
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Minder: Faulty Machine Detection for Large-scale
Distributed Model Training

Yangtao Deng, Tsinghua University; Xiang Shi and Zhuo Jiang, ByteDance;
Xingjian Zhang, Tsinghua University; Lei Zhang, Zhang Zhang, Bo Li, Zuquan Song,

Hang Zhu, and Gaohong Liu, ByteDance; Fuliang Li, Northeastern University;
Shuguang Wang, Haibin Lin, and Jianxi Ye, ByteDance; Minlan Yu, Harvard University

https://www.usenix.org/conference/nsdi25/presentation/deng

Minder: Faulty Machine Detection for Large-scale Distributed Model Training

Yangtao Deng1, Xiang Shi2, Zhuo Jiang2, Xingjian Zhang1, Lei Zhang2

Zhang Zhang2, Bo Li2, Zuquan Song2, Hang Zhu2, Gaohong Liu2

Fuliang Li3, Shuguang Wang2, Haibin Lin2, Jianxi Ye2, Minlan Yu4

1Tsinghua University 2ByteDance 3Northeastern University 4Harvard University

Abstract

Large-scale distributed model training requires simultaneous
training on up to thousands of machines. Faulty machine
detection is critical when an unexpected fault occurs in a ma-
chine. From our experience, a training task can encounter two
faults per day on average, possibly leading to a halt for hours.
To address the drawbacks of the time-consuming and labor-
intensive manual scrutiny, we propose Minder, an automatic
faulty machine detector for distributed training tasks. The key
idea of Minder is to automatically and efficiently detect faulty
distinctive monitoring metric patterns, which could last for a
period before the entire training task comes to a halt. Minder
has been deployed in our production environment for over one
year, monitoring daily distributed training tasks where each
involves up to thousands of machines. In our real-world fault
detection scenarios, Minder can accurately and efficiently re-
act to faults within 3.6 seconds on average, with a precision
of 0.904 and F1-score of 0.893.

1 Introduction

Recent years have witnessed a rapid increase in dataset sizes
and the number of parameters in models, especially in Large
Language Models (LLMs). The GPT-4 model [18], an in-
stance of the Mixture-of-Experts (MoE) paradigm, demon-
strates this growth with its 1.8T parameters. Other latest mod-
els also exhibit this trend, with parameter counts exceeding
500 billion [24, 69]. The feasibility of training such exten-
sive models efficiently has been realized through large-scale
machines and GPUs [39, 40]. It has also been accompanied
by advancements in distributed model training [49, 68], high-
performance collective communication [48, 65], and fault-
tolerant techniques [36]. A system of such vast size and com-
plexity involves a huge amount of computation, communica-
tion, and storage resources as well as software support for a

The first two authors contributed equally to this paper. Zhuo Jiang and
Minlan Yu are the corresponding authors. This work was done while Yangtao
Deng and Xingjian Zhang were doing a joint research project at ByteDance.

task. Consequently, the potential for faults is high, leading to
the possibility of task failure.

Faulty machine detection thus has become a significant
bottleneck in the maintenance of distributed tasks. In our
production environment, an accidental hardware or software
fault occurs twice a day on average. The entire task may be
forced to stop for hours or days until fixed for retraining. The
economic loss for a customer can reach more than $1700 in a
128-machine task for 40 minutes (case in 2.1). Training a GPT-
2 model with 1.5 billion parameters and 40GB dataset [67], for
instance, takes 200 days utilizing an NVIDIA V100 GPU [10]
(or 12 days for a DGX-2H server). If the training process is
frequently interrupted by such faults, operating expenses and
time costs will increase significantly.

However, the current manual diagnosis method is unsat-
isfactory. Once a halted task notification is received, the en-
gineer needs to check the training parameters. Meanwhile,
engineers from the training, physical networking, storage, and
hardware teams, are also involved in diagnosis, since a fault
can occur in any machine component. Examining machine
logs and conducting offline performance tests on relevant
hardware devices are required until the fault is detected (usu-
ally for hours). Delayed notifications, incomplete log content,
and the complicated process of manual diagnosis amplify the
unpredictability of time and labor costs.

It’s necessary to design effective and accurate faulty ma-
chine detection methods that can quickly react to faults at
runtime, not only providing better reliability but also elimi-
nating manual efforts. Achieving such goals is challenging
because a machine can fail due to various types of faults.
These faults can occur in any possible component, including
hardware and software, and can be intra-host or inter-host.
Besides, the abnormal pattern of monitoring metrics varies
from task to task, making the traditional supervised anomaly
detection methods impractical, because even the same behav-
ior might be abnormal in a task with a different workload and
machine scale. Additionally, there isn’t an individual mon-
itoring metric that necessarily signals a fault. For instance,
CPU or GPU usage is the most sensitive metric for fault in-

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 505

dication, based on our observation from real production data.
However, neither one is guaranteed to identify the faulty ma-
chine for Error Correction Code (ECC) errors. If noises exist
in monitoring data, the detection may be even misguided.
Therefore, faulty machine detection for distributed training is
challenging.

Instead of creating a monolithic predictor with available
monitoring data, we developed Minder by leveraging the ideas
of similarity (3.1), continuity (3.2), training individual models
for each monitoring metric (3.3), and metric prioritization
(3.4). Minder resolves the challenges by recognizing that a
machine with a fault displays an abnormal pattern in certain
metric data that differs from other machines and lasts for a
duration. We also train individual models for data denoising.
We then track the dissimilarity between the denoised data for
each machine and monitor its duration. By repeating this to
individual metrics, the faulty machine is detected. To further
expedite detection, we prioritize metrics to identify the most
sensitive ones when a fault occurs.

We designed, implemented, and deployed Minder for all
the distributed training tasks. Minder operates without inter-
rupting the running of the training machines, only requiring
the pulling of monitoring data from the Data APIs for back-
end run-time analysis. Host metrics used by Minder cover the
aspects of computation, communication, and storage. Manual
labors are released from the debugging process since Minder
can react within 3.6 seconds (6.1), reducing over 99% of the
time of manual debugging (shorter time by 500 ×). Minder
has an overall precision and F1-score of 0.904 and 0.893.

We make the following contributions.

• An investigation of the fault types and their correlations
with various monitoring metrics (2.3). We empirically
explain why some metrics are more sensitive to faults
and outline the challenges for the detection (2.4).

• The ideas of similarity, continuity, denoising models, and
metric prioritization for the design of Minder (3, 4). Our
thorough evaluation of Minder’s implementation (5) and
and ablation experiments highlight its fast reaction, high
accuracy, and proper design choices (6).

• Lessons we encountered when deploying Minder in prac-
tical (7). We also point out future directions.

2 Motivation

2.1 Negative Impacts of Faults in Real-World
Production Environments

Once an unexpected hardware or software fault occurs in a
machine, it does harm to the entire distributed training task at
the machine level.
Faults are frequent due to the long training duration and
large scale. The relationship between a task’s machine scale
and the daily number of faults is illustrated in Figure 1. Based

N
um

be
r o

ff
au

lts

pe
r d

ay

0

2

4

6

8

10

[1,128) [128,384) [384,768) [768,1055) [1055,∞)
Machine scale of a task

Figure 1: Fault frequency of tasks with different machine
scale sizes.

1

0
0.2
0.4
0.6
0.8
1

0 100 200 300 400 500 600

C
D
F

Time (min)

Time for manual diagnosis

Figure 2: Time for task diagnosis in seven months.

on our seven-month statistics, the machine scale could sig-
nificantly exceed 1024, training on more than 10000 GPUs.
The occurrence of unexpected faults is highly correlated with
the task scale, with an average of two faults a day. If we can-
not react quickly to these incidents, such a frequent fault is a
burden for training large models.
A single fault can cause a large-scale task halt. Based on
empirical observations, a fault during the training process
often originates as a host problem (e.g., CUDA error, NVLink
error [5]). However, this issue can eventually cause a cascade
effect, leading to the entire task being interrupted or a notice-
able slowdown. For example, a hardware ECC error during
communication will make the distributed systems interrupt
(e.g., when running in PS [48] or All-reduce [65]) due to
NCCL timeout [12] or network disconnections, thereby could
resulting in more than half thousand of machines to stop and
be in idle state in the production environment.
Faults take a long time to diagnose, increasing labor and
resource costs. Based on seven-month data in 2023, the time
until the faulty machine can be manually diagnosed is shown
in Figure 2. The time lasts over half an hour on average and
can be days. It ultimately results in GPU and NIC resources
being left idle, leading to additional time costs upon resolution.
More delays can result in significantly increased costs and
time requirements for users.
An example: PCIe downgrading. We highlight a real-world
instance where a 128-machine training was forced to slow
down severely for 40 minutes due to a PCIe degradation
(PCIe is an intra-host, high-speed serial bus that connects a
variety of devices, such as graphics cards, NICs, and solid-
state drives). The faulty machine encountered PCIe degrada-
tion from 6.4Gbps to 4Gbps. The congested communication
ultimately results in the underutilization of computational
resources, where thousands of V100 GPUs were compelled to

506 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

remain slowed down for 40 minutes. Such cost wastes for cus-
tomers can be $650 for 40 minutes (given the public renting
price of $2.48 per GPU for an NVIDIA V100 [6]).

2.2 Today’s Solution and Drawbacks

A straightforward approach after an unexpected fault occurs
is inspecting the existing hardware and software logs on the
machines, as well as dmesg [2], netstat, top commands.
However, this process involves the following three limitations.
The notification of when to trigger a diagnosis is not timely.
Firstly, engineers are only alerted once the task has stopped
entirely. Certain faults will slow down the training speed in
Model FLOPs Utilization (MFU) but are not severe enough to
stop the task. The current approach fails to detect degradation
in performance as long as the task continues to run. The task
will continue running with deteriorated performance for a
period in the PCIe downgrading example.
Scrutinized content is incomplete or redundant. Upon a
fault notification, the logs or counters recorded during training
will be reviewed. The logs are typically maintained in plain
text, including built-in software-layer logs (e.g., NCCL and
CUDA logs), hardware-layer logs, and network logs. Previous
knowledge and experience guide the decision on which logs
to include and check, resulting in some log content being over-
looked. Meanwhile, logs do not include monitoring metrics
like GPU power, temperature, and NVLink bandwidth. In the
PCIe degradation case (2.1), identifying the faulty machine
was hard as critical monitoring data, like Priority-based Flow
Control (PFC) packet rates, was not promptly inspected from
the logs. Besides, the log content frequently includes redun-
dant data, such as environmental parameters and warnings.
The detection time will be lengthened.
The diagnosis analysis is a complicated and time-
consuming process. Engineers from multiple teams are in-
volved in the diagnosing process. Figure 2 presents the time-
consuming diagnosis process. It could take as long as several
days to detect the faulty machine.
Manual diagnosis procedure and fault propagation for
the PCIe downgrading case (2.1). The detection took 40
minutes in total and involved multiple teams. The engineer
in charge scrutinized model-related information, parallelism
settings [40], dependencies, environmental, and framework
(e.g., Megatron-LM [68]) parameters. Meanwhile, the net-
work team scrutinized intra-host throughput, Remote Direct
Memory Access (RDMA) traffic, packet loss/randomness,
congestion indicators, drivers, and routing. The storage and
hardware teams inspected HDFS&SSD usage, GPU&CPU
usage, NIC health, and machine scheduling.

The fault propagation initiated from PCIe downgrading
to PFC surge. The NIC buffer of the faulty machine was
filled after the PCIe degraded. The consequent bottleneck
inter-host communication caused a PFC Tx packet surge. The
congestion also raised both Explicit Congestion Notifications

(ECN) received and Congestion Notification Packets (CNP)
sent [17]. As a result, the NIC throughput across all machines
dropped from 6.5Gbps to 4.9Gbps. Reduced computation data
led to declined GPU tensor core usage [7]. Thus, the training
performance was downgraded.

2.3 Real-world Faulty Case Studies

To address the drawbacks of the manual log analysis, we first
conducted an in-depth review of the fault types that occurred
over seven months. Table 1 shows the common types of faults,
their frequencies, and the proportion of instances for each
fault type that a metric could indicate. The proportions are
determined empirically by examining the available instances
and quantifying the number that exhibited abnormal patterns
in the monitoring data following a fault. The monitoring data
contains multiple metrics and is sampled per second.

We come up with the following observations. Firstly, hard-
ware faults make up the majority of faults (55.8%), in which
ECC errors constitute a large proportion (38.9%). Errors that
happened in CUDA or GPU also make up a large proportion.
Unfortunately, these errors are hard to predict or avoid.

Moreover, each metric displays varying probabilities of
indicating a type of fault. There isn’t a single metric that ef-
fectively signals all of them. ECC error, NIC dropout, GPU
card drop, NVLink error, CUDA, and GPU execution error
strongly correlate with CPU or GPU metrics. Likewise, PCIe
downgrading, NIC dropout, and machine unreachable are
most relevant to network metrics, such as PFC and through-
put. We explain these observations from our experience. For
the CPU metric, a fault on a machine will cease the CPU pro-
cess, reducing its CPU usage. However, the other machines
retain their processes for a while, waiting for data synchro-
nization, due to the Kubernetes management, NCCL timeout
setting, and heartbeat mechanism setting with a predefined
time window. Thus, these machines maintain normal CPU
usage before the task halts. For the GPU metric, a GPU drop
or process kill during computation leads to low GPU usage.
Conversely, other machines carry on running their CUDA
kernels before the timeout and heartbeat check, maintaining
normal GPU usage. For the PFC metric, PFC signals on the
faulty machine surge abruptly when the NIC buffer is filled,
due to congestion-related network errors. Other machines ex-
hibit a low number of PFC packets. The same trend applies
to memory usage. Nonetheless, disk usage does not exhibit
significant fluctuations based on our experience. Therefore,
most fault types strongly correlate with CPU, GPU, Mem-
ory, and PCIe metrics. As an exception, AOC errors happen
on the switch or the machine-side cables. If a switch AOC
error occurs, machines connected to this switch port will be
affected instantly. Such a large scale of affected machines
can quickly propagate adverse effects to others. It is hard to
capture abnormal patterns with second-level monitoring data.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 507

Table 1: Fault types and the proportion of instances for each fault type being indicated by a metric.

Fault type Frequency of
each fault type

Metrics
CPU GPU PFC Throughput Disk Memory

Intra-host hardware
faults (55.8%)

ECC error 38.9% 80.0% 65.7% 8.6% 45.7% 11.4% 57.1%
PCIe downgrading 6.6% 0.0% 8.3% 100% 33.3% 8.3% 0.0%

NIC dropout 5.7% 100% 100% 0.0% 100% 0.0% 100%
GPU card drop 2.0% 75.0% 70.0% 5.0% 50.0% 20.0% 55.0%
NVLink error 1.7% 83.3% 50.0% 16.7% 50.0% 0.0% 66.7%

AOC error 0.9% 25.0% 25.0% 0.0% 25.0% 25.0% 25.0%
Intra-host software
faults (28.0%)

CUDA execution error 14.6% 61.9% 57.1% 19.0% 33.3% 14.3% 61.9%
GPU execution error 7.7% 50.0% 71.4% 14.3% 42.9% 21.4% 42.8%

HDFS error 5.7% 57.1% 57.1% 0.0% 14.3% 0% 14.3%
Inter-host network
faults (6.0%)

Machine unreachable 6.0% 47.4% 63.2% 0.0% 53.6% 26.3% 15.8%

Others (10.3%) - 10.3% - - - - - -
Note: the introduction of each fault type is in Appendix A.

2.4 Challenges

Based on the observations, we discovered that the following
challenges must be addressed:
Challenge 1: Any machine could fail in various ways. Ad-
vanced machines, such as Nvidia DGX-A100 [11], incorpo-
rate as many as 8 Nvidia A100 GPUs and 4 Mellanox 200
Gb/s RDMA NICs (RNIC), all of which are potential fault
points. As presented in Table 1, a fault could happen from
intra-host computation, and communication, to inter-host net-
works, or from hardware (GPU, CPU, PCIe, NVLink, RNIC,
memory, and disk) to software communication libraries (e.g.,
NCCL), and training frameworks (e.g., CUDA). It is hard to
detect a faulty machine under all the unknown circumstances.
Challenge 2: The normal state of a monitoring metric is
task-dependent. Training tasks have various machine scales,
data sizes, models, and training frameworks. Thus, a mon-
itoring metric may have different normal states for various
tasks. For instance, a GPU temperature of 70 degrees Celsius
is abnormal where GPU clock frequency is 1350MHz, but is
regarded as normal in a task where GPUs work with a high
clock frequency of 1800MHz. Traditional supervised anomaly
detection is inappropriate for differentiating between normal
and faulty machine states because the same input monitoring
data can be labeled as either normal or abnormal.
Challenge 3: The correlation between fault types and mon-
itoring metrics is not necessarily one-to-one. On one hand,
a metric anomaly may be caused by various fault types. For
example, a decrease in CPU usage could be caused by ECC
error, NVLink error, and other faults. On the other hand, for a
fault type, there isn’t a single metric that necessarily signals
it. As an example in Table 1, ECC errors could potentially be
noticed by either CPU or GPU usage of the faulty machine,
yet neither metric guarantees nor necessarily both. Thus, a
single fault type can be manifested via multiple abnormal
metrics, with no solitary metric providing a guaranteed in-
dication. Instead, the metrics exhibit an "or" correlation for
a fault type. Consequently, we cannot simply use a model

1

0
2
4
6
8
10

0 5 10 15 20 25 30

Lo
g

(P
FC

 tx
pa

ck
et

ra

te
) (

pp
s)

Time (min)

Abnormal PFCNormal PFC

Fault Occurs

Figure 3: PFC tx packet rate pattern for each machine before
and after a fault occurs.

that incorporates the data from all metrics. Rather, we use
individual per-metric models for detection (analysis in 6.3).

Challenge 4: Noises exist in time series monitoring data.
The monitoring data inevitably consists of noises due to jitters,
inaccurate sensors, temperature, timestamp misalignment, net-
work interruptions, or other issues. Short-term noises will
mislead us to regard a machine as the faulty one, resulting
in extra time and labor burden. Thus, the raw data cannot be
used directly for detection (analysis in 6.3).

3 Design Overview

In this section, we introduce four design choices to address
the challenges, revolving around Minder: an automatic, re-
sponsive, and accurate watcher to detect the machine with
an unpredicted fault during distributed training that leads to
a task halt. We examine the dissimilarity (3.1) among ma-
chines. Then we evaluate the continuity (3.2) of the detected
faulty machine candidate for filtering out bursty jitters. Since
metric data contains noises, we use models to denoise and
reconstruct the raw data. Specifically, individual models corre-
sponding to various monitoring metrics are trained, instead of
integrating them into a single model (3.3). We also prioritize
the metrics (3.4). The faulty machine can be detected swiftly
by the top-prioritized metrics and corresponding models.

508 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3.1 Machine-level Similarity

To address challenges 1 and 2, we notice that machine-level
metric data exhibit similar behavior in parallel distributed
training [68] at the second level.

Data parallelism (DP) operates by splitting data equally
among GPUs that store duplicate model parameters and opti-
mizer states. Pipeline parallelism (PP) assigns model layers
to multiple GPUs in a pipelined manner. In tensor parallelism
(TP), each GPU executes a portion of a computation process
to improve hardware utilization in parallel.

By integrating these techniques into a 3D parallelism frame-
work, large-scale model training, such as LLM training [40]
or multi-modal training, can be effectively facilitated. TP is
typically constrained within a single machine, whereas DP or
PP groups involve inter-host communications. The computa-
tion, storage, and communication loads are evenly balanced
across machines at the second level. Therefore, similar moni-
toring data fluctuations will be observed across machines. In
the PCIe downgrading example, the initial PFC Tx Packet
Rate patterns are notably uniform for all the machines in
Figure 3. However, if a machine undergoes a fault, its mon-
itoring data will display distinctive differences, offering an
opportunity for detection. This principle can be extended to
other metrics, as demonstrated by the possibilities offered in
Table 1. Hence, the denoised metric data from each machine
is used for calculating the similarity with others. The machine
identified with the longest "distance" from others could be
assumed to be faulty, regardless of the fault type.

Why not use a supervised learning model for faulty
machine detection? Unlike many supervised learning-based
anomaly detection approaches [21, 27, 45, 53], Minder uses
unsupervised learning and similarity-based distance check,
due to the different problem contexts. Firstly, labeling the
data as normal or abnormal is impractical. As mentioned in
challenge 2, the abnormal pattern is task-dependent. Different
tasks present different normal ranges for the same monitoring
metric under varying working conditions. Secondly, our ob-
jective is to identify which machine is to be blamed for the
unexpected fault. This is not merely a classification problem
of distinguishing normal or abnormal cases. Thus, developing
a universal model via supervised training is challenging.

3.2 Machine-level Continuity

To further tackle challenge 2, we utilize the notion of abnor-
mality continuity. Typically, abnormal performance persists
for a few minutes upon a fault, but jitters typically last for a
short duration. As illustrated in Figure 3, the machine with
PCIe degradation experienced significantly higher PFC Tx
Packet Rate for a period compared to other machines. By
inspecting fault instances from seven-month data in 2023,
the duration of abnormal performance after a fault occurs is
depicted in Figure 4. Most abnormal patterns last for over five

1

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25 30

C
D
F

Time (min)

Duration of abnormal performance

Figure 4: Duration of abnormal performance following a fault.

minutes. Thus, if we recognize a machine displaying such
dissimilarity continuously for a period, the machine may be
faulty. In the case of raw data containing bursty noises, they
will be filtered out (as analyzed in 6.4).

3.3 Individual Learning-Based Denoising
Models for Each Monitoring Metric

For challenge 4, we utilize simple learning models for data
denoising and reconstruction, in addition to basic data align-
ment and normalization. Variational autoencoder (VAE) and
other generative probabilistic models are recognized for learn-
ing time-series data patterns and features [52, 70]. They are
also known for learning embedding schemes that can infer the
generation factors for most of the training data. This makes
unsupervised learning particularly suited for modeling nor-
mal behavior in an anomaly detection task. As such, raw data
is denoised and reconstructed by our learning-based models
before being fed into further detection (as analyzed in 6.3).

Meanwhile, based on challenge 3, no single metric provides
a guaranteed indication for a specific fault type. The indication
probability by a metric varies across different types of faults.
For this reason, we opt for training individual models for each
monitoring metric. These models and their corresponding
metric data are used independently for denoising, similarity,
and continuity detection.

We do not merge all potential metrics into a single model
for two main reasons. First, the time series of multiple metrics
do not fluctuate in the same manner when a fault arises. More-
over, metrics’ indication capacity differs even for a particular
fault type, and one metric’s capability varies across different
types. As a result, integrating them into one model could lead
to the model being misdirected or confused by the array of
metrics (as analyzed in 6.3).

3.4 Prioritized Metric Sequence

To expedite detection, we prioritize metrics and only use
the models of the top ones, since plenty of metrics (in Ap-
pendix B) could be collected and each could be trained with a
model. This ensures we use the metrics with higher indication
probabilities earlier. The faulty machine could therefore be
detected sooner. If a model and its associated metric data can-
not detect a faulty machine, we then move to the next metric

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 509

Monitoring Data Preprocessing (4.1)

Per-metric Model
Training (4.2)

Online Faulty Machine Detection (4.4)

Similarity-based
distance check Continuity check

Monitoring Metric
Prioritization (4.3)

detected faulty machine

Detection

prioritization
resultsmodels

Figure 5: System architecture of Minder.

and its model, following the prioritization result. We repeat
this process until a faulty machine is identified.

4 Minder Framework
The architecture of Minder is shown in Figure 5. Prepro-
cessing (4.1) is required for raw data from each machine.
Per-metric Model Training (4.2) and Monitoring Metric Pri-
oritization (4.3) will train models and prioritize the metrics in
their sensitivity to faults respectively, as two independent pro-
cesses. The models and prioritization results are then used in
Online Faulty Machine Detection (4.4) for run-time detection.

4.1 Preprocessing
Given a stream of monitoring data from each machine, Minder
needs to aggregate them into a series of time windows. Within
each window, Minder can do data denoising and machine-
level similarity check on a set of metrics. By checking the
anomaly continuity from consecutive time windows, Minder
detects the faulty machine.

Thus, Minder preprocesses the collected monitoring data if
it lacks alignment among certain metrics. Minder first aligns
the sampling points across all machines based on the corre-
sponding sampling timestamps. If sample points are missed,
Minder uses data from the nearest sampling time for padding.

Normalization is adopted to ensure that the multi-
dimensional monitoring data is integrated into an even dis-
tribution. Minder normalizes the monitoring data based on
the upper and lower limits of each metric, using the Min-Max
normalization technique.

4.2 Per-metric Model Training
As specified in 3.3, we train models for the learning-based de-
noising and reconstruction for subsequent detection. Since no
single metric provides a guaranteed indication and a model in-
corporating various metrics might be misdirected, individual
models should be trained for each metric.

The preprocessed per-machine data within a time window
is used as input instances to train an unsupervised model. For

1

En
co

de
r

q(z|x)
…

x1 x2 xn

D
ecoder

p(x'1|z)

…

…

x'1 x'2 x'n

p(x'2|z) p(x'n|z)LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

…

z
LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input monitoring data

Reconstructed data

Figure 6: The LSTM-VAE structure for Minder.

example, to train a model for CPU Usage, we use CPU Usage
sample data within a time window with a length of w (e.g.,
8) and a stride of 1 from each machine of the task. Multiple
1×w vectors are fed into the model respectively for training.
Models for CPU Usage, PFC Packet Rates, and so on are
individually trained. The parameters in the model include
hidden_size (e.g., 4), latent_size (e.g., 8), and lstm_layer
(e.g., 1). With a model, the time series input of a monitoring
metric from a machine could be reconstructed as a denoised
vector for this machine.
Training choice: LSTM-VAE. Specifically, VAE models are
trained for Minder. VAE is widely used for denoising [70]
and compression of high-dimensional features [71], where
normal vectors will be reconstructed into similar embeddings
while abnormal ones will be reshaped into a more distinctive
outlier. This highly effective unsupervised DL technique can
reconstruct time series inputs into an arbitrary latent repre-
sentation without sacrificing original characteristics. Conse-
quently, VAE can enhance the accuracy and robustness of
anomaly detection where labeling is absent [78]. When the
input consists mainly of normal training state vectors and only
a small proportion corresponds to a faulty period, the VAE
learns the vector distribution and denoises the jitters.

As depicted in Figure 6, the VAE comprises an encoder and
a decoder. The encoder extracts temporal features into a latent
space embedding z. Subsequently, the decoder utilizes z to
restore the data to a new dimension output as a reconstruction
of the distribution. Various statistical or machine learning
techniques can be employed in the encoder and decoder to
determine the optimal distributions. Given that our data is
temporal time series, we utilize LSTM as both the encoder
and decoder to extract temporal characteristics [52]. LSTM
considers both forward and backward information of a time
series to obtain complete correspondence information. As
such, LSTM is an ideal choice for VAE.

4.3 Monitoring Metric Prioritization
As introduced in 3.4, we aim to use only the most repre-
sentative metrics and their models for quick faulty machine
detection. Given a large number of metrics, pinpointing the
metrics more sensitive to faults is critical. By using the top
prioritized metrics and their associated models first, the faulty

510 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

machine will be detected more quickly.
Consequently, following the steps below, Minder will gen-

erate a prioritized list of metrics by their sensitivity to faults.
The prioritization results can then be used in run-time de-
tection, specifying which metrics and their models should
be used first. Note that this process runs in parallel with the
model training process in 4.2.
Step 1: Z-score calculation for evaluating metric sensitiv-
ity to faults. To identify the most sensitive metrics, Minder
utilizes the Z-score [23], because it depicts the dispersion of
data distribution. A metric with a higher Z-score relates to
an imbalanced distribution, where a faulty machine shows a
dissimilar pattern from others. For a monitoring metric, the Z-
score is computed for each machine at a sampling data point
from the preprocessed data. For the j-th monitoring metric:

Zi j =
xi j − x̄ j

s j

where Zi j is the Z-score of the i-th machine, xi j is the sample
value of the i-th machine, while x̄ j and s j are the average value
and the standard deviation of all machines on the j-th metric.
When a fault occurs, the affected machine exhibits abnormal
behavior, leading to outlier samples with high Z-scores.

For a time window of a training task, we use max(Zi j)
across all the machines for the j-th monitoring metric, indi-
cating the extent of the dispersion among machines.
Step 2: Prioritization of the monitoring metrics. Based on
the maximum Z-score for each monitoring metric, Minder
uses a decision tree [32, 60] to prioritize the sensitivity of
each metric in identifying the faulty machine. We resort to
a decision tree for two primary reasons. Firstly, the logical
structure of decision trees bears a resemblance to rule-based
policies that are common in networking monitoring systems.
For example, certain monitors utilize simple threshold rules,
such as when CPU Usage drops to nearly zero [83]. Secondly,
decision trees offer high expressiveness and faithfulness, at-
tributed to their lack of parameters and the ability to represent
complex decision-making [22].

To construct a decision tree, Minder gathers the maximum
Z-score for each metric from step 1 as an individual instance
for the time window of the training task. The instance is la-
beled manually as normal or abnormal depending on whether
a faulty machine exists within this window. Instances across
multiple time windows and multiple training tasks are used
together to train a decision tree.

As shown in Figure 7, monitoring metrics are prioritized
based on their sensitivity to faults. The decision tree employs
a step-by-step approach to classify the instances by analyzing
the Z-scores of each metric. Nodes located closer to the root
of the tree indicate that the corresponding monitoring metrics
are more sensitive to the occurrence of a faulty machine. PFC,
CPU, GPU, and NVLink-related metrics are identified as the
most informative ones. Specifically, CPU Usage is relevant
to running process states, while the four GPU metrics relate

Z-score(PFC Tx
Packet Rate)

AbnormalZ-score(CPU Usage)

AbnormalZ-score(GPU
Duty Cycle)

AbnormalZ-score(GPU
Power Draw)

AbnormalZ-score(GPU
Graphics Engine

Activity)

Z-score(GPU
Tensor Activity)

Abnormal

Z-score(NVLink
Bandwidth)

Abnormal

Inter-host network (PFC)

Central processing (CPU)

Computation
(GPU)

Intra-host
network
(NVLink)

low high

low high

highlow

highlow

highlow

highlow

Figure 7: Top 7 layers of the decision tree for prioritization.

to the computation states. Additionally, NVLink Bandwidth
and PFC Packet Rates are indicative of intra-host and inter-
host network quality. The outcome aligns with Table 1, where
CPU and GPU enjoy the highest priority.

4.4 Online Faulty Machine Detection

During run-time detection, Minder leverages the concepts of
machine-level similarity (3.1) and continuity (3.2), since the
faulty machine tends to exhibit an abnormal pattern over a
period. Given the data from each machine, Minder follows
the order of the decision tree prioritization results and selects
a metric. The metric data is then denoised by the correlated
model. Minder then runs step 1&2 introduced below for de-
tection. If none is detected, Minder picks the next metric and
repeats step 1&2 until one is detected. Fortunately, if no one
is detected after passing all the models, Minder assumes no
anomaly occurs up to this time.
Step 1: Similarity-based distance check per time window.
To detect a faulty machine during a time window, Minder
compares the similarity (3.1) among all the machines for the
same metric. In the presence of a faulty machine, its denoised
data from LSTM-VAE is distinguishable from others.

To initiate the detection for a time window, the monitoring
data from each machine (e.g., a 1×w vector for a machine)
is fed into the corresponding model successively. The recon-
structed embedding for the i-th machine is captured by Minder
for the following distance calculation. Specifically, Minder
calculates the pairwise Euclidean distances of embeddings
between every two machines, as it expresses distinct differ-
ences between normal and abnormal samples and provides
characterizations of various record types [76]. For each ma-
chine, Minder calculates the sum of the distances to other
machines, representing its dissimilarity. Since the distance
magnitude shifts with machine scales, we calculate the nor-
mal score for each sum value of the machines to normalize.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 511

The machine with the maximum normal score is probably
the faulty one. If the maximum normal score is higher than a
similarity threshold, the machine is assumed as a candidate
of the time window.
Step 2: Continuity check for consecutive time windows.
The detected candidate of a time window might be a false
alarm due to instant bursts or temporary counter noises, so
the idea of continuity (3.2) is essential. This is because faults
often lead to deteriorated performance for a period. Minder
shifts the time window with a stride of one to detect the
potentially faulty machine for new windows. If the same
machine is detected with consecutive times that exceed a
continuity threshold, it is considered a truly faulty machine.
A proper continuity threshold can be set as 4 minutes as it is
adequate to filter out short-term noises and will not exceed the
typical lasting time of a deteriorated performance in Figure 3.

5 Implementation

Minder has been deployed in our ML system for a year. It
runs on a dedicated machine with two dual-port ConnextX-6
25G-RNICs [9], 128 Intel Xeon Platinum 8336C CPUs, 512G
memory, and 1.6T disk. The high-speed RNICs ensure the
fast transmission of monitoring data, while computation and
storage resources are adequate for real-time detection.

Minder monitors all the ongoing training tasks throughout
their life cycles in our production environment. For a task,
Minder is called at pre-determined intervals (e.g., every 8
minutes). Upon a call, Minder pulls 15-minute data for the
metrics listed in Appendix B from a database for all machines
associated with the task. The metrics cover aspects of com-
putation, communication, and storage. The database updates
monitoring data per second from all the machines. If Minder
identifies a faulty machine, an alert is triggered to a driver and
relevant engineers. After the driver submits the machine IP to
be blocked and the Pod information to Kubernetes, the faulty
machine will be evicted and replaced by a new one, before a
fast recovery from recent checkpoints [40]. Importantly, the
running of Minder will not interfere with online distributed
training tasks, as Minder works as a backend service.
Task workload. The monitored training tasks are distributed
across four to over 1000 machines, with GPU numbers up
to more than 10000 for a task. Concurrent tasks could be
monitored by Minder. Each task is running on machines of
homogeneous GPU and RNIC architectures on rail-optimized
topology with up to three layers of switches. TP for com-
putation, PP for gradient calculation and propagation, and
DP that performs gradient synchronization are efficiently
used for our LLM pre-training. These 3D parallelism strate-
gies [40, 68] (3.1) facilitate balanced computation (GPU us-
age, power, temperature etc.), storage (memory usage etc.),
and communication (intra-host and inter-host throughput)
across machines. Models trained in our ML system include

0
2
4
6
8
10

0 50 100 150 200 250 300 350 400 450 500

Ti
m
e
(s
)

Task index

Time in total
Data pulling time
Processing time

Figure 8: The total data processing time for a call of Minder.

0.904 0.883 0.893

0.788 0.767 0.777

0.6
0.7
0.8
0.9
1

Precision Recall F1-score

Sc
or
e

Minder MD

Figure 9: Comparison with a baseline algorithm MD [30, 46].

the Transformer [74] and so on. The model sizes range from
under 32B to over 500B.

6 Evaluation
Dataset. Our dataset includes 150 run-time fault instances
from online distributed training tasks with 3D parallelism [40].
The dataset includes instances over nine months. Each task
involves 4 to over 1500 machines (up to 10,000 NVIDIA Am-
pere GPUs), covering all the scale groups in Figure 1. 30% of
the tasks involve a minimum of 600 machines. All fault types
listed in Table 1 are covered. The dominant ones are ECC
error (25.7%), CUDA execution error (15%), GPU execution
error (10%), and PCIe downgrading (8.6%). Our dataset fo-
cuses on faults in an individual machine, as they account for
99% of all faulty cases in the production environment (6.6
for concurrent faulty machine evaluation). The monitoring
metrics in Appendix B were collected at the second-level
granularity. Due to the fast eviction and recovery process,
verifying whether all evicted machines are faulty is challeng-
ing. Consequently, our dataset encompasses the run-time in-
stances where the actual faulty machine could be manually
confirmed via offline log-checking, nccl-tests, or hardware
tests (e.g., [55]). For LSTM-VAE training, we use data from
the first three months and the rest for evaluation.
Metrics. For a task, we denote true positives (TP) as the cor-
rect machine detection following a fault, and false negatives
(FN) as errors in machine detection or missed detections dur-
ing a fault. True negatives (TN) refer to the correct approvals
when machines are running normally, while false positives
(FP) refer to false detections when there is no fault. Then we
calculate Precision, Recall, and F1-score as our metrics.

6.1 Overall Performance
Total data processing time. In Figure 8, a call of Minder
takes 3.6 seconds on average to make an alert. It includes
data pulling time (fetching the pertinent monitoring data from

512 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0
0.2
0.4
0.6
0.8

1

Precision Recall F1-score

Sc
or

e

ECC error CUDA execution error GPU card drop GPU execution error Machine unreachable
PCIe downgrading NVLink error AOC error HDFS error NIC hardware error

Figure 10: Accuracy for various fault types.

Data APIs) and processing time (preprocessing, and running
inference for faulty machine detection). Due to Minder’s de-
ployment on an exclusive machine, it reduces the time by 99%
(shorter time by 500 × compared with Figure 2) if engineers
otherwise manually inspect machine information one by one.
Comparison with the baseline. The baseline for comparison
is Mahalanobis Distance (MD) [30, 46, 57]. MD is widely
used in identifying outliers. It considers the variable correla-
tions in multi-dimensional data and calculates features like
mean, variance, skewness, and kurtosis before applying prin-
ciple component analysis (PCA) and computing the pairwise
distances. We keep other processes the same for comparison.

In Figure 9, the precisions are 0.904&0.788, with recalls
of 0.883&0.767, leading to F-1 scores of 0.893&0.777 for
Minder and MD. These findings demonstrate that Minder
effectively detects actual faults and lowers the rate of false
alarms. MD detects the outlier machine from the statistical
perspective but exhibits lower accuracy, indicating that jitters
and noises interfere with statistical features. Minder outper-
forms MD by using LSTM-VAE for denoising and extracting
the data patterns for a better distance calculation.
Performance breakdown with fault types. By considering
individual fault types in Table 1, the results slightly differ. In
Figure 10, Minder effectively handles faults like ECC error,
CUDA execution error, GPU card drop, machine unreachable,
NVLink error, HDFS error, and NIC hardware error. These
faults are relative to CPU, GPU states, and networking per-
formances that Minder monitors.

GPU execution error and PCIe downgrading present a
lower recall, since some faulty instances have concurrent
faulty GPUs or PCIe links within a machine. Owing to the
3D parallel topology, faults swiftly impact multiple machines
in both the DP and PP groups, leading to an instant group
effect. Thus, the time-series granularity at the second level
is insufficient for Minder. Other fault types, such as AOC
errors, are partially missed due to the current absence of op-
tical cable-related counters for capturing useful monitoring
metrics. We will continue to have more hardware counters in
the future. Overall, AOC errors occupy only a small portion,
so the overall accuracy is still high.

Upon examining the errors made by Minder, most of them
were not entirely incorrect. In many error cases, the machine
incorrectly detected showed short-term metric fluctuations or
performance jitters before being normalized afterward. These
detected fluctuations, however, were not the root cause of the

0
0.2
0.4
0.6
0.8

1

Precision Recall F-score

Sc
or
e

[1,2] (2, 5] (5, 8] (8, 11] (11, ∞) Overall

Number of faults of a task’s lifecycleFigure 11: Accuracy for tasks with varied lifecycle fault oc-
currences.

task halt. Nonetheless, these errors should not be ignored as
they led to short-term jitters in the training performance.
Performance breakdown by fault occurrences of a task’s
lifetime. Training tasks with various workloads experience
distinct occurrences of faults. Figure 11 categorizes the per-
formance relative to the fault numbers throughout a task’s
lifetime, which may span up to months for extensive work-
loads. In our dataset, 70% of the tasks display no more than
five faults, whereas over 15% face more than eight faults
throughout their lifetime. Given the lack of interdependence
among individual faults, the accuracy is not tied to the fault
occurrences. Since faults are random and a faulty machine
will be promptly auto-replaced in the production environment,
the fault occurrences do not affect performance. Despite the
lower recall for the (8, 11] group, it primarily originates from
the limited task number of this group.

6.2 Analysis of Monitoring Metric Selection
To validate the proper selection of monitoring metrics in (4.3),
we conduct experiments to show that fewer or more met-
rics do not improve accuracy. Notably, most of the remain-
ing metrics not used by Minder are GPU-related, including
GPU Temperature, GPU Clocks, GPU Memory Bandwidth
Usage, and GPU FP Engine Activity. Thus, we use only
GPU Duty Cycle to train a GPU model with fewer metrics,
while adding these unused GPU-related monitoring metrics
to train a GPU model with more metrics. We keep the other
settings unchanged for the comparison.

Figure 12 reveals that including more monitoring metrics
achieves a higher recall, but its precision is lower. More met-
rics may introduce mutual interference, since different met-
rics may indicate different patterns that will obfuscate the
detection. On the other hand, using fewer metrics undermines
outlier detection capacity due to the exclusion of key metrics.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 513

0.904 0.883 0.893

0.806
0.862 0.833

0.866 0.887 0.876

0.6
0.7
0.8
0.9

1

Precision Recall F1-score

Sc
or
e

Minder Fewer metrics More metrics

Figure 12: Comparison with different metric selections.

0.6
0.7
0.8
0.9
1

Precision Recall F1-score

Sc
or
e

Minder RAW CON INT

Figure 13: Comparison with different model selections.

Our optimal selection of metrics achieves the best precision,
meaning that Minder alerts far fewer false alarms than others.
Based on the metric priority result (4.3), the top metrics are
sufficient to cover all components that might malfunction.

6.3 Analysis of Model Selection
We contrast Minder against other statistical methods or model
variations to show the proper choice of LSTM-VAE. A sim-
ple approach is calculating the Euclidean Distances of the
preprocessed raw data (RAW) without using VAE. Variants
of LSTM-VAE include concatenating the embeddings of all
the models as a whole for distance calculation (CON) or train-
ing an integrated LSTM-VAE model with all the monitoring
metrics (INT).

In Figure 13, Minder outperforms others in recall and F1-
score. Their recalls vary. Worse recall generated by RAW il-
lustrates the significance of eliminating noises. Minder, in con-
trast, reconstructs for denoising. CON and INT show worse
recall because they consider multiple metrics with equal sig-
nificance by calculating distances from evenly concatenated
embeddings or regarding all the metrics as a whole for input.
However, not all monitoring metrics have an equal sensitivity
to faults. Mutual interference exacerbates the performance of
CON and INT. Minder, on the other hand, leverages the VAE
for denoising and separates metrics to enhance the perfor-
mance. Besides, comparing the input and reconstructed data
of LSTM-VAE yields a Mean Squared Error (MSE) lower
than 0.0001, demonstrating effective reconstruction.

6.4 Analysis of Continuity and Threshold
To verify the feasibility of continuous detection, we compare
Minder without the application of continuity (3.2). Minder
ensures the same machine is detected multiple times. Without
continuity, an alert will be made immediately upon a fault
detection during the time window. The results in Figure 14 im-
ply that the overall performance is worse without continuity.

0.904 0.883 0.893

0.757 0.777 0.767

0.6
0.7
0.8
0.9

1

Precision Recall F1-score

Sc
or
e

Minder Minder without continuity

Figure 14: Accuracy with/without continuity.

0.904 0.883 0.893 0.902
0.867 0.884 0.888 0.881 0.884

0.6
0.7
0.8
0.9
1

Precision Recall F1-score

Sc
or
e

Minder MhtD ChD

Figure 15: Comparison with different distance measures.

More false alarms are triggered due to occasional short-term
jitters. The continuity emphasizes the degraded performance
for a period caused by a fault’s gradual impact on other ma-
chines. Thus, Minder filters discrete bugs, noises, or jitters.

Note that we set the continuity threshold (4.4) as four min-
utes to reduce false alarms caused by jitters or noises. That
means Minder only alerts when a detected machine endures
dissimilarity for four minutes. The threshold is chosen em-
pirically based on the fault duration in Figure 4. Most of the
faults last longer than four minutes before the halt. A shorter
continuity threshold introduces more false alarms, while a
longer one excludes more actual faulty detection results.

6.5 Choice of Distance Measures
We compare Minder ’s pair-wise Euclidean Distance algo-
rithm with Manhattan Distance (MhtD) and Chebyshev Dis-
tance (ChD). MhtD adds up the absolute distances from each
dimension of the embeddings while ChD uses the largest dif-
ference in their coordinates. We replace the distance algorithm
to rerun the experiments.

In Figure 15, Minder achieves similar performance to oth-
ers, suggesting that the embeddings from LSTM-VAE are
already representative and the outlier is distinctive for any dis-
tance calculation method. The comparison with MhtD implies
that spatial distribution is a solid representation because both
methods use the distances of multiple dimensions. ChD’s
worse precision suggests that a single spatial difference is
insufficient for comparing dissimilarity. Minder considers the
overall distance from the outlier to other normal ones and the
dissimilarity will be intensified by summing the distances.

6.6 Performance with Multiple Concurrent
Faulty Machines

Analyzing Minder’s ability to handle multiple faults is intu-
itive. Such detection capability largely depends on the faulty
machine scale ratio and the granularity of monitoring data.

514 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Given the 3D parallelism [40], a machine participates in mul-
tiple DP and PP groups. More faulty machines impact more
groups, inducing faster negative propagation across the en-
tire cluster. The data granularity determines the visibility
of the propagation process. With a brief duration of less
than 100 milliseconds per interaction, the dissimilar pattern
may be overlooked due to coarse-grained monitoring. Yet,
millisecond-level monitoring is not widely deployed due to
the high overhead.

In our production environment, concurrent faulty machine
instances only occur due to automatic switch reboots or
switch-related AOC errors. A switch reboots in response to
high temperatures, extreme port congestion, and so on. Thirty-
two connected machines will be forced to go offline out of a
total of 600 machines in our environment. However, Minder
hardly distinguishes the faulty outliers. Firstly, the fault ratio
is relatively high. Given our rail-optimized topology and 3D
parallelism mechanism, communication among 32 machines
contains at most 256 DP groups, quickly propagating across
other machines. Moreover, the current second-level time gran-
ularity monitoring limits Minder’s ability. The rapid spread
is only observable at the millisecond level following several
training interactions. However, the rate of such multiple faulty
machine instances is less than 1%, sometimes zero a month.
Should a switch reboot, the switch monitoring system will
automatically alert the engineers.

To demonstrate Minder’s ability to detect multiple faulty
machines, we injected PCIe downgrading into two of four
machines simultaneously, with customized millisecond-level
monitoring. Thus, the ratio of faulty machines is higher
and the data granularity is finer than the switch-reboot in-
stance. In the experiment, each machine was equipped with
eight NVIDIA Ampere GPUs, running Reduce-Scatter col-
lectively. Two PCIe links on two machines were purposely
degraded. With the millisecond-level data from the NICs, Min-
der could detect the two NICs connected to the faulty PCIe
links. These two NICs presented the largest outlier distances
during Reduce-Scatter. Figure 16 shows the millisecond-level
monitoring, where normal NICs demonstrate a high through-
put at the beginning of each Reduce-Scatter step to transmit
their data to the next node. In contrast, the NICs with down-
graded PCIe links exhibit steady and low throughput. There-
after, normal ones drop to zero, after transmitting their data,
waiting for the slow NICs for synchronization. Minder can
capture this dissimilarity, thanks to the granularity of millisec-
onds. Our injection experiments also show Minder’s ability to
detect other concurrent faults, such as GPU degradation and
NIC throughput downgrading.

7 Discussion
In this section, we discuss the lessons we learned during
implementation and potential future works.
Minder and other monitoring tools. Large-scale model
training involves the cooperative efforts of multiple teams.

1

0

80

160

240

0 2000 4000 6000 8000 10000 12000 14000N
IC

 th
ro

ug
hp

ut

(G
B

ps
)

Time (ms)

Multiple
Abnormal NICsNormal NICs

One Step of
Reduce-Scatter

One Step of
Reduce-Scatter

Figure 16: Millisecond-level NIC throughput for all machines
after injection of PCIe downgrading on two NICs.

Other monitoring tools used along with Minder include switch
state monitoring, periodic heartbeat messages (IP, hardware
states, Pod names etc.), RDMA traffic down-limit alerts, R-
Pingmesh [54] (a pingmesh-like [33] connection testing), and
automatic text analysis for GPU error detection. As described
in 5, a detected machine will be replaced before restarting the
task. These approaches primarily target network connection
and jitters or GPU states, whereas Minder provides metrics
covering computation, storage, and communication resources.
The combined use of them enhances the detection efficacy.
Meanwhile, offline testing tools, such as DCGM [1], EUD [3],
are used for intra-host bottlenecks diagnosis, though not fea-
sible for run-time fault identification.

Similar systems and tools are introduced. For example,
SuperBench [77] is a proactive system to ensure cloud AI
infrastructure reliability. It runs model training and compo-
nent benchmarks to identify incremental performance degra-
dation on defective machines. The first difference is that it
works proactively because incremental performance degra-
dation exists due to hardware redundancy. However, such
gradual degradation process before a fault occurs is hardly ob-
served in our distributed training. Second, SuperBench mainly
improves the hardware-side reliability. Real-time software
errors also occur frequently during model training. Besides,
SuperBench performs offline validation by running bench-
marks. Minder otherwise monitors the tasks throughout their
life cycles. Thus, the integration of such a proactive system
with Minder is a more promising debugging solution. By exe-
cuting benchmarks on the machines in a job and monitoring
their running status, faults might be largely prevented and
rapidly detected.
Minder’s Generality. Minder can be extended in data gran-
ularity and the spectrum of available metrics. Second-level
monitoring is currently deployed and used by Minder. Minder
has demonstrated improved detection capability for concur-
rent faulty machines with millisecond-level monitoring data in
6.6. With finer-grained data, the annihilated rapid propagation
from the straggler will be revealed, as a training iteration only
lasts tens of milliseconds. Besides, the currently available
metrics for Minder are out-of-band hardware counters. Other
metrics (e.g., AOC counters) and in-band traces (Torch Pro-
filer [16], the Megatron-LM timer, or CUDA event timer [40])
could also be utilized by Minder. These new traces offer

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 515

fine-grained training and collective communication operation
information for comprehensive performance monitoring.
Minder’s robustness of other faults. Notably, Minder is al-
lowed to detect new or rare fault types not covered in training,
as long as the monitoring data presents discernible dissim-
ilarities. For concurrent faulty machines, provided multiple
machines present a distinctive dissimilarity, Minder can detect
them simultaneously.
Machine-level similarity. Large models such as those in
LLM training and multi-modal tasks often employ 3D par-
allelism. This results in a trend of consistency across ma-
chines for computation, communication, and storage, allow-
ing Minder to detect faulty machines. As a result, we focus
on machine-level detection instead of finer granularity. We
also consider Minder in other workloads, such as large-scale
inference and fine-tuning. As long as these workloads satisfy
the requirements of inter-machine metric similarity and fault
continuity, Minder could be applied. Future work will explore
Minder’s effectiveness in other workloads.
Not all failed tasks have the right label. Although the la-
beled machine is the root cause, the Minder-detected machine
may also have temporary performance fluctuations. It is nec-
essary to inform engineers of such performance jitters.
Root cause analysis. Minder detects faults at the machine
level. The root cause for a fault indicated by a metric is un-
certain. Extra labor is employed for further network jitter and
short-term straggler analysis. In the future, we plan to design
fine-grained run-time monitoring for root cause identification.

8 Related Work

In this section, we briefly introduce related works on anomaly
diagnosis [20, 28, 29, 31, 37, 38, 41, 59, 61, 72, 84].
Intra-host diagnosis. Run-time diagnosis detects anomalies
without disturbing the running tasks. Leveraging the exist-
ing counters [8, 14] from the machine is a direct method
[70, 71, 78]. For example, BRCA [63], MonitorRank [43],
and FChain [62] construct a dependency graph based on his-
torical monitoring data or traces for anomaly alerts. These
DL algorithms have been proven to be automatic, robust, and
flexible. Another naive but effective way is to check logs or
dmesg [2] using natural language processing (NLP)-based
methods [19]. However, log-based approaches are limited to
their log content and information processing abilities.

Offline diagnosis requires specific tools to detect possible
intra-host bottlenecks when the machine is not running tasks.
Liu et al. [55] and Martinasso et al. [58] implement tools to
test if there is NVLink [13] or PCIe link [15] degradation or
congestion. Collie [44] is a "fuzzing"-like implementation
to help uncover potential performance bottlenecks in RNICs.
Deepview [82] is designed for virtual hard disk failure local-
ization. These approaches are useful ahead of running tasks,
so they cannot be directly used during the large-scale training
process.

Inter-host diagnosis. NetBouncer [73] leverages the IP-in-
IP technique to actively localize failure devices or links
among millions of servers in a data center network. Similarly,
SNAP [79] monitors TCP statistics and socket logs for net-
work diagnosis. Pingmesh [33], Haecki [34], and Fathom [66]
monitor end-to-end latencies between arbitrary servers or de-
tailed RPC performance in data centers. Nonetheless, they
only detect failures along the routes instead of intra-host hard-
ware failures that degrade the training speed. Cloud system
diagnosis [26, 35, 47, 81] are based on contextual data pat-
terns and associations of microservices on multiple machines.
Such patterns and dependencies are eliminated in distributed
training, where machines exhibit similar workloads.
Algorithms for anomaly detection and diagnosis. The first
type is statistics-based methods. Apart from Euclidean dis-
tance, Pearson Correlation [25], Kendall’s tau [42], and Spear-
man Correlation [80] also quantify the similarity between
two vectors and discover the deviating anomalies. Setting pa-
rameters as thresholds from experienced operators is usually
required [56].

Supervised algorithms are widely used for anomaly detec-
tion [45, 53]. EGADS in Yahoo [45] leverages diverse ma-
chine learning methods for large-scale univariate time series
anomaly detection. Machine learning algorithms like random
forest [64] are used for incident routing [27], VM compromise
detection [21]. However, supervised learning does not fit in
our context, where the goal is to detect the faulty machine
instead of classification.

Unsupervised learning [50, 51, 56, 70, 71, 75, 78] identifies
outliers from monitoring data for root cause detection and
machine state detection, or enables dialogue-based diagnosis
chatting. Apart from VAE (4.2), clustering [50,51,56] is com-
monly used to cluster the machines with similar monitoring
data change patterns or detect anomalies for time series.

9 Conclusion

This paper presents Minder, addressing the problem of faulty
machine detection in distributed training tasks. Minder lever-
ages the concept of similarity among machines and the con-
tinuity of a fault during training. Minder has been deployed
in our production environment for a year to assist engineers
in training diagnosis. Evaluation results demonstrate the re-
duced time required by Minder and the effectiveness of its
design choices for training tasks.

This work does not raise any ethical issues.

Acknowledgments

We thank all the anonymous NSDI reviewers for their feed-
back that greatly improved the paper. We thank the broader
ByteDance High-speed Network team and Applied Machine
Learning team for their support throughout this project.

516 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] DCGM Diagnostics. https://docs.nvidia.com/
datacenter/dcgm/latest/user-guide/dcgm-
diagnostics.html.

[2] dmesg. https://linuxhint.com/dmesg_tutorial/.

[3] Extended Utility Diagnostics (EUD). https:
//docs.nvidia.com/datacenter/dcgm/latest/
user-guide/dcgm-eud.html.

[4] GPU Memory and Duty Cycle. https:
//cloud.google.com/kubernetes-engine/docs/
concepts/gpus.

[5] GPU Metrics. https://docs.nvidia.com/
datacenter/dcgm/latest/user-guide/feature-
overview.html#profiling-metrics.

[6] GPU Pricing. https://cloud.google.com/compute/
gpus-pricing.

[7] GPU tensor core utility. https://docs.nvidia.com/
datacenter/dcgm/latest/user-guide/feature-
overview.html#profiling-metrics.

[8] Intel Performance Counter Monitor. https://
github.com/opcm/pcm.

[9] NVIDIA ConnectX-6 Dx Network Adapters.
https://www.nvidia.com/en-us/networking/
ethernet/connectx-6-dx/.

[10] Nvidia DGX-2H. https://docs.nvidia.com/dgx/
pdf/dgx2-user-guide.pdf.

[11] Nvidia DGX-A100. https://www.nvidia.com/en-
us/data-center/dgx-a100/.

[12] Nvidia NCCL timeout. https://docs.nvidia.com/
deeplearning/nccl/user-guide/docs/
index.html.

[13] Nvidia NVLink and NVSwitch. https:
//www.nvidia.com/en-us/data-center/nvlink/.

[14] Nvidia System Management Interface. https:
//developer.nvidia.com/nvidia-system-
management-interface.

[15] PCIe. https://docs.nvidia.com/
certification-programs/pdf/nvidia-
certified-configuration-guide.pdf.

[16] torch profiler. https://pytorch.org/docs/stable/
profiler.html.

[17] Infiniband Trade Association. Supplement to InfiniBand
architecture specification volume 1 release 1.2.2 annex
A17: RoCEv2 (IP routable RoCE). 2014.

[18] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[19] J. Anvik, L. Hiew, and G. C. Murphy. Who should
fix this bug? In Proceedings of the 28th international
conference on Software engineering, pages 361–370,
2006.

[20] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. Liu, J. Pad-
hye, G. Outhred, and B. T. Loo. Closing the network
diagnostics gap with vigil. In Proceedings of the SIG-
COMM Posters and Demos, pages 40–42. 2017.

[21] B. Arzani, S. Ciraci, S. Saroiu, A. Wolman, J. Stokes,
G. Outhred, and L. Diwu. {PrivateEye}: Scalable
and {Privacy-Preserving} compromise detection in the
cloud. In 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 20), pages 797–
815, 2020.

[22] H. Blockeel and L. De Raedt. Top-down induction of
first-order logical decision trees. Artificial intelligence,
101(1-2):285–297, 1998.

[23] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker.
Analysis of microarray data using z score transformation.
The Journal of molecular diagnostics, 5(2):73–81, 2003.

[24] A. Chowdhery, S. Narang, J. Devlin, M. Bosma,
G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sut-
ton, S. Gehrmann, et al. Palm: Scaling language mod-
eling with pathways. arXiv preprint arXiv:2204.02311,
2022.

[25] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty,
J. Chen, Y. Huang, and I. Cohen. Pearson correlation
coefficient. Noise reduction in speech processing, pages
1–4, 2009.

[26] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou.
Sage: practical and scalable ml-driven performance de-
bugging in microservices. In Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 135–151, 2021.

[27] J. Gao, N. Yaseen, R. MacDavid, F. V. Frujeri, V. Liu,
R. Bianchini, R. Aditya, X. Wang, H. Lee, D. Maltz,
et al. Scouts: Improving the diagnosis process through
domain-customized incident routing. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 253–269, 2020.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 517

https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-diagnostics.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-diagnostics.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-diagnostics.html
https://linuxhint.com/dmesg_tutorial/
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-eud.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-eud.html
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/dcgm-eud.html
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://cloud.google.com/kubernetes-engine/docs/concepts/gpus
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/gpus-pricing
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling-metrics
https://github.com/opcm/pcm
https://github.com/opcm/pcm
https://www.nvidia.com/en-us/networking/ethernet/connectx-6-dx/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6-dx/
https://docs.nvidia.com/dgx/pdf/dgx2-user-guide.pdf
https://docs.nvidia.com/dgx/pdf/dgx2-user-guide.pdf
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://docs.nvidia.com/certification-programs/pdf/nvidia-certified-configuration-guide.pdf
https://docs.nvidia.com/certification-programs/pdf/nvidia-certified-configuration-guide.pdf
https://docs.nvidia.com/certification-programs/pdf/nvidia-certified-configuration-guide.pdf
https://pytorch.org/docs/stable/profiler.html
https://pytorch.org/docs/stable/profiler.html

[28] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar,
M. Rosenblum, and A. Vahdat. {SIMON}: A simple and
scalable method for sensing, inference and measurement
in data center networks. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
19), pages 549–564, 2019.

[29] D. Ghita, K. Argyraki, and P. Thiran. Toward accu-
rate and practical network tomography. ACM SIGOPS
Operating Systems Review, 47(1):22–26, 2013.

[30] H. Ghorbani. Mahalanobis distance and its application
for detecting multivariate outliers. Facta Universitatis,
Series: Mathematics and Informatics, pages 583–595,
2019.

[31] J. Gong, Y. Li, B. Anwer, A. Shaikh, and M. Yu. Micro-
scope: Queue-based performance diagnosis for network
functions. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, pages 390–403,
2020.

[32] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, and D. Pedreschi. A survey of methods for
explaining black box models. ACM computing surveys
(CSUR), 51(5):1–42, 2018.

[33] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, et al. Pingmesh:
A large-scale system for data center network latency
measurement and analysis. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data
Communication, pages 139–152, 2015.

[34] R. Haecki, R. N. Mysore, L. Suresh, G. Zellweger,
B. Gan, T. Merrifield, S. Banerjee, and T. Roscoe. How
to diagnose nanosecond network latencies in rich end-
host stacks. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages
861–877, 2022.

[35] V. Harsh, W. Zhou, S. Ashok, R. N. Mysore, B. Godfrey,
and S. Banerjee. Murphy: Performance diagnosis of dis-
tributed cloud applications. In Proceedings of the ACM
SIGCOMM 2023 Conference, pages 438–451, 2023.

[36] T. He, X. Li, Z. Wang, K. Qian, J. Xu, W. Yu, and J. Zhou.
Unicron: Economizing self-healing llm training at scale.
arXiv preprint arXiv:2401.00134, 2023.

[37] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wund-
sam, H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol,
J. McCauley, et al. Leveraging sdn layering to system-
atically troubleshoot networks. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 37–42, 2013.

[38] H. Herodotou, B. Ding, S. Balakrishnan, G. Outhred,
and P. Fitter. Scalable near real-time failure localization
of data center networks. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1689–1698, 2014.

[39] Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen,
P. Sun, D. Lin, X. Wang, Y. Luo, Y. Wen, and T. Zhang.
Characterization of large language model development
in the datacenter. In 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24),
pages 709–729, Santa Clara, CA, Apr. 2024. USENIX
Association.

[40] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang,
Y. Peng, X. Li, C. Xie, S. Nong, et al. {MegaScale}:
Scaling large language model training to more than
10,000 {GPUs}. In 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24),
pages 745–760, 2024.

[41] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari,
C. Scott, J. Sherry, P. Van Wesep, T. E. Anderson, and
A. Krishnamurthy. Reverse traceroute. In NSDI, vol-
ume 10, pages 219–234, 2010.

[42] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938.

[43] M. Kim, R. Sumbaly, and S. Shah. Root cause detection
in a service-oriented architecture. ACM SIGMETRICS
Performance Evaluation Review, 41(1):93–104, 2013.

[44] X. Kong, Y. Zhu, H. Zhou, Z. Jiang, J. Ye, C. Guo, and
D. Zhuo. Collie: Finding performance anomalies in
{RDMA} subsystems. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 287–305, 2022.

[45] N. Laptev, S. Amizadeh, and I. Flint. Generic and scal-
able framework for automated time-series anomaly de-
tection. In Proceedings of the 21th ACM SIGKDD inter-
national conference on knowledge discovery and data
mining, pages 1939–1947, 2015.

[46] C. Leys, O. Klein, Y. Dominicy, and C. Ley. Detect-
ing multivariate outliers: Use a robust variant of the
mahalanobis distance. Journal of experimental social
psychology, 74:150–156, 2018.

[47] L. Li, X. Zhang, S. He, Y. Kang, H. Zhang, M. Ma,
Y. Dang, Z. Xu, S. Rajmohan, Q. Lin, et al. Conan:
Diagnosing batch failures for cloud systems. In 2023
IEEE/ACM 45th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP), pages 138–149. IEEE, 2023.

518 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[48] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Com-
munication efficient distributed machine learning with
the parameter server. Advances in Neural Information
Processing Systems, 27, 2014.

[49] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis,
T. Li, A. Paszke, J. Smith, B. Vaughan, P. Damania,
et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704,
2020.

[50] X. Li, J. Lin, and L. Zhao. Linear time complexity time
series clustering with symbolic pattern forest. In IJCAI,
pages 2930–2936, 2019.

[51] Z. Li, Y. Zhao, R. Liu, and D. Pei. Robust and rapid clus-
tering of kpis for large-scale anomaly detection. In 2018
IEEE/ACM 26th International Symposium on Quality of
Service (IWQoS), pages 1–10. IEEE, 2018.

[52] S. Lin, R. Clark, R. Birke, S. Schönborn, N. Trigoni,
and S. Roberts. Anomaly detection for time series using
vae-lstm hybrid model. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4322–4326. Ieee, 2020.

[53] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing,
and M. Feng. Opprentice: Towards practical and auto-
matic anomaly detection through machine learning. In
Proceedings of the 2015 internet measurement confer-
ence, pages 211–224, 2015.

[54] K. Liu, Z. Jiang, J. Zhang, S. Guo, X. Zhang, Y. Bai,
Y. Dong, F. Luo, Z. Zhang, L. Wang, X. Shi, H. Xu,
Y. Bai, D. Song, H. Wei, B. Li, Y. Pan, T. Pan, and
T. Huang. R-pingmesh: A service-aware roce network
monitoring and diagnostic system. In Proceedings of the
ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, page 554–567. Association for Computing Machin-
ery, 2024.

[55] K. Liu, Z. Jiang, J. Zhang, H. Wei, X. Zhong, L. Tan,
T. Pan, and T. Huang. Hostping: Diagnosing intra-
host network bottlenecks in {RDMA} servers. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 15–29, 2023.

[56] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui,
M. Zhang, and D. Pei. Fluxrank: A widely-deployable
framework to automatically localizing root cause ma-
chines for software service failure mitigation. In 2019
IEEE 30th International Symposium on Software Relia-
bility Engineering (ISSRE), pages 35–46. IEEE, 2019.

[57] P. C. Mahalanobis. On the generalized distance in statis-
tics. Sankhyā: The Indian Journal of Statistics, Series A
(2008-), 80:S1–S7, 2018.

[58] M. Martinasso, G. Kwasniewski, S. R. Alam, T. C.
Schulthess, and T. Hoefler. A pcie congestion-aware
performance model for densely populated accelerator
servers. In SC’16: Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 739–749. IEEE, 2016.

[59] D. S. Matteson and N. A. James. A nonparametric ap-
proach for multiple change point analysis of multivariate
data. Journal of the American Statistical Association,
109(505):334–345, 2014.

[60] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu.
Interpreting deep learning-based networking systems.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 154–171, 2020.

[61] R. N. Mysore, R. Mahajan, A. Vahdat, and G. Varghese.
Gestalt: Fast,{Unified} fault localization for networked
systems. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 255–267, 2014.

[62] H. Nguyen, Z. Shen, Y. Tan, and X. Gu. Fchain: Toward
black-box online fault localization for cloud systems.
In 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pages 21–30. IEEE, 2013.

[63] X. Nie, Y. Zhao, K. Sui, D. Pei, Y. Chen, and X. Qu.
Mining causality graph for automatic web-based ser-
vice diagnosis. In 2016 IEEE 35th International Per-
formance Computing and Communications Conference
(IPCCC), pages 1–8. IEEE, 2016.

[64] A. Palczewska, J. Palczewski, R. M. Robinson, and
D. Neagu. Interpreting random forest models using a
feature contribution method. In 2013 IEEE 14th Interna-
tional Conference on Information Reuse & Integration
(IRI), pages 112–119. IEEE, 2013.

[65] P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce
algorithms for clusters of workstations. Journal of Par-
allel and Distributed Computing, 69(2):117–124, 2009.

[66] M. A. Qureshi, J. Yan, Y. Cheng, S. H. Yeganeh, Y. Se-
ung, N. Cardwell, W. De Bruijn, V. Jacobson, J. Kaur,
D. Wetherall, et al. Fathom: Understanding datacenter
application network performance. In Proceedings of
the ACM SIGCOMM 2023 Conference, pages 394–405,
2023.

[67] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 519

[68] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

[69] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajb-
handari, J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas,
V. Korthikanti, et al. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale genera-
tive language model. arXiv preprint arXiv:2201.11990,
2022.

[70] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei.
Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. In Proceed-
ings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 2828–
2837, 2019.

[71] M. Sun, Y. Su, S. Zhang, Y. Cao, Y. Liu, D. Pei, W. Wu,
Y. Zhang, X. Liu, and J. Tang. Ctf: Anomaly detection in
high-dimensional time series with coarse-to-fine model
transfer. In IEEE INFOCOM 2021-IEEE conference on
computer communications, pages 1–10. IEEE, 2021.

[72] P. Tammana, R. Agarwal, and M. Lee. Simplifying
datacenter network debugging with {PathDump}. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 233–248, 2016.

[73] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi,
and D. Xiang. {NetBouncer}: Active device and link
failure localization in data center networks. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 599–614, 2019.

[74] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

[75] H. Wang, A. Abhashkumar, C. Lin, T. Zhang, X. Gu,
N. Ma, C. Wu, S. Liu, W. Zhou, Y. Dong, W. Jiang,
and Y. Wang. NetAssistant: Dialogue based network
diagnosis in data center networks. In 21st USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), pages 2011–2024, Santa Clara,
CA, Apr. 2024. USENIX Association.

[76] D. J. Weller-Fahy, B. J. Borghetti, and A. A. Sodemann.
A survey of distance and similarity measures used within
network intrusion anomaly detection. IEEE Communi-
cations Surveys & Tutorials, 17(1):70–91, 2014.

[77] Y. Xiong, Y. Jiang, Z. Yang, L. Qu, G. Zhao, S. Liu,
D. Zhong, B. Pinzur, J. Zhang, Y. Wang, J. Jose, H. Pour-
reza, J. Baxter, K. Datta, P. Ram, L. Melton, J. Chau,

P. Cheng, Y. Xiong, and L. Zhou. SuperBench: Improv-
ing cloud AI infrastructure reliability with proactive
validation. In 2024 USENIX Annual Technical Confer-
ence (USENIX ATC 24), pages 835–850, Santa Clara,
CA, 2024. USENIX Association.

[78] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu,
Y. Zhao, D. Pei, Y. Feng, et al. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis
in web applications. In Proceedings of the 2018 world
wide web conference, pages 187–196, 2018.

[79] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling network performance
for multi-tier data center applications. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 11), 2011.

[80] J. H. Zar. Spearman rank correlation. Encyclopedia of
biostatistics, 7, 2005.

[81] Z. Zeng, Y. Zhang, Y. Xu, M. Ma, B. Qiao, W. Zou,
Q. Chen, M. Zhang, X. Zhang, H. Zhang, et al. Traceark:
Towards actionable performance anomaly alerting for
online service systems. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 258–269.
IEEE, 2023.

[82] Q. Zhang, G. Yu, C. Guo, Y. Dang, N. Swanson, X. Yang,
R. Yao, M. Chintalapati, A. Krishnamurthy, and T. An-
derson. Deepview: Virtual disk failure diagnosis and
pattern detection for azure. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 18), pages 519–532, 2018.

[83] P. Zhao, M. Kurihara, J. Tanaka, T. Noda, S. Chikuma,
and T. Suzuki. Advanced correlation-based anomaly de-
tection method for predictive maintenance. In 2017
IEEE International Conference on Prognostics and
Health Management (ICPHM), pages 78–83. IEEE,
2017.

[84] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, et al.
Packet-level telemetry in large datacenter networks. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 479–491,
2015.

520 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Monitoring metrics collected by Minder.

Monitoring Metrics Description
CPU Usage Percentage of CPU time being used.
PFC Tx Packet Rate Periodic counts of PFC packets sent by RDMA-enabled devices.
Memory Usage Percentage of memory being used.
Disk Usage Percentage of storage space being used on a disk.
TCP Throughput Periodic counts of the amount of TCP data being transmitted by a NIC.
TCP+RDMA Throughput Periodic counts of the amount of TCP and RDMA data being transmitted by an NIC.
GPU Memory Used [4] The amount of GPU memory being used by processes.
GPU Duty Cycle [4] Percentage of time over the past sample period when the accelerator is active.
GPU Power Draw Periodic counts of the GPU power consumption.
GPU Temperature The temperature of a GPU while it is operating, measured in degrees Celsius.
GPU SM Activity [5] Averaged percentage of time when at least one warp is active on a multiprocessor.
GPU Clocks The clock speed of a GPU, reflecting the frequency of the GPU’s processor.
GPU Tensor Core Activity [5] Percentage of cycles when the tensor (HMMA / IMMA) pipe is active.
GPU Graphics Engine Activity [5] Percentage of time when any portion of the graphics or compute engines are active.
GPU FP Engine Activity [5] Percentage of cycles when the FP pipe is active.
GPU Memory Bandwidth Utilization [5] Percentage of cycles when data is sent to or received from the device memory.
PCIe Bandwidth [5] The rate of data transmitted/received over the PCIe bus.
PCIe Usage [5] Percentage of the bandwidth being used on the PCIe bus.
GPU NVLink Bandwidth [5] The rate of data transmitted/received over an NVLink.
ECN Packet Rate Periodic counts of ECN packets transmitted/received by a NIC.
CNP Packet Rate Periodic counts of CNP packets transmitted/received by a NIC.

Appendices are supporting material that has not been peer-
reviewed.

A Fault Types

The fault types are listed in Table 1.ECC error: caused by
corrupted or lost data in (GPU) memory. PCIe downgrading:
a link fault leading to a slow PCIe sending/receiving rate. NIC
dropout: a NIC is missing from the OS. GPU Card drop: a
disconnected GPU card. NVLink error: a link fault between
two Nvidia GPUs. AOC error: an error in high-speed active
optical cables (AOC) on either the host network card or the
switch side. CUDA execution error: an unexpected overflow
or configuration leading to a failed CUDA program. GPU
execution error: unexpected page-fault, out-of-memory, and
other incorrect processing leading to GPU hang or other re-
sults. HDFS error: HDFS connection timeout, io error, and so
on when loading or saving checkpoints. Machine unreachable:
mostly due to malfunctioning SSH services or virtual machine
services. Others: illegal memory access, failed scheduling, no
disk storage, low resource usage, switch reboot, and so on.

B Collected Monitoring Metrics

Table 2 contains the monitoring metrics that we choose to
collect in our production environment, though only a portion
of them are used for training and detection. Other available
host metrics could also be used by Minder.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 521

	Introduction
	Motivation
	Negative Impacts of Faults in Real-World Production Environments
	Today's Solution and Drawbacks
	Real-world Faulty Case Studies
	Challenges

	Design Overview
	Machine-level Similarity
	Machine-level Continuity
	Individual Learning-Based Denoising Models for Each Monitoring Metric
	Prioritized Metric Sequence

	Minder Framework
	Preprocessing
	Per-metric Model Training
	Monitoring Metric Prioritization
	Online Faulty Machine Detection

	Implementation
	Evaluation
	Overall Performance
	Analysis of Monitoring Metric Selection
	Analysis of Model Selection
	Analysis of Continuity and Threshold
	Choice of Distance Measures
	Performance with Multiple Concurrent Faulty Machines

	Discussion
	Related Work
	Conclusion
	Fault Types
	Collected Monitoring Metrics

