é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Runtime Protocol Refinement Checking
for Distributed Protocol Implementations
Ding Ding, Zhanghan Wang, Jinyang Li, and Aurojit Panda, NYU

https://www.usenix.org/conference/nsdi25/presentation/ding

This paper is included in the
Proceedings of the 22nd USENIX Symposium on
Networked Systems Design and Implementation.
April 28-30, 2025 - Philadelphia, PA, USA
978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ B S————
b »

Runtime Protocol Refinement Checking for Distributed Protocol Implementations

Ding Ding, Zhanghan Wang, Jinyang Li, Aurojit Panda
NYU

Abstract
Despite significant progress in verifying protocols, services
that implement distributed protocols (we refer to these as
DPIs in what follows), e.g., Chubby or Etcd, can exhibit safety
bugs in production deployments. These bugs are often intro-
duced by programmers when converting protocol descrip-
tions into code. This paper introduces Runtime Protocol Re-
finement Checking (RPRC), a runtime approach for detecting
protocol implementation bugs in DPIs. RPRC systems observe
adeployed DPI’s runtime behavior and notify operators when
this behavior evidences a protocol implementation bug, allow-
ing operators to mitigate the bugs impact and developers to fix
the bug. We have developed an algorithm for RPRC and imple-
mented it in a system called ELLSBERG that targets DPIs that
assume fail-stop failures and the asynchronous (or partially
synchronous) model. Our goal when designing ELLSBERG was
tomake no assumptions abouthow DPIs are implemented,and
to avoid additional coordination or communication. There-
fore, ELLSBERG builds on the observation that in the absence of
Byzantine failures, a protocol safety properties are maintained
if all live DPI processes correctly implement the protocol.
Thus, ELLsBERG checks RPRC by comparing messages sentand
received by each DPI process to those produced by a simulated
execution of the protocol. We apply ELLSBERG to three open
source DPIs, Etcd, Zookeeper and Redis Raft, and show that
we can detect previously reported protocol bugs in these DPIs.

1 Introduction

Distributed protocols, implemented in lock ser-
vices [11, 21, 100], distributed databases [85, 99], etc.,
lie at the heart of all fault-tolerant applications. Ensuring
that these services, which we refer to as distributed protocol
implementations (DPIs), correctly implement distributed pro-
tocols remains challenging. Popular DPIs have shipped with
application visible bugs: e.g., prior versions of Etcd [21] would
return stale values in some scenarios due to a bug [25] in its
implementation of a linearizable read protocol [95]. Similarly,
prior versions of Zookeeper [100] would, in some scenarios,
lose updates during leader elections due to a protocol imple-
mentation bug [101]. Both systems are widely used, and both
bugs can result in application bugs such as data corruption.

In this paper we develop an approach, runtime protocol re-
finement checking (RPRC), that notifies administrators when
bugs such as the ones above occur, allowing administrators
to mitigate the bug’s effects and programmers to fix the

bug. We started developing RPRC because we observed that
despite the widespread use of verification tools [3,4, 10, 41,
42,55,60,65,68,90-92,94] that prove the safety of distributed
protocols, and testing tools [6, 15,35,41-43, 48, 66] that check
implementation correctness, deployed DPIs continue to
exhibit bugs. This is because ensuring that programmer
correctly implements a verified protocol is challenging, and
detecting (and eliminating) all bugs with testing is infeasible.
Recently, IronFleet [34], Verus [47], Goose [12] and others,
have proposed using static refinement proofs to connect
verified protocols to implementations. However, to ensure fea-
sibility (of refinement proof generation and checking) these
frameworks must limit how code is written, making it hard
for developers to produce verified, high-performance DPIs.

RPRC provides an alternate approach for connecting stat-
ically verified protocols to an implementation: RPRC systems
observe a DPI’s runtime behavior, and notify administrators
when the implementation’s behavior deviates from what is
required by the protocol. Analyzing runtime behavior allows
RPRC tools to avoid making assumptions about how the
protocol is implemented or what libraries are used. Indeed,
Er1SBERG, the RPRC system described in this paper, treats the
DPI as a blackbox, assumes no access to the DPI’s internal
state, and does not impose any limits on how DPIs are imple-
mented. Note, RPRC systems do not replace static protocol
and implementation verification [10,34,47,49,55,68,88,91,92]
(they cannot statically generate proofs to show that a protocol
is correct, or that an implementation refines the protocol) and
fuzz testing tools [6,41-43,48,66] (they do not try to maximize
coverage and find all bugs before an implementation is
deployed), but rather complement them.

This paper describes an RPRC algorithm that we have
implemented in a system called ELLsBERG. We designed
ELLSBERG to work with existing unmodified DPIs, to minimize
communication and processing overheads, and to ensure that
it had no effect on a DPT’s failure guarantees. These design
goals allow ELLSBERG to be used in deployment and to find
bugs that were missed during testing.

ErrsBERG (Figure 1) consists of a set of co-located instances
that run alongside (that is, co-located with) each DPI process.
An ELLSBERG instance has access to a trace of incoming
and outgoing messages sent by its colocated process, but
has no access to its internal state. Furthermore, ELLSBERG
instances are designed to work without communicating

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1305

- —_———

+_ Protocol’ Test Equivalence e o'
| Specification b—=— e » o specification bug @
. (TLA+) l| 3

s et L

' @)
X n D
Elerl';’ed DPI Ellsberg DPI Elisberg || S
soerg Process Instance Process Instance 8
Specification 3
@
I 2

U

Node (Server/VM) I Node (Server/VM)

Figure 1: An overview of ELLSBERG, which runs an instance colocated with each
DPI process, and compares the colocated process’s behavior to a correct protocol
implementation. We assume the TLA+ protocol specification is provided by
the protocol designer, and programmers derive a ELLSBERG specification from
this specification.

with each other: each instance processes the trace produced
by its colocated process and can independently generate
a notification when it observes an implementation bug.
Our design builds on the observation that a DPI correctly
implements a distributed protocol if and only if all processes
executing the DPI have correctly implemented the protocol,
allowing us to check implementation correctness without
requiring additional communication or coordination. In cases
where the protocol has been proven to maintain global safety
properties (e.g., agreement or linearizability), ELLSBERG’s
local checks are sufficient to ensure that administrators are
notified when these properties are violated.

Administrators and programmers use ELLSBERG (Figure 1)
as follows: before deployment, the administrator (or DPI
programmer) translates the protocol the DPI purportedly
implements into an ELLSBERG specification and tests it (§4)
to check correctness. When deploying the DPI, the admin-
istrator colocates an ELLSBERG instance, configured with
protocol specification, with each DPI process, and configures
the DPI process so that the colocated instance has access to
a trace of all messages received or sent by the process (§3.1).
Each instance uses the specification and trace to simulate a
correct implementation of the protocol and reports a bug if
the process’s behavior diverges from the simulated behavior.

We needed to address two challenges when developing
ELLSBERG: (a) Concurrency within DPI processes. Many
DPI implementations are concurrent, and to avoid false
notifications, ELLSBERG needs to ensure that its simulation
state corresponds to the DPI’s protocol state. However, the
DPI’s protocol state depends on the order in which messages
are processed, and the trace available to ELLSBERG does not
reveal this order. Consequently, ELLSBERG instances need to
consider all simulation states reachable by reordering mes-
sages in the trace, which can grow exponentially over time.
Therefore, to be feasible ELLSBERG needs to efficiently explore
the set of reachable states; and (b) Incremental checking,
by which we mean the ability to check DPI correctness
without needing to process the entire trace or requiring
access to messages sent or received in the future. Incremental
checking prevents us from using existing approaches for

efficiently processing multiple simulation states: these
approaches assume access to a complete trace (including
future messages), or assume that messages are annotated
with a vector clock [78,80] that records processing order.

ELLSBERG addresses these challenges using a novel incre-
mental RPRC algorithm (§3.4): each ELLSBERG instance main-
tains the set of simulation states the associated DPI process
can be in, and uses breadth first search to update the instances
states and check DPI correctness. We use two optimizations to
speed up breadth first search: we prune branches whose execu-
tion produces a simulation state that is guaranteed, based on
the observed trace, to differ from the DPI’s protocol state; and
we identify messages whose effect will not change after being
reordered with future messages and apply them immediately.

We have evaluated ELLSBERG using three open-source DPIs:
Etcd and ZooKeeper, which are consistent key-value stores
that are used by projects such as Kubernetes for configuration
and state management; and Redis Raft, an extension of the
Redis key-value store that adds fault-tolerance. Etcd and
Redis Raft implement the Raft [64] consensus protocol,
and ZooKeeper implements the Zab [38] atomic broadcast
protocol. Our evaluation (§6) shows that ELLSBERG can detect
bugs in these systems, that it can do so with minimal impact
on response latency (we observed a worse case impact of
11% on the 99th percentile latency), no impact on throughput,
and has modest processing and memory requirements.

Although the RPRC approach is general, and can be used
with any distributed protocol that assumes fail-stop behavior
and the asynchronous (or partially synchronous) model, it
has an important limitation: it only suffices to detect protocol
bugs that lead to changes in either the content or order
of messages sent or received by a DPI process.We cannot
detect several important classes of bugs, including ones that
lead to livelock or deadlock, corrupt stored data, or degrade
performance, and must rely on tools developed by prior work
(§2.1) to detect these bugs. Nevertheless, as our evaluation (§6)
shows, safety bugs of the kind we find do occur in practice.

2 Current Approaches and Related Work

Our goal is to catch protocol bugs in deployed DPIs that
can lead to violations of safety properties. Before describing
our approach, RPRC, we first review existing approaches,
focusing on those that prevent or detect safety bugs. We
categorize these work into five classes:

Trace Validation. A recently developed approach [15,35]
validates totally ordered traces generated during the testing
against a TLA+ specification. This approach seeks to check
protocol refinement at test time. However, it can only check
execution traces generated by tests and, consequently can
miss bugs. By contrast, ELLSBERG is designed to minimize
overheads, allowing it to be used in deployment and uncover
bugs that were not found during testing. As a result, both
approaches are complimentary: trace validation identifies
bugs before deployment, while ELLSBERG identifies bugs in

1306 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

deployment.

Trace-validation also makes different assumptions than
ELLSBERG. It assumes that there is a close correspondence
between implementation and specification, assuming that the
the implementer used the TLA+ specification as a blueprint
when writing code ([15, §1]) or that the specification was
reverse engineered from the implementation. For DPI
implementations, this requirement means that the DPI must
log all changes to state variables, and log ‘linearization points’
that correspond to TLA+ state transitions. Thus, in contrast
to our approach, DPIs must be implemented (or updated) for
use with trace validation. Howard et al [35, §6.1] report that
they needed to add 15 additional log statements to capture
linearization points, which requires understanding both the
protocol specification and the implementation. Similarly, for
specifications, requiring close correspondence between imple-
mentation and specification means that specifications must be
changed as applications are optimized or changed, and cannot
necessarily be reused across applications. Indeed, the CCF
effort had to develop a new detailed Raft specification [35, §4,
§5] to use trace validation. By contrast, ELLSBERG does not re-
quire close correspondence between the specification and the
traces, and in our evaluation, we reuse the same Raft specifica-
tion (modulo a few changes to account for the use of different
reconfiguration protocols) for both Etcd and Redis Ratft.

Furthermore, the trace-validation algorithm relies on two
assumptions that make it challenging to use this approach in
deployment: It assumes that (a) checks are run after the test
has terminated; and (b) the test produces a totally ordered
output. These assumptions require additional coordination
- e.g., Microsoft CCF [35, §6.1] uses a test driver to serialize
node execution and a synchronized global clock to order
process logs, and to decide when a test has completed — which
affects a DPI’s fault tolerance guarantees and performance.
Protocol Verification. Prior work has described several
strategies to prove a distributed protocol’s safety properties.
Verdi [88], Diesel [81] and others [89] provide frameworks
that make it easier for users to write proofs that can be mechan-
ically checked by a proof assistant (e.g., Coq [84]). Ivy [67,68]
provides an interactive tool to help users produce inductive
invariants that can be used to prove the protocol’s safety
properties with an SMT solver. Recent works [55,69,91,92]
have extended Ivy’s approach and automated the process
of inferring inductive invariants. TLA+ [10, 62, 94] allows
users to model check distributed protocol specification to
find safety violations. Each of these strategies offers varying
levels of automation and imposes different requirements
on how protocols are specified. While these systems can
prove that a protocol is correct (i.e. it maintains desired safety
properties), they cannot prevent implementation bugs.

Use refinement proofs to prove implementations
correct. This approach tries to derive the correctness of DPI
implementations from verified protocols using refinement
proofs. IronFleet [34] takes as input safety properties (referred

to as a high-level specification), a protocol specification
together with an implementation, and prove using Dafny [49]
that (a) the protocol specification satisfies the specified safety
properties, and (b) the implementation refines the protocol
and thus also meets the safety properties. Recently, pretend
synchrony [86] has shown how to reduce the proof burden for
IronFleet by restricting the communication primitives used
by the program. Concurrently, Verdi [88,89] and Diesel [81]
implement refinement proof using Coq’s Ocaml extraction ca-
pabilities. All of these frameworks produce provably correct
DPIs, however, to ensure that refinement proof generation and
checking is feasible, they need to limit how DPI code is written,
what libraries are used, and how the code is optimized [51].

Furthermore, these approaches make assumptions about
the runtime environment, including assumptions about
system call semantics and the network. Prior work [29] has
shown that these assumptions are sometimes wrong, thus
provably correct DPIs can still violate safety. Therefore,
RPRC systems are useful even when using refinement proofs
to produce provably correct implementations.

Use model checking and fuzzing to test existing
implementations. Nearly all deployed DPIs use unit and
integration tests to catch bugs. However, as with any large
software system, developer provided tests cannot provide
sufficient coverage. Prior work has developed tools for
automatically generating tests. These tools can be classified
into ones that use fuzzing or randomized testing [6, 43, 66],
and ones that use model checking (3,4, 6,41,42,48,60, 87, 90].
Many of these approaches [3, 43, 48, 66] are explicitly
designed to be used with existing DPIs. Recent work from
Majumdar and Niksic [58] has argued that randomized
testing approaches are effective in finding DPI bugs. However,
as is common with testing approaches, these tools cannot
guarantee that all bugs are found. RPRC complements testing,
allowing developers and administrators to discover bugs that
occur when DPIs are deployed, but were not found during
testing. However, note that as is the case with any runtime
verification tool, bugs discovered using RPRC in production
can also be found by a fuzzer that runs for long enough and
explores enough of the implementation’s code paths.

Runtime verification to find bugs in DPIs. Runtime ver-
ification approaches, e.g., Dinv [33], D3S [50], Pip [77], Ar-
agog [93], Oathkeeper [53] and Hydra [76], check program
properties at runtime. These approaches are designed to check
global properties, e.g., agreement or state consistency, which
are often expressed as predicates over the state of all (or some
subset) of DPI processes. Consequently, these tools check pro-
gram properties by first collecting a consistent snapshot of the
relevant DPI state [13] and then evaluating a predicate on this
state (see Franclanza et al’s survey [31] for details). The use of
DPI state snapshots allows these tools to check richer proper-
ties without concerns about decidability or scaling, e.g., Ara-
gog [93] checks performance and probabilistic staleness prop-
erties. However, the need to collect consistent state snapshots

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1307

adds coordination and communication overheads, and makes
verificationin the presence of DPI process failures challenging.
Recent work has focused on reducing these overheads by min-
imizing the amount of process state collected [53,76,93], using
fork-join parallelism to distribute predicate checking [33, 50,
76,77,93]. Other work has used multivalued logics [9, 14] to
mitigate the effect of failures on runtime verification.
Our approach: Runtime protocol refinement checking
(RPRC). RPRC seeks to combine mechanisms from both
refinement proofs and runtime verification. Similar to
refinement proofs, RPRC aims to ensure that each DPI
process correctly implements a protocol, whose safety has
verified using other approaches. However, unlike traditional
refinement proofs which do so statically, RPRC’s refinement
checking occur at runtime to compare each DPI process’
behavior to that of its protocol specification. Thus, RPRC
avoids the feasibility concerns that lead tools like Verdi,
Dafny and Verus to impose constraints on how DPIs are im-
plemented. Additionally, runtime refinement checking does
not require strong assumptions about system call semantics
that are required by existing refinement tools. Unlike runtime
verification, RPRC checks that DPI implementation refines
a distributed protocol rather than checking that a safety
property holds. Refinement can be checked locally without
cross-node communication and coordination, and without
imposing any limits on fault tolerance. By contrast, checking
properties requires gathering that state at all processes, which
necessitates coordination and is unavailable under failures.
2.1 Other Related Work

The tools discussed above focus on detecting safety bugs in
DPIs. Below we discuss tools that look beyond safety to other
issues including performance bugs, non-fail-stop failures and
how to fix bugs once they are found. We discuss these below:
Distributed tracing tools. Distributed trac-
ing [7, 20, 30, 57, 70, 82] is the most widely deployed
approach to finding bugs in deployed DPIs. These tools
generate logs that trace requests through the system, and
several tools utilize these trace logs [8,17,40,45,46,56,61] to
debug performance problems and failed user requests. These
tools are valuable for debugging bugs, but cannot detect them.
Checking behavior under failures. Several tools and
engineering practices, including chaos engineering [79],
lineage driven fault injection [3-5, 59], crash consistency
checking [2], and analysis tools for partial and correlated
failures [37, 52, 96] have been developed to improve DPI
behavior when recovering from crashes. We assume a
fail-stop model, and do not currently handle these failures.
Performance and configuration bugs. Recent work
has also developed tools and approaches to identifying
performance bugs including gray failures [37], metastable
failures [36], and bugs due to misconfiguration [97].
Record-replay based debuggers. Bugs, once found, need to
be further diagnosed for debugging. Prior work has proposed
several approaches for debugging DPIs [1, 8, 52, 80]. As we

discussed previously, these include record-replay [8,78, 80]
based debuggers which, similar to RPRC, also need to consider
multiple interleavings when reproducing bugs.

3 ELLSBERG Design

We now describe ELLSBERG, a RPRC system that we have
implemented. We first state our assumptions about DPIs and
the deployment environment (§3.1) and describe a ticket-lock
service that we use as a running example in this section
(§3.2). Then, we discuss the protocol specification a user must
provide to ELLSBERG (§3.3), and our RPRC algorithm (§3.4).

Overview. ELLSBERG (Figure 1) performs runtime refinement
checks on whether a deployed DPI correctly implements a
protocol by comparing each DPI process’s behavior against
a user-provided protocol specification (§3.3). To do so, we
require administrators to co-locate an ELLSBERG instances
with each DPI process, and to configure the deployment
so that the ELLSBERG instance has access to a trace of all
messages sent and received by its co-located DPI process.
At a high-level, the ELLSBERG instance uses the following
RPRC algorithm to check its co-located DPI process: it checks
refinement by using the incoming messages in the trace to
simulate potential protocol executions (using a protocol spec-
ification) and decides refinement check has failed if an invalid
or out-of-order going message appears in the trace. It notifies
administrators when the refinement check fails. Because
ELLSBERG must account for internal concurrency within a
DPIL, when simulating the protocol it maintains multiple simu-
lation states, and uses breadth first search to consider multiple
event interleavings (or schedules). ELLSBERG uses outgoing
messages in the trace to prune the set of simulation states that
must be maintained, and the event interleavings considered.

3.1 Assumptions and Guarantees

ELLSBERG assumes that the DPI and protocol work under
the asynchronous (or partially synchronous) model and
fail-stop failures. We do not consider byzantine failures.

When checking refinement, ELLSBERG instances assume
that the user-provided protocol specification is correct. We
provide a testing tool (§4), that administrators can use before
deploying ELLSBERG to check the specification’s correctness
using the protocol’s TLA+ specification.

We assume that the ELLSBERG instance and its co-located
DPI processes share fate, i.e. if an ELLSBERG instance fails,
its co-located DPI process also fails. We also require that the
trace faithfully records all messages sent and received by
its co-located DPI process, and is incrementally updated, i.e.,
messages are added as the DPI process sends or receives them.
Messages in the trace need to be annotated with the connec-
tion on which they were sent or received. We impose some
ordering requirements on the trace. Specifically, we require
that messages received over the same connection appear in
order in the trace, and that outgoing messages follow program
order, i.e., they appear in the trace in the order in which they
are sent, and that any incoming messages processed by the

1308 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

struct State {

1

2 highest: int,

3 current: int,

4 held: bool

5)

6

7 fn assign(state: State) {

8 let ticket = state.highest;

9 state.highest = state.highest + 1;
10 respond (Assigned (ticket))

1}

12

13 fn acquire(state: State, ticket: int) {
14 if state.current == ticket{

15 state.held = true;

16 respond (Acquired(ticket))

17 }

18}

19 fn release(state: State) {

20 let ticket = state.current;

21 state.current = state.current + 1;
22 state.held = false;

23 respond(Released(ticket))

24}

Listing 1: Example ticket-lock server.

DPI before producing an outgoing message m appear before m
in the trace. Our prototype uses an IPC channel, that connects
each ELLSBERG instance to its colocated process, to collect
the trace (§5). Other approaches, e.g., one where a network
proxy mirrors messages to the ELLSBERG instance, can also
be used instead. Beyond the trace, ELLSBERG has no access to
DPI state: it cannot read the DPI process’s memory, nor does
it know the order in which received messages are processed.
Guarantees. When our assumptions are met, ELLSBERG
guarantees that it will generate an alert shortly after a DPI
processes sends a message that is inconsistent (either because
ofits contents, or the order in which it was sent) with the spec-
ification, i.e., shortly after a refinement violation is observed.
Consequently, ELLSBERG does not raise false-alarms because
alerts are only generated when a violation is observed.
However, similar to trace validation [15, 35], ELLSBERG
cannot prove that an implementation is correct because (a)
it cannot detect refinement violations that do not result in
the DPI sending out an inconsistent message; and (b) it is not
guaranteed to have observed all possible DPI behaviors.
3.2 Running Example: Ticket Lock Service

We use a simple, non-fault tolerant, ticket lock-service as
an illustrative example in this section. The service, shown in
Listing 1, runs on a single server and maintains two integers:
highest tracking the largest ticket the service has previously
granted, current tracking what client should go next, and
held which tracks whether a client holds the lock. The service
implements three RPC calls:

1. assign (line 7), which assigns the client a ticket,
increments highest so that clients get unique tickets,
and responds with the assigned ticket number.

2. acquire (line 13), which takes as input a ticket number
(ticket,previously acquired using assign) and checks ifit
is the client’s turn to acquire the lock (current ==ticket).
If it is the client’s turn, the service sets held to true and
responds with an Acquired message.

3. release (line 19), which releases the lock by increment-

ing current, setting held to false, and responds with a
Released message.

For ease of exposition, we assume that clients using this
service are correct, and that a client does not call release
unless it holds the lock. A correctly implemented version
of this protocol guarantees mutual exclusion, ensuring that
no-more than one client holds the lock at a time. We use
this simple protocol to illustrate how to specify a protocol
in ELLSBERG, but we use real DPIs (Etcd, Zookeeper and Redis
Raft) for the evaluation (see Appendix C for specifications).

3.3 Definitions and Specification

We model a distributed protocol as a collection of com-
municating processes, each of which is specified by an I/O
automaton [27,54]. More concretely, ELLSBERG requires users
to specify the distributed protocol as a state machine (executed
by each process), whose execution is driven by a sequence of
events that are applied to it. There are two types of events: the
delivery of a message, and timeouts. When an event is applied,
a process can update its state and send 0 or more messages.

The terms pending events, reachable states and
inducing states are defined as follows:

Pending Events: A pending event is one that can be applied
to a process, and consists of previously-received messages
that the have not yet been processed, and timeouts. Timeouts
in a DPI process are not recorded in the trace, and our model
assumes that a timeout is always pending. We use the term
schedule to refer to a sequence of events.

Reachable state: Given a process p in state s, we say that
state s’ is reachable if and only if there exists a schedule of
events (some of which might not yet be received) that when
applied to s result in state 5.

Inducing states: Given a message m, we say that state s is
m-inducing (we drop the prefix m— when the message is clear
from the context) if and only if there exists state s’ and event
e, such that applying e to a process in state s’ results in the
process sending the message m and then transitioning to state
s. In the ticket-lock example (Listing 1), the m-inducing state
for an Acquired message for ticket 2 is any state s, where
s.current =2. Observe that in general, a message m does not
have a unique inducing state, and some messages might have
an unbounded number of inducing states: in the previous
example, any state s for which s.current =2 is m-inducing,
regardless of s.highest’s value.

3.3.1 Specification

ELLSBERG requires users to provide two inputs: a specifica-
tion for the distributed protocol the DPI purportedly imple-
ments and mapping functions that allows ELLSBERG to map
network messages sent or received by the DPI into messages
that appear in the specification. In the remainder of this sec-
tion, we only refer to messages that appearin the protocol spec-
ification. In Listing 2, we use the ticket-lock service’s (§3.2)
specification to illustrate the parts of a ELLSBERG specification.

A ELLSBERG protocol specification consists of:

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1309

[B NS N S

struct ProtState {
highest: int,
current: int,
held: bool,

}

fn equal(s: ProtState, s': ProtState) -> bool {
return s.highest == s'.highest
&& s.current == s'.current
&& s.held == s'.held
}

fn infer_inducing(m:
return match m {
Acquired(tkt) =>

Message) -> ProtState {

ProtState{highest: None,
held: true, current: tkt},
/7 ...
3
}
fn apply(s: ProtState, e: Event) -> ProtState {
match e {
case Message(Acquire(tkt)) => {
if s.current == tkt{
return ProtState{highers
: s.highest, current:tkt, held:true?}
} else {
return s
3
Y, // ...
}
}
fn reachable(s: ProtState,
pending: Set[Set[Messagel]l, e: Event,

p: ProtState) -> bool {
if state(s).current > p.current {
return false
Y /7 ..
}
}

fn apply_asap?(s: ProtState, m: Message) -> bool {
return m.type == Acquire && m.tkt < s.current

}

fn lookahead_type(m: Message) -> Message_type {
if Type(m) == Acquired {
return Assigned
3
/] ...
}

Listing 2: User-provided protocol specification for the ticket-lock server

(i) The definition for a protocol state structure, ProtState

(line 1), that ELLSBERG uses to track the current
simulation’s protocol state, and a function to create
the simulation’s initial protocol state. For notational
convenience, all elements of the ProtState are nullable
and we use this to encode sets of states.

(if) A transition function, apply (line 22), that takes as input

a protocol state s, a collection of sets of pending events
and an event e, and returns the protocol state produced
by applying e to s. We guarantee that all events passed to
the transition function are pending for s. For notational
convenience, we use a pply(s,E) to represent the output

of applying the sequence of events in the schedule X to s.

(iii) A function, equal, to check equality between two

protocol states s and s’. Two states are considered equal
if the distributed protocol exhibits the same behavior for
both. In other words, we assume that equal(s,s') =true

(iv)

V)

(vii)

implies that for any schedule ¥, applying the schedule
to both states results in final states that are equal and
produces the same sequence of outgoing messages. In
the ticket-lock example (line 7) the function compares
current, highest and held.
An inference function, infer_inducing, that given
an outgoing message m returns a ProtState of all
m-inducing states. This function populates only those
values that can be inferred from m, leaving the others
unknown. Line 13 shows this function for our running
example: we need to consider each type of outgoing
message sent by the service when writing it.

A reachable function that takes protocols state s, the

set of pending messages, and a target partial protocol

state S, and returns true if there exists s’ such that s’ € S

and s’ is reachable from apply(s,e). We assume that this

function over-approximates reachability, i.e., it might
return true even if there exists no reachable s” such that

s’ € S, but never incorrectly returns false. For brevity,

we only show a portion of the reachable function for

the running example, which returns false if the state’s

current value is larger the target state (line 34).

A function, apply_asap?, that we use to reduce the

simulation’s memory requirements and runtime by

reducing the number of schedules that need to be
considered (§3.4.2). This function takes a protocol state

s and an event e, and returns true if and only if we can

safely apply the event immediately, i.e., we do not need

to consider schedules that reorder ¢ with respect to
other events (including ones that occur in the future).

We define apply_asap?(s,e) to be correct if it meets the

following two requirements:

(a) Event ¢ can be reordered. For any schedule
Y where e € ¥ and message m, if apply(s, L) is
m-inducing, then so is apply(apply(s,e),L—e).

(b) Event ¢ does not block outgoing mes-
sages. For any schedule ¥ where ¢ ¢ X and
message m, if apply(s, L) is m-inducing, then
apply(apply(s,e),X) is also m-inducing.

These requirements ensure that applying e to protocol

state s does not change the set of reachable m-inducing

states, and ELLSBERG can avoid exploring schedules that
reorder e. An acquire message for a ticket smaller than
the server’s current ticket meets these requirements in

our example (line 43).

An optional function lookahead_type that we use to

reduce the number of m-inducing states found by the

infer_inducing function, thus reducing simulation
time. This function takes as input a message m and
either returns None (indicating there is no such type) ora
message type. As we explain later (§3.4.2), this function
is used in an optimization to improve ELLSBERG’s
efficiency, but its semantics do not affect correctness.
Line 47 shows this function for the lock service: when

1310 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

processing an outgoing acquire message ELLSBERG looks
ahead to find the next assigned message. This is because
we cannot infer the value of the highest field from an
acquire message, but can from an assign message, and
considering both reduces the number of m-inducing
states,and thus schedules that ELLSBERG must explore.

In §4, we describe how a user can derive ELLSBERG spec-
ifications from existing TLA+ specifications used to prove
protocols correct, and test the derived specification. However,
note that deriving a ELLSBERG specification from a TLA+
specification is simpler than deriving an implementation:
unlike implementations, ELLSBERG specifications do not need
to interact with communication libraries, consider failure
handling, or implement application logic. Furthermore,
ELLSBERG specifications are written assuming sequential
execution, and operators do not need to protect against data
races or other concerns common to concurrent code. Conse-
quently, it is easier to derive a correct ELLSBERG specification
than an implementation from a TLA+ specification.

3.4 TheELLSBERG Algorithm

We now detail the ELLSBERG algorithm. Concurrency and
incrementally checking DPI correctness (so ELLSBERG can
report bugs soon after they are observed) were the two main
challenges we addressed when developing this algorithm.

Concurrency is challenging because the protocol’s
behavior depends on the order in which events are applied,
but ELLSBERG does not know the order in which the messages
and timeouts were processed by its associated DPI process.
Similar to other work, we resolve this by considering multiple
schedules consisting of different interleavings of incoming
messages in the trace and timeouts.

Incremental checking makes constructing multiple
schedules challenging because the DPI process might process
a received message m, which appears in the trace, after
message m’ that has not yet been received, and thus does
not appear in the trace. We resolve this challenge using
the assumed the trace ordering property that guarantees
that any received messages processed by the DPI process
before it produces an outgoing message m must appear
before m in the trace, and that outgoing messages appear in
program order. Thus, when checking an outgoing message
m, ELLSBERG only considers schedules that contain incoming
messages appearing before m in the trace. For notational
convenience, we refer to the trace before m as the m-prefix.
Furthermore, if the trace contains a sequence of outgoing
messages mig,mj ,...,My,, the simulation needs to only consider
schedules which use incoming messages in the myg-prefix
before producing outgoing message mg, messages in the
m-prefix before producing outgoing message mj, etc.

ELLSBERG uses this observation to implement an incre-
mental checking algorithm (Listing 3): Each ELLSBERG
instance maintains a set of simulation states S, which we
define as a protocol state with a set of collections of pending
message (line 2). For notational convenience, we use Sg,

struct SimState {
state: State,
pending: Set[Set[Messages]]

// The instance's current simulation state.
Set[SimState]

[B S R O
-

(%]

10 fn prune_asap(s: SimState) -> SimState {

11 for e in pending(s) {

12 if apply_asap?(state(s), e) {

13 return prune_asap(apply(s, e))
14 }

15 3}

16 return s

17 %

19 // Process incoming message m in the trace.
20 fn process_incoming(m: message) {

21 for s in S {

22 // Check if m should be applied immediately.
23 if apply_asap?(state(s), m) {

24 S.replace(s, prune_asap(apply(s, m)))

25 } else {

26 s.add_pending_message (m)

27 }

28 3}

29 3}

30

31 // Process outgoing message m in the trace.
32 fn process_outgoing(m: message) {

33 // Get m-inducing states.

34 let target = infer_inducing(m)

35 // Check if we need to lookahead.

36 let m_lookahead = if lookahead_type(m) {

37 infer_inducing(

38 find_next_of_type(lookahead_type(m)))

39 } else {

40 None

41 }

42 // Updated simulation state.

43 let S' = new Set[SimState]

44 for s in S {

45 // Find reachable m-inducing states from s
46 S_s = find_reachable(s,

47 target, m_lookahead)

48 S' = S'.union(S_s)

49 3}

50 if S'.is_empty() {

51 // No reachable m-inducing state indicates
52 // divergence b/w spec and implementation.
53 raise Error

54 } else {

55 S =S

56 3

57 }

Listing 3: Algorithm for checking a single outgoing message.

to refer to simulation states, and state(sgy,) to reference
the underlying protocol state. Initially S contains a single
element: a simulation state with the initial protocol state
and an empty pending message set. The algorithm iterates
through the trace, and adds incoming messages (with one
exception discussed in §3.4.2) to the pending message set
of all simulation states sy, € S (line 20). It processes an
outgoing message m by finding all m-inducing simulation
states that can be reached from any sg, € S using sgin’s
pending messages and zero-or-more timeouts (line 46, §3.4.1).
The algorithm notifies an error (line 53) if no m-inducing
simulation states are reachable, otherwise it updates S to be
the set of reachable m-inducing simulation states (line 55).

For example, if the ticket-lock service sends a message
m indicating that the client with ticket 2 has acquired

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1311

fn find_reachable(s: SimState,
target: ProtState,
ahead: Option[ProtState]) -> Set[SimState] {
// The queue of SimState's to explore.
let to_explore = new Queue[SimState]
// Previously explored SimState's
let explored = new Set[SimState]

[B NS N S

9 // The set of reachable m-inducing SimStates.

10 let reachable_inducing = new Set[SimState]

11 to_explore.insert_tail(s)

12 while !to_explore.is_empty() {

13 s' = to_explore.remove_head()

14 explored.add(s"')

15 // Is s' m-inducing?

16 if state(s') in t {

17 reachable_inducing.add(s"')

18 continue

19 3}

20 for e in pending(s') {

21 // Is target reachable from apply(s', e)

22 if reachable(state(s'), pending(s'), e,

target) &&

23 (ahead.is_none() ||

24 reachable(state(s'), pending(s'), e,
ahead)) {

25 s'' = prune_asap(apply(s', e))

26 3}

27 // Equivalent to enqueued state?

28 if to_explore.contains_state(s'') {

29 // Add pending messages
in s'' to existing state.

30 merge_pending (

31 to_explore.get_state(s''), s'"')

32 } else if l!explored.contains_state(s'")

{

33 // Add s'' to the exploration queue.

34 to_explore.insert_tail(s'")

35 } else {

36 // Add s'' to the exploration queue

37 // if pending events differ from

38 // previously explored.

39 if !pending(explored.get_state(s'"'))

40 .contains(pending(s"'"')) {

41 to_explore.insert_tail(s'"')

42 }

43 }

44 3}

45 }

46 return reachable_inducing

47 3

Listing 4: ELLSBERG’s breadth-first search algorithm to find reachable
m-inducing simulation states (passed in as argument target) starting from
simulation state s.

the lock m = Acquired(2)) message, and S contains a
single simulation sy, for which state (s,).held = true and
state(Sgim).current =1, then ELLSBERG would throw an error
if pending(ssim) did not contain a release message.

Observe that because the trace is in program order, and
the algorithm processes the trace iteratively, ELLSBERG only
considers incoming messages (and zero-or-more timeouts)
in the trace’s m-prefix when processing outgoing message
m Furthermore, since outgoing messages are processed
iteratively in order, the algorithm checks both the order and
contents of outgoing messages sent by the DPI process.

3.4.1 Finding reachable states

The algorithm described above needs to find m-inducing
simulation states reachable from the current simulation state
Ssim- To do so, it first uses the infer_inducing function to
compute target (Listing 3 line 34), which is the partial protocol
state derived from outgoing message m. The algorithm then

calls find_reachable with sy, and target as arguments to
find the subset of simulation states that are both consistent
with the partial state target and reachable from the current
simulation state sg;,,. To make our state exploration efficient,
we must design find_reachable to work efficiently by re-
turning the smallest set of simulation state. In particular we
require thatifs,s’ € find_reachable(sgin,t) thenequal (s,s') =
false. We had to solve two challenges when designing the
find_reachable algorithm to meet this requirement:

Challenge 1: Many schedules can lead to the same

m-inducing state. The schedule used to reach a simulation

state sy, dictates its pending message set. But there exist
cases where find_reachable can reach two (or more) sim-
ulation states syi, and s};, with the same underlying protocol
state (i.e., equal (state(ssim),state(s.;,,)) =true) but different
pending message sets pending(ssim) # pending(s.;,,). Which
of these simulation states is returned can affect correctness.

In this case, our handling depends on why multiple schedules

reach the same semantically equivalent state:

a. There might exist cases where a protocol state s can
be reached through two schedules £ and ¥/, and X is a
subsequence of ¥’ . This often happens because applying
some message /m has no effect on the protocol state s. For
example, consider the ticket-lock server (Listing 1) with
simulations state sg;, such that stare (s).current =1 and
pending(sg,) contains an acquire message m,, for ticket
2 (m, =acquire(2)). Applying m, to ssj, does not change
its protocol state because the client cannot acquire the
lock, and equal (state(apply(ssimma)),state(ssim)) =true.
But, the pending set of apply(ssim,n,) does not contain
m, and is a subset of sg;,,’s pending set.

However, including the simulation state with a smaller
pending state in find_reachable’s return can lead to
false alarms: consider the case where sy, s pending set is
{mg,m,} where m, = release(), and we are searching for
an Acquired (2)-inducing state. It is clear that an inducing
state is reachable from sy, using the schedule X = [m,,m,],
but is not reachable from apply(ssim,m,), whose pending
set does not include m,,.

Therefore, in this case find_reachable should add the
simulation state with the largest pending set' to the set
of returned state. We ensure that this is the case by having
find_reachable use breadth-first search (Lines 12—45)
to find reachable target states. Breadth first search
ensures that shorter schedules, and thus simulation states
with larger pending message sets, are explored before
simulation states with smaller pending message sets.

b. Semantically equivalent states might also be reached
through two schedules ¥ and ¥’ neither of which is a
subsequence of the other. We resolve this by having sim-
ulation states in ELLSBERG track a set of pending message
sets, allowing us to use a single simulation state to track

1% is a subsequence of ¥, and thus the pending set of the simulation state
reached from ¥ must be a superset of the other.

1312 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

the pending message sets in this case (Lines 31 and 40).
Challenge 2: Terminating the search. Our algorithm
searches through schedules that consist of pending incoming
messages and zero-or-more timeout. These schedules
can have unbounded length, because timeouts are always
enabled. This poses a challenge, since find_reachable
might explore unnecessarily long schedules and might not
terminate. We address this problem in two ways: (a) We avoid
redundant explorations by tracking simulation states that
have already been explored by find_reachable (line 32).
During breadth-first search find_reachable checks if a
simulation state sy;,,’s protocol state (stare(ssin)) is the same
as that of a previously explored simulation state (line 40, the
contains_state function finds simulation states with equal
protocol states): if not, it enqueues that simulation state for
exploration, and otherwise terminates exploration for that
simulation state. (b) Before scheduling exploration for sim-
ulation state apply(ssm,e), we use the reachable function
in the specification to first check if a target m-inducing state
can be reached from sy, (Line 22). We prune exploration
from apply(ssim,e) if the reachable function returns false.
3.4.2 Optimizing State Exploration

We use two performance optimizations:

Avoiding redundant exploration. The find_reachable
algorithm explores different schedules which reorder
incoming messages and zero-or-more timeout events in its
search process. However, if the current simulation state s and
a pending message m meet the apply_asap? requirements
(§3.3) then when m is applied does not affect the search.

Therefore, we use the apply_asap? function to improve
exploration efficiency in two places: (a) When processing
an incoming message m from the trace (Listing 3), ELLSBERG
checks whether it can be applied immediately to a simulation
state sy, € S, and if so it uses the recursive function
prune_asap (Line 10) to replace sy, with the result of apply-
ing apply(ssim,m) and all other messages that can be applied
immediately (Line 24); and (b) in the find_reachable
(Listing 4) algorithm when adding a new simulation state
Ssim to the set of states that need to be explored (Line 25) we
again use prune_asap. Note, that while this optimization is
similar in principle to partial-order reduction [28] (POR), our
technique is designed for the incremental setting.

In Appendix A we describe how we can mechanically
check that apply_asap? is correct, and thus the use of this
approach does not come at the cost of correctness.
Looking ahead to the next outgoing message. The
number of m-inducing states found by find_reachable is
determined by the outgoing message m being considered:
an outgoing message m that reveals little about the DPI’s
protocol state, e.g., client response messages, may allow for a
large set of reachable m-inducing states. Consequently, when
processing m, find_reachable might return a large set of
simulation states that the ELLSBERG instance would use when
it next processes an outgoing message. However, the time

1
Breadth First Search for m-inducing states, Updated S

1
| :[@{mﬂ}
1
. [z
<- 1
1
1
1
1

Sim. State (S)

:
{ma,mz,mz} H 1(sC sC

st) {m1, m3}

[S(ate Unreachable — Apply ASAP ;:) m-inducing state}
Figure 2: An overview of how a ELLSBERG processes outgoing message m using
BFS to find all m-inducing states reachable from the current simulation state.
taken to process an outgoing message depends on the size
of the simulation set S because it determines the number
of find_reachable calls made (Listing 3 line 44). Smaller
simulation sets are thus preferable. ELLSBERG implements
an optimization that can reduce the set of states returned by
find_reachable in some cases. Specifically, the optimization
“looks ahead” to the next message mr of type T that occurs af-
ter m in the trace and passes to find_reachable an optional
argument (ahead) containing the mr-inducing state, allowing
find_reachable to prune any simulation states ss;,, € S from
which an mr-inducing state is not reachable (Listing 4 line 24).

We use the lookahead_type function in the user-provided
specification (§3.3, Listing 2) to decide when to use this opti-
mization. As a reminder, the lookahead_type takes as input
the outgoing message m that ELLSBERG is processed, and either
returns None (indicating lookahead should not be used) or a
message type T. If the function returns a type 7, ELLSBERG
scans the trace, starting at m to find the next outgoing message
my of type T (Listing 3 line 38) and passes the mr-inducing
state to find_reachable. The find_reachable function
then only returns simulation states that are both m-inducing
and my-inducing, a smaller set than the set of all m-inducing
sets. Note that our use of 1ookahead_type ensures thatits out-
put has no impact on correctness: if the function returns type
T, then any simulation state s, pruned by find_reachable
would have been pruned by a future call to find_reachable
when considering the next outgoing message of type T
3.5 Algorithm Summary and Generality

In summary, each ELLSBERG instance works as follows: it
maintains a set of simulation states S and iterates through the
trace. An incoming message m in the trace is processed (List-
ing 3 Line 20) by iterating through S, and checking for each
simulation state s, € S if the message should be immediately
applied: if so, sy, is replaced by apply(ssim,m), if not m is
added to s’s pending set. An outgoing message m (Figure 2) in
the trace triggers a check to determine if the DPIis buggy (List-
ing 3 Line 32), which involves iterating through the simulation
states sy € S and using the find_reachable (Listing 4) al-
gorithm to determine if an m-inducing state is reachable from
Ssim- ELLSBERG reports a bug if no m-inducing states are reach-
able from any simulation state s, € S, otherwise S is replaced
by the union of all reachable m-inducing simulation states.

When does ELLSBERG detect a bug? ELLSBERG? ELLSBERG
only has visibility into what messages have been sent or

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1313

System ELLsBERGLOC Baseline Baseline LOC
ETCD 952 CCFRaft [35] 1503
RedisRaft 894 CCFRaft 1503
Zookeeper 989 ZooKeeper TLA+ [38] 1615

Table 1: Lines of code in ELLSBERG specification when compared to those used
by existing tools. For baselines, we use the Raft specification from Microsoft
CCF [35] Etcd and RedisRaft, and a recent implementation derived TLA+
specification [38] for ZooKeeper.

received by DPI thus far, and hence, at any point in time,
it can only detect bugs that are apparent from the trace
prefix provided to it thus far. Furthermore, even for this
prefix, our approach checks if there exists any schedule (i.e.,
a total order) of incoming messages that when applied to
the specified distributed protocol produces the sequence of
output messages observed in the trace prefix. So, as we noted
earlier (§3.1) ELLSBERG can only detect a bug once it observes
an output message that is inconsistent with the specification.

Generality & Applicability. Our algorithm assumes that
the protocols being checked can be specified as a collection of
processes, each of which is an I/O automaton. Concretely, this
assumption means that events (received messages or time-
outs) must be applied atomically, and a messages behavior
cannot be influenced by a message being applied concur-
rently. This condition holds for many but not all distributed
protocols, e.g., it does not hold for a distributed concurrency
control protocol where multiple transactions can be executed
simultaneously and have their results validated after the fact.

An additional protocol assumption is required to make
incremental checking feasible: protocols must include one
or more messages that (perhaps together) allow ELLSBERG to
infer the entire state of a DPI process. Absent such messages,
ELLSBERG must maintain an ever increasing set of partial states
and consider a growing number of schedules when checking
outgoing messages, making the use of ELLSBERG infeasible in
practice. These messages exist for most protocols, including
the RSM protocols we use in our evaluation. However, we
have encountered one case where this assumption does not
hold: databases that use multi-version concurrency control,
and whose messages do not include information about what
version a transaction read from or updated. In this case apply-
ing ELLSBERG requires us to consider all possible orderings
for concurrent transactions, incurring similar complexity as
prior transaction verification approaches [83, 98].

4 Writing ELLSBERG Specifications

To use ELLSBERG, users or protocol authors need to
translate existing specifications, e.g., ones used to verify
safety, into ELLSBERG specifications. Our evaluation uses
specifications derived from TLA+ protocol specifications: for
Raft we used the TLA+ specification [63] provided by the Raft
authors, while for ZooKeeper we used an implementation
derived TLA+ specification [38].

Table 1 shows the length of our specifications (‘ELLSBERG
LOC’ column). We use the same Raft specification for Etcd and

Redis Raft, the difference in length is because they support
different reconfiguration protocols. To put our specifications
length into context, we also report the length of specifications
used by other tools: for the two Raft DPIs we compare to the
Raft specification used by Microsoft CCF (written specifically
for use with that tool), and for ZooKeeper we compare to
the implementation derived TLA+ specification we used.
Note, that the Microsft CCF Raft implementation supports
a different (and simpler) reconfiguration protocol than
Etcd, but the protocols are comparable. Our specification is
comparable in length to these baseline specifications, and
indeed a few lines shorter. Appendix C provides additional
details about the ELLSBERG specifications, including a detailed
breakdown of lengths for each part (Appendix C.1).

We adopted the following approach to derive the
ProtState structure, and the equal, infer_inducing, and
apply functions from TLA+:

« ProtState. The ProtState structure contains all per-
server variables that appear in the TLA+ specification.
We derived it by identifying all variables in the TLA+
specification, filtering out those that are global variables
(e.g., messages in the Raft specification [63]) or ghost
variables (e.g., voteResponded in the Raft specification),
and adding the remaining variables to the structure.

« equal. The equal function merely checks that all state
variables have the same value, and the language (or
runtime) provided equality function suffices.

« apply. The apply function matches over all possible
state machine transitions, and updates a provided
ProtState structure. We derived it by walking
through the TLA+ specification to find transitions (e.g.,
ClientRequest(i, v) in Raft) and copying over any
state updates that appear in the transition.

« inference. The inference function takes an outgoing
message and tries to infer the process’ DPI state. To
derive this function, we first identify transitions that
send messages (e.g., by finding transitions that call Send
in the Raft specification).Given these transitions, we
use three techniques to infer state variables values: (i) If
the outgoing message directly uses a state variable,
e.g., term, we can infer the state value directly from the
message; (ii) If the outgoing message contains a value
computed from a state variable, e.g., last log index, we
use the inverse computation to infer the state value;
and (iii) If the outgoing message is sent only when a
particular state variable has a given value, then we can
infer the value of the state variable when we observe
the message: e.g., we can infer that Raft a node sending
aRequestVoteRequest message is a candidate.

We had to write de novo apply_asap?, reachable, and
lookahead_type functions. Of these, the apply_asap?
function can be mechanically proven correct (described in
Appendix A), and the lookahead_type function has no
impact on ELLSBERG’s correctness (§3.4.2).

1314 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

1.0 T T 1.0 T T T —— 1.0 T

08t = 1 08 / 1 08 /

wost 7 1 06 4 1 06 .

& 7 e »

So4ap /] B 04 e 9 04 7
02r 02 /
00

—+— Elisberg

A g |
02 4 6 8101214 16 o 1 2 3 4 5 0 4 8 12 16 20 24 28 32 36
latency (ms) latency (ms) latency (ms)

a) Etcd (balanced). (b) ZK (balanced). (c) Redis (balanced).

10 1.0 T ——
08 T 1 08 N 08 //
w06 b 06| } 06 /

O 04 1 04 F 4 4 04 /

—+— Elisberg-| 02| /4
~— System A ~— System

—+— Ellsberg{

d —— Elisberg
. System

Sygtem,

—_

02t —+— Elisberg{ 02t/
. System | 4
00

—— Elisberg

0o 2 4 6 8 10 12 0 1 2 3 0 2 4 6 8
latency (ms) latency (ms) latency (ms)

(d) Etcd (read-heavy). (e) ZK (read-heavy). (f) Redis (read-heavy).
Figure 3: Response latency CDFs from a 5-node cluster when just the DPI
is deployed (System) and when a colocated ELLSBERG instance is deployed
(ELLSBERG). ‘ZK refers to Zookeeper.

Testing ELLSBERG specifications. We also provide a
testing tool, inspired by Mocket [87], to check that the
derived ELLSBERG specification matches the original TLA+
specification, and does not have translation bugs.

Our testing tool takes as input a TLA+ specification, and
generates valid message traces (that is message traces that do
not lead to safety violations) using this specification. Message
traces are generated from the TLA+ specification as follows:
first, the tool uses TLC’s [44] bounded model checking
functionality to generate a transition graph for a bounded
number of steps; next, it performs depth first traversal of
the transition graph and keeps track of the sequence of
states along each traversed path; finally, it translates the
sequence of states into message traces. The last step builds
on the observation that TLA+ specifications model messages
sends and receives as modifications to a message vector,
allowing our tool to translate state sequences into sequences
of message sends (or timeouts).

Thetoolthen uses the generated traces to exercise ELLSBERG
specification, and reports a bug if the ELLSBERG specification
would have (falsely) notified an error for the trace.

5 Implementation

We implemented ELLSBERG in Go, and our current
prototype requires protocol specifications to be written in
Go and compiled with ELLSBERG. We evaluated our prototype
using specifications for Raft [64] and ZAB [38], and used
Etcd, ZooKeeper and RedisRaft as DPIs.

The Raft specification we use consists of ~500 lines of
code, and the ZooKeeper specification consists of ~2000 lines
of code. We describe how we developed these specifications
from existing machine checked specifications in Appendix C.
We used the ELLSBERG testing tool (§4) to test both speci-
fications. For Raft, our test ran 15 steps of bounded model
checking (this was sufficient to cover all protocol states), and
validated the specification using 8,750,468 message traces;
while for Zookeeper, our test ran 20 steps of bounded model
checking (again, sufficient to cover all protocol states) and
validated the specification using 1,904,456 message traces.

Overall, the ELLSBERG implementation (including both
specifications) consists of ~4500 lines of code. Of this total,

the testing tool consists of about 500 lines of Python code, and
the rest is Go code for the ELLSBERG instance and both speci-
fications. In addition to the protocol specification, users must
also provide ELLsBERG with DPI specific code to deserialize
and map implementation messages to specification messages.
The mapping function for Eted is 356 lines of Go code, for
ZooKeeper it is 370 lines of Go code, and for RedisRaft it is
380 lines of Go code.

Our prototype uses an IPC channel to get the trace, and
we modified the network APIs for both DPIs to update the
trace. Doing so required adding logic (to forward messages)
to 11 functions in Etcd, 31 functions in ZooKeeper, and
10 functions in Redis Raft. We were careful to ensure that
no additional timing or ordering information was sent
over this IPC channel. We used IPC for simplicity, but our
implementation can adopt alternate approaches, e.g., having
a service proxy [19] copy messages to ELLSBERG.

6 Evaluation

We evaluated ELLSBERG using three widely-used open
source DPIs: Etcd, Zookeeper, and Redis Raft. Our evaluation
focused on three questions: (a) Can ELLSBERG detect bugs at
runtime? (§6.2) (b) Can ELLSBERG be deployed in production?
(§6.3) (c) How does ELLSBERG perform: how long does it take
ELLSBERG to process a trace, and the impact of our design
(§3.4) on performance? (§6.4)

6.1 Setup and Workload

Our evaluation deployed ELLSBERG on 3- and 5-node
DPI clusters. Each cluster node was a C6525-25G instance
in CloudLab [18], with a 16-core 3GHz AMD EPYC 7302P
processor, 128 GB of RAM, two 25Gbps NICs, and ran Ubuntu
20.04. We deployed a DPI process and ELLSBERG instance on
each node, and used taskset to limit the ELLSBERG instance
to two cores. ELLSBERG instances were configured to process
trace messages every second.

We exercised the DPIs using workloads derived from
YCSB [16]. We use two benchmarks: a balanced workload with
50% reads and 50% writes, and a read-heavy workload with 95%
reads and 5% writes. For both workloads, keys are drawn uni-
formly atrandom from among 1 million possible keys. We used
120 concurrent DPI clients as load generators, we found that
this maximized observed throughput for all DPIs. To minimize
performance variance, we disabled checkpointing for all DPIs.

In the interest of space, we use ZK to refer to Zookeeper and
Redis to refer to Redis Raft in figure captions in this section.
6.2 Can ELLSBERG detect bugs?

We evaluated ELLSBERG’s ability to detect protocol
implementation bugs by reproducing previously reported
bugs in Etcd, Redis Raft and Zookeeper, and checking whether
ELLsBERG notified when the bugs occurred. Due to space
constraints we provide the bugs and their root causes in
Appendix D, but summarize them in Table 2. The bugs we
tested on including bugs in the linearizable read protocol
implemented by Etcd [25] and Redis Raft [72]; a stale-read

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1315

System Bug Type
741 [25] Linearizable read
Eted 7331 [24] Stale read after election
12133 [22] Reconfiguration
7280 [23] Reconfiguration
Zookeeper 1154 [101] Data inconsistency
17 [71] Reconfiguration
19 [72] Linearizable read
RedisRaft 52 [74] Lost updates
256 (73] Reconfiguration
Unreported Reconfiguration

Table 2: Bugs used to evaluate ELLSBERG’s bug detection capability.

bug in Etcd [24] because a new leader’s commit index might
lag behind the previous leader’s commit index; a bug in
Zookeeper’s [101] leader election protocol (leading to data
corruption); a bug in Redis Raft’s caches that leads to lost
updates [73]; and reconfiguration bugs in Etcd [22] and Redis
Raft [71]. During testing, we also identified an unreported
bug in Redis Raft’s reconfiguration protocol implementation.
6.3 Can ELLSBERG be used in production?

We demonstrate that deploying ELLSBERG in production
is feasible by showing that it has low resource requirements,
and does not impact DPI performance. In terms of resources:
our evaluation uses taskset to limits each ELLSBERG instance
to 2 cores. Furthermore, we found (explained in detail in
Appendix E) that across all our evaluations, each ELLSBERG
instance tracks one simulation state on average (i.e., |S|=1)
and has between 0 and 5 pending messages, and thus has
minimal memory requirements. Additional, ELLSBERG does
not use the network by design. We thus conclude that
ErLsBERG has minimal resource overheads.

In terms of DPI performance impact, Figure 3 shows
the performance of the DPIs with (‘Ellsberg’) and without
(‘System’) a collocated ELLSBERG process. We show results
for a 5-node Etcd, Zookeeper, and Redis Raft cluster when
running a read-heavy and balanced workload. We omit
results for 3-node clusters, but they were similar. We observe
that collocating ELLSBERG increases tail-latencies slightly:
the largest increase we observed was for Redis when running
the read-heavy workload(Figure 3f) where 99th percentile
latency increases by 10.7% (from 7.25ms to 8.03ms). These
results show that using ELLSBERG has minimal impact on

response latency, and thus production deployment is feasible.

6.4 End-to-End Performance

ELLSBERG’s detection latency is determined by how often
it checks the trace, in our evaluation we use a configuration
(§6.1) where it checks the trace every second (allowing
us to batch checking and reduce overheads). Therefore,
we evaluate ELLSBERG’s performance by measuring its
throughput, and report results in Figure 4. We also report the
DPI’s throughput when it is run without a colocated ELLSBERG
process: the DPI throughput both serves as a comparison
point to evaluate ELLSBERG’s algorithmic efficiency; and

stem stom Isbor
a0 7
)
0
w0
150 B
100 2

s 0 m
=
o o
aF sl SF 3L aF 5L sF

(b) ZK (balanced). (c) Redis (balanced).

Systom e Elsborg = Syem i Elsborg
160

(a) Etcd (balanced).

o Sytom i Elsborg

F
| 1 e
ol o of o m Ml o«
o En 3F 5L °© F 5L 5F o En 3F 5L 5F

5F 3L o

(d) Etcd (read-heavy). (e) ZK (read-heavy). (f) Redis (read-heavy).
Figure 4: ELLSBERG’s throughput compared to DPI throughput (System) for
different workloads and DPIs. In these graphs, 3-L and 3-F respectively refer
to the leader and follower in a 3-node cluster, and 5-L and 5-F refer to the leader
and follower in a 5-node cluster.

addresses whether ELLSBERG can keep up with the colocated
DPI process (if ELLsBERG had lower throughput it might
not keep up with a loaded DPI). We report results from both
3- and 5-node clusters and both workloads, and measure
throughput in outgoing messages per second. The results
were collected by measuring throughput in a 10-second
interval over 10 experiments. We omit error bars because we
observed nearly no variance across experiments.

Our results show that across DPIs and workloads, ELLSBERG
achieves higher throughput than the DPI: for Etcd ELLSBERG
has 2.0—51.7 x higher throughput, for Zookeeper ELLSBERG
has 1.4—29.7x higher throughput, and for Redis Raft
ELLSBERG has 3.1—25.5 X higher throughput. In practice, we
found that processing a second of trace events took ELLSBERG
between 30 — 700ms when the co-located DPI node was
a leader, 20 — 180ms otherwise. In sum, this means that in
our evaluation ELLSBERG notifies administrators within 1.7
second of a bug occurring, though this could likely be reduced
with a different configuration. Appendix E further evaluates
the impact of ELLSBERG’s optimizations.

7 Conclusion

This paper proposed runtime protocol refinement checking,
an approach that combines ideas from refinement proofs
and runtime verification to notify administrator of protocol
bugs in deployed DPIs. Unlike static refinement proofs
RPRC can be used with existing unmodified DPIs, and unlike
runtime verification RPRC does not require coordination or
communication. We also described an algorithm for RPRC,
and our implementation of this algorithm ELLSBERG, and
applied it to three commonly used DPIs: Etcd, ZooKeeper and
Raft. We believe that RPRC and ELLSBERG provide a practical
approach for improving the reliability of deployed DPIs.

Acknowledgment

We thank Wen Zhang, Joe Tassarotti, Mike Walfish and
Scott Shenker for discussions that helped shape our approach
presentation. We also thank our shepherd SiLiu and the anony-
mous NSDI reviewers for comments that further improved
our presentation. This work was supported in part by NSF
award CNS-2145471 and a gift from the Stellar Foundation.

1316 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References [13] K. Mani Chandy and Leslie Lamport. Distributed
[1] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Snapshots: Determining Global States of Distributed
Patrick Reynolds, and Athicha Muthitacharoen. Systems. ACM Trans. Comput. Syst., 3(1):63-75,
Performance debugging for distributed systems of February 1985.
lack L P, 2003.
black boxes. In SOSP, 2003 [14] Himanshu Chauhan, Vijay K Garg, Aravind Natarajan,

[2] Ram Alagappan. Crash consistency: Keeping data safe and Nee':raj Mitta!. A distribut'ed abstraction algor.ithm
in the presence of crashes is a fundamental problem. for online predicate detection. In International
Queue, 20(4):107-115, 2022. Symposium on Reliable Distributed Systems, pages

101-110. IEEE, 2013.
[3] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey L o .
R O . . . [15] Horatiu Cirstea, Markus A Kuppe, Benjamin Loillier,
osenthal, Ali Basiri,and Lorin Hochstein. Automating co o
. . . and Stephan Merz. Validating Traces of Distributed
failure testing research at internet scale. In SoCC, :) : ;)
ages 17-28, 2016 Programs Against TLA+ Specifications. arXiv preprint
P ’ ' arXiv:2404.16075, 2024.

[4] if:ter Alv;r.o, J osi:huzi:}O?ent,. andIJ 023%};\41\81;{ (;léigstem. [16] BrianF Cooper, Adam Silberstein, Erwin Tam, Raghu

neage-driven rault injection. in ’) Ramakrishnan, and Russell Sears. Benchmarking

[5] Peter Alvaro and Severine Tymon. Abstracting the cloud serving systems with YCSB. In Pr oc?edings of
geniuses away from failure testing. ACM Queue, the 1st ACM symposium on Cloud computing, pages
15(5):29-53, 2017. 143-154, 2010.

[6] AWS. Amazon S3 now delivers strong read-after-write [17] B1plobDel.)nath,Mohludd.m'Solalmanl, Muha.mmad Ali

. . L. Gulzar, Nipun Arora, Cristian Lumezanu, Jianwu Xu,
consistency automatically for all applications. https: Bo 7 Hui Bin Zh Guofei Ji d Latif
//aws.amazon.com/about-aws/whats-new/2020/ o cong, frul b ang’l uoter jiang, and Latiut
12/amazon-s3-now-delivers-strong-read- Khan. LogLens: A Real-Time Log Analysis System.

. . ; ICDCS, pages 1052-1062, 2018.
after-write-consistency-automatically-for-
all-applications/, December 2020. (18] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq,
. .) Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller,

[7] Peter Bailis, Peter Alvaro, and Sumit Gulwani. Re- Mike Hibler, David Johnson, Kirk Webb, et al. The de-
search for practice: Tracmg and debugging dlst.rlbu‘ted sign and operation of CloudLab. In USENIX ATC, 2019.
systems; programming by examples. Communications
of the ACM, 60(7):46-49, 2017. [19] Envoy Proxy. https://www.envoyproxy.io/.

[8] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and [20] Ulfar Erlingsson, Marcus Peinado, Simon Peter,
Michael D Ernst. Debugging distributed systems. Mihai Budiu, and Gloria Mainar-Ruiz. Fay: Extensible
ACM Queue, 14(2):91-110, 2016. distributed tracing from kernels to clusters. ACM Trans-

actions on Computer Systems (TOCS), 30(4):1-35, 2012.

[9] Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio
Rajsbaum, David A Rosenblueth, and Corentin Travers. [21] eted. https://coreos.com/etcd/.

Decentralized asynchronous crash-resilient runtime)))

verification. In CONCUR. Schloss Dagstuhl-Leibniz- [22] Pending conf change is not handled correctly during

Zentrum fuer Informatik. 2016 campaign. https://github.com/etcd-io/etcd/
’ ' issues/12133,2020.

[10] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, [23] Raft: async apply ConfChange is not safe. https:
Brendan Cully, Bernhard Kragl, Seth Markle, Kyle //github.com/etcd-io/etcd/issues/7280, 2017
Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, & ’ ’ ’
et al. Using lightweight .formal methods to validate [24] ReadIndex may read stale value. https:
a key-value storage node in Amazon S3. In SOSP, 2021. //github.com/etcd-io/etcd/issues/7331,2017.

[11] Mike Burrows. The Chubby lock service for [25] Consistent reads are not consistent. https:
loosely-coupled distributed systems. In OSDI, 2006. //github.com/etcd-io/etcd/issues/741,2014.

[12] Tej Chajed, Joseph Tassarotti, M Frans Kaashoek, and [26] eted v3.5: Runtime reconfiguration. https:
Nickolai Zeldovich. Verifying concurrent Go code in //etcd.io/docs/v3.5/op-guide/runtime-

Coq with Goose. In CogPL, volume 2020, 2020. configuration/.
USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1317

https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://www.envoyproxy.io/
https://coreos.com/etcd/
https://github.com/etcd-io/etcd/issues/12133
https://github.com/etcd-io/etcd/issues/12133
https://github.com/etcd-io/etcd/issues/7280
https://github.com/etcd-io/etcd/issues/7280
https://github.com/etcd-io/etcd/issues/7331
https://github.com/etcd-io/etcd/issues/7331
https://github.com/etcd-io/etcd/issues/741
https://github.com/etcd-io/etcd/issues/741
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/
https://etcd.io/docs/v3.5/op-guide/runtime-configuration/

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

Michael J Fischer, Nancy A Lynch, and Michael S
Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM),
32(2):374-382, 1985.

Cormac Flanagan and Patrice Godefroid. Dynamic
partial-order reduction for model checking software.
In POPL, 2005.

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind
Krishnamurthy. An empirical study on the correctness
of formally verified distributed systems. In EuroSys,
2017.

Rodrigo Fonseca, George Porter, Randy H Katz, and
Scott Shenker. X-Trace: A Pervasive Network Tracing
Framework. In NSDI, 2007.

Adrian Francalanza, Jorge A. Pérez, and César Sanchez.
Runtime verification for decentralised and distributed
systems. In Lectures on Runtime Verification: Introduc-
tory and Advanced Topics, pages 176-210. Springer,
2018.

Yossi Gottlieb. Introducing RedisRaft, a New
Strong-Consistency Deployment Option. https:
//redis.com/blog/redisraft-new-strong-
consistency-deployment-option/,Jun 2020.

Stewart Grant, Hendrik Cech, and Ivan Beschastnikh.
Inferring and Asserting Distributed System Invariants.
In ICSE, 2018.

Chris Hawblitzel, Jon Howell, Manos Kapritsos,
Jacob R Lorch, Bryan Parno, Michael L Roberts, Srinath
Setty, and Brian Zill. IronFleet: proving practical
distributed systems correct. In SOSP, pages 1-17, 2015.

Heidi Howard, Markus A Kuppe, Edward Ashton,
Amaury Chamayou, and Natacha Crooks. Smart Ca-
sual Verification of CCF’s Distributed Consensus and
Consistency Protocols. arXiv preprint arXiv:2406.17455,
2024.

Lexiang Huang, Matthew Magnusson, Abishek Ban-
galore Muralikrishna, Salman Estyak, Rebecca Isaacs,
Abutalib Aghayev, Timothy Zhu, and Aleksey Chara-
pko. Metastable failures in the wild. In OSDI, 2022.

Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R
Lorch, Yingnong Dang, Murali Chintalapati, and
Randolph Yao. Gray failure: The achilles’ heel of
cloud-scale systems. In HotOS, 2017.

Flavio P Junqueira, Benjamin C Reed, and Marco
Serafini. Zab: High-performance broadcast for
primary-backup systems. In DSN, 2011.

(39]

(40]

(44]

(45]

[46]

(48]

[49]

[50]

[51]

Operating etcd clusters for Kubernetes. https:
//kubernetes.io/docs/tasks/administer-
cluster/configure-upgrade-etcd/, retrieved in
April 2023.

Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Vekataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An End-to-End Performance Tracing
And Analysis System. In SOSP, 2017.

Charles Killian, James W Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In NSDI, 2007.

Charles Edwin Killian, James W Anderson, Ryan Braud,
Ranjit Jhala, and Amin M Vahdat. Mace: language
support for building distributed systems. In PLDI, 2007.

Kyle Kingsbury. Jepsen: Distribtued Systems Safety
Research. https://jepsen.io/.

Leslie Lamport. TLA+ Tools. http://lamport.
azurewebsites.net/tla/tools.html, 2022.

Pedro Las-Casas, Jonathan Mace, Dorgival Guedes, and
Rodrigo Fonseca. Weighted Sampling of Execution
Traces: Capturing More Needles and Less Hay. In
SoCC, 2018.

Pedro Las-Casas, Giorgi Papakerashvili, Vaastav
Anand, and Jonathan Mace. Sifter: Scalable Sampling
for Distributed Traces, without Feature Engineering.
In SoCC, 2019.

AndreaLattuada, Travis Hance, Chanhee Cho, Matthias
Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan
Parno, and Chris Hawblitzel. Verus: Verifying rust
programs using linear ghost types. In OOPSLA, 2023.

Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F Lukman, and Haryadi S Gunawi. SAMC:
Semantic-Aware Model Checking for Fast Discovery
of Deep Bugs in Cloud Systems. In OSDI, 2014.

Rustan Leino. Dafny: An Automatic Program Verifier
for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning, 2010.

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xi-
aochen Lian, Jian Tang, Ming Wu, M. Frans Kaashoek,
and Zheng Zhang. D3S: Debugging Deployed
Distributed Systems. In NSDI, 2008.

Jacob R Lorch, Yixuan Chen, Manos Kapritsos, Bryan
Parno, Shaz Qadeer, Upamanyu Sharma, James R
Wilcox, and Xueyuan Zhao. Armada: low-effort
verification of high-performance concurrent programs.
In PLDI, 2020.

1318 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://redis.com/blog/redisraft-new-strong-consistency-deployment-option/
https://redis.com/blog/redisraft-new-strong-consistency-deployment-option/
https://redis.com/blog/redisraft-new-strong-consistency-deployment-option/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://jepsen.io/
http://lamport.azurewebsites.net/tla/tools.html
http://lamport.azurewebsites.net/tla/tools.html

[52] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, Detecting and Localizing Partial Failures in Large
System Software. In NSDI, Feburary 2020.

[53] Chang Lou, Yuzhuo Jing, and Peng Huang. Demystify-
ing and Checking Silent Semantic Violations in Large
Distributed Systems. In OSDI, 2022.

[54] Nancy A Lynch and Mark R Tuttle. An introduction
to input/output automata. Laboratory for Computer
Science, Massachusetts Institute of Technology, 1988.

[55] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos
Kapritsos, Baris Kasikci, and Karem A. Sakallah. I4:
Incremental Inference of Inductive Invariants for
Verification of Distributed Protocols. In SOSP, 2019.

[56] Jonathan Mace and Rodrigo Fonseca. Universal context
propagation for distributed system instrumentation.
In EuroSys, 2018.

[57] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot Tracing: Dynamic Causal Monitoring for
Distributed Systems. In SOSP, 2015.

[58] Rupak Majumdar and Filip Niksic. Why is random
testing effective for partition tolerance bugs? Proc.
ACM Program. Lang., 2:46:1-46:24, 2017.

[59] Christopher S Meiklejohn, Andrea Estrada, Yiwen
Song, Heather Miller, and Rohan Padhye. Service-level
fault injection testing. In SoCC, pages 388—-402, 2021.

[60] Ellis Michael, Doug Woos, Thomas Anderson,
Michael D Ernst, and Zachary Tatlock. Teaching
rigorous distributed systems with efficient model
checking. In EuroSys, pages 1-15, 2019.

[61] Francisco Neves, Nuno Machado, and José Pereira.
Falcon: A Practical Log-Based Analysis Tool for
Distributed Systems. DSN, pages 534-541, 2018.

[62] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. Use
of formal methods at Amazon Web Services. See http:
//research.microsoft.com/en-us/um/people/
lamport/tla/formal-methods-amazon.pdf, 2014.

[63] Diego Ongaro. Github: ongardie/raft.tla.
https://github.com/ongardie/raft.tla.

[64] Diego Ongaro and John K. Ousterhout. In Search of
an Understandable Consensus Algorithm. In USENIX
ATC, 2014.

[65] Lingzhi Ouyang, Yu Huang, Binyu Huang, Hengfeng
Wei, and Xiaoxing Ma. Leveraging TLA+ Specifications
to Improve the Reliability of the ZooKeeper Coordi-
nation Service. arXiv preprint arXiv:2302.02703, 2023.

[66]

[67]

(68]

(72]

(73]

(74]

(77]

(78]

Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip
Niksic, Mitra Tabaei Befrouei, and Georg Weis-
senbacher. Randomized testing of distributed systems
with probabilistic guarantees. Proceedings of the ACM
on Programming Languages, 2:1-28, 2018.

Oded Padon, Giuliano Losa, Shmuel Sagiv, and Sharon
Shoham. Paxos made EPR: decidable reasoning about
distributed protocols. In OOPSLA, 2017.

Oded Padon, Kenneth McMillan, Aurojit Panda,
Mooly Sagiv, and Sharon Shoham. Ivy: Interactive
Verification of Parametrized Systems via Effectively
Propositional Reasoning. In PLDI, 2016.

Oded Padon, James R Wilcox, Jason R Koenig, Ken-
neth L McMillan, and Alex Aiken. Induction duality:
primal-dual search for invariants. Proceedings of the
ACM on Programming Languages, 6(POPL):1-29, 2022.

Austin Parker, Daniel Spoonhower, Jonathan Mace,
Ben Sigelman, and Rebecca Isaacs. Distributed Tracing
in Practice: Instrumenting, Analyzing, and Debugging
Microservices. O’Reilly Media, 2020.

Possible lost updates with partitions and member-
ship changes. https://github.com/RedisLabs/
redisraft/issues/17, 2020.

Stale reads in normal operation. https://github.
com/RedislLabs/redisraft/issues/19, 2020.

Test failure : test_transfer_unexpected. https://
github.com/RedislLabs/redisraft/issues/256,
2022.

Loss of committed writes, duplicate elements, du-
eling histories. https://github.com/RedisLabs/
redisraft/issues/52, 2020.

Github: RedisLabs/redisraft. https://github.com/
RedisLabs/redisraft.

Sundararajan Renganathan, Benny Rubin, Hyojoon
Kim, Pier Luigi Ventre, Carmelo Cascone, Daniele
Moro, Charles Chan, Nick McKeown, and Nate Foster.
Hydra: Effective Runtime Network Verification. In
SIGCOMM, 2023.

Patrick Reynolds, Charles Edwin Killian, Janet L
Wiener, Jeffrey C Mogul, Mehul A Shah, and Amin
Vahdat. Pip: Detecting the Unexpected in Distributed
Systems. In NSDI volume 6, 2006.

Michiel Ronsse and Koen De Bosschere. RecPlay:
a fully integrated practical record/replay system.
ACM Transactions on Computer Systems (TOCS),
17(2):133-152, 1999.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1319

http://research. microsoft. com/en-us/um/people/lamport/tla/formal-methods-amazon. pdf
http://research. microsoft. com/en-us/um/people/lamport/tla/formal-methods-amazon. pdf
http://research. microsoft. com/en-us/um/people/lamport/tla/formal-methods-amazon. pdf
https://github.com/ongardie/raft.tla
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/RedisLabs/redisraft/issues/17
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/19
https://github.com/RedisLabs/redisraft/issues/256
https://github.com/RedisLabs/redisraft/issues/256
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft/issues/52
https://github.com/RedisLabs/redisraft
https://github.com/RedisLabs/redisraft

[79]

[80]

(81]

(82]

(83]

(84]

(85]

[86]

(87]

(88]

(89]

[90]

Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak,
Nora Jones, and Ali Basiri. Chaos engineering. O’Reilly
Media, Incorporated, 2020.

Colin Scott, Aurojit Panda, Vjekoslav Brajkovic,
George C. Necula, Arvind Krishnamurthy, and Scott
Shenker. Minimizing Faulty Executions of Distributed
Systems. In NSDI, 2016.

Ilya Sergey, James R Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols.
Proceedings of the ACM on Programming Languages,
2(POPL):1-30, 2017.

Benjamin H. Sigelman, Luiz André Barroso, Mike
Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure.
Technical report, Google, Inc., 2010.

Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael
Walfish. Cobra: Making Transactional Key-Value
Stores Verifiably Serializable. In OSDI, 2020.

The Coq Development Team. The Coq Proof Assistant.
https://coq.inria.fr/.

Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel] Abadi.
Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In SIGMOD, 2012.

Klaus v. Gleissenthall, Rami Gokhan Kici, Alexander
Bakst, Deian Stefan, and Ranjit Jhala. Pretend
synchrony: synchronous verification of asynchronous
distributed programs. Proceedings of the ACM on
Programming Languages, 3(POPL):1-30, 2019.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun
Wei, and Tao Huang. Model checking guided testing
for distributed systems. In EuroSys, 2023.

James R Wilcox, Doug Woos, Pavel Panchekha, Zachary
Tatlock, Xi Wang, Michael D Ernst, and Thomas An-
derson. Verdi: a framework for implementing and
formally verifying distributed systems. In PLDI, 2015.

Doug Woos, James R. Wilcox, Steve Anton, Zachary
Tatlock, Michael D. Ernst, and Thomas E. Anderson.
Planning for change in a formal verification of the raft
consensus protocol. In CPP 2016, 2016.

Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu,
Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lin-
tao Zhang, and Lidong Zhou. MODIST: Transparent
model checking of unmodified distributed systems. In
NSDJ, 2009.

[91]

[92]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh.
DuoAI: Fast, Automated Inference of Inductive Invari-
ants for Verifying Distributed Protocols. In OSDI, 2022.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh,
Suman Jana, and Gabriel Ryan. DistAl: Data-Driven
Automated Invariant Learning for Distributed
Protocols. In OSDI, 2021.

Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim
Ciraci, and Vincent Liu. Aragog: Scalable Runtime
Verification of Shardable Networked Systems. In 14th
USENILX Symposium on Operating Systems Design and
Implementation (OSDI 20), 2020.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport.
Model Checking TLA+ Specifications. In CHARME,
1999.

Pierre Zemb. Diving into ETCD’s linearizable reads.
https://pierrezemb.fr/posts/diving-into-
etcd-linearizable/, Sep 2020.

Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakr-
ishnan, Bingchuan Tian, Bo Song, and Haoliang Zhang.
Check before you change: Preventing correlated
failures in service updates. In NSDI, 2020.

Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin
Xu. Static detection of silent misconfigurations with
deep interaction analysis. Proceedings of the ACM on
Programming Languages, 5(O0OPSLA), 2021.

Jian Zhang, Ye Ji, Shuai Mu, and Cheng Tan. Viper: A
Fast Snapshot Isolation Checker. In EuroSys, 2023.

Jingyu Zhou, Meng Xu, Alexander Shraer, Bala
Namasivayam, Alex Miller, Evan Tschannen, Steve
Atherton, Andrew] Beamon, Rusty Sears, John Leach,
et al. Foundationdb: A distributed key value store. In
SIGMOD, 2021.

Apache Zookeeper. https://zookeeper.apache.

org/.

Data inconsistency when the node(s) with the
highest zxid is not present at the time of leader
election. https://issues.apache.org/jira/
browse/Z0OOKEEPER-1154, 2011.

1320 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://coq.inria.fr/
https://pierrezemb.fr/posts/diving-into-etcd-linearizable/
https://pierrezemb.fr/posts/diving-into-etcd-linearizable/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://issues.apache.org/jira/browse/ZOOKEEPER-1154
https://issues.apache.org/jira/browse/ZOOKEEPER-1154

A Proving apply ASAP correct

Protocol specifications in ELLSBERG include an
apply_asap? function (§3.3), whose output we use to
avoid redundant exploration (§3.4.2). In this appendix, we
look at proving the correctness of this function.

We start by redefining the apply_asap? requirements in
terms of dominating states.

Dominating state: We say a state s dominates state s’ (or
s Js') if and only if for any message m, s’ being m-inducing
implies s is m-inducing.

The apply_asap? function takes as input state s and an
event e, and returns true if the following conditions are met:

« For all schedules X where e € X, apply(apply(s,e),Z—
e)Japply(s,X).

« For all schedules X where e ¢X, apply(apply(s,e),X) J
apply(s.X).

We now turn to describing our approach for proving a
supplied apply_asap? function meets this requirement.

In our specifications (and indeed in all specifications),
an apply_asap?(s, e) consists of a set of constraints
C ={co,c1,...,cn } Over s and e, and returns true if any con-
straint c; holds. For example, in Raft’s apply_asap? function
one of the constraints deals with append entry responses,
and returns true if e is an incoming AppendEntryResponse
message with term 7 and the simulation state s’s term is larger
thant (s.term>t).

We prove apply_asap? correct by analyzing each
constraint ¢ € C. More formally

Theorem 1 Anapply_asap? function specified as the set of
constraints C is correct if and only if forallc € C,s € S,e € E,
c(s,e) =true implies that the following two properties hold for
s,e:

« For all schedules ¥. where e € ¥, apply(apply(s,e),X —
e)Japply(s,X).

« For all schedules ¥ wheree ¢ ¥, apply(apply(s,e),X) J
apply(s.X).

Proving these two conditions mechanically is challenging,
as it requires reasoning about the set of all schedules X.
Therefore, we instead prove that if four simpler properties
(that can be mechanically checked) hold for any ¢ € C, then
c satisfies Theorem 1:

Condition A.1 Order Preserving. The protocol should
be such that for any event e, states s1, s2, if s 2 s, then

apply(si,e) Japply(sy,e).

Condition A.2 Constraints Preserving. For any evente,e’,
and any state s, if c(s,e) =true then c(apply(s,e’),e) =true.

Condition A.3 Expansion. For any event e and any state
s that satisfies C(s,e), apply(s,e) Js

Condition A.4 ReorderSafety.Foranyevente,e', states that
satisfies C(s,e), apply(apply(s,e),e’) Dapply(apply(s,e') e)

Assume c satisfies the four conditions above, we use case
splitting to prove that Theorem 1 must hold:
Case 1 ¢ ¢ Y. Given Statement 3, we have
apply(s, ¢) I 5. Given Statement 1, we have
apply(apply(s.e).X) Japply(s,X). B
Case 2 e€X. Suppose E=Y'+e+Y" where X' =ey,e3,...,¢;.
To simplify the expressions, we denote apply(s,e) by e(s).
We first prove that:

Lemma 1
€0...0¢;110€0¢;0...0e](s) Jego...oeoe; 1 0e;0...0e|(s)

Let s’ =¢;o...0¢;(s), according to Statement 2, given that
C(s,e) is satisfied, we have that C(s',e) is also satisfied. Then,
according to Statement 4, we have e; 1 (e(s")) De(e;+1(5')).
Then, given Statement 1, we can prove Lemma 1.
Therefore, we can further prove this by inductively applying
Lemma 1:

ero...oepoejoe(s) Jeoego...ep0e(s)

Then, let s) = ¢ o...0ez0ej0e(s) and s; =eoego...ep0
e1(s), given Statement 1, we have X" (s1) 3 X"(s;), where
X' (s1)=apply(apply(s.e),.L—e), X" (s2) =apply(s,X). B
B Mechanically Checking apply_asap?

We used Z3 to check the apply_asap? functions in our
specification satisfy the four conditions A.2—-A 4. To do so,
we used the following Z3 specifications:

1) apply(s,e) of each event.
2) dominates(sy,s2). It returns whether s1 J s,

3) C(s, e). It specifies the constraints between e and s.
When C(s,e) = True, it means we can apply e on s asap.

Among these, we specify apply(s, e) using each proto-
col’s TLA+ specification. We show the dominates and C

specification for Raft below:
1 fn dominates(sl1: State, s2: State) {

2 //all other states are the same, except
commit_index, match_index and vote_granted
3 //s1's commit_index is not smaller than s2
4 //each slot
of s1's match_index is not smaller than s2
5 //if s1'state is candidate, then sl1's

vote_granted is the same as s2. Otherwise,
s1's vote_granted set is the superset of s2.

6 return sl.term == s2.term && ... &&
7 s1.commit_index >= s2.commit_index &&
8 [for i in range(SERVERS):
9 sT.match_index[i]>=s2.match_index[i]] &&
10 (s1.state == CANDIDATE ?
11 equal(s1.
vote_granted, s2.vote_granted) :
12 subset(s2.vote_granted

, sl.vote_granted))

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1321

15 fn C(s: State, e: Event) {

16 //we can apply e

asap if this is an event from previous term
17 //or it is an AppendEntriesResponse

in current state's term
18 //or this

is a RequestVoteResponse in current state
's term, and the state now is not CANDIDATE
19 //or this is a AppendEntryRequest in current
state's term, but it broadcasts the entires
that are a subsequence of the local log.
20 //or this is
a RequestVoteRequest in current state's term
but server has already voted for someone.

’

21 return e.term < s.term ||

22 (e.term == s.term &&

23 (e.type == AppendEntriesResponse ||
24 e.type == RequestVoteResponse &&
25 s.state != CANDIDATE) ||

26 e.type == AppendEntryRequest

27 && s.state == FOLLOWER

28 && subseq(e.entries, s.log) ||
29 e.type == RequestVoteRequest

30 && s.votedFor != None)

31}

The dominates and C specification for ZAB are below:

1 fn dominates(s1: State, s2: State) {

2 //all other states are the
same, except last_committed, last_processed
, ackid of each log entry, and ack_ld_recv

3 //s1's last_committed

and last_processed are not smaller than s2
4 //each entry's ack set of s2 is the subset of si
5 //if in BROADCAST state, s2's ack

leader set is the subset of s2. Otherwise
, s2's ack leader set is the same as s1.

6 return sl.accepted_epoch
== s2.accepted_epoch && ... &&
7 s1.last_committed >= s2.last_committed &&
8 s1.last_processed >= s2.last_processed &&
9 [for i in range (ENTRIES):
10 subset(s2.Logli].ack, s1.Logl[i].ack)] &&
11 (s1.zab_state == BROADCAST?
12 subset(s2.ack_ld_recv, sl.ack_ld_recv):
13 equal (s1.ack_ld_recv, s2.ack_ld_recv))
14 3
15
16 fn C(s: State, e: Event) {
17 //we can apply e asap if this is an ACK
18 //or it is an ACKLD in outdated epoch
compared with current state's accepted_epoch
19 //or ACKLD in current accepted_epoch but current
state already has received quorum ACKLD
20 return e.Type == ACK ||
21 (e.Type == ACKLD &&
22 (Epoch(e.Zxid) < s.accepted_epoch
23 || has_quorum(s.ack_ld_recv)))
24}

C Protocol Specifications

Below, we provide additional information about the pro-
tocol specification used in our evaluation, including detailed
breakdown of their lengths and additional information about
how they were derived.

C.1 Specification Length

Table 3 shows lines of code for each portion of the ELLSBERG
specifications used in our evaluation. Similar to §4 we also
report the length of specification used by Microsoft’s CCF
project for validating Raft [35] and an implementation
derived ZooKeeper specification [38].

Component Eted RedisRaft ZooKeeper
State 45 47 102
apply 345 312 433
equal 64 64 73
infer_inducing 298 271 236
reachable 37 37 63
apply_asap? 39 39 36
lookahead_type 9 9 6
Other code 115 115 40
Total (ELLSBERG) 952 894 989
Baseline 1503 1503 1615

Table 3: Lines of code in ELLSBERG specification when compared to those used
by existing tools. For baselines, we use the Raft specification from Microsoft
CCF [35] Etcd and RedisRaft, and a recent implementation derived TLA+
specification [38] for ZooKeeper.

C.2 Raft

We evaluated our approach and ELLSBERG using two Raft
implementations: Etcd [21], a distributed key-value store
that is widely deployed, often as a core component of Kuber-
netes [39] and other orchestrators; and Redis Raft [32,75], a
module that adds consistent replication to the Redis key-value
store. In this section, we describe the specification we used.

Protocol Specification. Our initial approach for producing
a specification was to derive one from Ongaro’s TLA+ Raft
specification [63], since this closely mirrored the protocol
described in the Raft paper [64], and we assumed was the
distributed protocol implemented in practice. However,
we found this was not the case, both implementations
we evaluated implement a protocol which makes several
changes to the original protocol, and the specification we use
includes these changes. The most significant changes from
the protocol in the paper affect read-only operations and
reconfiguration, and we describe both below.

Read-only operations: Both of the implementations that we
evaluated provide linearizable reads, but neither logs read-
only operations. Both require the leader to process all read-
only requests, and the leader computes the return value using
its current state. To ensure linearizability, a node that is pro-
cessing a read-only request must first assert that it is still the
leader, i.e., it needs to check that its term is the same as a quo-
rum’s term [95]. Both implementations use the same approach
to assert leadership: when a node (that believes it is currently
the leader) receives a read-only request, it associates a request
ID with it and includes this request ID in a heartbeat request
(as a reminder, Raft uses empty append entry messages for
heartbeats) to other nodes in the cluster. The node then waits
until a quorum (majority) of nodes have positively acknowl-
edged the heartbeat message (showing that a quorum agrees
on the term, and that the node was the leader when the request

1322 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

was received), before responding to the read-only request.”

Reconfiguration protocol: The other area where both im-
plementations differ is in how they implement cluster
reconfiguration: Etcd uses different protocols to handle
reconfiguration that adds or removes a single node (the Etcd
documentation [26] seems to prefer this protocol) and ones
that add or remove multiple nodes (where Etcd largely uses
the original joint quorum protocol with minor changes); while
Redis Raft only allows the addition or removal of a single node.

Both implementations use a similar (but not identical)
single node reconfiguration protocol that avoids the original
protocol’s use of joint quorums, because in this case quorums
are guaranteed to have intersection before and after config-
uration changes are applied. Therefore, the reconfiguration
protocol in this case merely requires that the leader replicate
a reconfiguration command to all followers. The two imple-
mentation differ on when they apply the reconfiguration
command: Redis Raft nodes apply the command as soon
as it is added to their log, while Etcd treats reconfiguration
commands like any other command and applies them asyn-
chronously after they have been committed. Etcd’s approach
can pose a safety problem, and recent versions of Etcd change
the request vote protocol to ensure that nodes with replicated
but unapplied reconfiguration entries do not send request
vote messages (and thus do not try to become leaders). This
restriction also applies to multi-node reconfiguration in Etcd,
and one of the bugs we reproduce and detect with ELLSBERG
(§6) is due to errors implementing this change.

Beyond differences due to changes in Raft, our specification
differs in another crucial way: we model the behavior of
messages sent by clients (e.g., get and put) while Ongaro’s
specification doesn’t.

Our evaluation uses similar protocol specifications
for both implementations, and they only differ in when
reconfiguration commands take effect.

C.3 Zookeeper Atomic Broadcast

Obtaining a specification for Zookeeper atomic broadcast
(ZAB) [38] as implement by ZooKeeper [100] was a bit easier.
While the TLA+ specification included in the Junqueira et
al’s [38] paper no longer reflects the implementation, a recent
pre-print [65] has produced an updated TLA+ specification
from the implementation, and we used this specification with
minor changes.

ZooKeeper is also easier to model, since it does not
support linearizable reads, and we did not need to consider
modifications for this.

D Bug Descriptions

Below, we describe the bugs used in our evaluation (§6.2),
their root-cause and how we detected them.
etcd-741 [25] is a bug that predates Etcd incorporating the

“What we have described corresponds to Etcd’s ReadIndex method. Eted
also implements a lease-based mechanism for linearizable reads, but we
neither modeled this mechanism nor use it in our evaluation.

linearizable read protocol we described in §C.2. In older
versions, an Etcd leader responded to read-only requests
with its current value, without asserting that it was the leader,
thus violating linearizability. We reproduced this bug by
removing the linearizable read logic from Etcd. ELLSBERG
detected the bug when it observed the leader responding
to a client’s request before receiving positive heartbeat
acknowledgments from a quorum.
etcd-7280 [23] and etcd-12133 [22] are bugs in Eted’s
reconfiguration protocol. As we noted previously (Ap-
pendix C.2), Etcd supports two different reconfiguration
protocols (a single-node reconfiguration that does not
require joint-quorums, and a more general version that
uses joint-quorums). Etcd also has two different command
types for reconfiguration, one which only allows single node
reconfiguration (V1), and one that can be used to trigger
both single-node reconfiguration and joint-quorum based
reconfiguration (V2). Regardless of command or protocol,
reconfiguration takes effect when the command is applied
by a node. Furthermore, Etcd does not allow a node with
an unapplied reconfiguration command in its log to send a
request vote message (i.e., to transition to being a candidate).
Both of these bugs are caused by cases where Etcd
incorrectly allowed a node with an unapplied reconfiguration
command to become a candidate. In the case of etcd-7280
this was caused because Etcd switched to applying reconfig-
uration requests asynchronously, but assumed that a single
reconfiguration request could be in progress at a given time. If
more than one reconfiguration request was in progress, then
Etcd would allow a node to become candidate after applying
the first change, resulting in two leaders being elected
simultaneously. Similarly, etcd-12133 was caused by a bug
in how Etcd counted the number of pending reconfiguration
messages: the bug meant that Etcd did not consider unapplied
V2 reconfiguration commands, resulting in a split-brain
problem where two leaders are elected for the same term.
Inboth cases, Etcd’s safety invariants say that any inducing
states for a request vote message has no unapplied reconfigu-
ration commands. Thus, one might expect that we detect these
bugs when a node first sends out a request vote message. How-
ever, this is not the case: ELLSBERG does not know whether
a node has applied a reconfiguration command, since com-
mands are applied asynchronously by a background thread.
Instead, when ELLSBERG see the request vote message, it
merely infers that the reconfiguration command has been ap-
plied. However, ELLSBERG reports a bug when it later observes
that the node has transitioned to being aleader (e.g., by observ-
ing outgoing append entry messages) without having received
votes from a quorum active in the latest configuration.
etcd-7331 [24] is a bug caused by interaction between Etcd’s
linearizable read protocol and Raft’s leader election protocol
that can resultin a newly elected leader returning a stale value
inresponse toaread. When an Etcdleader receives aread-only
request, it records the current commit index, and checks that

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation 1323

it is still the leader (by sending a heartbeat or append entry
message, and waiting for responses from a quorum). However,
anewly elected leader’s commit index might be smaller than
the previous leader’s commit index. This is because while
Raft’s leader election protocol requires that the new leader’s
log contain all committed entries (and in fact be the most up-
to-date log in a quorum), it cannot guarantee that the commit
index (which leader’s update asynchronously) is up-to-date.

Furthermore, for safety, Raft does not allow a leader to
update its commit index until it has replicated an entry in the
current term [64, §5.4.2] to a quorum, ie., it can only update
the commit index to point to entries in the current term.
Consequently, a read-request handled by a newly-elected
leader might return a previous value, violating linearizability.

Etcd fixed this protocol bug in its linearizable read protocol
by requiring that leaders commit an entry in the current term
before initiating a quorum check for a read-only request.
ELLSBERG uses the same approach to detect this bug: it raises
an alarm if it sees the leader is performing a quorum check
for aread-only request (which it can detect because heartbeat
or append entry messages used for quorum checks include
arequest ID for the read request) before committing an entry.

Zookeeper-1154 [101] is data inconsistency bug, where
after leader election, nodes disagree on the log. In the leader
election protocol implemented by ZooKeeper, a node needs to
synchronize its log with all other nodes. To do so, the leader
collects the largest entry ID (ZXIDs) from each follower, and
compares the follower’s latest ZXID to the latest ZXID in its
own log. If the follower’s latest ZXID differs, then the leader
needs to first have the follower truncate its own log (to the last
ZXID on which both agree) and then send missing entries to
the follower. Similar to other protocols, ZXIDs in ZooKeeper
are monotonically increasing. When implementing the leader
election protocol, the ZooKeeper developers introduced a
bug and assumed that if the ZXID sent by the follower was
smaller than the latest ZXID in the leader’s log, then the
follower must contain a subset of the leader’s log entries. The
leader would then avoid truncating the follower’s log, and
immediately send new entries. However, this is unsafe since
the follower’s log might contain an entry that has a lower
ZXID but is not present in the leader’s log, resulting in an
inconsistent log. Our simulation detects this when the leader
sends out the DIFF message since the follower’s latest ZXID
is not contained in the leader’s log, and thus no inducing
state for the DIFF message can be reached.

RedisRaft-17 [71] is also a reconfiguration bug: Redis Raft
does not allow concurrent reconfiguration requests, and will
accept at most one reconfiguration request at a time (rejecting
the other). It considers reconfiguration to be complete once
the command has been committed to quorum. Due to a bug, it
was not checking this correctly. Detecting this bug with ErLs-
BERG was relatively simple: our inference function says that
the inducing state for a successful reconfiguration request is
one where the reconfiguration command was added to the log.

However, our transition function does not allow transitioning
into a state with two uncommitted reconfiguration requests,
and thus ELLSBERG cannot find a reachable inducing state
for the second successful reconfiguration response.
RedisRaft-19 [72] is a bug in Redis Raft’s linearizable read
implementation. Unlike Etcd-741, this bug occurs despite
nodes asserting leadership before responding to clients, and is
caused by the node being unaware of the current commitindex.
In Raft, a leader may not know what log entries were commit-
ted by the previous leader (in the previous term). Furthermore,
Raft requires that leader’s only commit entries from previous
terms after they have added an entry from the current term to
thelog [64,§5.4.2]. Therefore, linearizability might be violated
if a Raft leader respond to a read-only request before commit-
ting an entry in the current term. When writing our protocol
specification, we modeled the linearizable read-only protocol
by associating a linearization index with each read-only
request: a request’s linearization index is the log’s commit
index if the last entry committed in the current term, and is the
last log index otherwise. Furthermore, our inference function
requires that the m-inducing state for a read-only response
have committed entries up to the request’s linearization index.
Therefore, ELLSBERG flags a bug in this case, because no valid
m-inducing states exists for a non-linearizable return value.
RedisRaft Unreported. This previously unreported bug
was discovered by ELLSBERG when we ran fuzzing loops to
find bugs. The bug is due to an additional complication in
Redis Raft’s reconfiguration protocol: when adding a node,
Redis Raft first issues a reconfiguration command to add a
non-voting node that cannot participate in quorums. After
this command has been committed, Redis Raft next issues
a second reconfiguration command to switch the non-voting
node to a voting node, allowing it to participate in quorums.
However, due to a bug, Redis Raft acknowledges the client
reconfiguration request once the non-voting reconfiguration
command has been successfully replicated. Consequently,
Redis Raft reports that reconfiguration is complete before
the quorum size has grown, and thus before the cluster can
tolerate additional failures. In this case, an ill-timed failure
that occurs between the two commands can render the cluster
unavailable, despite the administrator believing that this
should not occur. Our specification models both steps of the
reconfiguration process, and flagged the bug because it ob-
served the leader acknowledging the client’s reconfiguration
request before the second step had completed.
RedisRaft-256 [73] is a reconfiguration bug related to the
unreported bug described above. This bug resulted in leader
acknowledging a client reconfiguration command that adds a
node before replicating it to a quorum, and can result in situ-
ation where the client reconfiguration command is never up-
dated. ELLSBERG alerts on this bug when it observes the leader
send a client response without having received append entry
responses from a quorum, i.e., before it has been committed.
RedisRaft-52 [74] is a bug that leads to data-loss, and is due

1324 22nd USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

8 enabled disabled disabled
4 « 3500 F
2 % 3000 -
£ & 2500
@ € 2000 -
S
2 2 L
g « 500
5 0 . . . I . 0 L
B 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Index of outgoing message Index of outgoing message
(a) Etcd (a) Etcd.
] enabled disabled disabled
%7 20F T T T = » 1200 F T T 3
o L .
2 10r 1 E 600 [B
S | 2 400 - 8
3 « 200 - 1
5 0 0 e
B 0 25 50 75 100 125 0 25 50 75 100 125
Index of outgoing message Index of outgoing message
(b) Zookeeper. (b) Zookeeper.
2 enabled disabled disabled
S 4 F T T T o9 » 160 F T
@ 35 1 o 140 +
2 30 T S 120 -
E 25+ 1 %100 1
e %) I 1 ’
5 r 1 @ r 5
S 101 1 5 40+ 5
A S R = 20fg]
£ 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Index of outgoing message Index of outgoing message
(c) Redis Raft (c) Redis Rafft.

Figure 6: apply_asap? reduces
memory requirements: graphs
show number of simulation
states |S| in a 5-node cluster with
apply_asap? disabled. (|S| = 1
when apply_asap? is enabled.)

Figure 5: apply_asap? avoids
redundant exploration: graphs show
pending messages in a 5-node cluster
after checking the n'" outgoing
message apply_asap? enabled
and disabled.

to a performance optimization implemented by Redis Raft
where the last few log entries are stored in a cache. When
anode appends an entry it adds it to both the cache and the
underlying log. When reading an entry, the node first checks
the cache, and only refers to the underlying log if it is not in
the cache. A bug in Redis Raft meant that it did not update
the cache when deleting entries from the log. However, Raft
requires to delete log entries in some scenarios, e.g., when
anew leader has to overwrite uncommitted entries. This bug
can therefore result in an inconsistent state machine replica,
which can lead to unexpected node behavior, e.g., rejecting
append entry or vote requests that it should have accepted.
We reproduced a case where an append entry request was
incorrectly rejected due to an old conflicting entry in the
cache. The ELLSBERG specification detected a divergence
when checking the append entry response and raised an alert.

E Effect of ELLSBERG’s Design Choices

Our evaluation (§6) presented end-to-end performance
results for ELLSBERG. In this appendix, we evaluate the impact
of apply_asap? and the reachable function on ELLSBERG’s
performance.

E.1 Benefits from apply_asap?

Next we evaluate the effect of using apply_asap? to
avoid redundant exploration. As we discussed in §3.4.2,
apply_asap? is used when processing incoming messages
(Listing 3 line 24) and during breadth first search (Listing 4
line 25) to reduce the number of pending messages, and the size
ofthe simulation state set S. Thisimproves find_reachable’s

CDF

f

08
06
04t
02

0
0

08 -
0.6 F
04
02

1

08
06
04
02

02 04 06 08
Fraction of pruned edges

3

. . .
0.2 0.4 0.6 08
Fraction of pruned edges

0
0

02 0.4 06 08
Fraction of pruned edges

p

(a) Etcd. (b) Zookeeper. (c) Redis.

Figure 7: CDF of fraction of edges pruned by the reachable check (Listing 4
line 22). All experiments are run on a 5-node cluster using the mixed workload.

runtime and reduces ELLSBERG’s memory requirement.

We evaluate improvements in find_reachable’s runtime
by comparing the number of pending messages when
apply_asap? is enabled to when it is disabled. In Figure 5,
we show the number of pending messages as a function
of the number of outgoing messages processed. We report
results from a 5-node cluster when running the balanced
workload, the results were similar for other workloads. We
observe that when apply_asap? is disabled, the number of
pending messages grows as ELLSBERG processes more of the
trace. By contrast, enabling apply_asap? limits the number
of pending messages: in our workloads we observe between
0 and 5 pending messages.

Using apply_asap? also reduces the number of simulation
states in S, improving both performance (results in fewer
calls to find_reachable) and memory requirements. We
evaluated this improvement by comparing the size of S as
a function of number of output messages processed with
apply_asap? enabled and disabled. Results from running a
balanced workload on a 5-node cluster, when apply_asap?
is disabled, are shown in Figure 5. When apply_asap? is
enabled, we found that S contained a single simulation state
(]S|=1). By contrast, when apply_asap? is disabled the num-
ber of states can grow large, with an average of ~444 states
for Etcd, ~478 states for Zookeeper, and ~ 43 for Redis Raft.

In sum, these results show the importance of apply_asap?
for limiting ELLSBERG’s memory usage and in achieving our
performance goals.

E.2 The reachable function’s impact

ELLSBERG uses the specification’s reachable function to
to avoid exploring schedules that cannot lead to m-inducing
simulation states (§3.4.1, Listing 4 line 22). As we explained
in §3.4.1, we need to use this function to ensure that checking
an outgoing message terminates, and we cannot turn it off.

Therefore, we evaluate the effectiveness of reachability
checks by drawing a CDF of the fraction of reachable calls
that return false (and thus prune exploration). In Figure 7, we
show results for the three DPIs running on a 5-node cluster
evaluated using the balanced workload. As one would expect,
the results depend on the protocol and implementation: prun-
ing is most efficient for Zookeeper because it assumes in-order
deliver. The in-order delivery assumption ensures that the
number of pending messages is bound by the number of nodes
and the protocol structure allows the reachable function
to prune more than 75% of possible paths. While pruning is
less effective for Etcd and Redis Raft, we observe that even in

USENIX Association

22nd USENIX Symposium on Networked Systems Design and Implementation

1325

this case, between 40-80% of calls to the reachable function
return false. These results show that while ELLSBERG can
work with specification that over-approximate reachability,
this approximation can come at a performance cost.

1326 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Current Approaches and Related Work
	Other Related Work

	Ellsberg Design
	Assumptions and Guarantees
	Running Example: Ticket Lock Service
	Definitions and Specification
	Specification

	The Ellsberg Algorithm
	Finding reachable states
	Optimizing State Exploration

	Algorithm Summary and Generality

	Writing Ellsberg Specifications
	Implementation
	Evaluation
	Setup and Workload
	Can Ellsberg detect bugs?
	Can Ellsberg be used in production?
	End-to-End Performance

	Conclusion
	Proving apply ASAP correct
	Mechanically Checking apply_asap?
	Protocol Specifications
	Specification Length
	Raft
	Zookeeper Atomic Broadcast

	Bug Descriptions
	Effect of Ellsberg's Design Choices
	Benefits from apply_asap?
	The reachable function's impact

