer to processing latency at the overloaded and un-
loaded scenarios–to localize the bottleneck. As shown in
Figure 7b, when iodepth is 52, the “S3-S5(S+C)” sees a
1.6 LAD, dominating other parts. ntprof can capture this
because our profiling agent records timestamps at two tra-
cepoints on the NVMe/TCP target (_try_send_data and
_try_send_response), allowing it to report the time spent
in these combined stages. Further LAD analysis shows
that “S6(C)” latency increases from 26.38 µs to 47.14 µs
(LAD=1.8). This happens because, for the switching queue
of S6, the target is not fast enough to send the I/O comple-
tion, causing queue buildup and latency increase, indicating
the target core becomes the bottleneck. ntprof uses the
_done_recv_pdu tracepoint on the target side to achieve this.

Figure 7c shows that when the number of fio jobs in-
creases from 5 to 6, throughput only rises by 3.1%, from
645.2 MB/s to 665.5 MB/s, while latency rises from 477.3 µs
to 556.7 µs. As we consolidate jobs from 6 to 11, as shown

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1125

0 10 20 30
iodepth(#)

0

100

200

300

Th
ro

ug
hp

ut
(M

B/
s)

0

200

400

La
te

nc
y(

µs
)

Throughput
Latency

(a) Throughput and Latency.

40 45 50
iodepth(#)

1

1.2

1.4

1.6

LA
D

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)

S2(C)

(b) LAD.

2 4 6
jobs(#)

0

200

400

600

800

Th
ro

ug
hp

ut
(M

B/
s)

0

200

400

600

La
te

nc
y(

µs
)

Throughput
Latency

(c) Throughput and Latency.

7 8 9 10 11
jobs(#)

0

20

40

LA
D

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)

S2(C)

(d) LAD.

Figure 7: Software bottleneck localization. (a) and (b) depict the target core bottleneck case, where we run one fio job and increase its
iodepth from 1 to 64. (c) and (d) shows the TCP connection bottleneck case, where we increase the number of consolidated fio jobs
(with iodepth=16) from 1 to 11. LAD=Latency Amplification Degree.

in Figure 7d, the LAD of “S1” rises to 51. Such a latency
increase indicates that there are inadequate TCP connections
to deliver I/Os from the initiator to the target. ntprof locates
this through a key tracepoint on the initiator (_queue_rq).
Takeaways. ntprof views each system component as a
buffered software switch. A system bottleneck causes queue-
ing buildup at one or several molded queues (§3.2). ntprof
thus dissects the queueing delay and introduces a new metric
(latency amplification degree) for bottleneck localization.

4.4 Use Case 3: Hardware Bottleneck Localization

Description. The underlying hardware infrastructure can also
be a system bottleneck. For example, people find that a mal-
functioned NIC [31,64,67] can reduce its bandwidth capacity
dramatically. A fragmented NVMe SSD would deliver much
lower throughput in a read/write or write-only workload. Fur-
ther, hardware heterogeneity has become common in the data
center, which can also cause hardware bottlenecks.
Experimental Setup. First, we create a “slow” SSD. On
the initiator side, we run 1 fio job (referred to as “remote
fio”) issuing 128K sequential writes with an iodepth of 10.
Simultaneously, we run 1 fio job on the target side (referred
to as “local fio”) also performing 128K sequential write
workloads to the same drive. Second, we create a “slow” NIC.
We run two fio instances on the initiator side, each targeting a
different remote SSD. Both fio instances issue 128K random
reads with 8 jobs and an iodepth of 5. Additionally, we run
iperf3 clients on the target side, sending data to the initiator
at 100Gbps. The profiling spec is the same as before.
Result Analyses. Figure 12a (Appendix A.3) shows the
performance when local fio iodepth increases from 2 to
8. The aggregated throughput reaches 1440.0 MB/s, max-
ing out the SSD bandwidth limit. Compared to no local
fio jobs, the bandwidth shared by remote fio decreases
to 627.2 MB/s, while the latency increases from 859.7 µs
to 1984.6 µs. Figure 12b shows when local fio iodepth is
8, “S6-S9(S+C)” sees a 3.6 LAD, significantly higher than
the other parts. ntprof can locate this because the profiling
agent uses 2 tracepoints on the target (_don_recv_pdu and
_try_send_response). A further drill-down shows that “S7-
9(S+C)” is the primary contributor, with its latency increased
from 303.8 µs to 1729.2 µs (LAD=5.7). This occurs because

the local fio pushes more I/Os into the “S7-9(S+C)” stage
while the SSD is already operating at its maximum speed,
causing the queue to build up and latency to rise. ntprof is
capable of capturing this because it records timestamps of
_exec_eritw_req and _queue_response on the target.

Figure 12c shows the aggregated throughput of fio and
iperf3 approaches 100 Gb/s, indicating the NIC is the bot-
tleneck. The latency of fio I/O rises from 834.9 µs to 2803.5
µs when there are 16 iperf3 clients, compared to when there
are none. Figure 12d shows “S3-S5(S+C)” increases most sig-
nificantly when increasing iperf3 clients. It sees a 4.5 LAD
when there are 16 clients. That is because on the completion
path, the NVMe/TCP network flows share less bandwidth
when there are more iperf3 clients, leading to queue buildup.
ntprof can capture it because we take timestamps at two tra-
cepoints (_try_send_data and _handle_c2h_data) at the
NVMe/TCP initiator and two tracepoints (_done_recv_pdu
and _try_send_reponse) at the target.
Takeaways. ntprof views the SSD or NIC as one stage. Its
queueing model is inherent from the upstream storage, making
ntprof capable of localizing the hardware bottleneck.

4.5 Use Case 4: Interference Analysis

Description. Multi-tenancy is a pressing concern for storage
disaggregation. When latency-sensitive I/O streams co-locate
with throughput-oriented ones, one would observe significant
head-of-line blocking and unfair bandwidth partition [56, 77].
Experimental Setup. We run 2 fio instances on the target
side. The latency-sensitive workload is configured to issue 4K
random read requests with 1 job (iodepth=1). The throughput-
sensitive one issues 128K random read requests to the same
NVMe drive. We design 3 interference patterns. For case “c1”,
the two I/O flows are pinned to different cores on the initia-
tor side, each using a separate NVMe/TCP session. For case
“c2”, they are pinned to the same core and therefore share the
same NVMe/TCP session. For case “c3”, they are pinned to
different cores but share the same NVMe/TCP session. We
define the profiling task specification as follows: read type,
4KB block size, NVMe session named “nvme4n1”, a maxi-
mum of 10,000 profiling records, sampling frequency=1 per
1,000, grouping by NVMe session, and AVERAGE as the ag-
gregator. We launch the fio job with ntprof, which collects

1126 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

100

200

300

400

La
te

nc
y

(µ
s)

c0 c1 c2 c3
interference patterns

0

20

40

60

Th
ro

ug
hp

ut
 (M

B/
s) Thpt

Latency

(a) Throughput and Average Latency.

c0 c1 c2 c3
interference patterns

0

200

400

La
te

nc
y

(µ
s)

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)
S2(C)

(b) Latency Breakdown.

Figure 8: Latency breakdown and throughput analysis of the 4K
random read I/O flow when introducing a 128K random read
I/O in different scenarios. There is only the 4K read I/O flow
running in “c0”. “c1” Two I/O flows are pinned to different cores
and using different NVMe/TCP sessions in “c1”. Both flows are
pinned to the same core, sharing the same NVMe/TCP session
in “c2”. Both flows are pinned to different cores but share the
same NVMe/TCP sessions in “c3”.
and analyzes profiling records and generates the report.
Result Analyses. Figure 8a shows the latency of 4KB reads
is increased in all interference cases, with a 26.7%, 71.5%,
and 73.1% throughput degradation in “c1”, “c2”, and “c3”,
respectively. Figure 8 shows the latency breakdown of the
4KB read requests. In “c1”, the “S6-S9(S+C)” latency rises
the most, from 65.4 µs to 90.6 µs. A further breakdown re-
veals that the majority of this increase, 25.2 µs, comes from
the “S7-S9(S+C)”. A queue is built up at the NVMe/TCP
session at the target due to the increasing I/O load. ntprof
captures this because it utilizes the timestamp when the 2
tracepoints on the target are triggered (_exec_read_req
and _queue_response). In “c2”, “S3-S5(S+C)” increases
the most, from 14.9 to 131.6 µs, also due to “S6-S9(S+C)”.
The impact of latency in “c3” is similar to “c2”, where “S3-
S5(S+C)” is increased to 114.2 µs.
Takeaways. ntprof enables profiling at different I/O granu-
larities with separated profiling paths. Under mixed I/O traffic,
ntprof generates different profiling records to collect statis-
tics, making interference analysis possible.

4.6 Use Case 5: Apache IoTDB

Description. Apache IoTDB [4,59,99] is an LSM-tree-based
high-performance time-series database designed for IoT sce-
narios. Storage disaggregation gains significant traction in
such settings given that edge computing nodes have limited
storage resources. We used the Time Series Benchmark Suite
(TSBS) [20, 89] to generate DevOps workloads to evaluate
the performance of time-series databases. By using the de-
fault parameters, the workload is set to contain 4000 devices’
information running for 3 days, with each device generating
multiple time-series metrics, such as CPU utilization, memory
usage, disk I/O, and network activity, respectively.
Experimental Setup. Both the Apache IoTDB server and
client run on the initiator node, with IoTDB’s data directory
mounted to a remote Samsung SSD. Using the default con-

k1 k2 k3 k4
scenarios

0.0
0.5
1.0
1.5
2.0

La
te

nc
y

br
ea

kd
ow

n
(µ

s)

x1000

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)
S2(C)

(a) Use case: IoTDB.

k1 k2 k3 k4
scenarios

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

La
te

nc
y

br
ea

kd
ow

n
(µ

s)

x100

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)
S2(C)

(b) Use case: F2FS.

Figure 9: I/O Latency breakdowns for real-world applications
under different scenarios. k1 is the baseline, where there are
32 NVMe/TCP sessions. The number is reduced to 1 in k2. 8
iperf3 clients are running in k3, and fio workload is running
on the target side in k4. The IoTDB and F2FS show the latency
breakdown for 4KB writes and 128KB reads.

figuration of TSBS, we run 32 workers to write data into the
database. We analyze the latency breakdown of all write I/Os
under the following scenarios: (1) “k1” uses 32 NVMe-TCP
sessions, (2) “k2” pins all I/O to a single NVMe/TCP session,
(3) in “k3”, there are 8 iperf3 clients on the initiator side,
each sending data to one of 8 servers on the target side, emu-
lating a NIC bottleneck, and (4) in “k4” two fio jobs run on
the target side, issuing 128 KB sequential writes to the same
SSD (iodepth=10), creating an SSD bottleneck. We configure
ntprof similarly to §4.2, except that we monitor ANY types
of write I/Os, and results are grouped by I/O type/size.
Result Analysis. The TSBS benchmark reports the through-
put of IoTDB as follows: 10.6M matrices/s in k1, 10.4M in
k2, 8.7M in k3, and 9.6M in k4. ntprof shows different sized
writes are issued, ranging from 4KB to several MB. ntprof
reports this because it generates different profiling records
of different types of I/O. Across all scenarios, 4 KB write
requests constitute the majority, 80.9% in scenario k1, 80.2%
in k2, 77.5% in k3, and 80.1% in k4. Figure 9a shows the la-
tency breakdown for 4KB writes (since it dominates the write
traffic). k3 sees a drastic increase in “S3-S5(S+C)”. That is
because NVMe/TCP sessions are competing with iperf3
flows. The queue is built up in stage S3. In k4, “S6-S9(S+C)”
increases most significantly, from 47.8 µs to 1917.3 µs. A fur-
ther breakdown shows an 1859.7 µs increase in “S7-S9(S+C)”
is the primary contributor, indicating that the background I/O
streams consume bandwidth and make SSD a bottleneck.
Takeaways. Real-world applications exhibit diverse I/O pro-
files. ntprof exposes a rich task specification interface for
developers, translates these profiling requirements into predi-
cates, and installs them into the modeled software switch. As
such, it enables concurrent heterogeneous I/O profiling.

4.7 Use Case 6: F2FS

Description. F2FS [65] is a Linux file system designed for
modern flash storage devices. F2FS performs exceptionally
well with NVMe SSDs, as it efficiently handles the inherent
characteristics of flash memory, such as wear-leveling and

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1127

garbage collection. In this case study, we focus on analyzing
how file I/Os traverse the NVMe/TCP. We take Filebench [75]
and run the ‘videoserver” workload, which emulates a video
streaming server managing multiple concurrent streams.
Experimental Setup. We configure the “videoserver” to run
32 threads issuing 128KB read requests to the active videos,
while there is another thread issuing 1MB write requests to
the passive videos. The video size is set to 10 GB. Direct I/O
is enabled. We also run the application under the 4 scenarios
as described in §4.6, except in k3, the iperf3 clients are on
the target side, while the servers are on the initiator side. We
use the same profiling task specification and focus on reads.
Result Analysis. Filebench reports 117µs per operation in
k1, 319 µs in k2, 235 µs in k3 and 114 µs in k4. Figure 9b
shows the latency breakdown for 128KB read I/O. Compar-
ing to k1, “S2(S)” in k2 increases significantly, from 4.6 µs
to 173.5 µs. This is because a single TCP connection in the
nvme-tcp queue struggles to handle the read I/Os submitted
by all the cores, indicating the need to increase the number of
NVMe/TCP queues. Akin to §4.2, ntprof locates this via two
tracepoints (_queue_request and _try_send_cmd_pdu).
“S6-S9(S+C)” is increased from 171.3 µs to 240.6 µs. A
further breakdown shows that “S6(C)” is increased by 55.2
µs, dominating the entire latency. That is because by reduc-
ing NVMe/TCP sessions we also reduce the dequeuing rate
in S6 on the completion path. ntprof uses two tracepoints
(_queue_response and _setup_response_pdu) on the tar-
get side for analysis. In k3, “S3-S5(S+C)” is increased from
41.0 µs to 191.1 µs. The reason is similar to the case in §4.6. In
addition, “S2(C)” is increased from 48.7 µs to 213.8 µs, shown
via 2 tracepoints on the initiator side (_handle_c2h_data
and _process_nvme_cqe). In k4, “S6-S9(S+C)” is increased
from 171.3 µs to 250.8 µs, aligning with our scenario design.
Takeaways. ntprof enables hierarchical I/O path analysis
due to our Clos network view. Similar to the Flame Graph [8],
one can gradually drill the I/O path segment using different
metrics and locate the system bottleneck.

4.8 Overhead Analysis

ntprof operates at the data plane and interacts with critical
system components. It is important to minimize overhead,
including memory and CPU usage. We configure four sets of
fio experiments (Appendix A.3) and measure the application
performance, CPU usage, and memory usage when enabling
and disabling (Table 5). Across all workloads, the overhead
introduced by ntprof is marginal. The CPU usage increases
by 0.6% and 2.9% for the read and write cases. We observe
up to 17MB more memory usage during the profiling.

5 Related Work
Network Telemetry. ntprof benefits from prior network
telemetry systems [32, 48, 54, 74, 81, 93, 101, 103, 104, 106].
For example, Sonata [48] develops a declarative interface
to express telemetry tasks and partitions query execution to

streaming processors and switches. [32, 68, 72, 74, 81, 90, 91,
101, 104, 106] introduce probabilistic data structures (like
Sketch) to capture high-volume data streams with low storage
on the programmable data plane, i.e., in-network telemetry.
Profiling Systems. Many software utilities are developed to
identify code hotspots, analyze concurrency dependency, and
break down stalled cycles [9, 13, 18, 19, 38, 45, 66, 102]. For
example, Linux perf [38] is a widely used tool to instrument
CPU performance counters, tracepoints, and probes and re-
ports application execution statistics. Intel VTune [9] takes a
top-down analysis strategy [102] and drills down the perfor-
mance analysis mostly using architectural counters. Some are
also integrated into the language system facilitating applica-
tion development [13, 35, 46, 61, 70, 73, 82–84, 87, 100]. We
focus on profiling and analyzing the NVMe/TCP protocol.
Storage Disaggregation. People have explored disaggregated
storage extensively given the rising networking bandwidth
and fast remote storage protocol [47, 49, 50, 52, 55, 62, 63, 71,
77–79,105]. Ana Klimovic et al. characterize the performance
of iSCSI-based disaggregated storage [62]. i10 [55] develops
an efficient in-kernel TCP/IP remote storage based on dedi-
cated end-to-end IO paths and delayed doorbell notifications.
Researchers [49] also report the performance characteristics
of server-based NVMe-oF boxes.
Intra-host Diagnosis. The host interconnect is becoming a
bottleneck under high-bandwidth networks. Researchers have
developed benchmarking frameworks and diagnostic tools to
analyze it [29, 30, 51, 53, 67, 69, 97]. For example, Saksham
Agarwal et al. [29, 30] analyze the host congestion issues
and build the host congestion control protocol. NSight [51],
leveraging CPU profilers, captures sources of overheads in the
end-host stack at the nanosecond scale. Hostping [67] moni-
tors and diagnoses intra-host bottlenecks in RDMA networks.
ntprof can use them to improve its efficiency.

6 Conclusion

This paper presents a profiling and development utility for
NVMe/TCP. It enables developers to understand and ana-
lyze the execution characteristics of the NVMe/TCP system-
atically. The key idea is to view the NVMe/TCP storage
substrate as a lossless switched network and apply network
monitoring techniques. ntprof models each on-path system
module as a software switch, integrates a programmable pro-
filing agent on the data plane, and introduces a proactive
query interface for statistics collection and analysis. We build
ntprof over Linux kernel and apply it for six case studies.

Acknowledgement

We would like to thank the anonymous reviewers and our shep-
herd, Soujanya Ponnapalli, for their comments and feedback.
This work is supported in part by NSF grants CNS-2106199,
CNS-2212192, and CAREER-2339755.

1128 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Linux Kernel 5.0 Release. https://kernelnewbie

s.org/Linux_5.0, 2019.

[2] x-cellent technologies Selects Lightbits for metal-
stack.cloud. https://www.lightbitslabs.com/
press-releases/x-cellent-technologies-sel
ects-lightbits-for-metalstack-cloud/, 2022.

[3] How We Built It: Block Storage for AI/ML Workloads,
Powered by Lightbits. https://crusoe.ai/bl
og/how-we-built-it-block-storage-for-ai-m
l-workloads-powered-by-lightbits/, 2023.

[4] Apache IoTDB: Database for Internet of Things.
https://iotdb.apache.org/, 2024.

[5] BPF tracing with SPDK. https://spdk.io/news
/2021/09/28/bpf_tracing_with_spdk/, 2024.

[6] eBPF. https://ebpf.io/, 2024.

[7] eBPF Maps. https://docs.ebpf.io/linux/con
cepts/maps/, 2024.

[8] Flame Graphs. https://www.brendangregg.com
/flamegraphs.html, 2024.

[9] Intel VTune Profiler. https://www.intel.com/co
ntent/www/us/en/developer/tools/oneapi/vtu
ne-profiler.html#gs.ed42rh, 2024.

[10] Linux Kernel Tracepoints. https://docs.kernel.
org/trace/tracepoints.html, 2024.

[11] Lustre’s Benchmarking. https://wiki.lustre.or
g/Category:Benchmarking, 2024.

[12] Nebul Chooses Lightbits to Deliver Powerful AI
Cloud. https://www.lightbitslabs.com/pres
s-releases/nebul-chooses-lightbits-for-a
i-cloud-data-platform/, 2024.

[13] NVIDIA Nsight. https://developer.nvidia.c
om/tools-overview, 2024.

[14] Port mirroring. https://en.wikipedia.org/wik
i/Port_mirroring, 2024.

[15] Proxmox and NVMe/TCP. https://forum.pr
oxmox.com/threads/proxmox-and-nvme-tcp
.149160/, 2024.

[16] RocksDB’s Benchmarking Tools. https:
//github.com/facebook/rocksdb/wiki/Ben
chmarking-tools/, 2024.

[17] The Block Layer I/O Tracing Utility. https://linu
x.die.net/man/8/blktrace, 2024.

[18] The iostat Utility. https://linux.die.net/man/
1/iostat, 2024.

[19] The PAPI Performance Application Programming In-
terface. https://icl.utk.edu/papi/, 2024.

[20] Time Series Benchmark Suite (TSBS). https://gi
thub.com/benchANT/tsbs, 2024.

[21] Tracing Framework Guide Part 1. https:
//spdk.io/spdk_trace/2022/09/26/tracin
g-library-guide-pt1/, 2024.

[22] Tracing Framework Guide Part 2. https:
//spdk.io/spdk_trace/2022/11/25/tracin
g-library-guide-pt2/, 2024.

[23] Valgrind: an Instrumentation Framework for Building
Dynamic Analysis Tools. https://valgrind.org,
2024.

[24] Very slow write speed (NVME drive) on 10G
network. https://serverfault.com/question
s/1065820/very-slow-write-speed-nvme-dri
ve-on-10g-network, 2024.

[25] FI-TS Delivers Disaggregated Storage Platform.
https://www.intel.com/content/www/us/en/cu
stomer-spotlight/stories/finanz-informati
k-technologie-customer-story.html, 2025.

[26] Lightbits Labs: Software-Defined Storage. https:
//www.lightbitslabs.com, 2025.

[27] Lightbits Powers One of the Worlds Largest eCom-
merce Platforms. https://www.lightbitslabs.
com/wp-content/uploads/2023/06/LBITS-eco
mmerce-case-study-digital-LBCS02-2023-03.
pdf, 2025.

[28] Zenlayer Accelerates Edge Cloud Services.
https://www.intel.com/content/www/us/en/cu
stomer-spotlight/stories/zenlayer-custome
r-story.html, 2025.

[29] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher De Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, et al. Understanding host inter-
connect congestion. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, pages 198–204,
2022.

[30] Saksham Agarwal, Arvind Krishnamurthy, and Rachit
Agarwal. Host Congestion Control. In Proceed-
ings of the ACM SIGCOMM 2023 Conference (SIG-
COMM’23), page 275–287, 2023.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1129

https://kernelnewbies.org/Linux_5.0
https://kernelnewbies.org/Linux_5.0
https://www.lightbitslabs.com/press-releases/x-cellent-technologies-selects-lightbits-for-metalstack-cloud/
https://www.lightbitslabs.com/press-releases/x-cellent-technologies-selects-lightbits-for-metalstack-cloud/
https://www.lightbitslabs.com/press-releases/x-cellent-technologies-selects-lightbits-for-metalstack-cloud/
https://crusoe.ai/blog/how-we-built-it-block-storage-for-ai-ml-workloads-powered-by-lightbits/
https://crusoe.ai/blog/how-we-built-it-block-storage-for-ai-ml-workloads-powered-by-lightbits/
https://crusoe.ai/blog/how-we-built-it-block-storage-for-ai-ml-workloads-powered-by-lightbits/
https://iotdb.apache.org/
https://iotdb.apache.org/
https://spdk.io/news/2021/09/28/bpf_tracing_with_spdk/
https://spdk.io/news/2021/09/28/bpf_tracing_with_spdk/
https://ebpf.io/
https://docs.ebpf.io/linux/concepts/maps/
https://docs.ebpf.io/linux/concepts/maps/
https://www.brendangregg.com/flamegraphs.html
https://www.brendangregg.com/flamegraphs.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ed42rh
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ed42rh
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.ed42rh
https://docs.kernel.org/trace/tracepoints.html
https://docs.kernel.org/trace/tracepoints.html
https://wiki.lustre.org/Category:Benchmarking
https://wiki.lustre.org/Category:Benchmarking
https://www.lightbitslabs.com/press-releases/nebul-chooses-lightbits-for-ai-cloud-data-platform/
https://www.lightbitslabs.com/press-releases/nebul-chooses-lightbits-for-ai-cloud-data-platform/
https://www.lightbitslabs.com/press-releases/nebul-chooses-lightbits-for-ai-cloud-data-platform/
https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
https://en.wikipedia.org/wiki/Port_mirroring
https://en.wikipedia.org/wiki/Port_mirroring
https://forum.proxmox.com/threads/proxmox-and-nvme-tcp.149160/
https://forum.proxmox.com/threads/proxmox-and-nvme-tcp.149160/
https://forum.proxmox.com/threads/proxmox-and-nvme-tcp.149160/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools/
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/1/iostat
https://linux.die.net/man/1/iostat
https://icl.utk.edu/papi/
https://github.com/benchANT/tsbs
https://github.com/benchANT/tsbs
https://spdk.io/spdk_trace/2022/09/26/tracing-library-guide-pt1/
https://spdk.io/spdk_trace/2022/09/26/tracing-library-guide-pt1/
https://spdk.io/spdk_trace/2022/09/26/tracing-library-guide-pt1/
https://spdk.io/spdk_trace/2022/11/25/tracing-library-guide-pt2/
https://spdk.io/spdk_trace/2022/11/25/tracing-library-guide-pt2/
https://spdk.io/spdk_trace/2022/11/25/tracing-library-guide-pt2/
https://valgrind.org
https://serverfault.com/questions/1065820/very-slow-write-speed-nvme-drive-on-10g-network
https://serverfault.com/questions/1065820/very-slow-write-speed-nvme-drive-on-10g-network
https://serverfault.com/questions/1065820/very-slow-write-speed-nvme-drive-on-10g-network
https://www.intel.com/content/www/us/en/customer-spotlight/stories/finanz-informatik-technologie-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/finanz-informatik-technologie-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/finanz-informatik-technologie-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/finanz-informatik-technologie-customer-story.html
https://www.lightbitslabs.com
https://www.lightbitslabs.com
https://www.lightbitslabs.com/wp-content/uploads/2023/06/LBITS-ecommerce-case-study-digital-LBCS02-2023-03.pdf
https://www.lightbitslabs.com/wp-content/uploads/2023/06/LBITS-ecommerce-case-study-digital-LBCS02-2023-03.pdf
https://www.lightbitslabs.com/wp-content/uploads/2023/06/LBITS-ecommerce-case-study-digital-LBCS02-2023-03.pdf
https://www.lightbitslabs.com/wp-content/uploads/2023/06/LBITS-ecommerce-case-study-digital-LBCS02-2023-03.pdf
https://www.intel.com/content/www/us/en/customer-spotlight/stories/zenlayer-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/zenlayer-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/zenlayer-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/zenlayer-customer-story.html

[31] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kr-
ishan Kumar Attre, Paramvir Bahl, Ameya Bhagat,
Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad
Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhad-
dad, Vivek Ette, Igal Figlin, Daniel Firestone, Mathew
George, Ilya German, Lakhmeet Ghai, Eric Green,
Albert Greenberg, Manish Gupta, Randy Haagens,
Matthew Hendel, Ridwan Howlader, Neetha John, Ju-
lia Johnstone, Tom Jolly, Greg Kramer, David Kruse,
Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina
Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin
Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda
Murthi, Anup Namdhari, Aaron Ogus, Jitendra Padhye,
Madhav Pandya, Douglas Phillips, Adrian Power, Suraj
Puri, Shachar Raindel, Jordan Rhee, Anthony Russo,
Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh
Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian,
Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman,
Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and
Brian Zill. Empowering azure storage with RDMA.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 49–67,
Boston, MA, April 2023. USENIX Association.

[32] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yu-
liang Li, Gianni Antichi, Minian Yu, and Michael
Mitzenmacher. PINT: Probabilistic in-band network
telemetry. In Proceedings of the Annual conference
of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architec-
tures, and protocols for computer communication (SIG-
COMM’20), pages 662–680, 2020.

[33] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block io: introducing multi-
queue ssd access on multi-core systems. In Proceed-
ings of the 6th International Systems and Storage Con-
ference, SYSTOR ’13, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[34] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 65–77, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[35] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu
Ma, Kun Qian, Lingjun Zhu, Chao Shi, Yin Zhang,
Ming Liu, et al. Demystifying datapath accelerator
enhanced off-path smartnic. In 2024 IEEE 32nd Inter-
national Conference on Network Protocols (ICNP’24),
pages 1–12, 2024.

[36] Charles Clos. A study of non-blocking switching net-
works. Bell System Technical Journal, 32(2):406–424,
1953.

[37] William E Cohen. Tuning programs with oprofile.
Wide Open Magazine, 1:53–62, 2004.

[38] Arnaldo Carvalho De Melo. The new linux’perf’tools.
In Slides from Linux Kongress, volume 18, pages 1–42,
2010.

[39] Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer,
and Kaustubh Prabhu. iperf - the ultimate speed test
tool for tcp, udp and sctp. https://iperf.fr/,
2024.

[40] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry
Landweber, Chip Elliott, Michael Zink, Emmanuel
Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The
design and operation of CloudLab. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
1–14, Renton, WA, July 2019. USENIX Association.

[41] NVM Express. Nvm express base specification.
https://nvmexpress.org/wp-content/uploads
/NVM-Express-Base-Specification-Revisio
n-2.1-2024.08.05-Ratified.pdf, 8 2024.

[42] NVM Express. Nvm express overview.
https://nvmexpress.org/wp-content/upl
oads/NVMe_Overview.pdf, 8 2024.

[43] NVM Express. Nvm express tcp transport specification.
https://nvmexpress.org/wp-content/uploa
ds/NVM-Express-TCP-Transport-Specificati
on-Revision-1.1-2024.08.05-Ratified.pdf, 8
2024.

[44] Python Software Foundation. The python profil-
ers. https://docs.python.org/3/library/pr
ofile.html, 2024.

[45] Susan L. Graham, Peter B. Kessler, and Marshall K.
Mckusick. Gprof: A call graph execution profiler. SIG-
PLAN Not., 17(6):120–126, jun 1982.

[46] Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim,
Michael Swift, Aditya Akella, and Ming Liu. LogNIC:
A High-Level Performance Model for SmartNICs. In
Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’23),
page 916–929, 2023.

[47] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai,
Michael Swift, and Ming Liu. LEED: A Low-Power,

1130 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://iperf.fr/
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-Revision-2.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://nvmexpress.org/wp-content/uploads/NVMe_Overview.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-TCP-Transport-Specification-Revision-1.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-TCP-Transport-Specification-Revision-1.1-2024.08.05-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-TCP-Transport-Specification-Revision-1.1-2024.08.05-Ratified.pdf
https://docs.python.org/3/library/profile.html
https://docs.python.org/3/library/profile.html

Fast Persistent Key-Value Store on SmartNIC JBOFs.
In Proceedings of the ACM SIGCOMM 2023 Confer-
ence (SIGCOMM’23), page 1012–1027, 2023.

[48] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In Proceed-
ings of the 2018 conference of the ACM special interest
group on data communication (SIGCOMM’20), pages
357–371, 2018.

[49] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Bal-
akrishnan. NVMe-over-fabrics performance character-
ization and the path to low-overhead flash disaggrega-
tion. In Proceedings of the 10th ACM International
Systems and Storage Conference, pages 1–9, 2017.

[50] Zvika Guz, Harry (Huan) Li, Anahita Shayesteh, and
Vijay Balakrishnan. Performance characterization of
nvme-over-fabrics storage disaggregation. ACM Trans.
Storage, 14(4), dec 2018.

[51] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, Sujata
Banerjee, and Timothy Roscoe. How to diagnose
nanosecond network latencies in rich end-host stacks.
In 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), pages 861–877,
Renton, WA, April 2022. USENIX Association.

[52] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and
ChonLam Lao. A Generic Service to Provide In-
Network Aggregation for Key-Value Streams. In Pro-
ceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’23), Volume 2, page
33–47, 2023.

[53] Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu.
Understanding Routable PCIe Performance for Com-
posable Infrastructures. In 21st USENIX Symposium
on Networked Systems Design and Implementation
(NSDI’24), pages 297–312, 2024.

[54] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai,
Feng Zhu, and Yungang Bao. Omnimon: Re-
architecting network telemetry with resource efficiency
and full accuracy. In Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication
(SIGCOMM’20), pages 404–421, 2020.

[55] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agar-
wal. TCP ≈ RDMA: CPU-efficient Remote Storage
Access with i10 . In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 127–140, 2020.

[56] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and
Rachit Agarwal. Rearchitecting Linux Storage Stack
for µs Latency and High Throughput. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’21), pages 113–128, 2021.

[57] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong
Geng, Changhoon Kim, and David Mazières. Millions
of little minions: using packets for low latency net-
work programming and visibility. In Proceedings of
the 2014 ACM Conference on SIGCOMM, page 3–14,
2014.

[58] Vimalkumar Jeyakumar, Mohammad Alizadeh,
Changhoon Kim, and David Mazières. Tiny packet
programs for low-latency network control and monitor-
ing. In Proceedings of the Twelfth ACM Workshop on
Hot Topics in Networks, HotNets-XII, New York, NY,
USA, 2013. Association for Computing Machinery.

[59] Yuyuan Kang, Xiangdong Huang, Shaoxu Song,
Lingzhe Zhang, Jialin Qiao, Chen Wang, Jianmin
Wang, and Julian Feinauer. Separation or not: On hand-
ing out-of-order time-series data in leveled lsm-tree.
In 2022 IEEE 38th International Conference on Data
Engineering (ICDE), pages 3340–3352. IEEE, 2022.

[60] David G Kendall. Stochastic processes occurring in the
theory of queues and their analysis by the method of the
imbedded Markov chain. The Annals of Mathematical
Statistics, pages 338–354, 1953.

[61] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk.
Sd3: A scalable approach to dynamic data-dependence
profiling. In 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 535–
546. IEEE, 2010.

[62] Ana Klimovic, Christos Kozyrakis, Eno Thereska,
Binu John, and Sanjeev Kumar. Flash storage dis-
aggregation. In Proceedings of the Eleventh European
Conference on Computer Systems (Eurosys’16), 2016.

[63] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash ≈ Local Flash. In Proceedings
of the Twenty-Second International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS’17), page 345–359, 2017.

[64] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu,
Mahmoud Elhaddad, Shachar Raindel, Jitendra Padhye,
Alvin R. Lebeck, and Danyang Zhuo. Understanding
RDMA microarchitecture resources for performance
isolation. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
31–48, Boston, MA, April 2023. USENIX Association.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1131

[65] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash
storage. In 13th USENIX Conference on File and
Storage Technologies (FAST 15), pages 273–286, Santa
Clara, CA, February 2015. USENIX Association.

[66] David D Levine. Iometer user’s guide. Intel Server
Architecture Lab, 40, 1998.

[67] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiao-
long Zhong, Lizhuang Tan, Tian Pan, and Tao Huang.
Hostping: Diagnosing intra-host network bottlenecks
in RDMA servers. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 15–29, Boston, MA, April 2023. USENIX
Association.

[68] Ming Liu. Building Distributed Systems Using Pro-
grammable Networks. University of Washington, 2020.

[69] Ming Liu. Fabric-Centric Computing. In Proceed-
ings of the 19th Workshop on Hot Topics in Operating
Systems (HotOS’23), page 118–126, 2023.

[70] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading
distributed applications onto smartNICs using iPipe.
In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM’19), page 318–333,
2019.

[71] Ming Liu, Arvind Krishnamurthy, Harsha V. Mad-
hyastha, Rishi Bhardwaj, Karan Gupta, Chinmay Ka-
mat, Huapeng Yuan, Aditya Jaltade, Roger Liao, Pavan
Konka, and Anoop Jawahar. Fine-Grained Replicated
State Machines for a Cluster Storage System . In 17th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20), pages 305–323, 2020.

[72] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind
Krishnamurthy, and Kishore Atreya. IncBricks: To-
ward In-Network Computation with an In-Network
Cache. In Proceedings of the Twenty-Second Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS’17), page 795–809, 2017.

[73] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-
Efficient Microservices on SmartNIC-Accelerated
Servers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC’19), pages 363–378, 2019.

[74] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIG-
COMM Conference, pages 101–114, 2016.

[75] Richard McDougall and Jim Mauro. Filebench.
URL: http://www. nfsv4bat. org/Documents/-
nasconf/2004/filebench. pdf (Cited on page 56.),
2005.

[76] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao, Yan
Zhuang, Pengcheng Zhang, et al. From luna to so-
lar: the evolutions of the compute-to-storage networks
in alibaba cloud. In Proceedings of the ACM SIG-
COMM 2022 Conference (SIGCOMM’22), pages 753–
766, 2022.

[77] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krish-
namurthy. Gimbal: enabling multi-tenant storage dis-
aggregation on SmartNIC JBOFs. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference (SIG-
COMM’21), page 106–122, 2021.

[78] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. eZNS: An elastic zoned namespace
for commodity ZNS SSDs. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI’23), pages 461–477, 2023.

[79] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind
Krishnamurthy. eZNS: Elastic Zoned Namespace for
Enhanced Performance Isolation and Device Utiliza-
tion. ACM Trans. Storage, 20(3), June 2024.

[80] J. Nagle. On Packet Switches with Infinite Storage.
IEEE Transactions on Communications, 35(4):435–
438, 1987.

[81] Srinivas Narayana, Anirudh Sivaraman, Vikram
Nathan, Prateesh Goyal, Venkat Arun, Mohammad
Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-directed hardware design for network
performance monitoring. In Proceedings of the
conference of the ACM special interest group on data
communication, pages 85–98, 2017.

[82] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI’18), pages 663–679, 2018.

[83] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen.
Clara: Performance Clarity for SmartNIC Offloading.
In Proceedings of the 19th ACM Workshop on Hot
Topics in Networks (HotNets’20), page 16–22, 2020.

[84] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang,
Ming Liu, Srinivas Narayana, and Ang Chen. Au-
tomated SmartNIC Offloading Insights for Network

1132 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Functions. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles
(SOSP’21), page 772–787, 2021.

[85] Linux RDMA. qperf. https://github.com/linux
-rdma/qperf, 2018.

[86] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius
Rus, and Robert Hundt. Google-wide profiling: A con-
tinuous profiling infrastructure for data centers. IEEE
micro, 30(4):65–79, 2010.

[87] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: SmartNIC-
Accelerated Distributed Transactions. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (SOSP’21), page 740–755, 2021.

[88] Steve Scott, Dennis Abts, John Kim, and William J
Dally. The blackwidow high-radix clos network. ACM
SIGARCH Computer Architecture News, 34(2):16–28,
2006.

[89] Daniel Seybold and Jörg Domaschka. Benchmarking-
as-a-service for cloud-hosted dbms. In Proceedings of
the 22nd International Middleware Conference: De-
mos and Posters, Middleware ’21, page 12–13, New
York, NY, USA, 2021. Association for Computing Ma-
chinery.

[90] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queue-
ing on Reconfigurable Switches. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI’18), pages 1–16, 2018.

[91] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krish-
namurthy, and Anirudh Sivaraman. Programmable
Calendar Queues for High-speed Packet Scheduling .
In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’20), pages 685–699,
2020.

[92] Junyi Shu, Kun Qian, Ennan Zhai, Xuanzhe Liu, and
Xin Jin. Burstable Cloud Block Storage with Data Pro-
cessing Units. In 18th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’24),
pages 783–799, 2024.

[93] Lizhuang Tan, Wei Su, Wei Zhang, Jianhui Lv, Zhenyi
Zhang, Jingying Miao, Xiaoxi Liu, and Na Li. In-band
network telemetry: A survey. Computer Networks,
186:107763, 2021.

[94] Ej technologies. The definitive guide to jprofiler.
https://www.ej-technologies.com/resources/
jprofiler/help/doc/JProfiler.pdf, 2024.

[95] David L Tennenhouse, Jonathan M Smith, W David
Sincoskie, David J Wetherall, and Gary J Minden. A
survey of active network research. IEEE communica-
tions Magazine, 35(1):80–86, 1997.

[96] David L. Tennenhouse and David J. Wetherall. To-
wards an active network architecture. SIGCOMM Com-
put. Commun. Rev., 37(5):81–94, oct 2007.

[97] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh,
Baris Kasikci, Arvind Krishnamurthy, and Rachit Agar-
wal. Understanding the Host Network. In Proceed-
ings of the ACM SIGCOMM 2024 Conference (SIG-
COMM’24), page 581–594, 2024.

[98] Midhul Vuppalapati, Justin Miron, Rachit Agarwal,
Dan Truong, Ashish Motivala, and Thierry Cruanes.
Building an elastic query engine on disaggregated stor-
age. In 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’20), pages
449–462, 2020.

[99] Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu
Song, Haonan Hou, Tian Jiang, Lei Rui, Jianmin Wang,
and Jiaguang Sun. Apache iotdb: A time series
database for iot applications. Proc. ACM Manag. Data,
1(2), jun 2023.

[100] Ziyang Xu, Yebin Chon, Yian Su, Zujun Tan, Sotiris
Apostolakis, Simone Campanoni, and David I August.
Prompt: A fast and extensible memory profiling frame-
work. Proceedings of the ACM on Programming Lan-
guages, 8:449–473, 2024.

[101] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM’18), pages 561–575, 2018.

[102] Ahmad Yasin. A top-down method for performance
analysis and counters architecture. In 2014 IEEE In-
ternational Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 35–44, 2014.

[103] Minlan Yu. Network telemetry: towards a top-down
approach. ACM SIGCOMM Computer Communication
Review, 49(1):11–17, 2019.

[104] Minlan Yu, Lavanya Jose, and Rui Miao. Software
{Defined}{Traffic} Measurement with {OpenSketch}.
In 10th USENIX symposium on networked systems
design and implementation (NSDI’13), pages 29–42,
2013.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1133

https://github.com/linux-rdma/qperf
https://github.com/linux-rdma/qperf
https://www.ej-technologies.com/resources/jprofiler/help/doc/JProfiler.pdf
https://www.ej-technologies.com/resources/jprofiler/help/doc/JProfiler.pdf
https://www.ej-technologies.com/resources/jprofiler/help/doc/JProfiler.pdf

[105] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming
Liu, and Arvind Krishnamurthy. Dremel: Adaptive
Configuration Tuning of RocksDB KV-Store. Proc.
ACM Meas. Anal. Comput. Syst., 6(2), June 2022.

[106] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In Proceedings of the
2015 ACM Conference on Special Interest Group on
Data Communication, pages 479–491, 2015.

1134 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

A Appendix
A.1 Tracepoint Parameters

Table 3 and Table 4 show the parameters of our added trace-
points in the nvme-tcp and nvmet-tcp module, respectively.

Tracepoint Parameters

_queue_rq
struct request *req, void *pdu, int qid, struct
llist_head *req_list, struct list_head *send_list,
struct mutex *send_mutex

_queue_request
struct request *req, struct nvme_command* cmd,
int qid

_try_send_cmd_pdu
struct request *rq, struct socket *sock, int qid, int
len

_try_send_data_pdu struct request *rq, void *pdu, int qid
_try_send_data struct request *rq, void *pdu, int qid
_done_send_req struct request *rq, int qid

_handle_c2h_data
struct request* rq, int qid, int data_remain, u64
recv_time

_recv_data struct request* rq, int qid, int len
_process_nvme_cqe struct request *rq, void* pdu, int qid, u64 recv_time

_handle_r2t struct request *rq, void* pdu, int qid, u64 recv_time
_try_send struct request *rq, int qid

Table 3: Parameters of tracepoints in the module nvme-tcp
(initiator).

Tracepoint Parameters

_done_recv_pdu
struct nvme_tcp_cmd_pdu *pdu, int qid, long long
recv_time

_exec_read_req struct nvme_command *cmd, int qid
_exec_write_req struct nvme_command *cmd, int qid, int size
_queue_response struct nvme_command *cmd, int qid

_setup_c2h_data_pdu struct nvme_completion *cqe, int qid
_setup_r2t_pdu struct nvme_command *cmd, int qid

_setup_response_pdu struct nvme_completion *cqe, int qid

_try_send_data_pdu
struct nvme_completion *cqe, void *pdu, int qid,
int size

_try_send_r2t
struct nvme_command *cmd, void *pdu, int qid, int
size

_try_send_response
struct nvme_completion *cqe,void *pdu, int qid, int
size

_try_send_data struct nvme_completion *cqe, int qid, int size

_handle_h2c_data_pdu
struct nvme_tcp_data_pdu *pdu, struct
nvme_command *cmd, int qid, int size, long long
recv_time

_try_recv_data
struct nvme_command *cmd, int qid, int size, long
long recv_time

Table 4: Parameters of tracepoints in the module nvmet-tcp
(target).

A.2 Triggered Events of an NVMe/TCP I/O

Figure 10 enumerates the ordered list of events that an I/O
may experience throughout its lifetime in the nvme-tcp layer.
Some events may occur multiple times, indicated by “1+”.
Generally, all types of I/O begin with QUEUE_RQ and end with
PROCESS_NVME_CQE.

A.3 More Evaluation

Latency Breakdown on Testbed-2. In Figure 11a, we ob-
serve similar breakdown results as in Figure 6a when the num-
ber of jobs increases in testbed-2. As shown in Figure 11b, for
128KB sequential writes, “S3-S5(S+C)” becomes the domi-
nant component when the job count exceeds 16, indicating

Event Name

QUEUE_RQ
QUEUE_REQUEST
TRY_SEND
TRY_SEND_CMD_PDU
DONE_SEND_REQ
HANDLE_C2H_DATA
RECV_DATA
PROCESS_NVME_CQE

Num

1
1
1
1
1
1
1+
1

Event Name

QUEUE_RQ
QUEUE_REQUEST
TRY_SEND
TRY_SEND_CMD_PDU
DONE_SEND_REQ
HANDLE_R2T
QUEUE_REQUEST
TRY_SEND
TRY_SEND_DATA_PDU
TRY_SEND_DATA
DONE_SEND_REQ
PROCESS_NVME_CQE

Num

1
1
1
1
1
1
1
1
1
1+
1
1

Event Name

QUEUE_RQ
QUEUE_REQUEST
TRY_SEND
TRY_SEND_CMD_PDU
TRY_SEND_DATA
DONE_SEND_REQ
PROCESS_NVME_CQE

Num

1
1
1
1
1+
1
1

read I/O
write I/O
without inline data

write I/O
with inline data

Figure 10: Event series of different types of I/O in the nvme-tcp
layer. The event name corresponds to the tracepoint name, omit-
ting the “nvme_tcp_” prefix.

1 2 3 4 8 16 32
jobs(#)

0

100

200

300

400

La
te

nc
y(

µs
)

S1(S)
S2(S)
S3-S5(S+C)
S6-S9(S+C)
S2(C)

(a) 4K Random Read.

1 2 3 4 8 16 32
jobs(#)

0

1000

2000

3000

4000

La
te

nc
y(

µs
)

S1(S)
S2(S)
S3-S5(S+C)
S6-S9(S+C)
S2(C)

(b) 128K Sequential Write.

Figure 11: Latency breakdown for the 4K random read and
128K sequential write as increasing the number of jobs on
testbed-2. We report the five most time-consuming parts. S1(S)
refers to the time an I/O stays at the S1 stage on the submission
path. S2(C) captures the time spent at the S2 stage on the com-
pletion path. S3–S5(S+C) aggregates the time spent in the S3, S4,
and S5 stages across the submission and completion paths.

workload without ntprof with ntprof
lat(µs) bw(MB/s) lat(µs) bw(MB/s) imem(MB) tmem(MB)

4k read 449.26 2202.91 460.57 2099.11 12 10
4k write 66.75 883.91 69.47 835.86 1 7

128k read 1136.72 3493.03 1136.24 3491.88 13 3
128k write 338.75 1439.89 337.44 1439.17 1 17

Table 5: Performance comparison with and without ntprof.
imem represents the memory usage increase on the initiator side,
while tmem indicates the increase on the target side. lat and bw
denote the average latency and bandwidth, respectively.

that the queue builds up during data transmission through the
network stack. When there are 32 jobs, 2400.4µs is spent out
of 4102.2µs of end-to-end latency.
Use Case 3 Results. Figure 12 presents our hardware bottle-
neck localization results.
Experimental setup for ntprof overhead analysis. We
configure four sets of fio experiments to analyze the ntprof
overheads: (a) 4K random read, with 16 jobs and an iodepth
of 16; (b) 4K sequential write, 4 jobs and an iodepth of 4;
(c) 128K sequential read, with 4 jobs and an iodepth of 8;
(d) 128K sequential write, with 2 jobs and an iodepth of 2.
Each job is assigned to a different core. These parameters
were selected based on experiments designed to prevent any

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1135

0

1000

2000

3000

La
te

nc
y

(µ
s)

0 2 4 6 8
local fio iodepth (#)

0

1000

2000

Th
ro

ug
hp

ut
 (M

B/
s)

Remote Thpt
Local Thpt
Latency

(a) Throughput and Latency.

2 4 6 8
local fio iodepth(#)

0

2

4

LA
D

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)

S2(C)

(b) LAD.

0

2000

4000

La
te

nc
y

(µ
s)

0 4 8 12 16
iperf3 clients (#)

0

50

100

150

Th
ro

ug
hp

ut
 (M

B/
s)

fio Thpt
iperf3 Thpt
Latency

(c) Throughput and Latency.

5 10 15
iperf3 clients (#)

0

2

4

6

LA
D

S1(S)
S2(S)

S3-S5(S+C)
S6-S9(S+C)

S2(C)

(d) LAD.

Figure 12: Hardware bottleneck localization. (a) and (b) depict the “slow SSD” case, where we run one extra fio job on the target and
increases the iodepth from 2 to 8. (c) and (d) show the “slow NIC” case, where we run iperf3 server on the initiator side and clients
on the target sides, and we increase the TCP flows from 4 to 16. LAD=Latency Amplification Degree.

component in the I/O path from becoming a bottleneck, while
applying sufficient load to stress the system. The fio tests
ran for 60 seconds, during which total memory consumption
was recorded every second, and an average was calculated at
the end of each run.

1136 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	NVMe-over-TCP Protocol
	NVMe-over-TCP in Linux
	Challenges and Existing Solutions

	ntprof: An NVMe-over-TCP Profiler
	Key Idea: NVMe/TCP as a Network
	Modeling the I/O Path
	Profiling Task Specification
	Programmable Profiling Agent
	Profiling Query Protocol
	Profiling Analyzer
	Implementation

	Case Studies
	Experimental Methodology
	Use Case 1: Latency Breakdown
	Use Case 2: Software Bottleneck Localization
	Use Case 3: Hardware Bottleneck Localization
	Use Case 4: Interference Analysis
	Use Case 5: Apache IoTDB
	Use Case 6: F2FS
	Overhead Analysis

	Related Work
	Conclusion
	Appendix
	Tracepoint Parameters
	Triggered Events of an NVMe/TCP I/O
	More Evaluation

