
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Ladder: A Convergence-based Structured DAG
Blockchain for High Throughput and Low Latency

Dengcheng Hu, Jianrong Wang, Xiulong Liu, and Hao Xu, Tianjin University;
Xujing Wu, Jd.Com, Inc; Muhammad Shahzad, North Carolina State University;

Guyue Liu, Peking University; Keqiu Li, Tianjin University
https://www.usenix.org/conference/nsdi25/presentation/hu

Ladder: A Convergence-based Structured DAG Blockchain
for High Throughput and Low Latency

Dengcheng Hu1, Jianrong Wang1, Xiulong Liu1, Hao Xu1, Xujing Wu2,
Muhammad Shahzad3, Guyue Liu4, Keqiu Li1

1Tianjin University 2Jd.Com, Inc 3North Carolina State University 4Peking University

Abstract
Recent literature proposes the use of Directed Acyclic Graphs
(DAG) to enhance blockchain performance. However, current
block-DAG designs face three important limitations when
fully utilizing parallel block processing: high computational
overhead due to costly block sorting, complex transaction
confirmation process, and vulnerability to balance attacks
when determining the pivot chain. To this end, we propose
Ladder, a structured twin-chain DAG blockchain with a con-
vergence mechanism that efficiently optimizes parallel block
processing strategy and enhances overall performance and
security. In each round, a designated convergence node gener-
ates a lower-chain block, sorting the forked blocks from the
upper-chain, reducing computational overhead and simplify-
ing transaction confirmation. To counter potential adversarial
disruptions, a dynamic committee is selected to generate spe-
cial blocks when faulty blocks are detected. We implemented
and evaluated Ladder in a distributed network environment
against several state-of-the-art methods. Our results show that
Ladder achieves a 59.6% increase in throughput and a 20.9%
reduction in latency.

1 Introduction

Background: Within blockchain networks, nodes process
incoming transactions and collectively engage in a consen-
sus protocol, assembling the transactions into a block that
is securely linked to the distributed ledger using hash point-
ers. In traditional chain-based structures, if multiple blocks
are generated by different nodes simultaneously, only one
is accepted while the others are discarded, resulting in the
wastage of the computational resources expended in produc-
ing those blocks [21]. In contrast, Directed Acyclic Graph
(DAG)-based structures allow those blocks to become part of
the blockchain such that all blocks are included when gener-
ating the ledger [3, 6, 17–19, 22, 24, 34]. Broadly, DAG-based
structures can be classified into two types: tx-DAG, where
nodes represent transactions, and block-DAG, where nodes
represent blocks composed of multiple transactions [32]. This

paper focuses on block-DAGs as they offer better compati-
bility with existing protocols and provide stronger scalability
than tx-DAGs. Broader structures in block-DAG blockchains,
while intuitively improving performance through parallel
block generation, may also increase transaction ordering over-
head, complicate confirmation processes, and exacerbate spe-
cific security risks. Therefore, this paper explores how to fully
leverage the advantages of the DAG by optimizing the parallel
block processing strategy.

Limitations of Prior Art: While several promising block-
DAG based blockchain designs have been proposed [18, 19,
24–26], they have the following three important limitations
when processing parallel blocks.

1) High Sorting Cost. Nodes need to independently sort
blocks to maintain consistency when multiple valid blocks are
generated in parallel. In approaches such as Conflux [19] and
Inclusive [18], every node is required to recursively sort the
newly generated blocks along with their predecessors, which
leads to considerable redundant computations. As each node
independently determines the order without a coordinated
strategy, inconsistencies in block views arise, causing addi-
tional computational overhead as nodes attempt to reconcile
these discrepancies. This lack of synchronization in the sort-
ing process results in high sorting costs, leading to delays in
block confirmation, especially under high concurrency.

2) Complex Confirmation Process. In DAG-based
blockchains, the validity of individual transactions depends
on the confirmation of their respective blocks, often requiring
intricate inter-block validation processes. As multiple forks
emerge, nodes need to independently verify and reference
forked blocks, resulting in a buildup of cross-references that
complicates the confirmation process. For example, in Spec-
tre [24], the block-voting mechanism relies on each node in-
crementally accumulating support for previous blocks, which
can be cumbersome as nodes attempt to reconcile conflicting
views on the validity of numerous competing forks. Similarly,
Conflux [19] utilizes forward references for faster pivot chain
confirmation, but the absence of a coordinated approach to

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 779

managing these forks causes transactions in non-standard
blocks to gain confirmation weight at a slower rate, further
prolonging the finalization process. This lack of an efficient
mechanism to centrally handle forks leads to a fragmented
confirmation process, where the full potential of DAG’s par-
allelism remains underutilized.

3) Susceptibility to Balance Attacks. DAG blockchains de-
fine rules to identify the pivot chain [18, 19, 26], allowing
multiple valid blocks generated simultaneously to be added
to the ledger without conflict. However, when multiple can-
didate pivot chains emerge, the lack of coordination leads to
independent node decisions, hindering prompt convergence
on a single pivot chain. This lack of synchronization allows
adversaries to exploit decentralized decision-making to de-
lay ledger updates and maintain parity between competing
chains. For instance, while Conflux [19] employs a proba-
bilistic method to address these issues, its independent chain
weight evaluation at each node may introduce inconsistencies,
which adversaries can exploit for balance attacks, delaying
convergence to a single pivot chain. As a result, the absence
of a mechanism to manage competing chains may lead to
delays, threatening blockchain stability and reliability.

These limitations suggest that incorporating an effective
convergence mechanism could better coordinate and optimize
parallel block processing.

Proposed Approach: In this paper, we propose Ladder, a
block-DAG-based blockchain that utilizes a convergence
mechanism to achieve high transaction throughput and low
confirmation latency, addressing the three key limitations of
existing approaches. Ladder is composed of two chains: an
upper-chain and a lower-chain, as shown in Figure 1. The
upper-chain consists of blocks containing transactions, while
the lower-chain coordinates the convergence of forked blocks
in the upper-chain. In each round, nodes generate blocks for
the upper-chain using Proof of Work (PoW). When multiple
blocks are generated in a round, they form a block set. One
block is selected as the standard block, while the rest are des-
ignated as forked blocks. The upper-chain continues from the
standard block, as shown in Figure 1, but all forked blocks are
retained to preserve the computational effort involved in their
creation. A convergence node, responsible for each round,
records the order of forked blocks in the lower-chain. This
allows nodes to reconstruct the ledger efficiently by traversing
both chains, ensuring a consistent view of the blockchain.

Technical Challenges: We identified two key challenges in
the design of Ladder that required resolution. The first chal-
lenge is how to use the lower-chain to effectively converge
PoW-generated upper-chain blocks. A node may lack suffi-
cient computational power to complete the PoW in a timely
manner to generate a lower-chain block. Such delays could im-
pede Ladder’s progress. To resolve this, we eliminate the PoW
requirement for lower-chain blocks, enabling any node to gen-
erate a lower-chain block swiftly. To prevent malicious lower-

 𝐶

 𝐸
 𝐷

 𝐹

Determine
Order

 𝐺

 𝐺′

 𝐺

 𝐺′

 𝐴

 𝐵

Hash
Pointer

Genesis
Block

 𝐺

 𝐺′

 𝐴

 𝐵
Generated by

miner of 𝑩𝒍𝒐𝒄𝒌𝑨

Upper-chain
Block

Lower-chain
Block Block

Set

Generated by
miner of 𝑩𝒍𝒐𝒄𝒌𝑮

Figure 1: An introduction to the structure of Ladder.

chain blocks, the node that generated the previous round’s
standard upper-chain block is selected as the convergence
node for the current round. This process ensures that no single
node can dominate unless it controls a significant proportion
of the computational power, which is highly unlikely.

The second challenge is how to ensure system security by
preventing adversaries from becoming convergence nodes.
An adversary could disrupt the blockchain by failing to pro-
duce or delaying the lower-chain block, hindering transac-
tion confirmations and reducing throughput. Additionally, the
adversary could ignore valid forked blocks or reference non-
existent blocks to disrupt the blockchain structure. To address
this, Ladder introduces a super block in the lower-chain to
override any faulty lower-chain block. If a fault is detected or
a lower-chain block is not generated within a predefined dura-
tion, a committee forms and uses a Byzantine Fault Tolerance
(BFT)-like consensus mechanism (i.e., HotStuff) to generate
a super block. BFT is a class of methods that ensures deter-
ministic consensus within a fixed number of participants [16].
Key Advantages: In this paper, we propose a structured
twin-chain DAG with a convergence mechanism for parallel
block processing. The advantages of Ladder over the prior art
are three-fold: i) compared to the block sorting by all nodes
in [19, 24, 25], we introduce a mechanism that designates spe-
cific convergence nodes to handle upper-chain block sorting
and record this information in lower-chain blocks, reducing
sorting overhead and optimizing resource utilization; ii) com-
pared to the complex transaction confirmation mechanism
in [18,19,25,26], our approach uses a convergence process to
confirm transactions in unresolved upper-chain blocks, elim-
inating the need for intricate cross-referencing and weight
accumulation, and thereby streamlining the transaction con-
firmation process; iii) compared to [18, 19, 25, 26], Ladder’s
structure inherently avoids additional computations for de-
termining the pivot chain in the DAG topology, enhancing
resistance to balance attacks and providing robust security
guarantees against adversarial actions.
Summary of Experimental Results: We implemented Lad-
der and four state-of-the-art approaches: GHOST [26], Inclu-
sive [18], Phantom [27], and Conflux [19]. Our experiments
were conducted on a test bed of 80 servers deployed across a
distributed network. Results show that Ladder outperformed
prior approaches, achieving a 59.6% increase in throughput

780 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Comparison of block-DAG blockchains.

Sorting Complex Balance Performance
by all Confirma- attack Trans. Confirma-
nodes tion logic resistance txs / sec1 tion time

GHOST Yes No No 200 < 60min
Inclusive Yes Yes No 350 < 1min
Spectre Yes Yes - - < 1min

Phantom Yes Yes No 40 < 1min
Conflux Yes Yes No 2823 < 1min
OHIE Yes Yes Yes 25132 < 10min

Ladder No No Yes 4506 < 1min

and a 20.9% reduction in transaction confirmation latency
compared to the best-performing Conflux.
Limitation of Ladder: A limitation of PoW+BFT architec-
ture is that while BFT consensus ensures security with fewer
than 1/3 malicious nodes, PoW’s probabilistic nature does not
guarantee this strict security threshold. For adversaries con-
trolling less than 30% computational power, the committee
can ensure with high probability that malicious nodes remain
below 1/3, satisfying BFT security requirements. However,
the probability of more than 1/3 of the committee being mali-
cious in at least one of the R rounds is given by 1− (1−P)R,
where P is the probability of selecting more than 1/3 mali-
cious nodes in a single BFT round. This probability increases
with R, raising the risk of adversaries compromising the sys-
tem by controlling over 1/3 of the BFT committee, breaking
consensus and disrupting system integrity. We analyze this
limitation further in Sec. 4, where we study the effectiveness
of increasing the BFT committee size on reducing the proba-
bility of malicious nodes exceeding 1/3 of the committee.

2 Related Work
DAG for BFT Consensus: BFT consensus ensures agree-
ment among distributed nodes with a bounded number of
malicious participants and is more suited for permissioned net-
works [5, 16]. Several works have explored integrating DAG
into BFT consensus, mainly in permissioned settings, such as
Shoal [28], Bullshark [29], and Narwhal [8]. The fundamental
difference between these solutions and Ladder is that Ladder
is designed for permissionless blockchains. Ladder relies on
PoW to ensure decentralization in trustless settings, while
BFT is incorporated only as a lightweight fallback to handle
adversarial scenarios.
DAG-based Structures: Prior work on utilizing DAGs in
PoW-based blockchains can be broadly divided into two cate-
gories based on node representation: tx-based DAGs, where
each node represents a single transaction [6, 17, 22], and
block-based DAGs, where each node represents an entire
block [18, 19, 24–26]. Tx-based DAGs enable decentralized
validation but introduce challenges in transaction ordering
and validation complexity. The independent nature of trans-
actions increases communication overhead and complicates

1As measured in our experimental environment.
2We set the number of parallel chains to 40 in our experiments.

maintaining a consistent global transaction order. This is chal-
lenging in large-scale systems like Byteball [6], Tangle [22],
and Nano [17], which face scalability and efficiency trade-
offs. For block-based DAGs, a prominent block-based DAG
design is GHOST [26], which extends Bitcoin’s linear chain
into a tree to enhance security. However, GHOST prioritizes
security while offering limited improvements in throughput.
Inclusive [18] extends GHOST by increasing block inclusion
without full ledger ordering, limiting smart contract support.
Similarly, Spectre [24] improves performance but sacrifices
ledger ordering, restricting functionality. Phantom [25, 27]
resolves the ordering issue but introduces a computationally
expensive recursive sorting algorithm, hindering performance.
Conflux [19] extends GHOST by leveraging a block-DAG
structure to achieve high throughput. However, its reliance
on probabilistic methods for balance attack defense leaves
certain vulnerabilities unresolved.
Hierarchical and Parallel Structure: Meshcash [4] em-
ploys a hierarchical DAG, using block references as votes for
confirmation. While enhancing security, this design disadvan-
tages nodes with low computational power or poor network
connectivity, leading to delayed confirmations and degraded
performance. OHIE [37] improves throughput with a paral-
lel chain architecture. However, each parallel chain in OHIE
retains a linear blockchain structure, meaning block forks
can still result in orphaned blocks. In contrast, Ladder uti-
lizes a block-DAG structure to avoid valid orphaned blocks.
Prism [2] adopts a decoupled design, using vote blocks to
select a block for ledger ordering. However, vote blocks rely
on PoW solely for voting, increasing resource consumption.
Moreover, Prism’s performance depends on near-ideal net-
work conditions, such as a block propagation delay of less
than one second. In contrast, Ladder packages transactions
within vote blocks and does not require strict network assump-
tions, making it more adaptable to practical P2P networks.

Table 1 summarizes several related work, highlighting the
limitations addressed by Ladder.

3 Detailed Design of Ladder System
In this section, we provide a detailed description of Ladder.
We already provided an overview of Ladder in Sec. 1 under
Proposed Approach. Here, we start with a system-level view
of Ladder nodes and the system model. Based on this, we
present various notations and terms that we use in this paper.
Subsequently, we describe how nodes generate Ladder blocks
and determine the pivot chain in the event of forking. We then
explore various corner cases that may arise and how Ladder
handles them. Finally, we end this section with a discussion
about various performance-related aspects of Ladder.

3.1 System Model and Node Operations
We illustrate the system-level process of node participation
in Ladder, as shown in Figure 2. Ladder operates under

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 781

Verify
Module

Transaction
Pool

Consensus
PoW non-PoW Committee-

based

Ledger State
Maintenance

Module

Verify
Module

Transaction
Pool

Node 1

Roles Discriminator
Upper-chain

Miner
Lower-chain

Miner

Committee

Blockchain

State Storage Module

Broadcast

Client Node2
…

TransactionsSend

Figure 2: A system view of Ladder nodes.

a δ-synchronous network assumption (following [21, 37]),
where messages between honest nodes are delivered within a
bounded time δ under normal conditions. The system toler-
ates temporary disruptions, such as message delays or node
crashes, as long as the network eventually stabilizes. We as-
sume that adversaries control at most p percent of the total
computational power, where p < 30%, ensuring the security
of both upper-chain PoW and lower-chain BFT consensus
with high probability. In Ladder, nodes participate as upper-
chain miners, lower-chain miners, and/or BFT committee
members, and are incentivized for their contributions to block
generation. Upper-chain miners use PoW to generate blocks.
Lower-chain miners handle transaction ordering and produce
lower-chain blocks. In the event of waiting duration timeouts
or faults, the BFT committee generates super blocks to ensure
consensus continuity and maintain system integrity.

3.2 Model, Definitions, and Notations
We model Ladder using a DAG G = (B,V ,E). Next, we
describe in detail what B , V , and E represent.
Blocks B: We represent the set of all valid blocks with B .
The set B consists of three types of blocks: Bu represents all
valid blocks in the upper-chain. Bl represents all valid blocks
in the lower-chain, and Bs represents all super blocks. Before
we define these three types of blocks, we first introduce the
concept of a round.

Round: A round in Ladder defines the position of a block
within the upper- and lower-chains. Each round begins with
the generation of the lower-chain block from the previous
round and ends with the generation of the lower-chain block in
the current round. During each round, one new block is added
to the lower-chain and at least one block is added to the upper-
chain. The upper-chain and lower-chain blocks generated in
round r are denoted as Bu

r and Bl
r, respectively. Ladder does

not require all honest nodes to have the same round number, as
network delays may cause lower-chain blocks to be received
at different times. The round number is simply used to track
block order and maintain the local ledger. Even if nodes are
temporarily in different rounds, the system ensures eventual
consistency through block propagation and validation, within

Block Set

 𝑩𝒓ି𝟏,𝟎
𝒖

 𝑩𝒓ି𝟏𝒍

 𝑩𝒓,𝟎
𝒖

 𝑩𝒓,𝟏
𝒖PoW

(a) Upper-chain

Block Set

 𝑩𝒓ି𝟏,𝟎
𝒖

 𝑩𝒓ି𝟏𝒍 𝑩𝒓𝒍

 𝑩𝒓,𝟎
𝒖

 𝑩𝒓,𝟏
𝒖

Without PoW

(b) Lower-chain

Figure 3: Normal operation of Ladder.

the bounds of the δ-synchronous network model.
Upper-chain Blocks Bu: The upper-chain blocks in Ladder

are generated by nodes using the PoW consensus mechanism.
Despite being energy-intensive, PoW remains a cornerstone
of blockchain security, and improving its performance and
scalability is crucial for maintaining its relevance in decentral-
ized and trustless environments. Upper-chain blocks are fur-
ther categorized into standard and forked upper-chain blocks.
Standard upper-chain blocks are those that become part of the
upper-chain. We represent a standard upper-chain block in
round r with Bu

r,0. Bu
r,0 contains two hash pointers. One pointer

links to the standard upper-chain block Bu
r−1,0 of the preced-

ing round, and the other links to the lower-chain block Bl
r−1

of the preceding round. This process is shown in Figure 3(a).
Forked upper-chain blocks are legitimate blocks generated by
some nodes in the same round in which the standard upper-
chain block is generated. We represent a forked upper-chain
block in round r with Bu

r,i, where i = 1,2,3, . . . depending
on how many forked upper-chain blocks were created dur-
ing round r. A forked upper-chain block Bu

r,i also contains
two hash pointers. One pointer links to the standard upper-
chain block Bu

r−1,0 of the preceding round, and the other to the
lower-chain block Bl

r−1 of the preceding round. The primary
difference is that the upper-chain blocks in the next round will
point to the standard upper-chain block of the current round,
but not to forked blocks. In other words, the chain continues
only from a standard upper-chain block, not from any forked
upper-chain blocks. This process is shown in Figure 3(b).

Lower-chain Blocks Bl: Lower-chain block Bl
r in round r

contains information about the standard upper-chain block,
any forked blocks, and their respective sequence numbers.
Lower-chain block Bl

r is generated in round r by the node
that generated the standard upper-chain block Bu

r−1,0 in the
previous round. The generation of lower-chain blocks is com-
putationally inexpensive and does not require any PoW mech-
anisms. Lower-chain block Bl

r contains two hash pointers.
One pointer links to the standard upper-chain block Bu

r,0 of
the current round, and the other to the lower-chain block Bl

r−1
of the preceding round. It also contains reference links to all
forked upper-chain blocks in round r, facilitating the conver-
gence of forks in the upper-chain.

Super Blocks Bs: A super block is added to the lower-chain
when the referenced upper-chain blocks contain invalid trans-

782 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

actions from the current or previous rounds, or when a lower-
chain block is not received within a predefined time duration
despite the presence of valid upper-chain blocks. In Ladder,
super blocks are generated through the HotStuff consensus
mechanism [36]. Sec. 3.3 will provide further details on fault
conditions and the generation process of the three types of
blocks (upper-chain, lower-chain, and super).
Nodes V : We represent the set of all nodes with V and any
arbitrary node in V with V . The ratio of a single node V ’s
computing power relative to the total computing power of all
nodes is represented by P(V), such that ∑∀V∈V P(V) = 1.
Edges E: We represent the set of link relationships among
all blocks with E . For example, if block Bu

r,0 points to block
Bl

r−1, then (Bu
r,0,B

l
r−1) ∈ E represents a directed link from

Bu
r,0 to Bl

r−1. More generally, expressing a link as (a,b), if
(a,b) ∈ E , a property of Ladder is that a ̸= b and (b,a) /∈ E .
Serial Numbers and Ledger Generation: To enable a node
to generate the ledger from the blocks in the upper- and lower-
chains of Ladder, we assign a serial number to each block.
In any given round r ≥ 0, the lower-chain block has the se-
rial number 2r+ 1 and the standard upper-chain block has
the serial number 2r. If round r has any forked upper-chain
blocks, then the serial numbers of forked blocks are denoted
by adding a subscript i to the value 2r, where i = 1,2,3,
We represent the serial number of any block B with O(B).
For example, if Bu is a standard upper-chain block in round
3, then O(Bu) = 6. If Bu is the second forked upper-chain
block in round 3, then O(Bu) = 62. Similarly, if Bl is a lower-
chain block in round 3, then O(Bl) = 7. Suppose rounds 0,
1, 4, and 5 do not have any forked blocks but only standard
upper-chain blocks. Suppose round 2 has one forked block,
and round 3 has three forked blocks. To generate the ledger,
the upper-chain blocks will be arranged in the following se-
quence: 0,2,4,41,6,61,62,63,8,10, Transactions are in-
herently sequential, so while parallel block processing enables
higher throughput, ordering the blocks ensures all transactions
follow the correct sequence. This guarantees a totally ordered
ledger, allowing Ladder to support not only simple transfer
transactions but also complex smart contract executions.

3.3 Block Generation
Next, we describe the generation process for the different
block types mentioned in Sec. 3.2.
Upper-chain Blocks: In each round r, each node attempts to
find a nonce that meets the difficulty target required for block
generation. Once a node finds a valid nonce, it broadcasts the
resulting block to all nodes in the network. Round r concludes
when the lower-chain block Bl

r is generated. Before the round
concludes, it is common for multiple upper-chain blocks to
be generated by different nodes. In such cases, one of these
blocks is designated as the standard upper-chain block, while
the others are classified as forked upper-chain blocks. If ap-
plicable, information about the standard and forked blocks in

round r is stored in the corresponding lower-chain block Bl
r.

Lower-chain Blocks: Suppose we are currently in round
r. This means that the standard upper-chain block and any
forked upper-chain blocks from round r−1 have already been
determined, with this information stored in the lower-chain
block Bl

r−1 of the previous round. In the current round r, the
node whose block was designated as the standard upper-chain
block in round r−1 is responsible for generating the lower-
chain block. By generating the lower-chain block, Ladder
achieves fast convergence of upper-chain blocks. Addition-
ally, only the miner of the standard upper-chain block from
round r − 1 is required to generate the lower-chain block.
The node collects upper-chain blocks for a predefined dura-
tion, checks for faults, discards faulty blocks, and selects the
standard upper-chain block Bu

r,0 for round r according to the
Hardest Chain Principle. This block must have hash point-
ers to the standard upper-chain block Bu

r−1,0 and lower-chain
block Bl

r−1. It marks the remaining upper-chain blocks as
forked and assigns them serial numbers (2r)1, (2r)2, and so
on. It inserts this information into the lower-chain block Bl

r
for round r, along with the hash pointers for Bu

r,0 and Bl
r−1. By

producing lower-chain blocks, the convergence node exclu-
sively records forked blocks and ensures a globally consistent
transaction order. Unlike other solutions, Ladder optimizes
block ordering while preserving decentralization, thereby en-
hancing both efficiency and finality. An upper-chain block in
round r may reference Bu

r−1,0 and Bl
r−1 but fail to reach the

lower-chain block generator in time. Instead, it may arrive at
the generator for round r+ e (e ≥ 1) before its lower-chain
block is generated. Consequently, this block will be sorted in
round r+ e, and it will be classified as a forked upper-chain
block rather than a standard one.

Super Block: Suppose node V is in round r. It detects a fault
if either of the following two situations occurs.

1. Node V receives a lower-chain block for round r, but the
referenced upper-chain blocks contain transactions that
conflict with those in the current or previous rounds.

2. Node V does not receive a lower-chain block for round
r within a predefined time duration, despite receiving
several valid upper-chain blocks.

To resolve such faults, Ladder employs the BFT consen-
sus mechanism. Since lower-chain blocks must be unique,
BFT consensus guarantees agreement on a single canonical
lower-chain block among all nodes. As a deterministic con-
sensus mechanism, BFT consensus has been widely used in
various fields [1, 5, 7, 15, 30, 31, 35, 36]. The HotStuff consen-
sus [36] is a BFT-based consensus executed by a committee
comprising the nodes that generated the most recent n stan-
dard upper-chain blocks. HotStuff is selected for its simplicity,
efficiency, and linear message complexity. Compared to other
BFT mechanisms in some PoS proposals, HotStuff offers

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 783

 𝑩𝒓ି𝟏,𝟎
𝒖

 𝑩𝒓ି𝟏𝒍 𝑩𝒓𝒍

 𝑩𝒓,𝟎
𝒖

 𝑩𝒓,𝟏
𝒖

 𝑩𝒓ା𝟏,𝟎
𝒖

 𝑩𝒓ା𝟏𝒍

Abnormal Block

 𝑩𝒓ି𝟏,𝟎
𝒖

 𝑩𝒓ି𝟏𝒍 𝑩𝒓𝒍

 𝑩𝒓,𝟎
𝒖

 𝑩𝒓,𝟏
𝒖

 𝑩𝒓ା𝟏,𝟎
𝒖

𝑩𝒓ା𝟏𝒔

Super Block

BFT
Consensus

Figure 4: Example of the use of super block in Ladder.

superior scalability, making it suitable for super block gen-
eration. Upon committee formation, the leader is selected
via VRF [12]. During Ladder’s operation, if a node detects
an issue, it notifies the committee members. The committee
verifies the fault, discards conflicting upper-chain blocks, and
reselects a standard upper-chain block based on the Hard-
est Chain Principle. The committee leader then generates a
super block, replacing the lower-chain block, as shown by
the hexagonal block Bs

r+1 in Figure 4. This super block con-
tains hash pointers to the previous round’s lower-chain block
and the current round’s upper-chain block, along with refer-
ences to any forked upper-chain blocks. Subsequent upper-
and lower-chain blocks are generated through the standard
process described earlier. Notably, a dynamically sized com-
mittee may cause inconsistencies in node perceptions, so we
adopt a fixed size to ensure information consistency.

At the end of each round, nodes are rewarded based on their
roles in that round, incentivizing sustained participation.

3.4 Hardest Chain Principle
Unlike Bitcoin, to enable faster transaction insertion on the
ledger, a blockchain may produce blocks at a high rate. How-
ever, this can cause honest nodes to link blocks to different
sub-chains based on their local views, fragmenting their com-
puting power. An adversary can take advantage of this. It can
concentrate all its computing power on a target sub-chain to
attack it. To address this issue, GHOST [26] proposes the
heaviest chain principle, where the pivot chain is determined
by the number of sub-blocks linked to a block. However,
GHOST is vulnerable to liveness attacks, where an adversary
delays transaction confirmations by creating multiple forks.
To mitigate this, Conflux [19] proposed GHAST, which intro-
duces dynamic block weight (e.g., special blocks with high
weights) to mitigate liveness attacks. While GHAST improves
resilience, it may not fully address balance attacks.

Ladder proposes the Hardest Chain Principle, which ex-
tends the heaviest chain principle with dynamic weight adjust-
ment to support efficient parallel block processing. Unlike the
heaviest chain principle, which relies on the number of sub-
blocks, the Hardest Chain Principle selects the pivot chain
based on the cumulative difficulty of blocks in a sub-tree.
The difficulty of block Bi, denoted as D(Bi), is calculated by
the number of leading zeros in its hash and the hashes of all
blocks in its sub-tree, as defined by the following equation:

D(Bi) :=
√

Z(Bi)+ ∑
B j∈Si

D(B j) (1)

Here, Z(Bi) represents the number of leading zeros in the
hash of block Bi, and Si denotes the set of all legal blocks
with hash pointers pointing to block Bi. Putting Z(Bi) under
square root achieves two properties. First, in the case of a fork,
the side with more legal blocks following the forked block
has higher difficulty and is selected. This makes it easier to
select a side. Second, if the number of legal successor blocks
on both sides is equal, as long as the number of leading zeros
is different in all the sub-blocks, the difficulty of the two sides
will be unequal, enabling the selection of one of the sides.
This significantly reduces the likelihood of a balance attack.
If both sub-chains have m legal blocks after the fork position,
it can be proven that the probability of the blocks having
equal difficulty is bound by P ≤ 1

12 (1−
1
4k), where k is the

maximum number of leading zeros in the hash value.
We now prove that the side with more legal blocks follow-

ing the forked block has higher difficulty. Consider a scenario
where a fork leads to the formation of two sub-chains. Let
sub-chain 1 have m blocks with a leading zeros each, and sub-
chain 2 have m− t blocks with b leading zeros, where a < b.
In other words, each block in sub-chain 2 has more leading
zeros than those in sub-chain 1. The generation probability
of a block with x leading zeros is given by P = 1

2x+1 . Thus,
the generation probability of all m blocks in sub-chain 1 is
∏

m
i=1 Pi = ∏

m
i=1

1
2a+1 = 1

2m(a+1) . Similarly, the generation prob-
ability of sub-chain 2 is 1

2(m−t)(b+1) . If the generation probabili-
ties of the two sub-chains are equal (i.e., the computing power
is equally divided between the two chains), then b = ma+t

m−t . To
show that sub-chain 1 has greater weight than sub-chain 2,
we must prove ∑

m
i=1

√
a > ∑

m−t
i=1

√
b. Alternatively, we need to

demonstrate m
√

a > (m− t)
√

ma+t
m−t , which can be simplified

to m2a > (m− t)(ma+ t), implying ma > m− t. The conclu-
sion holds given that m > 0, a > 1, and t > 1. This proves
that the side with a greater number of valid blocks following
a given block must have a higher difficulty.

The Hardest Chain Principle can mitigate liveness attacks
and balance attacks by selecting the chain with the highest
cumulative difficulty, where a block’s difficulty is determined
by the number of leading zeros in its hash and the hashes of all
blocks in its subtree. This approach ensures that an attacker
must generate blocks with higher difficulty to influence the
pivot chain, requiring substantial computational power and
making such an attack economically infeasible. Furthermore,
the Hardest Chain Principle can serve as an alternative to
GHOST [26] and GHAST [20] in their respective systems.

3.5 Exception Handling in Block Generation
Exceptions in Upper-Chain Blocks: We categorize excep-
tions in the upper-chain into the following cases:

Invalid block: An invalid block is a block that contains
duplicate or conflicting transactions either with itself or with
previous upper-chain blocks. Its creator receives no reward.

Forks: Two types of forks may occur in the upper-chain:

784 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

𝑩𝒓
𝒍

(a) Tip fork in upper-chain

𝑩𝒓+𝟏
𝒍

(b) Chain fork in upper-chain

Figure 5: Exception cases in upper-chain.

tip forks and chain forks. A tip fork occurs when multiple
valid upper-chain blocks are generated in round r. In this
case, the convergence node selects one block as the standard
block and designates the others as forked blocks for round
r. The convergence node then generates block Bl

r to include
this information, as shown in Figure 5(a). A chain fork occurs
when a valid upper-chain block is generated in round r but
does not arrive in time at the node responsible for generating
the lower-chain block for round r, instead reaching the node
responsible for round r+1. In this case, the lower-chain block
Bl

r+1 contains a pointer to this upper-chain block as a forked
block, as shown in Figure 5(b). Such an upper-chain block is
never used as a standard upper-chain block.

Exceptions in Lower-Chain Blocks: We also categorize
exceptions in the lower-chain into the following cases:

Block timeout: Block timeout occurs when a node belong-
ing to the BFT committee does not receive a lower-chain
block within a specified time. In such cases, the committee
initiates HotStuff consensus and generates a super block.

Invalid block: Similar to invalid upper-chain blocks, a
lower-chain block is considered invalid if it contains faulty
information or is generated by an unauthorized node. Invalid
blocks are ignored. However, if an invalid block is gener-
ated by the convergence node of the current round, the BFT
consensus is triggered to generate a super block.

Fork: If a lower-chain block is not generated by the con-
vergence node in any given round, it is simply ignored by the
nodes. Lower-chain forks can also be classified into tip forks
and chain forks. A tip fork occurs in the lower-chain when
the node responsible for generating the lower-chain block
malfunctions and generates more than one lower-chain block
in a given round, as shown in Figure 6(a). This triggers the
HotStuff consensus to generate a super block Bs

r, where the
node that malfunctioned is not allowed to participate. A chain
fork occurs in the lower-chain when different nodes accept
different upper-chain blocks as standard blocks in a given
round, and consequently accept lower-chain blocks from dif-
ferent nodes in the next round. This results in the propagation
of two separate Ladders in the network, as shown in Figure
6(b). When eventually any given node detects the existence
of multiple Ladders, it employs the Hardest Chain Principle,
as discussed in Sec. 3.4, to select one Ladder and discard
the rest. Any Ladder may contain super blocks in place of
lower-chain blocks. In such cases, when applying the Hardest
Chain Principle, the difficulty of the super block is quantified
by the number of nodes participating in HotStuff.

𝑩𝒓
𝒔

(a) Tip fork in lower-chain (b) Chain fork in lower-chain

Figure 6: Exception cases in lower-chain.

Exceptions in Super Blocks: A super block is considered in-
valid if it contains conflicting information or fails committee
validation due to adversarial behavior. Since the committee
uses BFT to generate super blocks, such issues can be mit-
igated through BFT’s internal mechanisms as long as the
proportion of adversarial nodes remains below 1/3. When
an invalid super block is detected, the committee initiates a
view change [36] and elects a new leader to restart consensus,
ensuring super block reliability.

3.6 System Analysis
This section discusses Ladder’s performance in throughput,
latency, and scalability, as well as the bootstrapping process.

Throughput: Effective utilization of a node’s computing
power is key to improving system throughput. Nodes use PoW
to generate blocks. Following the Hardest Chain Principle,
they can become miners of standard upper-chain blocks. This
grants them the role of convergence nodes, giving them the
right to generate lower-chain blocks. Ladder improves upon
GHOST and GHAST for pivot chain selection while maintain-
ing comparable computational overhead, as the required in-
formation can be derived from block metadata. Convergence
nodes determine block order, reducing network-wide coor-
dination overhead while preserving throughput. The lower-
chain allows nodes to package more transactions without
PoW, increase rewards, and eliminate computational bottle-
necks, improving efficiency.

Latency: In Ladder, the analysis of Bitcoin’s longest chain
principle and confirmation rule is still applicable for the Hard-
est Chain Principle. Consider a scenario where the adversary
fully controls the computing power of malicious nodes. Let p
and q represent the proportion of total computing power of
honest and malicious nodes, respectively, where p+ q = 1.
After a transaction is included in a block, a waiting period of
z upper-chain blocks is necessary to prevent selfish mining
and anomalies in block processing caused by the adversary.
Recall that the explanation of lower-chain forking cases was
presented in Sec. 3.5. The adversary’s selfish mining behav-
ior follows a Poisson distribution, where λ represents the
expected number of upper-chain blocks secretly generated
by the adversary during the waiting period of z upper-chain
blocks. Since the number of generated upper-chain blocks is
proportional to computing power, we have λ

z = q
p , or equiv-

alently, λ = zq
p . Thus, the probability of the adversary pro-

ducing k upper-chain blocks during the waiting period of z

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 785

upper-chain blocks can be calculated using the formula λke−λ

k! .
In the case where the adversary generates k (where k ≤ z)
upper-chain blocks, the probability of catching up to the z re-
vealed upper-chain blocks is (q

p)
(z−k). If k > z, the probability

of catching up is 1. Consequently, the probability of being
caught up by the adversary after waiting for z upper-chain
blocks is given by 1−∑

z
k=0

λke−λ

k! (1− (q
p)

(z−k)).

Scalability: Ladder demonstrates excellent scalability, al-
lowing nodes to join or leave the system freely without af-
fecting the PoW of other nodes. Furthermore, as the num-
ber of nodes increases, the system’s total computing power
grows, thereby optimizing parallel block processing, improv-
ing throughput and reducing confirmation delays. In contrast,
solutions like OHIE [37] extend the ledger to multiple par-
allel chains, which improves throughput. However, due to
their chain-like structure, OHIE’s parallel chains still face the
issue of orphan blocks. A promising future direction is to
combine these methods, utilizing DAG-based parallel chains
with local consensus and lightweight global synchronization,
which could enhance throughput while ensuring consistency.

Bootstrapping: Ladder requires an initial BFT committee
to operate. However, relying on a global random selection
process could render the system susceptible to Sybil attacks
[9]. To address this, the system employs Nakamoto consensus
during the bootstrap phase, then transitions to the Ladder
protocol after k blocks have been generated [14].

4 Parameter Settings
BFT Committee Size: In Ladder, the presence of a BFT
committee may introduce two security risks: selfish mining
and adversaries exceeding 1/3 of the committee. Therefore,
the BFT committee size is critical to system security, as it
determines which nodes are responsible for generating the
super block.

To mitigate selfish mining, a larger committee size is ad-
vantageous, as it increases the difficulty of generating super
blocks, making it harder for adversaries to withhold and re-
lease blocks to manipulate the chain order [10]. We show in
Appendix A that the probability of a selfish mining attack
occurring is bounded by P = 1

22
√

k
.

For adversaries exceeding 1/3 of the committee, as noted
in the Limitation of Ladder section (Sec. 1), Ladder requires
malicious nodes within the committee remain below 1/3.
However, due to the probabilistic nature of PoW, this guar-
antee cannot be strictly ensured. Appendix B shows that this
probability decreases exponentially as the committee size in-
creases. Furthermore, over multiple rounds, the probability
of at least one successful attack accumulates. In Table 2, we
present the per-round probability of adversarial dominance
and the number of rounds required for the cumulative proba-
bility of at least one successful attack to reach 99%. As the
committee size grows, the probability of more than 1/3 adver-
saries decreases, and the required number of rounds increases.

Table 2: Impact of Committee Size on Adversarial Risk

Committee Size 120 180 240 300
Probability 4.9×10−3 1.8×10−4 6×10−6 1.96×10−7

Rounds for 99% 9.2×102 2.6×104 7.7×105 2.4×107

For example, when the committee size is 300, the proba-
bility of selfish mining is approximately 4.67×10−11, while
the probability of more than 1/3 adversaries in a single round
is about 1.96×10−7. This event requires roughly 2.4×107

rounds to reach a cumulative probability of 99%.

Node Incentive Mechanism: As previously introduced,
Ladder employs an incentive model to reward nodes for their
participation. The block generation rewards in the upper- and
lower-chain are similar and correlated with the number of
valid transactions stored in the block. The super block gen-
eration reward is evenly distributed among all participating
committee members in the BFT consensus algorithm. If a
block is not selected as the standard upper-chain block but
is selected as a forked upper-chain block, its reward is influ-
enced by the difference in the number of rounds between its
creation and its inclusion in the upper-chain. Specifically, this
reference is added to a lower-chain block. To calculate the
reward accurately, the reward should be multiplied by a block
generation reward factor, which is less than 1. Let the upper-
chain block Bu be linked to block B. The block generation re-
ward factor is defined as S = el−d

1+el−d , where d = R(Bu)−R(B)
represents the difference in the number of rounds, and l is a
manually set parameter that determines the rate of decrease
of the block generation reward as the difference in rounds
approaches l. For the lower-chain block generation node, the
reward received for adding a reference to an upper-chain block
should also be multiplied by the block generation reward fac-
tor. This incentivizes the lower-chain block generation node
to promptly reference upper-chain blocks within lower-chain
blocks. Both the block generation reward and the reward for
adding a reference to an upper-chain block are stored in the
lower-chain block for the respective round.

The incentive for the node to mine a single upper-chain
block is calculated as ru = Block Reward +∑T x∈B T x f ee ∗
(1 − α). Similarly, for the convergence node, the incen-
tive to generate a lower-chain block is determined by rl =
Block Reward+∑B∈round ∑T x∈B T x f ee∗αi. Next, we explain
what αi represents. The blocks in each round are generated
by different nodes, and each node selects the transactions to
include in its block from the transaction pool. Thus, it is pos-
sible that one or more transactions get included in multiple
blocks generated by different nodes in any given round, re-
sulting in duplicate transactions. αi represents the proportion
of transaction i among all duplicate transactions in a given
round. Formally, let xi represent the number of occurrences of
transaction i that appears at least twice among all the blocks
generated in a given round. Then αi =

xi−1
∑∀i(xi−1) .

To execute a double spending attack with V , the attack

786 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

involves generating n blocks during its phase, and the cost for
each individual block generation is denoted as c. According
to Hoeffding’s inequality, take ε = 1/2−q, Pr[|A| ≥ n/2]≤
exp(− (1−2q)2n

2) = exp(− (p−q)2n
2). Then, to make the attack

gain in the desired sense not to exceed the cost, Pr[|A| ≥
n/2]∗V ≤ n

2 (c− rd) is needed to obtain V ≤ n(c−rd)

2exp((p−q)2n
2)

.

Waiting Time Duration: Following the generation of an
upper-chain block in a specific round, the remaining nodes
continue mining upper-chain blocks until they receive the
lower-chain block from the designated convergence node. If
the lower-chain block is not produced within the predefined
waiting duration, the committee triggers the BFT consensus.
Next we discuss how to set the waiting time duration.

Let W j
i represent the waiting time for node j to receive a

block with sequence number i, and T j
i represent the timestamp

when node j receives a block from node V (i). We use V (B)
to represent the node that generated block B. PT (V (i), j) indi-
cates the time it takes for a block to propagate from node V (i)
to node j, and MT (i) represents the mining time required by
node V (i) to generate a single block. Recall that the upper-
chain block in round r is identified by the serial number 2r,
while the lower-chain block is denoted by the serial number
2r+1. Assuming equal computing power, the mining time is
the same for all nodes, while the propagation time varies. The
waiting time W j

i solely accounts for the propagation, exclud-
ing mining time, since any nonce can be used in the generation
of lower-chain blocks. Thus, W j

i = PT (V (i), j). A node can
estimate the mining and propagation times by analyzing the
timestamps of the latest upper- and lower-chain blocks. For-
mally, this can be expressed as Eq.(2). Here, MT (Bu

r−1) is
the mining time for the upper-chain block in round r − 1,
PT (V (Bu

r−1), j) is the propagation time from the upper-chain
block’s generator to node j, and PT (V (Bl

r−1), j) is the propa-
gation time from the lower-chain block’s generator to node j.

W j
2r+1 ≈ (T j

2(r−1)−T j
2(r−2)+1)︸ ︷︷ ︸

MT (Bu
r−1)+PT (V (Bu

r−1), j)

−[(T j
2(r−2)−T j

2(r−3)+1)︸ ︷︷ ︸
MT (Bu

r−2)+PT (V (Bu
r−2), j)

−(T j
2(r−1)+1 −T j

2(r−1))︸ ︷︷ ︸
PT (V (Bl

r−1), j)

]
(2)

The node responsible for generating the legal lower-chain
block in round r − 1 is the same as the node that gen-
erated the upper-chain block in round r − 2 (denoted as
V (Bu

r−2) = V (Bl
r−1)), and the time for each node to gener-

ate a single block is equal (MT (Bu
r−1) = MT (Bu

r−2)). Conse-
quently, Eq.(2) can be simplified as W j

2r+1 ≈ PT (V (Bu
r−1), j).

This means that the waiting time for node j to receive a block
in the current round is equivalent to the propagation time it
takes for a single block to propagate from the previous round’s
upper-chain block generator to node j.

The analysis presented above demonstrates that in Ladder,
any given node can determine the waiting time for lower-chain
blocks by utilizing the historical information it has collected
regarding the arrival times of the standard block in round r−1
and lower-chain blocks in the next round r.

5 Evaluations
In this section, we present results from a comprehensive eval-
uation of Ladder and compare them with prior approaches.
Setup and Experiments: We implemented a prototype of
Ladder and compared it with four recent approaches: GHOST
[26], Inclusive [18], Phantom [27], and Conflux [19]. Experi-
ments are conducted on an 80-node LAN testbed, with each
machine equipped with an Intel(R) Core(TM) i5-4590 CPU
@3.30 GHz and 8 GB of RAM. The inter-node communica-
tion latency is set to approximately 80-120 ms to align with
real-world network conditions [33]. We use a P2P communica-
tion protocol where each node is connected to approximately
10 other nodes. Experiments are run in a controlled, adversary-
free environment to observe Ladder’s optimal performance
without adversarial interference. To align with Conflux, which
confirms a block after 6 subsequent blocks, Ladder also con-
firms a block after 6 subsequent upper-chain blocks. Unlike
using a fixed block interval [19, 37], we employ PoW for
block generation. In our experiments, the throughput results
of previous approaches match their reported values under
the following conditions: block difficulty requires 18 leading
zeros, and each block contains 1000 randomly generated pay-
ment transactions (each approximately 300 bytes), as derived
from our interpretation of the protocol specifications.
Metrics: We primarily evaluate the end-to-end performance
of Ladder and prior approaches. Throughput is measured as
the number of confirmed transactions per second (TPS), while
confirmation latency is defined as the time from a transac-
tion’s submission to its block confirmation. All experiments
are repeated 10 times. We conduct experiments over a 10-
minute stable operation starting from the genesis block, fol-
lowing Conflux’s methodology [19] to ensure a consistent
evaluation period. Metrics are recorded every minute, yielding
10 data points per experiment and 100 in total across all runs.
This ensures statistically meaningful measurements while ac-
counting for PoW’s inherent randomness in block generation
intervals. Box plots are used to assess variance, preventing
short-term fluctuations from distorting metric trends. To cap-
ture metric variations caused by PoW’s stochastic nature, we
use whiskers, which extend to the most extreme data points
within 1.5× IQR from the first (Q1) and third (Q3) quartiles,
minimizing the impact of outliers. Additionally, we use line
plots with points representing the medians of the metrics.
Aggregate Observations: The results show that Ladder out-
performed all prior approaches. Among prior approaches,
Conflux performed the best, with a median throughput of
2823 TPS and a confirmation latency of 43 seconds. Com-
pared to Conflux, Ladder showed a 59.6% improvement in

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 787

250 500 750 1000 1250 1500 1750 2000

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
(T

PS
)

Transaction number per block

(a) Throughput with different block sizes

10 20 30 40 50 60 70 80
Node number

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
(T

PS
)

GHOST
Inclusive
Phantom
Conflux
Ladder

(b) Throughput with different number of nodes

10 12 14 16 18 20 22 24
Difficulty

0

1000

2000

3000

4000

5000

6000

Th
ro
ug
hp
ut
(T
PS
)

(c) Throughput with different block difficulties

Figure 7: Throughput of Ladder and its comparison with prior approaches.

(a) Latency with different block sizes (b) Latency with different number of nodes (c) Latency with different block difficulties

Figure 8: Confirmation latency of Ladder and its comparison with prior approaches.

throughput and a 20.9% reduction in latency under the same
settings. Ladder achieved a median throughput of 4506 TPS
and a confirmation latency of 34 seconds. Next, we analyze
the impact of block size, network size, and difficulty on the
performance of Ladder and prior approaches.
Impact of Block Size: Figures 7(a) and 8(a) show the through-
put and confirmation latency of various approaches across
different block sizes under a difficulty level of 18. Results
indicate that Ladder outperformed all prior approaches across
the evaluated block sizes. For block size below 1000, Ladder
exhibits lower throughput. As the block size increases from
1000 to 1750, throughput remains stable between 4000 and
5300 TPS. In this stage, the increased transaction capacity of
larger blocks compensates for the growing propagation delay,
maintaining stable throughput. However, at a block size of
2000, both Ladder and Conflux show a noticeable drop in
throughput, likely due to higher network overhead and re-
source strain from larger block propagation. Throughput in
Ladder fluctuates by around 1000 TPS, while latency varies
by approximately 20 seconds. These fluctuations are primar-
ily caused by PoW’s randomness in block generation, with
additional contributions from LAN congestion and schedul-
ing delays affecting transaction propagation. Despite these
fluctuations, Ladder maintains the highest efficiency among
all tested approaches.
Impact of Network Sizes: Figures 7(b) and 8(b) show the
throughput and confirmation latency of various approaches
across different network sizes, with a fixed block size of

1000 and a difficulty level of 18. As the network size grows,
throughput increases significantly, primarily due to the higher
total computational power from more nodes participating in
the PoW, resulting in more frequent block generation. Lad-
der’s median throughput rises from 1043 TPS with 10 nodes
to 4506 TPS with 80 nodes. Larger network sizes may intro-
duce longer block propagation delays. However, confirma-
tion latency decreases from a median of 47 seconds with 10
nodes to 34 seconds with 80 nodes, a reduction of 27.7%.
The primary reason for this improvement is that increased
computational power accelerates block generation, reducing
the time required for transactions to be included in a block.
This helps mitigate the impact of longer propagation delays
by enabling faster confirmation through parallel processing.
Impact of Difficulty: Figures 7(c) and 8(c) show the through-
put and confirmation latency at different block difficulty levels
with a block size of 1000. Block difficulty significantly affects
both throughput and confirmation latency. As the difficulty
increases, throughput decreases, and confirmation latency in-
creases across all prior approaches. Specifically, when the
difficulty level is 10, the median throughput of Ladder reaches
5314 TPS, which is 27.2% higher than at level 24. This behav-
ior occurs because higher difficulty reduces the block genera-
tion frequency, resulting in longer confirmation times. Despite
the decline in performance with increasing difficulty, Ladder
consistently outperforms all prior approaches.
Result Analysis: Ladder achieves higher throughput and
lower latency across varying conditions due to several key

788 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1

Figure 9: Throughput under large-scale node conditions.

factors. The convergence nodes streamline ledger consoli-
dation by handling transaction ordering. This reduces the
computational burden on other nodes, allowing them to focus
on parallel block generation. Additionally, Ladder’s conver-
gence mechanism simplifies lower-chain block generation
and transaction confirmation, thereby reducing overall system
complexity. Even during anomalies that require committee
intervention, upper-chain block production continues until a
new lower-chain block is generated.

Large Scale Simulation: The simulation is conducted on a
server with 128GB of memory, with time delays introduced
to simulate the block generation and broadcasting processes.
Block generation time is positively correlated with block dif-
ficulty, while broadcasting time is affected by both block size
and the number of participating nodes. The experiments sim-
ulated networks of 3000, 6000, 9000, and 12000 nodes. As
shown in Figure 9, the results indicate that Ladder’s through-
put improves by 34.2% compared to Conflux as the number
of nodes increases to 12000.

Heterogeneous Nodes: We conduct experiments on Alibaba
Cloud using a heterogeneous node setup of 80 virtual ma-
chines (VMs): 30 VMs with 4 cores and 8 GB RAM, 30 VMs
with 4 cores and 16 GB RAM, and 20 VMs with 8 cores
and 16 GB RAM. Due to the intensive hash computations
required by PoW, CPU utilization on each VM remains high,
ranging from 90% to nearly 100%. Memory usage averages
22.5% on 8 GB VMs and 13.25% on 16 GB VMs, primarily
allocated for the transaction pool, blockchain state, and PoW
computation caching. We evaluate system performance under
varying bandwidth constraints of 10, 20, and 30 Mbps, with
1000 transactions per block and a difficulty level of 18. At
10 Mbps, throughput is 2011 TPS, indicating that bandwidth
is the primary bottleneck. Increasing bandwidth to 20 Mbps
raises throughput to 3986 TPS, approaching the theoretical
maximum. At 30 Mbps, throughput reaches 4652 TPS, show-
ing only marginal improvement over the 20 Mbps results,
suggesting that PoW computation efficiency becomes the new
bottleneck. These experiments show Ladder’s ability to adapt
to heterogeneous environments and optimize performance
based on available resources and network conditions.

Impact of BFT Committee: We also perform latency testing
on the committee in Ladder. Based on our analysis in BFT
Committee Size section (Sec. 4), we choose a committee

size of 300 nodes. Since committee consensus operates as
an independent module, we conduct separate experiments
simulating a scenario where nodes simultaneously receive two
conflicting lower-chain blocks. We use 80 VMs to emulate a
300-node committee, including 99 Byzantine nodes. Under
this setup, the average time cost for committee consensus
is 3.25 seconds, which exceeds the lower-chain broadcast
time. Although the committee introduces some performance
overhead, it plays a crucial role in maintaining system security
by mitigating the impact of malicious nodes and ensuring
consensus integrity.

6 Security Analysis
6.1 Transaction Trustworthiness
Ladder consists of a growing structure, similar to chain growth
in conventional blockchains, where upper and lower-chain
blocks serve as the key elements binding the structure. Al-
though the node whose block was selected as the standard
upper-chain block in the previous round chooses the next
standard block, it cannot always select its own block due to
the competitive nature of upper-chain block generation. The
probability of a node repeatedly generating blocks without
faults is negligible, as it must also handle verification, sort-
ing, and parallel processing of received upper-chain blocks.
This makes it further improbable for a node to consistently
generate lower-chain blocks in subsequent rounds and keep
adding blocks to the upper-chain with invalid transactions.
This establishes the trustworthiness of confirmed transactions.

6.2 Resistance Against Common Attacks
This subsection demonstrates how Ladder is resilient against
some common attacks.
Sybil Attack [9]: In a Sybil attack, the attacker creates a large
number of nodes to manipulate the consensus protocol. As
Ladder relies on PoW rather than node count to determine if
a given block can be added to the upper-chain, it is resilient
against Sybil attacks. Furthermore, only nodes that have pre-
viously contributed a standard upper-chain block can generate
lower-chain blocks or participate in HotStuff consensus for
super block generation. This makes launching a successful
Sybil attack on Ladder prohibitively costly.
Denial of Service (DoS) Attack: In PoW-based blockchains,
block verification is fast, while block generation is slow and
resource-intensive, providing inherent protection against DoS
attacks. However, predictable leader election can expose spe-
cific nodes to targeted DoS attacks. To mitigate this, Ladder
uses VRF for leader selection, reducing the likelihood of suc-
cessful targeting by adversaries. Even if an attack occurs,
other nodes can continue verification and mining without
interruption, ensuring the system remains functional.
Double-Spend Attack: To perform a double-spend attack, the
adversary cannot immediately engage in malicious activities
but must first generate a block that is selected by the pivot
chain node as an upper-chain block. The adversary must also

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 789

keep the pivot chain operating normally while mining in the
next round to generate the lower-chain block. The limited
computing power and the hardest chain principle make it
nearly impossible for an attacker to execute a double-spend
attack within any practically meaningful time frame (e.g.,
one day). Attacks become highly improbable when adversary
resources fall below a certain threshold in Ladder [23].
Eclipse attack [13]: Ladder relies on computing power to
establish credibility. While the Eclipse attack impacts the
HotStuff consensus component, other nodes that are not part
of the BFT committee still generate blocks using PoW. This
practically eliminates the impact of Eclipse attacks on the
overall system performance.

6.3 Security and Availability
A blockchain network must ensure two key characteristics: se-
curity, which ensures that only valid transactions are included
in the ledger, and availability, which guarantees that transac-
tions are confirmed within a finite time. Prior work [11] has
shown that the three properties of common-prefix, finality,
and liveness are sufficient to achieve these characteristics. We
define these three properties along with an additional one,
and prove that Ladder satisfies both security and availability
through lemmas and theorems. Theorems are proven in this
section, while proofs of lemmas are provided in the Appendix.
Common-prefix: At any given time, if all nodes in the
blockchain network have, with very high probability, the same
knowledge of the verified portion of the ledger, the blockchain
satisfies the common-prefix property.
Finality: If the verified portion of the ledger of any honest
node does not change over time (such as in response to an
attempted attack or due to intermittent inconsistencies among
nodes), the blockchain ledger satisfies the finality property.
Liveness: If a valid transaction becomes part of the verified
portion of the ledger within a predefined amount of time, the
blockchain satisfies the liveness property.
l-balance: A sequence of m ≥ l nodes is said to be l-balanced
when in any subsequence of l or more consecutive nodes, the
honest nodes are in majority.

Lemma 1. The probability that an adversary gets to cast
more than 1/3 of the votes in Ladder’s BFT committee (which
generates the super block) decreases exponentially with the
committee size.

Lemma 2. Let k represent the number of blocks in the lower-
chain. If the sequence of nodes that generated the given se-
quence of standard upper- and lower-chain blocks is 2k+2-
balanced, the blockchain ledger generated from the corre-
sponding rounds satisfies the common-prefix property.

Lemma 3. If the sequence of nodes that generated the given
sequence of standard upper-chain and lower-chain blocks
is 2k-balanced, the blockchain ledger generated from the
corresponding rounds satisfies the finality property.

Lemma 4. If the sequence of nodes that generated the given
sequence of standard upper-chain and lower-chain blocks
is 2k-balanced, the blockchain ledger generated from the
corresponding rounds satisfies the liveness property.

Lemma 5. The sequence of nodes that generate the given
sequence of standard upper-chain and lower-chain blocks is,
with very high probability, 2k-balanced.

Theorem 1. Any block in the lower-chain of Ladder is a valid
block with very high probability.

Proof of Theorem 1. For an adversary to generate a lower-
chain block in a given round, the adversary must first gain
the authority to generate the lower-chain block in that round,
which can happen with the probability of just q3+q(1−q)

q3+1−q (Ap-
pendix B). If an adversary is able to contribute a lower-chain
block where it enters any malicious/incorrect information,
that will be detected and a super block generation process will
start.To succeed in the BFT consensus, the adversary must
control more than 1/3 of the committee. According to Lemma
1, the probability of this happening is extremely low.

Theorem 2. Ladder satisfies common prefix, finality, and
liveness properties.

Proof of Theorem 2. By Lemma 5, we know that the se-
quence of nodes that generated the given sequence of k
lower-chain blocks in Ladder satisfies the 2k-balance. Conse-
quently, by Lemmas 2, 3, and 4, we conclude that the resulting
blockchain ledger in Ladder satisfies the common prefix, fi-
nality, and liveness properties.

These two theorems, together, prove that Ladder has both
security and availability characteristics.

7 Conclusion
We propose Ladder, a structured twin-chain DAG blockchain
that optimizes parallel block processing to achieve high
throughput, low latency, and resilience against balance attacks.
Ladder improves sorting efficiency by designating a conver-
gence node per round, eliminates PoW for lower-chain blocks,
and incentivizes node participation for enhanced performance
and security. To counter adversarial disruptions, a committee
is deployed to generate special blocks when faulty blocks
are detected. Experiments on an 80-node network show that
Ladder improves throughput by 59.6% and reduces latency
by 20.9% compared to state-of-the-art methods.

Acknowledgements

We thank the anonymous NSDI reviewers and our shepherd
Prof. Vincent Liu for their constructive feedback and sugges-
tions. This work is supported by the National Natural Science
Foundation of China under Grant No. 62032017. Xiulong Liu
is the corresponding author: xiulong_liu@tju.edu.cn

790 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Yair Amir, Brian A. Coan, Jonathan Kirsch, and John
Lane. Prime: Byzantine replication under attack. IEEE
Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[2] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giu-
lia Fanti, and Pramod Viswanath. Prism: Deconstructing
the blockchain to approach physical limits. In ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 585–602. ACM, 2019.

[3] Leemon Baird. Hashgraph consensus: Fair, fast, Byzan-
tine fault tolerance. Swirlds Tech Report, 2016.

[4] Iddo Bentov, Pavel Hubácek, Tal Moran, and Asaf
Nadler. Tortoise and hares consensus: The meshcash
framework for incentive-compatible, scalable cryptocur-
rencies. In Cyber Security Cryptography and Ma-
chine Learning (CSCML), volume 12716, pages 114–
127. Springer, 2021.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine
fault tolerance. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 173–
186. USENIX, 1999.

[6] Anton Churyumov. Byteball: A decentralized system
for storage and transfer of value, 2016. URL: https:
//byteball.org/Byteball.pdf.

[7] James A. Cowling, Daniel S. Myers, Barbara Liskov,
Rodrigo Rodrigues, and Liuba Shrira. HQ replication:
A hybrid quorum protocol for Byzantine fault tolerance.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 177–190. USENIX,
2006.

[8] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk: A
dag-based mempool and efficient BFT consensus. In
European Conference on Computer System (EuroSys),
pages 34–50. ACM, 2022.

[9] John R. Douceur. The sybil attack. In International
Workshop on Peer-to-Peer Systems (IPTPS), volume
2429, pages 251–260. Springer, 2002.

[10] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[11] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The
Bitcoin backbone protocol: Analysis and applications.
Journal of the ACM, 71(4):1–49, 2024.

[12] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling Byzan-
tine agreements for cryptocurrencies. In Symposium
on Operating Systems Principles (SOSP), pages 51–68.
ACM, 2017.

[13] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon
Goldberg. Eclipse attacks on Bitcoin’s peer-to-peer
network. In USENIX Security Symposium (Security),
pages 129–144. USENIX, 2015.

[14] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing Bitcoin security and performance with strong
consistency via collective signing. In USENIX Security
Symposium (Security), pages 279–296. USENIX, 2016.

[15] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin,
Allen Clement, and Edmund L. Wong. Zyzzyva: Specu-
lative Byzantine fault tolerance. ACM Transactions on
Computer Systems, 27(4):7:1–7:39, 2009.

[16] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine generals problem. ACM Transactions
on Programming Language and Systems, 4(3):382–401,
1982.

[17] Colin LeMahieu. Nano: A feeless distributed cryptocur-
rency network, 2018. URL: https://nano.org/en/
whitepaper.

[18] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar.
Inclusive block chain protocols. In Financial Cryptogra-
phy and Data Security (FC), pages 528–547. Springer,
2015.

[19] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming
Wu, Guang Yang, Wei Xu, Fan Long, and Andrew Chi-
Chih Yao. A decentralized blockchain with high
throughput and fast confirmation. In USENIX Annual
Technical Conference (ATC), pages 515–528. USENIX,
2020.

[20] Chenxing Li, Fan Long, and Guang Yang. GHAST:
Breaking confirmation delay barrier in Nakamoto con-
sensus via adaptive weighted blocks. arXiv preprint
arXiv:2006.01072, 2020.

[21] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008. URL: https://bitcoin.org/
bitcoin.pdf.

[22] Serguei Popov. The Tangle. White paper, 1(3):30, 2018.

[23] Meni Rosenfeld. Analysis of hashrate-based double
spending. arXiv preprint arXiv:1402.2009, 2014.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 791

https://byteball.org/Byteball.pdf
https://byteball.org/Byteball.pdf
https://nano.org/en/whitepaper
https://nano.org/en/whitepaper
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[24] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar.
SPECTRE: A fast and scalable cryptocurrency protocol.
IACR Cryptol. ePrint Arch., page 1159, 2016.

[25] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar.
PHANTOM GHOSTDAG: A scalable generalization of
nakamoto consensus: September 2, 2021. In ACM Con-
ference on Advances in Financial Technologies (AFT),
pages 57–70. ACM, 2021.

[26] Yonatan Sompolinsky and Aviv Zohar. Secure high-
rate transaction processing in Bitcoin. In Financial
Cryptography and Data Security (FC), pages 507–527.
Springer, 2015.

[27] Yonatan Sompolinsky and Aviv Zohar. PHANTOM: A
scalable blockdag protocol. IACR Cryptol. ePrint Arch.,
page 104, 2018.

[28] Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and
Zekun Li. Shoal: Improving DAG-BFT latency and
robustness. arXiv preprint arXiv:2306.03058, 2023.

[29] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: DAG
BFT protocols made practical. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
pages 2705–2718. ACM, 2022.

[30] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? Byzantine fault tolerance with a
spinning primary. In IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 135–144. IEEE,
2009.

[31] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, Lau Cheuk Lung, and
Paulo Veríssimo. Efficient Byzantine fault-tolerance.
IEEE Transactions on Computers, 62(1):16–30, 2013.

[32] Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang.
Sok: Dag-based blockchain systems. ACM Computing
Surveys, 55(12):1–38, 2023.

[33] WonderNetwork. Global ping statistics: Ping times
between wondernetwork servers, Apr. 2018. URL:
https://wondernetwork.com/pings.

[34] Jie Xu, Qingyuan Xie, Sen Peng, Cong Wang, and Xiao-
hua Jia. Adaptchain: Adaptive scaling blockchain with
transaction deduplication. IEEE Transactions on Paral-
lel and Distributed Systems, 34(6):1909–1922, 2023.

[35] Lei Yang, Seo Jin Park, Mohammad Alizadeh, Sreeram
Kannan, and David Tse. Dispersedledger: High-
Throughput Byzantine consensus on variable bandwidth

networks. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 493–
512, 2022.

[36] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In ACM
Symposium on Principles of Distributed Computing
(PODC), pages 347–356. ACM, 2019.

[37] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek
Saxena. OHIE: Blockchain scaling made simple. In
IEEE Symposium on Security and Privacy (SP), pages
90–105. IEEE, 2020.

792 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://wondernetwork.com/pings

A Selfish Mining Analysis

We analyze the probability of adversary-generated upper-
chain blocks exceeding the difficulty of super blocks in the
context of selfish mining. If the adversary generates at least m
blocks with x leading zeros, it may exceed the difficulty of the
k-member super block committee. The probability of generat-
ing these blocks, which would exceed the super blocks, can be
calculated as P = 1

2m(x+1) . The difficulty of these upper-chain
blocks is ∑

m
i=1

√
x = m

√
x, while the super blocks have a diffi-

culty of
√

k. Therefore, the condition for the adversary to sur-
pass the super block’s difficulty is

√
k ≤ m

√
x, which implies

x ≥ k/m2. Substituting this into the probability expression for
P, we can obtain that P= 1

2m(x+1) ≤ 1
2m(k/m2+1)

= 1
2k/m+m ≤ 1

22
√

k
.

B Proof of Lemmas

Proof of Lemma 1

Proof. Let Pr(H|H) represent the probability that the honest
lower-chain block generation node selects an honest node
as the next round lower-chain block generation node. Let
Pr(A|H) represent the probability that the honest lower-chain
block generation node selects an adversary node as the next
round lower-chain block generation node. Let Pr(H|A) rep-
resent the probability that the adversary lower-chain block
generation node selects an honest node as the next round
lower-chain block generation node. Finally, let Pr(A|A) rep-
resent the probability that the adversary lower-chain block
generation node selects an adversary node as the next round
lower-chain block generation node.

If the block generation node in the current round is an
honest node, the probability that the block generation node in
the next round is an honest node or the adversary corresponds
to the respective computing power share. Let q represent
the fraction of the computational power contributed by the
adversary to the blockchain network. Since there must be a
next block generation node, we have Pr(H|H)+Pr(A|H)= 1,
and Pr(A|H) = q, Pr(H|H) = 1−q.

If the block generation node in the current round is an
adversary node, then if the adversary can compute a legal
block within the waiting duration (see Waiting Time Duration
in Sec. 4), then the block generation node in the next round
will still be an adversary node with probability Pr(A|A) =

q
q2+1−q If the adversary fails to compute a legal block and an
honest node computes a legal block, then the block generation
node in the next round will be an honest node with probability
Pr(H|A) = (1−q)2

q2+1−q .
The selection of the lower-chain block generation node de-

pends only on the current round’s lower-chain block, indepen-
dent of previous rounds. According to the Markov property,
the steady-state probability distribution can be calculated with
the calculated state transfer probability, and it can be solved

that the probability of the next block generation node being
an adversary in each round is less than 1/3 when the q is less
than 0.3.

As we know, the probabilities Pr(H) and Pr(A) can be
expressed using the following equations:

Pr(H) = Pr(H|H)Pr(H)+Pr(H|A)Pr(A)

Pr(A) = Pr(A|H)Pr(H)+Pr(A|A)Pr(A)

By substituting the expressions for various terms, we can get

Pr(H) =
(1−q)2

q3 +1−q

and

Pr(A) =
q3 +q(1−q)

q3 +1−q

Let the committee size k = 3m, then

Pr(|A|> 1/3) =
3m

∑
i=m

Pr(H)3m−iPr(A)i

<

√
8m
3π

(
16
√

2
27

)m

As m increases, the upper bound on the probability de-
creases exponentially, where m ≥ 3.

Proof of Lemma 2

Proof. Suppose the block sequence does not satisfy common-
prefix property when the sequence of block generation nodes
satisfies 2k+2-balance. Let the first round be numbered 0. Let
the two rounds when the ledger appears to have conflicting
transactions/blocks be d and d′, such that d′−d ≥ k. Clearly,
there exist at least 2k+2 block generation nodes. The number
of honest nodes ≤ d′ in the ledger when honest nodes produce
at most one block at each height. In the ledger, the number
of adversary nodes ≥ (d − 0)+ (d′− d) = d′, and the num-
ber of adversary nodes ≥ honest nodes in the ledger for the
block sequence initial block to block d′ block generation node
sequence, which contradicts the 2k+2-balance property.

Proof of Lemma 3

Proof. Suppose the block sequence does not satisfy the Fi-
nality property when the given sequence of block generation
nodes is 2k-balanced. In other words, there exists a block b
in round d that is part of ledger when ledger is generated in
round i > d+k but not a part of the ledger when ledger is gen-
erated in round j > i. At this point, for the last ≥ k+1 blocks
of the ledger, there is an inconsistent view, and that would
require the block generation nodes to not be 2k-balanced,
contradicting the lemma statement.

Proof of Lemma 4

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 793

Proof. After 2kt rounds, the height of the ledger increases by
≥ (k+1)t, where ≤ (k−1)t is generated by the adversary.

Then ≥ (k + 1)t − (k − 1)t = 2t blocks are honest, and
among them, ≥ 2t − k have been confirmed. This means that
at least 2t − k honest blocks are added to the block sequence
in every 2kt rounds.

Therefore, a transaction that is recognized by all honest
nodes will definitely be added to the block sequence (ledger)
and finally confirmed.

Proof of Lemma 5

Proof. For a given sequence of length l, where the probabil-
ity that the adversary accounts for more than 50% does not
exceed exp(−cl)

By Chernoff’s inequality Pr[X ≥ (1+ δ)µ] < exp(− µδ2

2),
where µ = ql,δ = 1−2q

2q , we obtain

Pr[X ≥ (1+δ)µ] = Pr[X ≥ l
2
]

≤ exp(− l(1−2q)2

8q
)

= exp(−cl),c > 0

For a sequence of block generation nodes of length L,
any subsequence of length at least l has a probability of at
most (L−l+1)(L−l+2)

2 exp(−cl) < L2exp(−cl) that the adver-
sary controls more than 50%.

Then Pr[Ladder′s node sequence satis f ies 2k-balance]>
1−δ(l) and δ(l) decreases exponentially with l.

794 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Related Work
	Detailed Design of Ladder System
	System Model and Node Operations
	Model, Definitions, and Notations
	Block Generation
	Hardest Chain Principle
	Exception Handling in Block Generation
	System Analysis

	Parameter Settings
	Evaluations
	Security Analysis
	Transaction Trustworthiness
	Resistance Against Common Attacks
	Security and Availability

	Conclusion
	Selfish Mining Analysis
	Proof of Lemmas

