
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

The Benefits and Limitations of User Interrupts
for Preemptive Userspace Scheduling

Linsong Guo, Danial Zuberi, Tal Garfinkel, and Amy Ousterhout, UC San Diego

https://www.usenix.org/conference/nsdi25/presentation/guo

The Benefits and Limitations of User Interrupts for Preemptive Userspace
Scheduling

Linsong Guo, Danial Zuberi, Tal Garfinkel, Amy Ousterhout
UC San Diego

Abstract
Preemptive scheduling promises to mitigate head-of-line
blocking and enable flexible scheduling while retaining a sim-
ple programming model. Despite this, preemption is underuti-
lized in server-side software today. Instead, high-performance
datacenter systems and language runtimes often rely on co-
operative concurrency, or else use preemption only at very
coarse timescales, limiting its effectiveness. A key reason that
preemption is underutilized today is that existing preemption
mechanisms have high and unpredictable overheads.

Intel recently introduced support for user interrupts, a new
feature that offers an opportunity to change this. By enabling
interrupts to be sent and received entirely in user space, user
interrupts can significantly lower the overhead of preemption.
In this paper, we shed light on how user interrupts impact
the landscape of preemption mechanisms. We build two user-
level schedulers that leverage user interrupts for low-overhead
preemption. We find that user interrupts are not a panacea.
For example, they provide limited benefits when other soft-
ware layers constrain the kinds of scheduling policies that
can be used. Still, user interrupts can match or exceed the
performance of existing mechanisms for all but the highest
preemption rates, while achieving much more consistent over-
heads and retaining a user-friendly programming model.

1 Introduction
Datacenter applications today suffer from high tail latency.
For example, a recent study of remote procedure calls (RPCs)
at Google showed that 90% of RPC methods were capable
of completing in hundreds of microseconds or less, and yet
90% of them had median latencies in the milliseconds, with
even higher tail latencies [52]. A myriad of factors contribute
to this high tail latency, one of which is queuing of requests
at servers. When requests have variable service times, as is
the case for Google’s RPCs, short requests can queue behind
long requests and suffer from head-of-line blocking.

Head-of-line blocking is common because many applica-
tions have tasks with heterogeneous service times. For exam-
ple, in hybrid transactional and analytical processing (HTAP)
databases [47], short transactional tasks coexist with long-
running analytical tasks and may be delayed by them unless
the database is provisioned with extra resources [28,35,36,41].
A well-known way to reduce head-of-line blocking without
over-provisioning is preemption [39, 56]. With preemption, a
scheduler periodically interrupts running tasks, giving shorter,

more urgent tasks an opportunity to run and complete quickly.
However, preemption is underutilized today.

Though kernel schedulers do implement preemption, they
typically do so only at millisecond timescales, which is not
sufficient to ensure sub-millisecond tail latencies. Further-
more, kernel-based scheduling adds microseconds of over-
head to scheduling operations [23]. As a result, many users
turn to userspace schedulers and runtimes instead, employing
an M:N threading model that schedules M user-level threads
across N kernel threads [6, 10, 33, 37, 45, 49, 57]. We focus on
such user-level schedulers.

Today’s user-level schedulers rarely implement preemption.
Most runtime systems and programming languages eschew
preemption in favor of cooperative concurrency, which runs
tasks to completion and relies on the developer to manually
yield cores as needed (e.g., async tasks in Rust and coroutines
in C++). Runtimes like Go [6] that do implement preemption
do so only at coarse granularities (every 10 ms) so appli-
cations cannot rely on them to provide sub-millisecond tail
latency. Similarly, high-performance kernel-bypass systems
in datacenters also commonly rely on cooperative concur-
rency [25, 33, 45, 48, 49, 57].

One reason that preemption is underutilized is the high and
unpredictable overheads of the typical mechanisms for user-
level preemption today: signals and compiler instrumentation.
With signals, a dedicated timer thread determines when a
user-level thread should be preempted and sends a signal to
interrupt it [6, 53]. This involves transitioning to the kernel
and back on both the timer core and the core of the preempted
thread, adding significant overhead on each preemption (§2.1),
resulting in practical limits on preemption frequency.

In contrast, with compiler instrumentation, the compiler
inserts code throughout a program that checks if it should vol-
untarily yield the CPU [6,24,37,43], for example, by polling a
variable in shared memory. Here, the overhead of each check
is much lower than a signal, so it can sometimes enable more
efficient fine-grained preemption. However, the checking over-
head is hard to predict, as it is heavily dependent on program
control flow. Thus this approach can also result in overheads
that are high, variable, and workload dependent (§2.2).

Fortunately, a new hardware feature called user interrupts
recently introduced in Intel’s Sapphire Rapids CPU offers the
potential for a better approach. User interrupts offer a new
way to send and receive inter-processor interrupts entirely in
userspace, eliminating the multiple kernel transitions required
to send and receive signals (§2.3).

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1015

In this work, we seek to understand the potential benefits of
user interrupts for preemptive scheduling. We ask: can user
interrupts improve our ability to achieve fine-grained pre-
emptive scheduling with low and predictable overheads, com-
pared to existing approaches? We answer this question with a
measurement study and analysis of two user-level schedulers.
While we are not the first to utilize user interrupts for preemp-
tive scheduling [32, 38, 42], we are the first to shed light on
the tradeoffs between user interrupts and compiler-based ap-
proaches, and to analyze fine-grained preemptive scheduling
in the context of a widely used runtime (the Go runtime).

We began by studying the performance impact of pre-
emption with each mechanism on a collection of different
workloads (§2). We found, unsurprisingly, that user interrupts
consistently outperform signals, reducing the per-preemption
overhead from 2.4 µs to 0.4 µs. Consequently, user interrupts
enable more frequent preemption at the same cost. In con-
trast, with compiler instrumentation, overheads can be quite
low, but are unpredictable and workload dependent. We in-
vestigated several mitigations from other work [37] such as
loop unrolling, but we found that rather than solving this
problem, they merely shift the costs and complexity to other
parts of the system. We also found that the overhead of com-
piler instrumentation is impacted little by the preemption
frequency. Thus, compiler instrumentation shines for ultra-
high frequency preemption, e.g., every 5 µs or less, but with a
larger preemption quantum, the relative performance depends
on the application and user interrupts often provide lower
overhead.

Next, we built two user-level schedulers that perform pre-
emptive scheduling with user interrupts (§3). First, Aspen-
KB extends Caladan [33]—a highly optimized kernel-bypass
runtime—with support for user interrupts, allowing us to ex-
plore the limits of user-level preemption with user interrupts.
Aspen-KB also has support for signals and compiler instru-
mentation, which makes apples-to-apples comparisons among
all three mechanisms possible, without the confounding ef-
fects of different scheduling algorithms, programming lan-
guages, or runtimes. Second, Aspen-Go extends the popu-
lar Go runtime, enabling comparisons between preemption
mechanisms in the context of a runtime that is used by mil-
lions of developers. Both Aspen-KB and Aspen-Go leverage
known techniques but carefully apply them to optimize for
fine-grained preemptive scheduling. They are available at
https://github.com/LinsongGuo/aspen.git.

We analyzed the performance of Aspen-KB and Aspen-
Go by running applications such as key-value stores
(RocksDB [15] and BadgerDB [1]) and a data analysis appli-
cation (DataFrame [2, 50]) (§4). We have two key findings.

First, in the context of the kernel-bypass runtime Aspen-
KB, we found that user interrupts enable Aspen to achieve
much better performance than signals. Compared to compiler
instrumentation, user interrupts generally deliver better or
similar performance when the preemption quantum is greater

than 10 µs. With an extremely small quantum (10 µs or lower),
compiler instrumentation may offer a small performance ben-
efit over user interrupts. However, compiler instrumentation
requires manual intervention to determine whether loop back-
edges, function calls, or both should be instrumented, and to
determine the optimal depth for loop unrolling. Thus, user
interrupts are the best choice for most applications, due to
their improved usability and similar or better performance.

Second, in contrast, we found that user interrupts provided
only modest benefits for preemptive scheduling in Aspen-
Go. The reason for this is that significantly shrinking the
preemption quantum (e.g., to less than 50 µs) proved counter-
productive. The design of Go constrains the kinds of schedul-
ing policies that are possible, making preemption less effec-
tive at avoiding head-of-line blocking, and every preemption
comes at the cost of software overheads in the Go runtime.
With preemption at the coarse granularity of 50 µs, replacing
signals with lower-overhead user interrupts provides only a
small benefit. Thus, when a system is not fully designed for
fine-grained preemptive scheduling, user interrupts provide
limited benefits.

2 Preemption Mechanisms
Three preemption mechanisms are available to userspace
schedulers today: signals (§2.1), compiler instrumentation
(§2.2), and user interrupts (§2.3). Here, we explore how these
mechanisms work and why the first two can have high and un-
predictable overheads. We then examine user interrupts (§2.3)
and how they can offer lower and more consistent overheads.

2.1 Signals
Signal-based preemption [6, 53, 54] involves two key compo-
nents: a timer thread and a signal handler. The timer thread
typically runs on its own core and is responsible for determin-
ing when user-level threads should be preempted.

To preempt a user-level thread running on kernel thread k,
the timer thread sends a signal to k. The signal triggers the
invocation of k’s signal handler function, on the core that k
is currently running on. The signal handler then calls into
the user-level scheduler, which selects the thread to run in
the next quantum. The primary limitation of signal-based
preemption is that the signal handler is expensive, incurring
multiple costly OS context switches, which ultimately limits
preemption frequency.

To explore the basic overhead of each of our three mech-
anisms, including signals, we ran the following experiment.
A dedicated timer core sends a notification (signal, user in-
terrupt, etc.) to a single application core at a regular interval
(the preemption quantum). This notification triggers the ap-
plication core to run an empty signal-handler function that
immediately returns to the application thread. As there is
no context switch to a different thread and the scheduler is
not invoked, this benchmark illustrates the minimum possi-

1016 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/LinsongGuo/aspen.git

0%

10%

20%

30%
lu-c (splash2) pca (phoenix) volrend (splash2) histogram (phoenix)

200 100 50 20 10 5
0%

10%

20%

30%
matrix_multiply (phoenix)

200 100 50 20 10 5

reverse_index (phoenix)

200 100 50 20 10 5

radiosity (splash2)

200 100 50 20 10 5

blackscholes (parsec)

Preemption quantum (μs)

Sl
ow

do
wn

Signals User Interrupts Compiler Instrumentation

Figure 1: Slowdown of eight programs with different preemption mechanisms. The preemption quantum (x-axis) represents the time between
consecutive preemptions and the slowdown (y-axis) indicates how much slower the program runs (as a percentage) compared to running
without preemption. For a slowdown tolerance of 10% or less, user interrupts support a 5 µs preemption quantum, while signals support about
30 µs. Compiler Instrumentation is implemented using Concord [37].

ble overhead of each mechanism. We ran this experiment
with 24 programs from three benchmark suites: Splash-2 [16],
Phoenix [13], and Parsec [26]. In addition, we report the end-
to-end cost of preemption (including context switching to a
different thread) for latency-sensitive applications in §4.2.

The full results for all benchmark programs are provided
in Appendix C. For a representative set of eight programs,
Figure 1 shows how much slower each program runs (y-axis)
due to receiving periodic signals (blue lines), as we vary the
preemption quantum (x-axis). With a large quantum, the slow-
down is negligible. For example, with a quantum of 100 µs,
the slowdown for most programs is around 3%. However,
as the frequency increases so does the cost, so that with a
preemption quantum of 10 µs, the eight programs each ex-
perience a slowdown of roughly 25% or more, due to the
overhead of signals.

Overall, handling a single signal on an application core
slows down the program by about 2.4 µs. The dominant cost
is the transitions between user and kernel space to receive and
deliver the signal; these add up to about 1.4 µs. The remaining
cost is due to factors such as additional branch mispredictions
and cache misses that occur within the program, due to run-
ning kernel code and accessing kernel data structures while
handling the signal. Leveraging virtualization features to use
normal hardware interrupts rather than signals can reduce the
per-signal overhead to 0.6 µs [39], but in practice it can be
challenging to deploy systems that require these features.

2.2 Compiler Instrumentation
With compiler instrumentation, preemption is implemented
by inserting code at specific points throughout an application
that checks if the currently running user-level thread should
yield the CPU. Typically, checks are added at function entry

points and loop back edges, ensuring that the thread will yield
regardless of control flow.

Similar to signals, compiler instrumentation typically relies
on a timer thread. However, in this approach, the timer thread
indicates that a user-level thread should yield by updating
a shared variable in memory. This variable is periodically
checked (polled) by the user-level thread to determine if it
should yield. While each check is relatively inexpensive, the
polling frequency depends on program control flow. Conse-
quently, polling overhead varies across workloads and can be
quite high and difficult to predict. This raises several issues.
In code with tight loops or small recursive functions, these
costs can become prohibitive [14]. Also, at higher preemp-
tion frequencies, polling may not take place often enough to
ensure that a thread always yields in a timely manner.

Different approaches have been explored to mitigate the
problem of overhead. For example, in its first decade Go
only instrumented function entry points, to avoid the impact
of polling in tight loops. Unfortunately, this required that
programmers understand how Go’s preemption mechanism
worked and manually added explicit calls to the Go scheduler
in loops when needed. Aside from the added cognitive bur-
den this imposed, when overlooked, this could lead to high
latencies and even program freezes that were difficult to de-
bug [14]. When Go developers attempted to add checks to
loop back edges they found that while this only increased the
average runtime on a suite of benchmarks by around 7%, at
worst it could increase runtime for an individual benchmark
by as much as 96% [14]. Thus, they abandoned this approach
in favor of signals.

Recent systems have attempted to address these overhead
challenges through a collection of different approaches, such
as loop unrolling [37, 43]. We use Concord [37] as a repre-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1017

196 3
Actual quantum std.dev (μs)

0%

20%

40%

60%

Ov
er

he
ad

subloops
=10

subloops
=11

subloops=20
lu-c

12 3
Actual quantum std.dev (μs)

0%

10%

20%

subloops=0

subloops=1

subloops=2

pca

Figure 2: Small changes to the subloops parameter in Concord’s
compiler instrumentation can significantly impact preemption over-
head and timeliness (standard deviation of the measured interval
between preemptions). The x-axis uses a log scale.

sentative example that employs compiler instrumentation and
reduces polling overhead by placing probes more strategi-
cally. We re-run the microbenchmark described above (§2.1),
using Concord’s LLVM passes to instrument each program.
Figure 1 (orange lines) shows the results. While compiler
instrumentation can achieve low overhead for some programs
(such as lu-c and blackscholes) when they are well config-
ured, other programs (pca, matrix_multiply, reverse_index)
still suffer from significant overhead due to tight loops.

Furthermore, it is non-trivial to find a good configuration
for each program, as there are multiple parameters that need
to be tuned. For example, Concord features a parameter called
subloops that limits the number of sub-loops in which probes
can be inserted within each outermost loop. Slight variations
in this parameter can result in large changes in preemption
timeliness and overhead, as shown in Figure 2. For lu-c (left),
setting subloops to 10 results in a high standard deviation
of preemption intervals, indicating poor timeliness, while in-
creasing the value to just 11 brings the standard deviation
to an acceptable level. Further increasing subloops to 20
or more increases preemption overhead to greater than 50%.
Similarly, in the benchmark pca, increasing subloops from
0 to 2 raises the overhead by more than 13%.

Another parameter than can be tuned with compiler instru-
mentation is the degree of loop unrolling; Concord uses loop
unrolling to reduce preemption overhead in programs with
tight loops. While loop unrolling can indeed reduce overhead
for some programs, such as blackscholes, excessive unrolling
can increase pressure on the instruction cache and microop
cache [11], potentially causing some programs to run more
slowly [3, 4]. For example, configuring matrix_multiply to
unroll loops four times results in a preemption slowdown of
31%, compared to 25% without loop unrolling. Figure 1 illus-
trates the performance of compiler instrumentation under the
best configuration of these parameters that we could find, but
tuning these parameters required significant manual effort.

2.3 User Interrupts

Recently Intel’s Sapphire Rapids CPUs [20] introduced sup-
port for sending inter-processor interrupts directly in user

space, via user interrupts. Similar to signals, user interrupts
enable asynchronous preemption that avoids the polling over-
heads imposed by compiler instrumentation. In contrast with
signals, user interrupts avoid the costly overheads of transi-
tions between kernel and user space.

Normally, inter-processor interrupts (IPIs) are sent from
one core to another by programming the APIC from the kernel.
This directs control flow to go through the interrupt vector
table on the receiving core when an interrupt is delivered.
Unfortunately, when communicating user-space events from
one core to another, i.e., with signals, this requires multiple
expensive protection boundary crossings.

User interrupts offer an alternative by providing a hardware
fast path for sending and receiving interrupts. User space
code cannot simply be allowed to send interrupts to other
processes without access control, so, similar to other kernel-
bypass mechanisms, user interrupts delegate access control
to the operating system. For a sender thread to send user
interrupts to a receiver thread, both must register with the
kernel first. Once registration is complete, the kernel does not
participate in the sending and receiving of user interrupts. The
processor can directly consult a kernel-managed table about
where to route interrupts, allowing a sender thread to ensure
that user interrupts are delivered to a specific receiver thread.

To measure the overhead of receiving user interrupts, we
again configure a timer core to periodically interrupt an appli-
cation running on a separate core, this time by sending user
interrupts. Figure 1 (red lines) shows that, as with signals, the
program slowdown increases as the preemption frequency
increases. However, the overhead of handling a single user
interrupt is much lower than that of handling a signal—only
0.4 µs compared to 2.4 µs—so the slowdown remains toler-
able down to much smaller quantum sizes. User interrupts
have so much lower overhead because they avoid transitions
between user and kernel space as well as extra branch mis-
predictions and cache misses within the program.1 Thus, for
a given acceptable amount of application slowdown, user
interrupts can enable much more frequent preemption. For
example, for a slowdown of at most 10%, user interrupts can
support a preemption quantum of 5 µs, whereas for signals
this is only about 30 µs.

While user interrupts uniformly outperform signals, the
comparison with compiler instrumentation is more nuanced.
For small quanta (10 µs or lower), Concord can achieve lower
overhead than user interrupts for some programs such as lu-c.
In contrast, for larger quanta (greater than 10 µs), the slow-
down from user interrupts is lower or at least comparable
to that of compiler instrumentation, especially in programs
with tight loops, where it is 15–25% lower, as seen in ma-
trix_multiply and reverse_index. This is because, regardless
of the quanta, programs using compiler instrumentation must

1For example, using perf [12] to measure the linpack_bench program [8],
we observed that user interrupts result in 29% fewer L1 cache misses and
12% fewer branch mispredictions compared to signals at a 5 µs quantum.

1018 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

check the instrumented probes at the same locations as they
would for smaller quanta, whereas user interrupts incur over-
head only when preemption actually occurs.

2.4 Summary
We find that user interrupts consistently provide lower over-
head than signals, across all programs we evaluated. While the
overhead of compiler instrumentation can be lower than that
of user interrupts for very fine-grained preemption with some
programs, this overhead varies significantly and can be quite
high. Furthermore, striking a good balance between preemp-
tion overhead and timeliness can require careful tuning of mul-
tiple parameters. While it may be possible to mitigate some
of these issues with more sophisticated compiler techniques,
with existing approaches to compiler instrumentation, fine-
grained preemption remains fragile, entailing unpredictable
and potentially high costs. User interrupts offer a compelling
alternative due to their consistent overheads, which remain
low for all but the highest preemption frequencies.

3 Preemptive User-Level Schedulers

To understand how user interrupts impact preemptive schedul-
ing in practice, we implemented preemptive user-level
scheduling in two different runtime systems. The two systems
allow us to explore different regions of the design space. First,
Aspen-KB extends Caladan [33], a user-level runtime and
scheduler implemented in C that uses kernel-bypass network-
ing and is heavily optimized to achieve microsecond-scale
latencies. Second, Aspen-Go extends the popular Go runtime,
which relies on the underlying operating system’s network
stack and is designed for programmer productivity rather than
bleeding-edge performance. At a high level, these two runtime
systems have similar overall architectures. Each runtime core
has its own runqueue(s) of user-level threads (or goroutines)
and runtime cores balance work using work stealing.

To enable preemptive scheduling, both runtime systems
dedicate one core in each runtime to act as the timer core. The
timer core periodically sends user interrupts to runtime cores,
preempting the currently running user threads. Note that the
timer core is not required to process incoming or outgoing
packets (though in Go it may), enabling the timer core to scale
to support larger numbers of cores than in systems where the
timer core is also responsible for processing all incoming
network traffic and dispatching packets to cores [37, 39, 43].2

In the remainder of this section, we describe four general
factors that impacted the design of both of these preemptive
schedulers (§3.1), as well as the specific design and imple-
mentation of our kernel-bypass scheduler Aspen-KB (§3.2)
and Go-based scheduler Aspen-Go (§3.3).

2This decision involves a tradeoff. Distributed load balancing via work
stealing enables better scalability than systems in which a centralized core
dispatches incoming tasks, such as Shinjuku [39], Concord [37], or TQ [43].
Yet, this comes at the cost of potentially less effective load balancing [44].

3.1 Design Factors
3.1.1 Unnecessary Preemptions

Existing systems implement a preemption policy that issues
preemptions to all runtime cores at a given interval to preempt
all currently running tasks [37,38,42]. However, preemption is
not always necessary—for example when there are no queued
tasks for a core to run or when a thread has just yielded
voluntarily—and preempting unnecessarily slows down run-
ning tasks. Eliminating these unnecessary preemptions can
significantly reduce overhead.

To reduce the number of preemptions as much as possible,
the timer core requires visibility into all sources of queued
work (e.g., threads, incoming network packets) so that it can
determine if there is another task that the core could handle.
In addition, the timer core needs visibility into when context
switches between user-level threads occur, so that it can avoid
preempting a thread that just began running.

3.1.2 Non-Preemptible Code

User-level threads are not always safe to preempt, often be-
cause of nonreentrant code. For example, code that may not
be safe to preempt includes:

Scheduler code that holds locks. Since the thread scheduler
runs in userspace, a user interrupt may arrive while a thread
is executing scheduler code. If that thread holds a lock that
protects scheduler state, then it may be unsafe to preempt
it, because it will not be possible to acquire the scheduler’s
lock to reenter the scheduler and context switch to a different
user-level thread. This is an example of non-reentrant code.

Other code that holds locks. In addition, preempting other
code that holds locks may lead to poor performance, e.g., if it
delays critical functionality such as polling the network stack,
or if it prevents other threads from being able to run.

Application code that uses kernel-level-thread state. Exist-
ing applications often rely on state that is associated with a
kernel-level thread. For example, thread-local storage (TLS)
is associated with kernel-level threads, and many library func-
tions such as malloc rely on TLS [27, 54]. When existing
applications are ported to use user-level threads, regions of
code that use TLS or library functions that use TLS may not
be safe to preempt. This is because multiple user-level threads
can reside on the same kernel-level thread, thus sharing the
same kernel-thread-local state. As a result, preemption may
cause them to have interleaved access to the same state, re-
sulting in incorrect behavior.

In some cases, non-preemptible code is isolated in dis-
tinct regions of code, e.g., in calls into the scheduler or to
malloc. Existing runtimes typically handle these kinds of
non-preemptible code by detecting when a signal arrives dur-
ing non-preemptible code, and deferring or skipping the pre-
emption. For example, in Go, the runtime consults metadata
generated by the compiler to determine if the program is at

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1019

Task Rate of Non-
Preemptible Code
Regions

Use of Extended
Registers

SPEC-mcf only a few none
linpack_bench only a few continuously
base64 only a few only at initialization
RocksDB GET 4 calls/µs 30 calls/µs
RocksDB SCAN 0.039 calls/µs 38 calls/µs

Table 1: The frequency of non-preemptible code regions and vector
register usage across four programs. Numbers in the table with the
unit "calls/µs" represent the number of calls into functions involving
non-preemptible code or extended registers per microsecond.

an unsafe point, and simply returns to the interrupted gorou-
tine if so [6]. In other runtimes, the linker or developer wraps
non-preemptible regions of code so that the runtime can track
whether it is currently executing code that is not safe to pre-
empt. If a signal arrives during one of these regions, the signal
handler defers the preemption until the user-level thread exits
the region [27, 33, 37, 45].

User interrupts provide a promising new approach to han-
dling non-preemptible code, which is to defer interrupt deliv-
ery in hardware. With this approach, preemption is deferred
by using the new clui and stui instructions to disable and
reenable delivery of user interrupts. The benefit of this ap-
proach is that if multiple user interrupts arrive within a region
of non-preemptible code, only one will be delivered when user
interrupts are reenabled; this interrupt coalescing avoids the
0.4 µs overhead of receiving each unnecessary user interrupt.

However, we found that hardware-based deferral can add
significant overhead, because of the cost of the current hard-
ware instructions and because non-preemptible code regions
can be short and frequent. We found that a single pair of stui
and clui instructions costs about 18 ns. This is much lower
than the 600 ns required to mask and unmask signals, but
is still non-trivial. Table 1 shows that some programs exe-
cute non-preemptible regions of code infrequently, but that
requests for RocksDB [15], a key-value store, frequently call
malloc and free. Deferring preemption in hardware would
slow down RocksDB GET requests by 7%, whereas deferring
preemption in software adds only 1-2 ns of overhead for each
region of code (less than 1% slowdown overall).

3.1.3 Extended Registers

When context switching between user-level threads, it is essen-
tial to properly save and restore registers, including extended
registers such as SIMD or matrix registers. Table 1 presents
the frequency and usage patterns of extended registers in some
application code. With compiler instrumentation, the compiler
can save caller-saved registers, including extended registers if
necessary. In contrast, with user interrupts, the hardware only
saves the flags, instruction pointer, and stack pointer, requir-
ing the user-level scheduler to save extended registers. Our
approach conservatively saves all registers that might be used.

runtime core 1

. . .

timer core

NIC①

②

User Interrupt

③

④

RX queues

new uthreadpreempted uthread

runtime core 2 runtime core 3

⑤

new queues

preempted queues

Figure 3: Architecture of Aspen-KB. To preempt a user thread on a
runtime core, the timer core first checks if there are pending tasks in
its RX queue 1⃝ or new queue 2⃝. If so, the timer core sends a user
interrupt to the runtime core 3⃝. Then, the currently running user
thread is suspended and added to the preempted queue 4⃝ and the
core dequeues and runs the next thread from the new queue 5⃝.

While this increases the saved state size per thread (e.g., by 2
KB), our measurements show that the overhead is negligible
in most cases. A detailed discussion of this and alternative
approaches is provided in Appendix A.

3.1.4 Head-of-Line Blocking

Even with periodic preemption of running threads, head-of-
line blocking can still occur. First, if the network stack is
not polled frequently, newly arriving tasks can experience
queueing delays there while lower priority tasks occupy the
CPU. Second, if newly runnable tasks are enqueued to a run-
queue behind preempted tasks, the new tasks must wait for
each preempted task to run for a preemption quantum be-
fore they are able to run. Prior work has addressed the latter
problem by identifying the task type during processing in
the network stack and explicitly prioritizing latency-sensitive
tasks [30, 39], but we avoid this approach because task types
or service times are not always available a priori. Instead,
to prevent head-of-line blocking throughout the runtime, we
focus on frequently polling for incoming network packets and
prioritizing newly incoming tasks over preempted tasks.

3.2 Kernel-Bypass Preemptive Scheduler
Our first preemptive user-level scheduler, Aspen-KB, is built
by extending Caladan [33], a user-level runtime and sched-
uler implemented in C. Figure 3 shows the architecture of
Aspen-KB. Aspen-KB bypasses the kernel for both thread-
ing and networking. Each core in each runtime has its own
runqueue of user-level threads and its own RX queue which
it polls to receive incoming packets. Runtime cores balance
work—including both threads and incoming packets—among
themselves using work stealing. Aspen-KB dedicates one
core per runtime to serve as the timer core.

Unnecessary preemptions. In Aspen-KB, the timer core
checks if preemption is necessary at a fixed preemption quan-

1020 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tum. However, the timer core may choose not to preempt
every runtime core. The timer core has visibility into incom-
ing packet queues (RX queues) and scheduler state (a times-
tamp indicating when the currently running thread started run-
ning) via shared memory, and only preempts the currently run-
ning thread if it has been running for at least the preemption
quantum and there is other work (incoming packets, runnable
threads, etc.) available on that core. We found that this ap-
proach significantly reduces the rate of preemptions (§4.4).

Head-of-line blocking. Aspen-KB avoids head-of-line block-
ing with two techniques. First, it polls the RX queue for newly
arriving packets after every preemption; the overhead from
this is small due to the kernel-bypass network stack. Second,
each core employs a simple two-queue scheduling approach.
This is a simplified variant of multi-level feedback queues [29]
in which newly runnable threads are initially enqueued to the
new queue, but once they are preempted, they are enqueued
to the preempted queue instead. Each core prioritizes the new
queue over the preempted queue and uses a longer quantum
(e.g., 100 µs) for the preempted queue. With this approach,
the system requires no a priori knowledge of how long each
thread will run for, and latency-critical threads that run for
less than the preemption quantum are still handled quickly.3

Implementation. We built Aspen-KB by extending Cal-
adan [33] with a timer core, scheduler features to support user
interrupts, and the two-queue scheduling approach. Aspen-
KB handles extended registers by saving all general-purpose
and AVX-512 registers on every context switch. Addition-
ally, it extends Caladan’s shim layer to fully support kernel-
level-thread state, including TLS. Specifically, each user-level
thread maintains a private copy of its kernel-level-thread
state, preventing interleaved access to the same state. Aspen-
KB does not modify Caladan’s software-based approach
to handling non-preemptible code, which defines the func-
tions preempt_disable() and preempt_enable() to dis-
able and re-enable preemption, respectively, and wraps them
around non-preemptible scheduler code. All modifications
are implemented in 1,849 LOC. Running an application on
Aspen-KB requires a makefile to link it with the runtime.

To enable an apples-to-apples evaluation of different pre-
emption mechanisms, we also implement signal-based pre-
emption and compiler instrumentation in Aspen-KB. To im-
plement signal-based preemption, we modify Aspen-KB’s
timer core to send signals in lieu of user interrupts. To im-
plement compiler instrumentation, we integrate Concord’s
approach into Aspen-KB [37]. Specifically, we borrow Con-
cord’s LLVM instrumentation passes and apply them to appli-
cations. The instrumented applications then run on Aspen-KB,
and Aspen-KB’s timer core preempts user-level threads by
writing to shared memory.

3Under overload conditions, preempted threads can languish in the pre-
empted queue. However, we assume that a load balancer will prevent any
server from operating in a continuously overloaded state.

runtime core 1

. . .

sysmon

local queues

①

②

User Interrupt

global queue

runtime core 2

ready G

Linux Network Stack

③

Read/Write syscalls

preempted G

ready G

new G

ready G

ready G

runtime core 3

G

Figure 4: Architecture of Aspen-Go. To preempt a goroutine on a
runtime core, sysmon sends a user interrupt to the core 1⃝, trigger-
ing it to suspend the current goroutine and place it in the global
queue 2⃝, and dequeue a new goroutine from the local queue 3⃝.
When an application invokes Go’s network APIs, the Go runtime
issues a nonblocking system call on its behalf (core 3). To handle I/O
completions, runtime cores poll the network stack and add readied
goroutines to their local runqueue (core 2). Sysmon can poll as well,
but places goroutines in the global queue.

While Junction [32]’s implementation bears similarity to
Aspen-KB’s—both extend Caladan [33] with support for user
interrupts—Aspen-KB differs in its two-queue scheduling
approach, its support for compiler instrumentation and signal-
based preemption, and how it handles extended registers.

3.3 Go-Based Preemptive Scheduler
Our second preemptive user-level scheduler, Aspen-Go, is
built by extending the Go runtime [6] (Figure 4). The Go
runtime is designed to support high concurrency and imple-
ments user-level scheduling via lightweight threads called
goroutines. The scheduler maintains one queue of runnable
goroutines for each active core in the runtime, as well as a
global queue for preempted goroutines or those that become
runnable when a system call returns; goroutines in per-core
queues are prioritized over those in the global queue. For
networking, Go relies on the underlying operating system’s
network stack. To perform network I/O, the runtime typically
issues non-blocking system calls (e.g., read and write), and
a runtime component called netpoller handles polling for
completion of those operations (e.g., via epoll or kqueue).

As described above (§2.2), Go implements two forms of
preemption. First, it leverages compiler instrumentation by
instrumenting function entry points. To handle programs that
do not contain frequent function calls (e.g., those with tight
loops), Go also uses signals for periodic preemption [14]. A
dedicated thread called sysmon preempts running goroutines
periodically (every 10 ms by default). The sysmon thread also
polls the network stack for incoming packets occasionally, if
no other runtime core has polled the network stack for at least
10 ms. The sysmon thread sleeps when it is inactive.

Our goal with Aspen-Go is not to overhaul the Go runtime,
but rather to make the minimal set of changes necessary in

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1021

order to support fine-grained preemption with user interrupts.
We configured the sysmon thread to busy spin instead of
sleeping, to enable precise preemption at fine granularity, and
additionally made the modifications described below.

Unnecessary preemptions. The sysmon thread has visibility
into when a context switch last occurred on each core, and
so it can skip preemptions when the current goroutine has
been running for less than the preemption quantum. However,
because the Go runtime relies on the OS’s network stack,
the sysmon thread cannot easily determine whether there
are packets queued or not. Thus if the current goroutine has
exceeded its quantum, the sysmon thread will preempt it, even
if there is no other work (e.g., goroutine or packet) available.

Head-of-line blocking. In Go, solely decreasing the pre-
emption quantum provides little performance benefit for net-
worked applications, because incoming packets are not neces-
sarily processed in a timely manner. Incoming packets can be
received in one of three ways: (1) an application issues a non-
blocking read to check for packets for a specific connection,
(2) the scheduler invokes the netpoller to check for incoming
packets on any connection; this only occurs when there are no
runnable goroutines in the local or global runqueue, or (3) the
sysmon thread invokes the netpoller every 10 ms. Thus the
Go scheduler generally prioritizes runnable goroutines over
incoming network packets. Even with fine-grained preemp-
tion of goroutines, packets can remain queued in the network
stack until all goroutines in the local and global runqueues
have completed or the sysmon thread invokes the netpoller.

To minimize head-of-line blocking in the network stack,
the scheduler could invoke the netpoller after every preemp-
tion, to check for newly arriving packets. However, in Go, this
requires a system call, adding at least 2 µs of overhead to every
preemption. We found that this degrades performance pro-
hibitively, especially for applications that rarely perform net-
work I/O. Instead, Aspen-Go modifies the sysmon thread to
invoke the netpoller more frequently, every 100 µs. While this
allows queued packets to be processed much more quickly,
it does not entirely eliminate head-of-line blocking. This is
because once sysmon processes incoming packets and marks
their corresponding goroutines as runnable, it enqueues them
to the global runqueue (to avoid contention for per-core run-
queues), where they must queue behind preempted goroutines.

An alternative approach for those willing to tolerate more
significant changes to Go would be to leverage a kernel-
bypass network stack. For example, this could be done using
Junction [32]. In this case, polling the network would be much
cheaper and could be performed more frequently. However,
given our goal of making minimal modifications to Go and to
how it can be deployed, we do not adopt these approaches.

Implementation. We modified the Go runtime (version 1.21)
to support preemption via user interrupts and modified the
sysmon thread as described above. Additionally, Aspen-Go
disables preemption at Lock() and re-enables it at Unlock()

to prevent preemption in critical sections. This is particularly
useful since locks are commonly used in networking packages
such as fasthttp. These modifications amount to 733 LOC.

4 Evaluation

We answer four questions in this evaluation:

1. How do different preemption mechanisms impact the tail
latency and throughput of applications in Aspen-KB and
Aspen-Go? (§4.1)

2. What is the cost of an individual preemption in Aspen-KB
and Aspen-Go? (§4.2)

3. How does the preemption mechanism impact the ideal
choice of preemption quantum? (§4.3)

4. What is the impact of Aspen-KB’s design decisions? (§4.4)

Experimental setup. We conduct experiments using two
dual-socket servers, each with 28-core Intel Xeon Gold 5420+
CPUs operating at 2.0 GHz and 256 GB of RAM. Each server
is equipped with a 100 Gbits/s Mellanox ConnectX-6 Dx
NIC and the two NICs are connected via a 100GbE Mellanox
SN2700 switch. We disable hyperthreads because we found
that our workloads achieved higher performance in this con-
figuration. We disable TurboBoost, frequency scaling, and
c-states. Both of our servers run Ubuntu 22.04.4. Our load-
generating machine uses kernel version 6.8.0 while our server
machine uses a custom kernel provided by Intel that is based
on kernel version 6.0.0 and supports user interrupts [9, 20].

Kernel-bypass systems evaluated. Ideally we would directly
compare Aspen-KB against state-of-the-art systems that use
other preemption mechanisms, such as Shinjuku [39] and
Concord [37]. However, comparing against these systems is
challenging. First, both were designed to run with an older
kernel version (4.4.185), which is not supported by Aspen-
KB. Second, all three systems use different policies for load
balancing work across cores; Shinjuku dispatches work from a
single centralized queue, Concord uses JBSQ [40], and Aspen-
KB uses work stealing. These differences in load-balancing
policy could significantly impact performance for multicore
experiments [44], making it difficult to isolate the impact of
the preemption mechanism itself.

Instead, we evaluate five variants of Aspen-KB (§3.2). This
includes preemptive schedulers with signal-based preemp-
tion4 and user-interrupt-based preemption (the default ver-
sion of Aspen-KB). For compiler instrumentation, we eval-
uate Concord, which uses Concord’s default configuration
that instruments both function calls and loop backedges [37].
We also evaluate Concord fine-tuned, in which we carefully
configure the subloops parameter, degree of loop unrolling,
and whether function calls are instrumented, to achieve the

4Shinjuku uses virtualization hardware to further lower the overhead of
preemption [39], so its performance would likely fall between that of our
signal-based approach and our user-interrupt-based approach.

1022 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

best performance for each application. We also evaluate non-
preemptive, a run-to-completion baseline, by running Aspen-
KB with preemption disabled. Unless stated otherwise, we
configure the non-preemptive baseline to dedicate 25 cores
to the evaluated application, and all other systems to dedicate
24 cores to the application and 1 core to the timer.5

Go variants evaluated. We evaluate Go under five config-
urations. Unmodified Go refers to the standard Go runtime,
version 1.21, which uses both compiler instrumentation and
signal-based preemption, every 10 ms. We also applied fine-
grained preemption on it, triggering every 50 µs. The remain-
ing configurations run Aspen-Go, as described above (§3.3).
Aspen-Go UINTR and Aspen-Go Signals use user interrupts
and signals, respectively. We also evaluate compiler instru-
mentation alone (Aspen-Go Compiler) by disabling preemp-
tion via signals or user interrupts. Unless stated otherwise,
we configure 8 cores for the application and 1 for sysmon.
Go dynamically adjusts its core usage, so at any given time it
may use fewer cores.

Workloads. We evaluate three applications:

1. RocksDB [15] (version 5.15.10), a popular key-value
database developed by Facebook, runs on Aspen-KB. We
run bimodal workloads that include GET and SCAN oper-
ations, which take about 1 µs and 260 µs, respectively.

2. C++ DataFrame [2] (version 1.19.0), a data analysis appli-
cation, runs on Aspen-KB. Our evaluation runs a workload
with decay, ad (Accumulation/Distribution), rmv (Rolling
Mid Value), ppo (Percentage Price Oscillator) and kmeans.
Each task type makes up 20% of the total number of tasks.

3. BadgerDB [1] (version 1.6.2), a fast key-value database in
Go, runs on Aspen-Go. We populate the database with 10
million keys. Our evaluation involves a bimodal workload,
with GET operations taking about 5 µs and RangeSCAN
operations around 800 µs.

We generate load using Caladan’s load generator [33]. For
RocksDB and DataFrame, the load generator is configured to
send requests over UDP with a Poisson arrival distribution.
For BadgerDB, it generates requests over HTTP connections,
also following a Poisson arrival distribution.

4.1 Application Performance

In this section, we evaluate the impact of different preemp-
tion mechanisms on end-to-end application performance in
Aspen-KB and in Aspen-Go. Because the preemption quan-
tum that yields the best performance varies across preemption
mechanisms and workloads, we show results with the best-
performing quantum. We define the “best” quantum as the
preemption quantum for which short operations achieve the

5We also dedicate one core to Caladan’s IOKernel. The IOKernel is
responsible for reallocating cores across applications, but we disable this.
Thus in our experiments the IOKernel is only used during initialization; this
functionality could be combined with the timer core in the future.

400 800 1200 1600
Load (KRPS)

0

10

20

30

40

50

99
.9

%
 L

at
en

cy
 (μ

s) GET

20 40 60 80
Load (KRPS)

0

500

1000

1500

2000
SCAN

Non-preemptive
CONCORD (5 μs)
User Interrupts (5 μs)

Signals (15 μs)
CONCORD fine-tuned (5 μs)

Figure 5: RocksDB performance in Aspen-KB under different pre-
emption mechanisms. The workload is 95% GET and 5% SCAN.
KRPS on the x-axis represents kilo-requests per second.

highest throughput while tail latency remains below a thresh-
old (e.g., in RocksDB, GET tail latency of at most 50 µs).

4.1.1 RocksDB (Aspen-KB)

RocksDB [15] exemplifies applications that benefit from an
extremely low preemption quantum, as it has short-running
GET tasks, which typically take less than 1 µs. Figure 5 shows
the results of running RocksDB with 95% GET requests and
5% SCAN requests; experiments with different distributions
of GET and SCAN requests (95.5%/0.5% and 50%/50%)
yielded similar conclusions.

User-interrupt-based preemption. As shown in Figure 5,
user interrupts (UINTR) are able to mitigate head-of-line
blocking and significantly improve performance compared to
a system without preemption. For example, for a tail latency
limit of at most 50 µs, user interrupts improve GET throughput
by 58.2% compared to the non-preemptive system.

Signal-based preemption. In contrast, signal-based preemp-
tion provides little benefit for GETs compared to no preemp-
tion and it increases the tail latency for SCANs compared
to most other approaches. There are three reasons for this
lackluster performance. First, as illustrated above, receiving
a signal entails an overhead of about 2.4 µs (§2.3), which
can increase execution time for SCANs by up to 16.7% with
a preemption quantum of 15 µs. Second, with signals, the
timer thread suffers from poor scalability (§4.4), due to the
overhead of sending signals. For this workload, the timer core
can only trigger 43% as many preemptions with signals as it
can with user interrupts; it is not able to reliably sustain the
target preemption quantum. Finally, receiving signals also ex-
hibits poor scalability due to lock contention [54], so adding
additional timer cores does not improve performance.6

Compiler instrumentation. Compiler instrumentation can
yield similar improvements as user-interrupt-based preemp-
tion, as illustrated by the “CONCORD fine-tuned” lines in

6Note that Shinjuku’s virtualization-based approach reduces the overhead
of sending/receiving interrupts to 14%/48% of the overhead with signals and
enables Shinjuku to scale to support at least 22 cores [39].

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1023

0 20 40 60
Load (KRPS)

0

20

40

60

80

100

99
.9

%
 L

at
en

cy
 (μ

s)

decay

0 20 40 60
Load (KRPS)

0

20

40

60

80

100
ad

0 20 40 60
Load (KRPS)

0

100

200

300

400

500
rmv

0 20 40 60
Load (KRPS)

0

200

400

600

800

1000
ppo

0 20 40 60
Load (KRPS)

0

500

1000

1500

2000
kmeans

Non-preemptive Signals (25 μs) User Interrupts (20 μs) CONCORD (20 μs) CONCORD fine-tuned (20 μs)

Figure 6: DataFrame performance in Aspen-KB under different preemption mechanisms. Each task type constitutes 20% of the total task count.

Figure 5. However, achieving this performance required de-
viating from Concord’s default instrumentation. With the
default instrumentation, a single SCAN operation triggers
over 95,000 preemption checks, resulting in a 31.2% slow-
down with a 5 µs quantum (as shown by “CONCORD”). GET
operations suffer similarly. In the fine-tuned variant, we dis-
able instrumentation of function calls, which are frequent in
RocksDB. This reduces the number of preemption checks per
SCAN to 5,000 and decreases the slowdown to only 2.3%.

4.1.2 DataFrame (Aspen-KB)

We evaluate DataFrame [2] with a workload that includes 2
short tasks (decay (5 µs) and ad (7 µs)), one medium task
(rmv (28 µs)), and two longer tasks (ppo (75 µs) and kmeans
(250 µs)). Because its tasks are longer than the short GETs in
RocksDB, DataFrame generally performs best with a longer
preemption quantum. Figure 6 shows the results.

With a tail latency limit of 100 µs, user interrupts achieve
the highest throughput for the two types of short-running
tasks, about 30% higher than the non-preemptive system and
9% higher than the fine-tuned Concord. For longer tasks,
user interrupts do sacrifice some throughput compared to the
non-preemptive system. However, with the 20 µs preemption
quantum, user interrupts typically cause less than 2% slow-
down for programs (§2.3), thus improving the throughput of
short requests with minimal sacrifice.

Compiler instrumentation improves performance for short
tasks, but at the cost of significant throughput for longer tasks.
Despite efforts to fine-tune Concord’s parameters (the number
of instrumented subloops and loop unrolling count), both
rmv and ppo still experience significant preemption overhead
(3.3 µs) due to tight loops (§4.2). In contrast, user interrupts
incur only 0.37 µs and 0.32 µs of overhead, respectively.

4.1.3 BadgerDB (Aspen-Go)

We ran BadgerDB [1] with unmodified Go and Aspen-Go to
evaluate how effectively different Go variants can mitigate
head-of-line blocking. As shown in Figure 7, simply decreas-
ing the preemption frequency (e.g., to 50 µs) in unmodified
Go does not significantly reduce head-of-line blocking. This
is because even with frequent preemption, the unmodified
Go runtime does not attempt to poll incoming packets from
network stack as long as there are available goroutines in

0 100 200 300
Load (KRPS)

0
250
500
750

1000

99
.9

%
 la

te
nc

y
(μ

s)

BadgerDB GET

0 1 2 3
Load (KRPS)

0
2
4
6
8

10

99
.9

%
 L

at
en

cy
 (m

s)

BadgerDB RangeSCAN

unmodified Go (10 ms)
Aspen-Go Signals (50 μs)
Aspen-Go Compiler (50 μs)

unmodified Go (50 μs)
Aspen-Go UINTR (50 μs)

Figure 7: BadgerDB performance with unmodified Go and Aspen-
Go. The workload consists of 99% GET and 1% RangeSCAN.

local or global queues (§3.3). As a result, the incoming pack-
ets remain blocked in the network stack and more frequent
preemption only adds extra slowdown to running goroutines.

In contrast, Aspen-Go UINTR can achieve 17.5% higher
throughput for GET requests than unmodified Go (while main-
taining a tail latency of at most 1000 µs), primarily because
Aspen-Go actively polls ready packets from the network
stack, allowing them to run earlier than in the unmodified
version. However, the performance gains from user interrupts
in Aspen-Go are significantly smaller than those in Aspen-
KB for the following reasons. First, goroutines resulting from
newly arrived packets may be placed at the back of the global
runqueue (e.g., if they are polled by sysmon) and still need to
wait, whereas new user threads in Aspen-KB can be placed
in local queues dedicated to new threads and processed more
quickly. Second, sysmon cannot detect whether packets are
queued or not due to its lack of visibility into the Linux net-
work stack, and thus longer tasks are preempted even when
there are no other tasks to handle. Third, the cost of con-
text switching during preemption in Aspen-Go is higher than
in Aspen-KB (§4.2). Overall, the design of the Go runtime
makes it difficult to adopt some policies that could help reduce
head-of-line blocking.

Finally, compiler instrumentation (Aspen-Go Compiler)
achieves 6% higher GET throughput than user interrupts, for
two reasons. First, polling at function calls serves multiple pur-
poses beyond preemption and, therefore, cannot be disabled in

1024 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Aspen-Go UINTR/Signals. Thus, Aspen-Go-UINTR/Signals
still incur the overhead of polling. Second, even though these
systems are configured with the same preemption quantum
(50 µs), Aspen-Go UINTR/Signals experiences 22% fewer
preemptions than Aspen-Go Compiler, making it less effective
at mitigating head-of-line blocking. This is because with com-
piler instrumentation, preemptions occur only at safe points,
whereas user interrupts or signals can be delivered anywhere
and are ignored if they arrive at unsafe points. In the Bad-
gerDB workload, most unsafe points occur during the ex-
ecution of memmove, which is heavily used in Go, e.g., in
assignment statements.

4.1.4 Summary and Takeaways

We found that the preemption mechanism does not signifi-
cantly impact performance in systems like Go, which are not
fully designed for fine-grained preemption. Below, we summa-
rize key takeaways for Aspen-KB and similar low-overhead,
kernel-bypass preemptive systems.

The best choice of preemption mechanism for a given ap-
plication depends on the optimal preemption quantum. One
heuristic for determining a reasonable preemption quantum is
that it should be at least as long as the tail runtime of “short”
tasks, i.e., tasks that should not be preempted. The guidance
in § 4.3 can help more precisely identify the optimal quantum,
which might be longer than the runtime of short tasks in order
to avoid over-preemption. In either case, if the chosen pre-
emption quantum is at least 10 µs, user interrupts generally
deliver better or similar performance compared to compiler
instrumentation. The DataFrame results and some benchmark
programs in Figure 1 illustrate this.

In scenarios where extremely low quanta (less than 10 µs)
are necessary, compiler instrumentation may offer better per-
formance, as long as an application is not dominated by tight
loops (§2.2). However, the performance gains are limited, as
observed in the RocksDB results. This is because compiler
instrumentation only reduces the overhead of the preemp-
tion mechanism and does not address the context switching
overhead (§4.2). Overall, we conclude that user interrupts are
likely a better choice for the majority of applications.

4.2 The Cost of Preemption
In Figure 1 we measured the cost of preempting a thread,
executing an empty handler function, and then immediately
returning to the same thread (preemption cost). In this section,
we also report the context-switch cost of preemption, which in-
cludes the costs of traversing the scheduler, context switching
to a different thread, and any resulting cache contention. To-
gether, the preemption cost and context-switch cost represent
the total overhead incurred per preemption.

Figure 8 illustrates the preemption and context-switch costs
for various preemption mechanisms, applications, and task
combinations. Each application uses its optimal quantum as

rmv ppo kmeans rmv + ppo
kmeans

ad + decay + rmv
ppo + kmeans

0
1
2
3
4
5

Av
er

ag
e

Co
st

 (μ
s)

Signals (context-switch cost)
UINTR (context-switch cost)
Compiler (context-switch cost)

Signals (preemption cost)
UINTR (preemption cost)
Compiler (preemption cost)

(a) Aspen-KB: C++ Dataframe (20 µs quantum)

scan scan × 8 get × 8 +
scan × 8

0
1
2
3
4
5

Av
er

ag
e

Co
st

 (μ
s)

(b) Aspen-KB: RocksDB (5 µs)

rangescan 8× rangescan 8×get+
8× rangescan

0

2

4

6

(c) Aspen-Go: BadgerDB (50 µs)

Figure 8: The costs of preemption (preemption cost) and context
switching (context-switch cost), for 3 applications. The x-axis repre-
sents different task combinations, e.g., get×8+ scan×8 indicates
that 8 GET tasks and 8 SCAN tasks run concurrently on one core.

identified in §4.1. The Aspen-Go results (Figure 8c) compute
costs relative to a different baseline than those in Aspen-KB.
In Go, compiler instrumentation is used for multiple purposes
(e.g., to check if more stack space is needed) and cannot
easily be disabled. Thus all data in Figure 8c is collected with
compiler instrumentation enabled and we cannot quantify the
preemption cost associated with compiler instrumentation.

We make four observations. First, with larger preemption
quanta, the compiler instrumentation costs are amortized over
fewer preemptions, yielding higher per-preemption costs, as il-
lustrated by the higher costs for Dataframe than for RocksDB;
this is consistent with Figure 1. Second, the context-switch
cost in Aspen-KB is not negligible and can even exceed the
preemption cost in some workloads (e.g., with 8 GET tasks
and 8 SCAN tasks). This further indicates that, although com-
piler instrumentation may incur lower overhead than user
interrupts in some workloads, the improvement in total cost
is relatively small. Third, context-switch costs are slightly
higher with user interrupts than with compiler instrumenta-
tion for some workloads, e.g., 36% higher for the rmv, ppo,
kmeans combination. This may be due to saving extended reg-
isters (§3.1.3), which is unique to user interrupts. Finally, the
context-switch cost in Aspen-Go is higher than in Aspen-KB
(1.3-3.0 µs vs. 0.2-0.9 µs), mainly because of the Go runtime’s
more complex scheduler logic (e.g., checking safepoints). De-
spite this, user interrupts and compiler instrumentation still
incur significantly lower total cost compared to signals.

4.3 Preemption Quantum

We evaluate how the preemption quantum impacts perfor-
mance in Aspen-KB by running RocksDB with several dif-
ferent preemption quantum. In each case, we determine the

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1025

50 40 30 20 15 10 5 2
Preemption quantum (μs)

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (R

PS
) ×106

Signals
User Interrupts
Compiler Instrumentation

Figure 9: RocksDB GET throughput with different quanta.

max GET throughput for which GET operations maintain a
tail latency of 50 µs or less; Figure 9 shows the results. For all
mechanisms, decreasing the preemption quantum improves
performance up to a point; beyond this point, the overhead
of extra preemptions outweighs the benefits of mitigating
head-of-line blocking and throughput degrades. For both user
interrupts and compiler instrumentation, the best quantum for
this workload is 5 µs; for signals it is 15 µs. The best quantum
depends on the workload; across different applications and
ratios of GET/SCAN requests in RocksDB, we have observed
ideal quanta for user interrupts ranging from 2 µs to 20 µs.

In Aspen-Go, we found that with a slowdown tolerance
of at most 5%, signal-based preemption limits the quantum
to no lower than 100 µs. In contrast, user interrupts further
reduce it to 30–50 µs, providing tighter tail latency guarantees
(Appendix B).

4.4 Impact of Aspen-KB’s Design Decisions

Preemption Polices. We evaluated the effectiveness of Aspen-
KB’s policies and compare them to the approach of LibPre-
emptible [42], a recent system that uses user interrupts for
preemption. We run Aspen-KB with various policies disabled,
and also approximate LibPreemptible’s policies in Aspen-KB.
Specifically, for a given load, we test different preemption
quanta and select the best result as LibPreemptible’s result,
modeling its ability to find a suitable quantum through adap-
tive adjustment. This approximation achieves the best possi-
ble performance for a workload that does not have significant
variation over time; we denote this as LibPreemptible*.While
LibPreemptible’s APIs allow users to use two queues to pri-
oritize short requests over long, the user-defined queue for
preempted tasks must be shared across all cores, as users can
not control which cores tasks run on. Thus it would be dif-
ficult to support a two-queue policy in a scalable way with
LibPreemptible, so we do not apply the two-queue policy to
LibPreemptible*.

Figure 10 show the performance of RocksDB achieved by
LibPreemptible, Aspen-KB, and other variants of Aspen-KB.
Aspen-KB’s two-queue policy yields significant performance
improvements for both kinds of requests, by allowing incom-
ing requests to be prioritized, and by reducing the amount
of preemptions experienced by longer SCAN requests. The
policy of skipping unnecessary preemptions benefits SCAN
requests the most at lower loads, when there is less likely to

400 800 1200 1600
Load (KRPS)

0

10

20

30

40

50

99
.9

%
 L

at
en

cy
 (μ

s)

GET

20 40 60 80
Load (KRPS)

0

200

400

600

800

1000
SCAN

Non-preemptive
LibPreemptible*

Aspen (w/o 2queues)
Aspen (w/o 2queues) (w/o skip)

Aspen

Figure 10: RocksDB performance achieved by LibPreemptible*,
Aspen-KB, and other variants. "w/o 2queues" indicates that the 2-
queue policy is disabled, while "w/o skip" means that the policy of
skipping unnecessary preemption is disabled.

50 15 10 5 2 1
Preemption quantum (μs)

0

8

16

24

Nu
m

be
r o

f c
or

es

Signal User Interrupts Compiler Instrumentation

Figure 11: The number of application cores that a single timer core
can support under the three preemption mechanisms.

be another task to run. Under such load, even though the pre-
emption quantum is 5 µs, most preemptions can be skipped
and the interval between consecutive preemptions is typically
more than 30 µs.

Compared to LibPreemptible*, Aspen-KB handles head-
of-line blocking more effectively, keeping the tail latency of
short requests low. This is largely because of Aspen-KB’s two-
queue policy. Furthermore, Aspen-KB reduces the slowdown
to preempted tasks. LibPreemptible adjusts the preemption
quantum based on past latencies and offered load but updates
slowly (every 10 seconds), making it unresponsive to real-
time load changes. Instead of explicit quantum adjustments,
Aspen-KB skips unnecessary preemptions, allowing rapid,
real-time adaptation based on the current load.

Timer Scalability. We evaluated the scalability of Aspen-
KB’s timer core. To stress the timer core, we run a workload
that consists of long-running tasks so that the timer core needs
to issue a preemption to each core every preemption quantum.
We vary the quantum, and for each quantum measure the
maximum number of application cores to which the single
timer core can reliably send at least 99% of the expected
number of preemptions. Figure 11 shows the results.

With a preemption quantum as large as 50 µs, all three
mechanisms are able to support all 24 cores that are available
to them. With this large quantum, the timer core mostly calls
rdtsc and busy-spins. With smaller quanta, the timer scala-
bility depends on the cost of triggering preemptions, which
varies significantly across the three mechanisms. Sending a
signal takes 1.7 µs, a user interrupt 200 ns, and the compiler-
based approach incurs negligible overhead, requiring just a

1026 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

single shared memory write. Consequently, with a 5 µs quan-
tum, the timer scales to only 2 cores with signals but reaches
22 with user interrupts and 24 with compiler instrumentation.
This benchmark represents a lower bound on the performance
of the timer core; in more realistic workloads one timer core
can typically support more application cores due to Aspen-
KB’s preemption policy, which can skip 70% of preemptions.

5 Related Work

User-level threading. To avoid the overhead of kernel-based
scheduling, many systems schedule threads in userspace,
adopting an M:N threading model. Examples include the
Go runtime [6], µThreads [18], Caladan [33], Arachne [49],
and many others [10, 21, 37, 45, 53, 54, 57]. Aspen-KB and
Aspen-Go are examples of such user-level schedulers.

Preemption mechanisms. Many existing user-level sched-
ulers adopt cooperative concurrency; those that are preemp-
tive typically employ signal-based preemption or compiler
instrumentation. For example, Go [6] and Argobots [53] use
signal-based preemption. Shinjuku improves upon signals by
virtualizing the APIC for lower overhead IPIs [39].

Compiler instrumentation can be implemented with or with-
out a timer core. With a timer core, the compiler inserts in-
strumentation that checks shared memory—which is written
to by the timer core—to determine when the core should
yield. Go [6], Wasmtime [19], and Concord [37] take this ap-
proach. Alternatively, the instrumentation itself can estimate
how much time has elapsed, by tracking the number and/or
duration of instructions that have elapsed, and yield the CPU
once the metric exceeds a threshold [24, 34, 43].

Both user-level interrupts [46, 51] and user-level excep-
tions [55] were first proposed decades ago. The new “user
interrupts” feature in Intel CPUs makes user-level interrupts
available as a preemption mechanism for userspace sched-
ulers today [20]. LibPreemptible [42], Junction [32], and
Skyloft [38] use user interrupts for core scheduling or times-
licing. These works are complementary to ours; none studies
how user interrupts compare to compiler instrumentation, ad-
dresses head-of-line blocking within the network stack, or
studies fine-grained preemptive scheduling in the context of
a widely used runtime such as Go. Finally, xUI proposes
processor extensions that further reduce the overhead of re-
ceiving user interrupts [22]; these can be used to improve the
performance of both Aspen variants.

6 Conclusion

Preemption can allow us to build more efficient and respon-
sive systems by enabling precise scheduling and mitigating
head-of-line blocking. We explored implementing preemption
with user interrupts, a new hardware feature. We found that
when a system is not constrained by its scheduler’s design,

user interrupts can offer performance comparable to or bet-
ter than compiler-instrumentation, while offering a simpler
developer experience and more predictable performance.

Acknowledgments
We thank our shepherd Malte Schwarzkopf and the anony-
mous reviewers for their feedback. We also thank the Supermi-
cro JumpStart program for providing access to 4th generation
Intel Xeon processors for our initial benchmarks. This work
was funded in part by a Google Research Scholar Award and
a gift from Cisco.

References

[1] BadgerDB: Fast key-value db in go. https://github.
com/dgraph-io/badger.

[2] C++ DataFrame for statistical, financial, and ML
analysis. https://github.com/hosseinmoein/
DataFrame.

[3] Deep diving into llvm loop unroll. https://
yashwantsingh.in/posts/loop-unroll.

[4] Excessive loop unrolling. https://github.com/
llvm/llvm-project/issues/42332.

[5] Go performance dashboard. https://perf.
golang.org/search?q=upload%3A20171003.
1+%7C+upload-part%3A20171003.1%2F3+vs+
upload-part%3A20171003.1%2F1.

[6] The Go programming language. https://go.dev/.

[7] Intel® 64 and ia-32 architectures software devel-
oper’s manual. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-sdm.html.

[8] LINPACK_BENCH - the linpack benchmark.
https://people.math.sc.edu/Burkardt/c_src/
linpack_bench/linpack_bench.html.

[9] Linux kernel with support for user interrupts. https:
//github.com/intel/uintr-linux-kernel.

[10] Loom - fibers, continuations and tail-calls for the JVM.
https://openjdk.org/projects/loom/.

[11] Optimizing subroutines in assembly language.
https://www.agner.org/optimize/optimizing_
assembly.pdf.

[12] perf: Linux profiling with performance counters. https:
//perfwiki.github.io.

[13] Phoenix benchmark suite. https://github.com/
kozyraki/phoenix.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1027

https://github.com/dgraph-io/badger
https://github.com/dgraph-io/badger
https://github.com/hosseinmoein/DataFrame
https://github.com/hosseinmoein/DataFrame
https://yashwantsingh.in/posts/loop-unroll
https://yashwantsingh.in/posts/loop-unroll
https://github.com/llvm/llvm-project/issues/42332
https://github.com/llvm/llvm-project/issues/42332
https://perf.golang.org/search?q=upload%3A20171003.1+%7C+upload-part%3A20171003.1%2F3+vs+upload-part%3A20171003.1%2F1
https://perf.golang.org/search?q=upload%3A20171003.1+%7C+upload-part%3A20171003.1%2F3+vs+upload-part%3A20171003.1%2F1
https://perf.golang.org/search?q=upload%3A20171003.1+%7C+upload-part%3A20171003.1%2F3+vs+upload-part%3A20171003.1%2F1
https://perf.golang.org/search?q=upload%3A20171003.1+%7C+upload-part%3A20171003.1%2F3+vs+upload-part%3A20171003.1%2F1
https://go.dev/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://people.math.sc.edu/Burkardt/c_src/linpack_bench/linpack_bench.html
https://people.math.sc.edu/Burkardt/c_src/linpack_bench/linpack_bench.html
https://github.com/intel/uintr-linux-kernel
https://github.com/intel/uintr-linux-kernel
https://openjdk.org/projects/loom/
https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.agner.org/optimize/optimizing_assembly.pdf
https://perfwiki.github.io
https://perfwiki.github.io
https://github.com/kozyraki/phoenix
https://github.com/kozyraki/phoenix

[14] Proposal: Non-cooperative goroutine pre-
emption. https://go.googlesource.
com/proposal/+/master/design/
24543-non-cooperative-preemption.md.

[15] RocksDB: A persistent key-value store for flash and
RAM storage. https://github.com/facebook/
rocksdb.

[16] Stanford parallel applications for shared-memory
(SPLASH-2) programs. https://github.com/
staceyson/splash2.

[17] User interrupt compiler guide. https://github.
com/intel/uintr-compiler-guide/blob/
uintr-gcc-11.1/UINTR-compiler-guide.pdf.

[18] uThreads: Concurrent user threads in C++(and C).
https://github.com/samanbarghi/uThreads.

[19] Wasmtime. https://docs.wasmtime.dev/.

[20] x86 User Interrupts support. https://lwn.net/
Articles/869140/.

[21] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler activations:
effective kernel support for the user-level management
of parallelism. In Proceedings of ACM Symposium on
Operating Systems Principles, pages 95–109, 1991.

[22] Berk Aydogmus, Linsong Guo, Danial Zuberi, Tal
Garfinkel, Dean Tullsen, Amy Ousterhout, and Kazem
Taram. Extended user interrupts (xUI): Fast and flexible
asynchronous notification without polling. In Proceed-
ings of ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2025.

[23] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the killer mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[24] Nilanjana Basu, Claudio Montanari, and Jakob Eriksson.
Frequent background polling on a shared thread, using
light-weight compiler interrupts. In Proceedings of ACM
International Conference on Programming Language
Design and Implementation, pages 1249–1263, 2021.

[25] Adam Belay, George Prekas, Mia Primorac, Ana
Klimovic, Samuel Grossman, Christos Kozyrakis, and
Edouard Bugnion. The IX operating system: Combin-
ing low latency, high throughput, and efficiency in a
protected dataplane. ACM Transactions on Computer
Systems, 34(4):1–39, 2016.

[26] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li. The PARSEC benchmark suite: Characteri-
zation and architectural implications. In Proceedings of
International Conference on Parallel Architectures and
Compilation Techniques, pages 72–81, 2008.

[27] Sol Boucher, Anuj Kalia, David G Andersen, and
Michael Kaminsky. Lightweight preemptible functions.
In USENIX Annual Technical Conference, pages 465–
477, 2020.

[28] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li,
Li Zhang, Mingyi Zhang, Kui Wei, Lixun Cao, Dan
Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,
Shangyu Luo, Jason Sun, and Yuming Liang. Byte-
htap: bytedance’s htap system with high data freshness
and strong data consistency. Proceedings of the VLDB
Endowment, 15(12):3411–3424, 2022.

[29] Fernando J Corbató, Marjorie Merwin-Daggett, and
Robert C Daley. An experimental time-sharing sys-
tem. In Proceedings of the May 1-3, 1962, Spring Joint
Computer Conference, pages 335–344, 1962.

[30] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing
tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 621–637, 2021.

[31] Stephen Dolan, Servesh Muralidharan, and David Gregg.
Compiler support for lightweight context switching.
ACM Transactions on Architecture and Code Optimiza-
tion, 9(4):1–25, 2013.

[32] Joshua Fried, Gohar Irfan Chaudhry, Enrique Saurez,
Esha Choukse, Íñigo Goiri, Sameh Elnikety, Rodrigo
Fonseca, and Adam Belay. Making kernel bypass prac-
tical for the cloud with junction. In USENIX Sympo-
sium on Networked Systems Design and Implementation,
pages 55–73, 2024.

[33] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In USENIX Symposium on Oper-
ating Systems Design and Implementation, pages 281–
297, 2020.

[34] Souradip Ghosh, Michael Cuevas, Simone Campanoni,
and Peter Dinda. Compiler-based timing for extremely
fine-grain preemptive parallelism. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–15,
2020.

1028 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/staceyson/splash2
https://github.com/staceyson/splash2
https://github.com/intel/uintr-compiler-guide/blob/uintr-gcc-11.1/UINTR-compiler-guide.pdf
https://github.com/intel/uintr-compiler-guide/blob/uintr-gcc-11.1/UINTR-compiler-guide.pdf
https://github.com/intel/uintr-compiler-guide/blob/uintr-gcc-11.1/UINTR-compiler-guide.pdf
https://github.com/samanbarghi/uThreads
https://docs.wasmtime.dev/
https://lwn.net/Articles/869140/
https://lwn.net/Articles/869140/

[35] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
Tidb: a raft-based htap database. Proceedings of the
VLDB Endowment, 13(12):3072–3084, 2020.

[36] Kaisong Huang, Jiatang Zhou, Zhuoyue Zhao, Dong Xie,
and Tianzheng Wang. Low-latency transaction schedul-
ing via userspace interrupts. In Proceedings of ACM
SIGMOD International Conference on Management of
Data, 2025.

[37] Rishabh Iyer, Musa Unal, Marios Kogias, and George
Candea. Achieving microsecond-scale tail latency ef-
ficiently with approximate optimal scheduling. In Pro-
ceedings of ACM Symposium on Operating Systems
Principles, pages 466–481, 2023.

[38] Yuekai Jia, Kaifu Tian, Yuyang You, Yu Chen, and Kang
Chen. Skyloft: A general high-efficient scheduling
framework in user space. In Proceedings of ACM Sympo-
sium on Operating Systems Principles, pages 265–279,
2024.

[39] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In USENIX Symposium on Networked Systems
Design and Implementation, pages 345–360, 2019.

[40] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: Making RPCs first-
class datacenter citizens. In USENIX Annual Technical
Conference, pages 863–880, 2019.

[41] Guoliang Li and Chao Zhang. Htap databases: What
is new and what is next. In Proceedings of ACM SIG-
MOD International Conference on Management of Data,
pages 2483–2488, 2022.

[42] Yueying Li, Nikita Lazarev, David Koufaty, Tenny Yin,
Andy Anderson, Zhiru Zhang, G Edward Suh, Kostis
Kaffes, and Christina Delimitrou. Libpreemptible: En-
abling fast, adaptive, and hardware-assisted user-space
scheduling. In IEEE International Symposium on High-
Performance Computer Architecture, pages 922–936,
2024.

[43] Zhihong Luo, Sam Son, Dev Bali, Emmanuel Amaro,
Amy Ousterhout, Sylvia Ratnasamy, and Scott Shenker.
Efficient microsecond-scale blind scheduling with tiny
quanta. In Proceedings of ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 305–319, 2024.

[44] Sarah McClure, Amy Ousterhout, Scott Shenker, and
Sylvia Ratnasamy. Efficient scheduling policies for
microsecond-scale tasks. In USENIX Symposium on
Networked Systems Design and Implementation, pages
1–18, 2022.

[45] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In USENIX Symposium on Networked Sys-
tems Design and Implementation, pages 361–378, 2019.

[46] Mike Parker. A case for user-level interrupts. ACM
SIGARCH Computer Architecture News, 30(3):17–18,
June 2002.

[47] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and
Roxane Edjlali. Hybrid transaction/analytical process-
ing will foster opportunities for dramatic business inno-
vation. Gartner, pages 4–20, 2014.

[48] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of ACM Symposium
on Operating Systems Principles, pages 325–341, 2017.

[49] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: Core-Aware thread manage-
ment. In USENIX Symposium on Operating Systems
Design and Implementation, pages 145–160, 2018.

[50] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguil-
era, and Adam Belay. AIFM: High-Performance,
Application-Integrated far memory. In USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 315–332, 2020.

[51] Daniel Sanchez, Richard M Yoo, and Christos Kozyrakis.
Flexible architectural support for fine-grain schedul-
ing. ACM SIGARCH Computer Architecture News,
38(1):311–322, 2010.

[52] Korakit Seemakhupt, Brent E. Stephens, Samira Khan,
Sihang Liu, Hassan Wassel, Soheil Hassas Yeganeh,
Alex C. Snoeren, Arvind Krishnamurthy, David E.
Culler, and Henry M. Levy. A cloud-scale characteriza-
tion of remote procedure calls. In Proceedings of ACM
Symposium on Operating Systems Principles, pages 498–
514, 2023.

[53] Sangmin Seo, Abdelhalim Amer, Pavan Balaji, Cyril
Bordage, George Bosilca, Alex Brooks, Philip Carns,
Adrián Castelló, Damien Genet, Thomas Herault, Shin-
taro Iwasaki, Prateek Jindal, Laxmikant V. Kalé, Sriram
Krishnamoorthy, Jonathan Lifflander, Huiwei Lu, Este-
ban Meneses, Marc Snir, Yanhua Sun, Kenjiro Taura,
and Pete Beckman. Argobots: A lightweight low-level

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1029

threading and tasking framework. IEEE Transactions on
Parallel and Distributed Systems, 29(3):512–526, 2018.

[54] Shumpei Shiina, Shintaro Iwasaki, Kenjiro Taura, and
Pavan Balaji. Lightweight preemptive user-level threads.
In Proceedings of ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages 374–
388, 2021.

[55] Chandramohan A Thekkath and Henry M Levy. Hard-
ware and software support for efficient exception han-
dling. In Proceedings of International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 110–119, 1994.

[56] Adam Wierman and Bert Zwart. Is tail-optimal schedul-
ing possible? Operations research, 60(5):1249–1257,
2012.

[57] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel dat-
apath os architecture for microsecond-scale datacenter
systems. In Proceedings of ACM Symposium on Oper-
ating Systems Principles, pages 195–211, 2021.

A Extended Registers

When context switching between user-level threads, care must
be taken to ensure that the appropriate registers are saved and
restored. This includes any extended registers that are being
used by the preempted thread, such as SIMD registers or
matrix registers.

When compiler instrumentation is used as the preemption
mechanism, preempting a user-level thread simply involves
calling a function. In this case, the registers that are in use
are known at compile time, and the compiler can save just
the caller-saved registers that are in use, including extended
registers if necessary [31].

In contrast, with user interrupts, the user-level scheduler
is responsible for saving almost all registers. When a user
interrupt is delivered, the hardware saves the flags, instruction
pointer, and stack pointer. The compiler also saves general-
purpose callee-saved registers if they are used by the interrupt
handler function [17]. However, the scheduler is responsible
for saving any additional registers, including SIMD registers.
The scheduler typically has no knowledge of which registers
a program is using at runtime, and thus for correctness must
conservatively save all extended registers.

We ran a microbenchmark program to measure the cost of
saving extra extended registers. In this benchmark, multiple
user-level threads perform pointer chasing, each within their
own independent region of memory. All threads run on the
same core; we preempt them periodically and measure the
overhead per preemption. We found that, in the worst case,
saving all AVX-512 registers (2 KB) could add over 700 ns
of overhead to each preemption, compared to saving only the
general-purpose registers. This worst-case overhead occurred
when the memory accessed collectively by the threads just
barely fit into a given cache layer (e.g., the L1 cache), so that
the extra memory consumed by saving extra registers caused
evictions to the next layer of cache. These evictions make the
benchmark program run much slower, as the chasing pattern
was deliberately designed to be highly random, minimizing
the effectiveness of cache prefetching. However, for other
memory region sizes, the overhead of saving all AVX-512
registers per context switch in this benchmark program re-
mained below 40 ns.

We considered three alternative approaches for handling
extended registers. First, one could defer preemption during
code that uses them, but unfortunately this approach does not
work well for many applications. As shown in Table 1, some
workloads such as linpack use SIMD registers continuously
throughout their execution, with no clear point to defer pre-
emption to. With RocksDB operations, SIMD registers are
confined to specific functions, but these functions are called
so frequently that deferring preemption would slow down
operations by several percent.

A second approach is to use the instructions XSAVEC and
XRSTOR to save and restore registers, as in prior work [32].

1030 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

These instructions detect which “state components” are in
use and save only active components [7]. However, we found
that using these instructions added 100-150 ns to each context
switch, compared to only 10-30 ns when saving all AVX-
512 registers one by one, due to the high fixed costs of these
instructions. Furthermore, these instructions track state com-
ponents only at coarse granularity (e.g., all AVX-512 registers
are in the same state component), limiting their ability to
optimize which registers are saved.

Finally, it may be possible to reduce overheads by hav-
ing the compiler identify the set of registers that are used
by each program and create custom functions that save and
restore only those registers. For the applications we evaluated,
saving and restoring all AVX-512 registers on every context
switch yielded sufficiently low overhead, but if register state
continues to grow in the future, or if applications use addi-
tional extended registers such as matrix registers, it may be
beneficial to explore this approach.

B Preemption Quantum in Aspen-Go
We ran several microbenchmarks on both Aspen-Go UINTR
and Aspen-Go Signals to gain a broader understanding of the
preemption overhead at different preemption quanta in Aspen-
Go. For each benchmark program, we ran 10 goroutines of the
same program concurrently on a single core, with preemption
occurring at every quantum. These microbenchmarks are from
the benchmark suite [5], which Go developers used to measure
preemption slowdown [14]. Figure 12 presents the results.
With a slowdown tolerance of at most 5%, using signals as
the preemption mechanism limits the quantum to no lower
than 100 µs. In contrast, user interrupts provide finer-grained
preemption, allowing for preemption quanta as small as 30-
50 µs.

C Preemption Slowdown
Table 2 presents the preemption overhead of three mech-
anisms—signals, user interrupts, and compiler instrumen-
tation—measured across 24 programs from the Splash-2,
Phoenix, and Parsec benchmark suites. Section 2 highlights
representative benchmarks and compares the three preemp-
tion mechanisms.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1031

1000 100 30 10 5
0%
5%

10%
20%
30%
40%
50%

StripHTML

1000 100 30 10 5

MulWorkspaceDense

1000 100 30 10 5

TarjanSCC

1000 100 30 10 5

WalkAllBreadthFirst

Preemption quantum (μs)

Sl
ow

do
wn

Aspen-Go Signals Aspen-Go UINTR

Figure 12: The preemption slowdown with different preemption quanta in Aspen-Go UINTR and Aspen-Go Signals.

Program User Interrupts Concord Signals
quantum 50 µs 20 µs 5 µs 50 µs 20 µs 5 µs 50 µs 20 µs 5 µs

water-nsquared 0.6% 1.2% 6.2% 0.7% 1.2% 3.3% 5.1% 12.6% 48.7%
water-spatial 1.3% 1.9% 9.3% 1.5% 1.8% 3.5% 5.1% 12.2% 47.6%

ocean-cp 0.3% 1.9% 6.1% 1.7% 2.4% 3.9% 4.8% 11.1% 47.7%
volrend 0.8% 1.9% 7.8% 2.2% 2.6% 4.6% 4.2% 11.1% 45.3%

fmm 0.6% 1.6% 7.3% -1.7% -1.7% 0.7% 5.2% 13.4% 47.6%
raytrace 0.3% 1.7% 7.1% 1.8% 2.2% 3.9% 5.5% 12.6 % 52.1%
radix 0.6% 1.7% 6.5% -0.6% -0.4% -0.2% 4.7% 11.1% 43.7%
fft 0.8% 1.9% 7.3% 2.5% 2.7% 4.4% 5.2% 12.2% 43.0%
lu-c 0.7% 1.8% 7.4% 0.4% 0.8% 1.6% 5.7% 13.4% 49.6%
lu-nc 0.7% 1.6% 6.3% -0.8% -0.7% -0.4% 3.2% 10.2% 44.3%

cholesky 0.9% 2.0% 7.7% 6.9% 7.3% 9.6% 4.8% 12.0% 46.9%
radiosity 0.5% 1.8% 8.5% 6.5% 7.1% 9.8% 8.6% 16.4% 55.2%
histogram 0.7% 1.8% 6.8% 3.6% 3.8% 5.5% 4.8% 11.4% 45.7%

pca 0.9% 2.2% 7.9% 7.9% 8.4 % 10.7% 5.8% 13.5% 51.2%
string_match 0.7% 1.8% 7.0% 4.5% 4.9% 7.1% 4.3% 11.2% 45.3%

linear_regression 0.7% 1.7% 6.9% 0.1% 0.5% 2.5% 4.7% 11.8% 44.0%
word_count 0.6% 1.6% 6.7% 1.9% 2.1% 3.0% 5.0% 12.4% 47.3%

matrix_multiply 0.6% 1.7% 7.0% 24.0% 24.2% 25.8% 4.9% 12.1% 47.9%
reverse_index 1.0% 2.4% 8.2% 15.6% 15.8% 17.6% 5.2% 13.3% 54.6%
blackscholes 0.6% 1.8% 7.8% -0.1% 0.1% 1.5% 5.8% 14.5% 59.8%
fluidanimate 0.5% 1.5% 7.7% 0.0% 0.1% 0.9 % 4.6% 12.5% 55.9%
swaptions 0.3% 1.4% 7.3% 5.9% 5.7% 7.2% 7.4% 17.4% 65.5%
canneal 0.5% 2.4% 7.2% -0.2% -1.1% 0.9% 5.1% 12.5% 58.5%

streamcluster -0.5% 1.8% 6.6% 4.9% 6.2% 7.0% 6.1% 16.3% 60.8%

Table 2: Preemption slowdown with different preemption mechanisms in benchmark programs.

1032 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Preemption Mechanisms
	Signals
	Compiler Instrumentation
	User Interrupts
	Summary

	Preemptive User-Level Schedulers
	Design Factors
	Unnecessary Preemptions
	Non-Preemptible Code
	Extended Registers
	Head-of-Line Blocking

	Kernel-Bypass Preemptive Scheduler
	Go-Based Preemptive Scheduler

	Evaluation
	Application Performance
	RocksDB (Aspen-KB)
	DataFrame (Aspen-KB)
	BadgerDB (Aspen-Go)
	Summary and Takeaways

	The Cost of Preemption
	Preemption Quantum
	Impact of Aspen-KB's Design Decisions

	Related Work
	Conclusion
	Extended Registers
	Preemption Quantum in Aspen-Go
	Preemption Slowdown

