
This paper is included in the
Proceedings of the 22nd USENIX Symposium on

Networked Systems Design and Implementation.
April 28–30, 2025 • Philadelphia, PA, USA

978-1-939133-46-5

Open access to the Proceedings of the
22nd USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

ClubHeap: A High-Speed and Scalable Priority Queue
for Programmable Packet Scheduling

Zhikang Chen, Tsinghua University; Haoyu Song, Futurewei Technologies;
Zhiyu Zhang and Yang Xu, Fudan University; Bin Liu, Tsinghua University

https://www.usenix.org/conference/nsdi25/presentation/chen-zhikang

ClubHeap: A High-Speed and Scalable Priority Queue for Programmable Packet
Scheduling

Zhikang Chen
Tsinghua University

Haoyu Song
Futurewei Technologies

Zhiyu Zhang
Fudan University

Yang Xu
Fudan University

Bin Liu
Tsinghua University

Abstract
While PIFO is a powerful priority queue abstraction to

support programmable packet scheduling in network devices,
the efficient implementation of PIFO faces multiple chal-
lenges in performance and scalability. The existing solutions
all fall short of certain requirements. In this paper, we pro-
pose ClubHeap to address the problem. On the one hand,
we develop a novel hardware-friendly heap data structure to
support faster PIFO queue operations that can schedule a flow
in every clock cycle, reaching the theoretical lower bound; on
the other hand, the optimized hardware architecture reduces
the circuit complexity and thus enables a higher clock fre-
quency. The end result is the best scheduling performance
in its class. Combined with its inherently better scalability
and flexibility, ClubHeap is an ideal solution to be built in
programmable switches and SmartNICs to support various
scheduling algorithms. We build an FPGA-based hardware
prototype and conduct a thorough evaluation by comparing
ClubHeap with the other state-of-the-art solutions. ClubHeap
also allows graceful trade-offs between throughput and re-
source consumption through parameter adjustments, making
it adaptable on different target devices.

1 Introduction

In a network switch, packet scheduling, which determines the
packet delivery order and time, is an essential function in Traf-
fic Manager (TM). To satisfy the diverse application require-
ments, a number of packet scheduling algorithms have been
proposed [6,7,15,21,22,25,31,35,45,63,65], e.g., Weighted
Fair Queueing (WFQ) [15], Hierarchical Packet Fair Queue-
ing (HPFQ) [6], Least Slack Time First (LSTF) [31], etc.
Fine-grained priority scheduling [3, 34, 46] based on specific
fields, e.g., Shortest Remaining Processing Time (SRPT) [46],
is also widely used.

As the programmable network devices play a more impor-
tant role in Software-Defined Networking (SDN), the pro-
grammable schedulers in those devices can support different

scheduling algorithms on generic hardware. A popular queue
abstraction, Push-In First-Out (PIFO) [51], has been accepted
as a foundation to realize a wide range of algorithms. A PIFO
is a Priority Queue (PQ) which allows elements to be pushed
to an arbitrary location, but can only pop elements from the
head. A series of PIFO blocks with mesh interconnections can
be configured into a tree to support multi-level hierarchical
scheduling. Each PIFO block contains a physical PQ which
can be partitioned into multiple logical PQs (named logical
PIFOs) at the same level of the tree. In a PIFO block, a flow
is inserted in a queue location based on its rank [51], the
calculated scheduling order or time (e.g., the remaining flow
size in SRPT [46]), and popped when it reaches the queue
head.

A PIFO queue needs to support two primitives: push and
pop. In a PIFO-based scheduler, a popped flow is immedi-
ately pushed back into the queue if it still has unscheduled
packets [51], forming a pop-push pair. We introduce a replace
primitive to represent the pair. During scheduling, all opera-
tions for a flow are replace except for the first push and the last
pop. Therefore, we can use Cycles-Per-Replace (CPR) as a
metric to evaluate the throughput performance under the same
clock frequency. In pipelinable implementations, we consider
the delay between two consecutive replace operations as the
equivalent CPR because the operations may overlap.

Reducing CPR is an effective means to increase throughput,
because the clock frequency is limited in silicon chips. The
original PIFO implementation [51] uses shift registers (re-
ferred to as SR-PIFO henceforth), in which both push and pop
operations require 2 cycles to complete (i.e., CPR= 4). Some
PIFO queue implementations support parallel push and pop
operations [5, 8, 26, 28, 62], enhancing native replace support.
For example, RPU-BMW [62] allows a push every 2 cycles,
a pop every 3 cycles, but a replace every 3 cycles (CPR= 3)
due to its pipeline design. Nevertheless, thus far no scalable
PIFO implementation can achieve CPR= 1 which is the lower
limit of a PIFO-based packet scheduler.

In this paper, we propose a novel data structure called

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1421

ClubHeap (short for Clustered Binary Heap)1 to support
PIFO queue implementation, and a high-speed and scalable
programmable scheduler solution based on it. Our major con-
tributions are summarized as follows.

1. We design ClubHeap, a new PQ data structure supporting
the PIFO abstraction. ClubHeap leverages the scalability
of the heap-based data structures, and overcomes the
challenge of inter-operational data dependencies trou-
bling the other heap-based data structures [8, 26, 28, 62].
ClubHeap is the first heap-based design which supports
a fully pipelined implementation with the theoretical
lower bound of CPR= 1.

2. To validate the design, we synthesize ClubHeap with
a 45nm ASIC toolchain [17, 23, 55] by Design Com-
piler [53] and implement it on a Xilinx Alveo U280 Data
Center Accelerator Card [60]. The prototype supports
up to 217 elements in up to 28 logical PIFOs, with each
element having a priority precision of 32 bits. The proto-
type achieves a throughput of approximately 200Mpps
on FPGA, ensuring 100Gbps line-rate processing in the
worst case. We show ClubHeap is the only solution
which is scalable in terms of elements, priority levels,
and logical PIFOs at the same time.

The rest of the paper is organized as follows. In Sec. 2, we
discuss the gap between the requirements of a programmable
packet scheduler and the existing hardware implementations
using priority queues. In Sec. 3 we introduce the ClubHeap
data structure. We present its hardware design in Sec. 4 and
its implementation in Sec. 5. A detailed evaluation includ-
ing comparisons with existing implementations is presented
in Sec. 6. We summarize the related works in Sec. 7 and
conclude the paper in Sec. 8.

2 Background

2.1 Requirements for PIFO Implementations
The PIFO abstraction can be applied to both programmable
switches [10, 50] and SmartNICs [33, 52]. Recent research
shows that the priority queues in these two scenarios share
the similar requirements as follows [4].

Throughput. Due to the rapid growth of port speed and
count on network devices, a single scheduler instance cannot
schedule all packets at line rate. For example, a 64x400GE
NVIDIA Spectrum SN5400 switch [41] supports up to 33.3
billion packets per second, exceeding any known scheduler
capabilities. Therefore, a mesh of PIFO queues is needed for
high aggregated scheduling throughput. Fewer queues are
needed if each PIFO queue has higher throughput. Smart-
NICs have a lower peak packet rate than switches, allowing

1Open source available at https://github.com/ClubHeap/ClubHeap.

the use of a single PIFO queue. Some recent PIFO queue
implementations (e.g., BBQ [4]) can meet the demands of
FPGA-based SmartNICs operating for 100GE (148.8Mpps).
However, increasing NIC throughput also puts more pressure
on the packet scheduler.

Scalability. Scalability is measured in two dimensions: the
number of priority levels (P) and the number of elements (N)
allowed in the priority queue. In a PIFO queue, the rank of a
flow might be a timestamp (e.g., in LSTF [31] or EDF [34]),
which often requires high precision. A large P also extends
the time span for data retention in the scheduler under non-
work-conserving algorithms [21,29,57,67]. On the other hand,
today’s multi-tenant networks may require the scheduler to
handle hundreds of thousands of flows [18, 19, 43], which
pose significant scalability challenges for N.

Logical Partitioning. Logical Partitioning (LP) refers to
partitioning a physical PIFO block into multiple logical PIFOs.
In hierarchical scheduling algorithms, queues at the same level
of the scheduling tree can be considered as different logical
PIFOs within the same PIFO block. The same applies to the
packet queues for different output ports.With LP, a k-port
switch requires only 2k physical PIFOs, compared to k2 + k
PIFOs without LP [4], resulting in a 32.5x reduction for k=64.
The significant difference in resource consumption makes LP
crucial for the implementation of PIFO-based schedulers.

2.2 Existing Implementations

The requirement for high-performance PQs to support packet
scheduling precedes the PIFO abstraction. Numerous PQ im-
plementations exist, but none satisfies all three requirements
in Sec. 2.1. We brief three typical implementations below,
which can all be used in a PIFO-based scheduler and pro-
grammed using Domino [37, 50, 51].

Implementations based on linear data structures. Im-
plementations based on shift registers [9, 13, 42, 51, 54] (e.g.,
SR-PIFO [51]) and systolic arrays [5, 30, 38] (e.g., OPQ and
APQ [5]) fall into this category. For an operation, a shift reg-
ister performs all comparisons within one cycle, whereas a
systolic array breaks it down into multiple sub-operations,
and propagates them linearly through the entire data structure
in a systolic manner, thereby simplifying the combinational
logic for each cycle and improving the clock frequency. APQ,
with the highest throughput among them, organizes elements
into groups, and leverages the Single-Instruction-Multiple-
Data (SIMD) technique to achieve CPR= 1. However, these
implementations need O(N) comparators to compare the ele-
ments2 in the PQ in parallel, resulting in significant hardware
overhead, and a decrease in clock frequency as N increases.
Therefore, these implementations cannot meet the scalability
requirements for N. For example, SR-PIFO requires approx-
imately 900K LUTs on an FPGA (∼70% on Xilinx Alveo

2Each queue element includes a rank and some metadata.

1422 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PQ Implementation Type CPR S.P S.N LP

SR-PIFO [51] linear 4 ✓ × ✓
OPQ [5] linear 2 ✓ × ×
APQ [5] linear 1 ✓ × ×
BBQ [4] bucket 2 × ✓ ✓

P-Heap [8] heap 6 ✓ ✓ ×
R-BMW [62] heap 2 ✓ × ×

RPU-BMW [62] heap 3 ✓ ✓ ×
Pipelined Heap [28] heap 2 ✓ × ✓

H-PQ [26] hybrid 1∼4 ✓ ✓ ×
ClubHeap heap 1 ✓ ✓ ✓

Table 1: Comparison of different PQ implementations.
(S.P and S.N represent the scalability for P and N, respectively)

U280 [60]) when N = 4,096, and can only operate at a fre-
quency of 40MHz [62]. With CPR= 4, this translates to a
throughput of only 10Mpps.

Implementations based on buckets. These implementa-
tions assign a bucket to each priority level and group flows
with the same priority into the same bucket. BBQ [4] intro-
duces Hierarchical Find-First Set (HFFS) [44, 58] to manage
buckets and store elements in SRAMs, achieving scalability
with respect to N. However, dedicated hardware for each pri-
ority level limits scalability for P. For example, BBQ provides
215 buckets in total [4]. Considering that a PIFO block sup-
ports 256 logical PQs (a typical number in [51]), each logical
PQ can only support P=215/256=128, which is unacceptable
for many algorithms [6, 22, 31].

Implementations based on heaps. A heap is a tree in
which the rank of each node is not greater than that of its
child nodes. The operation on a heap-based structure resem-
bles a systolic array but positions sub-operations at distinct
tree levels. This design requires only O(logN) comparators,
each with O(log logP) latency. P-Heap [8] is the first to ex-
ploit the heap structure, achieving scalability for both P and N.
BMW-Tree [62] introduces an insertion-balanced multi-way
heap with better pipeline support to reduce CPR from 6 to 3.
However, both P-Heap and BMW-Tree do not support logical
partitioning. Pipelined Heap [28] implements a complete bi-
nary heap which can support logical partitioning. However,
the global bus required to connect all tree levels becomes a
bottleneck in the pipeline, limiting the frequency and making
it less scalable with respect to N.

Another challenge for heap-based implementations comes
from the inter-operational data dependency problem (detailed
in Sec. 2.3), which prevents a fully pipelined implementation
with CPR= 1. H-PQ [26] is a hybrid structure of systolic array
and a series of heaps, which attempts to eliminate this impact
by distributing operations across different heaps. Unfortu-
nately, real traffic may access the same heap continuously,
causing the performance instability of the packet scheduler.
ClubHeap solves the inter-operational data dependency prob-

lem through a novel data structure design.
The characteristics of the aforementioned implementations

are summarized in Table 1. We use CPR as the performance in-
dicator for simplicity34. In summary, implementations based
on linear data structures have poor scalability for N, while
implementations based on buckets have poor scalability for P.
ClubHeap, as a heap-based implementation, achieves a high
performance with CPR= 1, presents good scalability for both
N and P, and possesses the logical partitioning capability.

2.3 Inter-Operational Data Dependency

Pipelining the queue operation is critical for the scheduling
throughput. However, the inter-operational data dependency
is a hurdle that prevents the heap-based PIFOs from applying
the pipeline technique efficiently. Its solution is the key factor
for a high-performance implementation of ClubHeap.

1 Normal elements

Popped elements

Data path in a binary tree

7

3 6

4 5

2

Cycle 2

7

3 6

4 5

2

Cycle 2

2 7

3 6

4 5

1

Cycle 1

2 7

3 6

4 5

1

Cycle 1

1

2 7

3 6

4 5

 Original state

1

2 7

3 6

4 5

 Original state

7

6

4 5

3

Cycle 3

7

6

4 5

3

Cycle 3

2 Candidates for the next pop

Required bypasses

Figure 1: The inter-operational data dependency on a tradi-
tional binary heap.

Since it is impossible to predict the rank of the subsequent
elements pushed into the PIFO when pushing a current ele-
ment, the distribution of elements in the heap can be unbal-
anced. As shown in Fig. 1, in a binary heap, the distribution of
the smallest ranked elements may form a dependency chain:
1 is the parent of 2, 2 is the parent of 3, and so on.

Consider consecutive pop operations under this circum-
stance. In Cycle 1, the element 1 at Level 1 (i.e., the root
node) is popped, leaving a temporarily empty root, which
means both elements stored in its child nodes can be the new
minimum element in the heap. Therefore, a comparison must
be made between the element 2 and the element 7 at Level
2. In Cycle 2, the second pop arrives, which needs to pop
the element 2, the smaller one between 2 and 7. However,

3Besides CPR, the scheduling throughput is also affected by clock fre-
quency, which may vary for different implementations and different scale
specifications (i.e., P and N).

4P-Heap claims CPR=2 [8], but it allocates three dependent operations
(read, compare, and write) in one cycle. For a fair comparison, we convert
one P-Heap cycle to three physical clock cycles as suggested in [28].

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1423

the newly arriving instruction just reaches the root node and
cannot operate on the element 2 which is still located at Level
2. In order to allow the element 2 to be popped immediately, a
bypass from Level 2 to Level 1 (as depicted in the dashed line
in Fig. 1) is required. After the element 2 is popped, its two
children at Level 3 become the new candidates as well as the
element 7. The comparison to elect the next minimum must
be made among the three candidates. Similarly, the next pop
operation arriving in Cycle 3 requires another bypass from
Level 3 to Level 1 and increases the number of candidates
to four. If the heap has L levels, L− 1 bypasses are needed
from the other levels to Level 1, and a comparison between
L candidates needs to be made after L− 1 consecutive pop
operations.

In the case of L = 16 (i.e., supporting N = 216 − 1) and
P = 216, the operation to compare 16 16-bit element val-
ues and select the minimum one requires a complex com-
binational circuit, which can severely affect the achievable
clock frequency. The wire delay introduced by the bypasses
from Level 2, 3, ..., L to Level 1 worsens the problem. In
other words, to guarantee a certain performance level, the
heap depth is constrained, resulting in poor scalability for
N. Because of this, the existing heap-based priority queue
implementations [8, 28, 62] are difficult to reconcile with per-
formance and scalability simultaneously.

3 ClubHeap

In a traditional heap [8, 28, 62], an operation proceeds along
the path from the root to a certain node in the tree structure,
resembling a systolic array. Inspired by the SIMD technique
where APQ [5] achieves CPR= 1, we organize elements into
clusters (different from groups in APQ, elements in a cluster
are rank ordered), so that consecutive operations may only
access different elements within a cluster, thereby eliminating
the inter-operational data dependency problem.

3.1 Definition and Corollaries
As shown in Fig. 2(a), a traditional binary heap (used in P-
Heap [8] and Pipelined Heap [28]) stores a PQ element in
each node of the binary tree. Denote the rank of the element on
node x as E(x), and consider the rank of an empty node as +∞.
Then for any child y of any node x, it holds that E(x)≤ E(y).

The key difference between ClubHeap and a traditional
binary heap is that each binary tree node in ClubHeap holds
more than one element which forms a cluster. Each node
can store up to K sorted elements. A node that contains K
elements is called full. For a non-full node containing T (T <
K) elements, the K −T free slots are considered to have the
+∞ rank value. We denote the rank array of node x as E(x).
For nodes x and y, if max(E(x)) ≤ min(E(y)), i.e., the rank
of any element in node x is less than or equal to any element
in node y, we denote that E(x)≤ E(y).

1

2 5

3 8

4 6

9 7

1

2 5

3 8

4 6

9 7

(a) Traditional binary
heap.

1 2 3

4 6 7 5 10

12 8 9 11

1 2 3

4 6 7 5 10

12 8 9 11

(b) ClubHeap (K = 3).

Figure 2: Comparison of a traditional binary heap and a Club-
Heap.

 B1

 B2 (M = 1)

 B2 (M = 16)

 B2 (M = 256)

1 3 5 7 9 11 13 15

20

24

28

212

216

220

#
 o

f
N

o
d

e
s

L

(a) B1 vs B2.

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

∑
 S

L
 /

 ∑
 B

2

M

 K = 2

 K = 4

 K = 8

 K = 16

 K = 32

(b) SL vs B2.

Figure 3: Comparison of B1 given by Corollary 2 and B2
given by the binary tree structure.

Definition. A binary tree is a ClubHeap if and only if: for
any child y of a node x, it holds that E(x)≤ E(y).

Corollary 1. The definition leads to a corollary: for any
child node y of a node x in a ClubHeap, if x is not full,
then y must be empty. This is because, for a non-full x,
max(E(x)) = +∞; according to the ClubHeap definition,
max(E(x))≤ min(E(y)), so min(E(y)) = +∞, meaning that
all items in E(y) have the value of +∞ and thus y must be
empty.

The corollary implies that the elements in a ClubHeap are
always compactly located in the nodes of the upper levels,
and the minimum ranked elements must be located at the
root node. The corollary below quantitatively describes the
concentration of elements in the upper levels of ClubHeap.

Corollary 2. For a ClubHeap containing N elements, the
number of non-empty nodes at the L-th level is no more than

N
K
(

1− 1
2L−1

)
+1

. The reason is as follows. Assume there are NL

non-empty nodes at the L-th level, so there are at least NL
elements at this level. Meanwhile, due to Corollary 1, there
are at least 1

2i ·NL full nodes at the (L− i)-th level (i=1,2,...,L-

1). Therefore, these nodes contain at least K ·
(

1− 1
2L−1

)
·NL

elements. Summarizing the two parts of elements, we have
N ≥ NL +K ·

(
1− 1

2L−1

)
·NL, and thus NL ≤ N

K
(

1− 1
2L−1

)
+1

.

The concentration of elements is a key factor for ClubHeap
to support LP. Consider a ClubHeap forest consisting of M
logical PIFOs, with a total of N elements. According to Corol-

1424 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

lary 2, the total number of nodes at the L-th level across all M
logical PIFOs has an upper bound N

K
(

1− 1
2L−1

)
+1

(B1), which

may be tighter than the upper bound given by M independent
binary trees, i.e., M×2L−1 (B2). Fig. 3(a) presents a compar-
ison of B1 and B2 when K = 2 and N = 216 −2 (i.e., L = 15).
It can be observed that B1 effectively controls the number of
nodes at deeper levels.

The memory space required by ClubHeap at the L-th level
can be set as SL = min(B1, B2). Fig. 3(b) shows the ratio of
the space required by ClubHeap to the space of M physical
PIFOs, namely ∑SL/∑B2, for different values of K and N =
216 −K (i.e., L = 16− logK). When M = 16, ∑SL is only
22.9%∼30.5% of ∑B2, indicating the memory efficiency of
B1. A smaller K leads to a smaller ratio. In summary, B1
ensures that the memory required by ClubHeap to store nodes
does not increase linearly with M, providing better support
for LP than BBQ [4].

3.2 Operations
The push and pop operations on ClubHeap are similar to those
on the other heap-based PIFO queues [8, 62]. For the push
operation, if the root node r is not full, the element is inserted
in it directly. Otherwise, the maximum ranked element in r
(also including the newly inserted element) is removed and
inserted into a child node in the next level. The recursive
process continues until the element is settled. For the pop
operation, the minimum ranked element in the root node r is
popped, and then the minimum ranked element among the two
children (if non-empty) is raised to fill the node r. The process
is recursive at the deeper levels until no more elements are
available to promote.

2 3

4 6 7 5 10

12 8 9 11

1
3 4

6 7 5 10

12 8 9 11

2

1 Normal elements in a cluster

Vacancy in a cluster

2 Candidates for next pop

4 Candidates for vacancy at the upper level

Cycle 1 Cycle 2

Data path in a binary tree

Data path to promote elements

Figure 4: The consecutive pop operations on a ClubHeap with
no inter-operational data dependency problem.

ClubHeap solves the inter-operational data dependency
problem by decomposing the recursion into a sequence of
sub-operations without data dependencies. As shown in Fig. 4,
we perform consecutive pop operations on the ClubHeap in
Fig. 2(b). In Cycle 1, element 1 is popped, leaving a vacancy
in the root node. Elements 4 and 5 on Level 2 are candidates
for promotion. According to ClubHeap’s definition, the rank

of the promoted element is not less than the remaining ele-
ments, so the pop operation in Cycle 2 does not depend on the
promoted element. In Cycle 2, the element 2 is popped, the
element 4 is promoted to Level 1, and elements 12 and 8 on
Level 3 compete for the vacancy left on Level 2. Recursively,
ClubHeap ensures that each node stores at least K−1 small-
est ranked elements in its subtree. As long as K ≥ 2, it can
eliminate inter-operational data dependencies between sub-
operations on different levels, and ensure that only data paths
between adjacent levels are used, thereby reducing pipeline
complexity and wire latency.

4 Architectural Design

In the architectural design of ClubHeap, our goal is to achieve
CPR= 1 and high clock frequency. We design a pipeline to
support CPR= 1, and employ a series of techniques to strive
for simplifying the combinational logic circuit in each clock
cycle in order to enhance the clock frequency.

In this section, we first present the pipeline architecture
in Sec. 4.1 and the technique for efficient cluster storage
in Sec. 4.2. We then discuss how the three primitives, i.e.,
push, pop, and replace, fit into the design in Sec. 4.3. Finally,
we discuss the dynamic memory allocation optimization to
support the flexible logical partitioning in Sec. 4.4.

4.1 Pipeline Overview

Level 1

Level 2

Level 3

READ ①

Cycle 1 Cycle 2 Cycle 3 Cycle 4

READ ①

READ ②

CMP ①

READ ②

CMP ①

READ ③

CMP ②

WRITE ①

READ ③

CMP ②

WRITE ①

READ ④

CMP ③

WRITE ②

READ ④

CMP ③

WRITE ②

READ ②

CMP ①

READ ②

CMP ①

READ ③

CMP ②

WRITE ①

READ ③

CMP ②

WRITE ①

READ ②

CMP ①

READ ②

CMP ①

READ ①

READ ①Level 4

 (lower levels)

Operation ① Operation ② Operation ③ Operation ④

...

...

...

...

...

...

...

Figure 5: Overview of the ClubHeap pipeline.

In ClubHeap, each primitive, push, pop, or replace, under-
goes three stages at each level of the heap: READ, CMP (short
for Compare), and WRITE. These stages are executed in dif-
ferent clock cycles to boost clock frequency. Fig. 5 shows the
pipeline design of ClubHeap, where four arbitrary primitive
operations ①∼④ enters the pipeline sequentially from Cycle
1 to Cycle 4.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1425

When a signal for an operation arrives at a level, it goes
through the three stages in sequence. For example, ① arrives
at Level 1 in Cycle 1, so its READ stage is performed in Cycle
1, reading the cluster at the root node. In Cycle 2, ① proceeds
to the CMP stage at Level 1, comparing the elements within
the read cluster. If ① carries an element (push or replace), it
also compares it with the elements in the cluster. In Cycle 3,
① enters the WRITE stage at Level 1, writing the updated
cluster back to Level 1 based on CMP results.

For consecutive operations, different stages of different
operations overlap. For instance, at Level 1, the CMP stage
of ① and the READ stage of ② are performed in the same
cycle (Cycle 2), and the WRITE stage of ①, the CMP stage
of ②, and the READ stage of ③ are performed in the same
cycle (Cycle 3). Each level can handle up to three parallel
operations at different stages. Since no two operations can be
in the same stage at the same level, each level only requires
one hardware module for each stage, eliminating the concern
of resource contention.

When a signal for an operation arrives at a level, it continues
to propagate downward until it reaches the bottom level. For
example, if ① arrives at Level 1 in Cycle 1, it will propagate to
Level 2 in Cycle 2 and Level 3 in Cycle 3, and so on. Although
in Cycle 3, ① is not yet aware of the comparison results of
the CMP stage at Level 2, the heap structure guarantees that
the node operated on at Level 3 must be one of the two child
nodes of the node operated on at Level 2. Therefore, while the
CMP stage is being performed at Level 2, the READ stage
can be initiated at Level 3 simultaneously, reading the two
child nodes of the current node.

An operation may complete its task at an intermediate
level. For example, when ClubHeap is empty, if ① is a push
primitive, it only needs to insert the element it carries into
the root node at Level 1. After this, the operation becomes a
no-op (equivalent to pushing a +∞), continuing to propagate
downward and perform READ, CMP, and WRITE stages at
each level without any real effect.

4.2 Node Data Structure

As explained in Sec. 4.1, because the CMP stage on the previ-
ous level has not yet produced the result when the operation
enters the READ stage at the current level, both child nodes
of the node being processed at the previous level need to be
read simultaneously. This implies that the sibling nodes are
better to be stored together to enable a single memory access
to acquire both nodes. In addition, as shown in Fig. 6, the
storage of the clusters adheres to three characteristics.
(1) The minimum ranked element in a cluster for a non-root
node is stored in its parent node.

To illustrate the necessity, we assume that all the elements
of a cluster are only stored on its corresponding node. Ac-
cording to Corollary 1 in Sec. 3.1, when a pop operation is
performed on a node x, if x is full and its two child nodes, y and

2 3 4 5 6
②

+2③
7 8
①

…… ……Left child Right child

① The minimum ranked element in left and right child

② Elements in the cluster (except the minimum ranked)

③ The difference field

Figure 6: The node data structure in ClubHeap.

z, are not empty, we must choose the smaller value between
min(E(y)) and min(E(z)) and promote the corresponding
element to x to fill the vacancy left by the pop operation.

Assume x is at Level 1, and y and z are at Level 2. Since
both elements with min(E(y)) and min(E(z)) are at Level 2,
their comparison results can only be obtained after the CMP
stage of Level 2 is completed. However, at the moment, the
WRITE stage of Level 1 needs to determine the new E(x)
based on the comparison result and write it to memory. The
data dependency prohibits the pipeline described in Sec. 4.1
from working properly. To fix the problem, it is necessary to
store on node x the two elements with the ranks of minE(y)
and minE(z) in y and z’s clusters, so their comparison can be
done during the CMP stage of Level 1.

(2) The elements in the cluster at each node are rank ordered.

If the cluster elements are unordered, comparators are
needed to determine the minimum ranked element, which
is resource consuming and requires complex combinational
logic that can affect the achievable clock frequency. With the
ordered elements in a cluster, the CMP stage only needs to
compare the carried element of the operation with the first
element in the cluster to determine the new minimum ranked
element.

(3) At each non-leaf node, a field is used to indicate the differ-
ence in the number of elements between the two subtrees.

The difference field is used by the push operation in
ClubHeap to achieve insertion-balance of the element dis-
tribution, which ensures free location can be found for the
new elements before the heap memory is exhausted. Incom-
ing elements are always inserted into the subtree with fewer
elements. In case of a tie, the left subtree is chosen. Some ex-
isting heap-based implementations [8, 62] use two counters
to record the number of elements in both subtrees. However,
a field only recording the difference is sufficient to achieve
the same effect by saving logN−1 bits per node.

1426 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4.3 ClubHeap Processor

READ
addr

CMP

data

m

u

x

mux
select_child

addr

mux
m

i

n
op

push

first
new_min

select_child

op

WRITE

new_data

forwarded_data

new_min

Processor

update

Figure 7: The structure of a processor in ClubHeap.

Each level of ClubHeap has an operation processor and the
associated memory. As described in Sec. 4.1, a processor may
simultaneously handle the WRITE stage of ①, the CMP stage
of ②, and the READ stage of ③. Therefore, a processor in
ClubHeap can be divided into three modules with each han-
dling the task for one stage, as shown in Fig. 7. The arrows in
the vertical direction represent the data path between the three
modules in a single processor. A processor also exchanges
data with the upper-level processor and the lower-level pro-
cessor via the signals in the horizontal direction.

Overall, the READ module reads out a list of rank ordered
elements, the CMP module performs parallel comparisons to
find the position for writing (push or replace) or simply re-
moves the first element (pop), and the WRITE module writes
the result back. The two cycles for the CMP and WRITE
stages are similar to the two cycles required for writing into
a shift register [51]. Next, we describe the operation of the
three modules in detail.

The READ module has only one input signal from the
previous level: addr, which represents the address line for
the nodes to read. As mentioned in Sec. 4.2, sibling nodes
are stored together, so the READ module can read a pair of
sibling nodes with a single address, and output the data via the
data signal. Each node contains the data as shown in Fig. 6.
Simultaneously, the READ module also obtains the addresses
of the respective child nodes of this pair of sibling nodes. The
method of storing these addresses is discussed in Sec. 4.4.

The CMP module is the core for executing push, pop, and
replace primitives. Firstly, the data from sibling nodes ac-
quired by the READ module passes through a data selector,
which selects a branch based on the select_child signal
generated during the CMP stage of the previous level. As-

sume the selected node is x. The address of x’s child nodes
is passed to the READ module of the next level via the addr
signal, while x’s data is sent to the CMP module for compari-
son. The CMP module determines the current operation type,
push, pop, or replace, based on the op input signal. It outputs
processed node data on the new_data signal for writing, and
generates a new op signal to guide the CMP module at the
next level to execute the operation. The new_data signal is
forwarded as forwarded_data when processing the same
node in consecutive cycles.

For the push operation, we assume the element to be pushed
is e. If x is not full, e is directly inserted into the cluster as
new_data and a new op signal, push(+∞), is generated, which
is essentially a no-op. If x is full, e is inserted into the cluster if
rank(e)< max(E(x)). In this case, the original element with
the max(E(x)) rank value becomes the new e to be pushed to
the next level. Otherwise, if rank(e)≥ max(E(x)), the cluster
on x is unchanged, and e is to be pushed to the next level. The
difference field determines the child node for the next level
insertion. If rank(e) is less than the minimum rank value of
the selected child node (note that the corresponding element
e′ is stored in node x), e replaces e′, and e′ is passed to the next
level via the output op signal; otherwise, the push operation
with the element e is passed to the next level.

For the pop operation, when the CMP module receives
the operation from the signal op, because the element with
min(E(x)) is stored at the previous level, the pop operation on
the cluster is actually done a cycle earlier. Therefore, the CMP
module only needs to select a new minimum to fill the vacancy
caused by popping the minimum ranked element, and pass it
through new_min. Since the elements in a cluster are stored
in order, the minimum ranked element can be determined
without comparison, i.e., it must be the first element stored
at x, or the second smallest ranked element in the cluster
of x. Besides, the CMP module compares min(E(y)) and
min(E(z)) stored at x, selects the smaller ranked element to
be appended to the cluster of x, and passes the pop operation
via op to the corresponding child node at the next level.

For the replace operation, since the minimum ranked ele-
ment is stored at the previous level, the pop operation on x
is actually performed a cycle earlier in the CMP stage at the
previous level, and in the current stage, only two actions are
needed: (1) select the new minimum ranked element to fill
the vacancy via new_min; (2) push a new element e to the
cluster, and e can also be selected as new_min if its rank value
is smaller than that of any other element stored in the node. If
rank(e)< min(min(E(y)),min(E(z))), e is directly inserted
into the cluster of x, and the new minimum ranked element of x
is popped out and returned to the upper level via the new_min
signal. Otherwise, if rank(e)≥ min(min(E(y)),min(E(z))),
the smaller ranked element with the rank value min(E(y))
or min(E(z)) fills the vacancy in the cluster of x, and the
replace(e) operation is passed via the op signal to the corre-
sponding child node at the next level.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1427

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

PIFO 1 PIFO 2 PIFO 3

PIFO 1 PIFO 2 PIFO 3

PIFO 1 PIFO 2 PIFO 3

Shared Level 4 Memory

Shared Level 5 Memory

Statically allocated memory

Dynamically allocated memory

Figure 8: The ClubHeap pipeline structure.

X

X XX X

X XXX XX

X

X XX X

XX

X

XX

X XX XX X

X XX XX X XXX XXX

X XX X

…
Free List

…
Free List

X Non-empty nodes without a pointer field

X Non-empty nodes with a pointer field

PIFO 1 PIFO 2 PIFO 3

Level 1

Level 2

Level 3

Level 4

Level 5

Empty nodes

Figure 9: The logical structure of a ClubHeap partitioned into
three logical PIFOs.

Finally, the new_data output signal from the CMP module
is updated by the new_min output signal from the data selector
in front of the CMP module at the next level, which repre-
sents the new minimum ranked element selected by the next
level and should be stored at the current level as described in
Sec. 4.2. The updated node data is sent to the WRITE module
and written to the memory.

4.4 ClubHeap Memory Organization

ClubHeap maintains the memory alongside a processor at
each level. The memory is used to support the logical PIFO
queues. Since the minimum ranked element of each cluster is
actually stored at the upper level, ClubHeap guarantees that
the data required in a CMP stage is available at the same level,
and thus data dependencies between levels are alleviated.
Each processor only accesses the memory at the same level.
As shown in Fig. 8, a processor only reads data from memory

during the READ stage and writes it back during the WRITE
stage, so a dual-port SRAM is sufficient to meet the needs.

Furthermore, as shown in Fig. 8, ClubHeap supports two
different forms of memory allocation methods. The static al-
location method, similar to P-Heap [8] and BMW-Tree [62],
allows for direct child-node address calculation from the cur-
rent node’s address, without the need for storing the child-
node’s address in memory. Thus, one pointer per node can be
saved. However, the drawback is that such allocation implies
a complete binary tree, meaning the L-th level of each logical
queue requires storage space for 2L−1 nodes. With M logical
queues provisioned, the memory size required at deeper levels
can be prohibitively large.

The discussion in Sec. 3.1 illustrates that the actual storage
space required by ClubHeap at the L-th level, SL, may be
significantly less than B2=M×2L−1. It is worthwhile to trade
a pointer field by reducing B2 to B1. Therefore, as shown
in Fig. 8, we employ static memory allocation in shallow
levels where B2<B1 and dynamic memory allocation in deep
levels where B1<B2 to achieve an optimal space management
strategy for different values of M.

As shown in Fig. 9, to achieve dynamic memory allocation
for the L-th level, we need to enable the pointer fields of this
level and the upper level. During initialization, the pointers at
the (L−1)-th level are set to null, and the pointers at the L-th
level are linked into a unidirectional linked list called free list.
For each pair of sibling nodes in the free list, the left child’s
pointer field points to the next node, while the right child’s
pointer is null. If a node is not in the free list, its pointer field
either points to its child nodes at the next level if it has non-
empty children, or is set to null otherwise. Leaf nodes at the
bottom level do not need the pointer field. The head address
of the free list is maintained by the READ module.

We take dynamic memory allocation at L = 4 as an exam-
ple. The pointer field read from Level 3 is passed as addr to
Level 4. If addr is null (the initial value), the READ module
replaces addr with head, updates head with the pointer field
of the read node, and resets this pointer field to null. If, at
the beginning of the CMP stage at Level 4, it is found that
the current node is about to become empty5 and its sibling
node is already empty, a signal is sent to Level 3 to reset
the corresponding pointer field to null. Subsequently, during
the WRITE stage at Level 4, the pointer field of this empty
node is updated to head, and the new head becomes the ad-
dress of this empty node. In short, the free list is a stack
composed of free nodes, which pops nodes when allocating
space and pushes nodes when recycling space. If allocating
and recycling occur in the same cycle, the recycled space can
be immediately allocated to the new pair of nodes.

5The criterion for determining that a node is about to become empty is
(1) push(+∞) on an empty node, or (2) pop on a node with no more than one
element. This circuit is only concerned with the valid bits of the elements.
The signal to update the pointer field is passed along with new_min to the
WRITE module of the upper level.

1428 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Implementation

We implement ClubHeap using 919 lines of Chisel [14] code,
and evaluate it on a Xilinx Alveo U280 Data Center Accelera-
tor Card [60] with an FPGA containing 1,303k LUTs, 2,607k
Flip-flops (FF), 2,016 Block RAMs (BRAM), and 960 Ultra-
RAMs. The implementation is parameterized, allowing users
to specify the parameter K, the maximum number of elements
(N), priority levels (P) and logical PIFOs that a ClubHeap
can be partitioned into (M). We also implement the existing
state-of-the-art PIFO queues BMW-Tree [62] and BBQ [4]
on the same FPGA for comparison.

We also analyze the ASIC implementations for some typ-
ical specifications with Design Compiler [53] on an open-
source 45nm toolchain [17, 23, 40, 55] at a frequency of
800MHz6. The reported area is listed in Table 2.

Design K N P M Area (mm2)

BBQ N/A 217 216 1 27.23
ClubHeap 2 217 216 1 4.83
ClubHeap 16 217 216 1 6.15
ClubHeap 2 217 232 28 61.00
ClubHeap 16 217 232 28 63.60

Table 2: ASIC area comparison.

Table 2 indicates ClubHeap consumes only 17.7% (K=2)
or 22.6% (K=16) of area used by BBQ for the same specifica-
tion7. BMW-Tree is not listed here because the open-source
4-way implementation can not support N=217. We conduct
a more detailed comparison between ClubHeap, BMW-Tree,
and BBQ on FPGA in Sec. 6.

6 Evaluation

We evaluate ClubHeap through experiments and analysis to
show that ClubHeap can meet the demands mentioned in
Sec. 2.1, and is the most performant PQ implementation for
a PIFO scheduler so far. We first introduce the experimen-
tal methodology in Sec. 6.1, then discuss the selection of
parameter K in Sec. 6.2, and compare ClubHeap with the
state-of-the-art implementations, BMW-Tree and BBQ, in
Sec. 6.3. In Sec. 6.4, we show that a clustered multi-way tree
is inferior in terms of throughput and resource consumption,
which explains why we choose a binary heap rather than a
multi-way one.

6BBQ claims their logic can achieve 3.1GHz in a 7nm process [4, 59],
but the bottleneck in large SRAM access is ignored.

7Since a ClubHeap with L levels can contain a maximum of N = K(2L−1)
= 2K+L −K elements, there may be slight variations in N for different values
of K. For example, when K=2 and L=15, N=65,534, while for K=4 and L=14,
N=65,532. Since these minor differences have almost negligible practical
effects, both cases are denoted as N = 216 in our evaluation and considered
as the same data point.

212 213 214 215 216 217

180

200

220

240

260

F
re

q
u

e
n

c
y
 (

M
H

z
)

N

 K = 2

 K = 4

 K = 8

 K = 16

 K = 32

(a) Clock frequency.

212 213 214 215 216 217
0

2

4

6

8

10

L
U

T
 (

%
)

N

 K = 2

 K = 4

 K = 8

 K = 16

 K = 32

(b) LUT.

212 213 214 215 216 217
0

1

2

F
F

 (
%

)

N

 K = 2

 K = 4

 K = 8

 K = 16

 K = 32

(c) FF.

212 213 214 215 216 217

0

5

10

15

20

B
R

A
M

 (
%

)

N

 K = 2

 K = 4

 K = 8

 K = 16

 K = 32

(d) BRAM.

Figure 10: Frequency and resource consumption of ClubHeap
with different K.

6.1 Methodology
We evaluate the FPGA implementations of ClubHeap, BMW-
Tree, and BBQ for comparison. Clock frequency and resource
consumption are reported by Xilinx Vivado, which may dif-
fer from existing papers [4, 62] due to different FPGAs. We
measure the achievable clock frequency by testing different
cycles (step size: 0.025ns) and selecting the minimum al-
lowed. The throughput is obtained via FPGA simulation, as
it is independent of traffic characteristics or scheduling al-
gorithms for these structures. For resource consumption, we
focus on LUTs, FFs, and BRAMs; UltraRAMs are converted
to BRAMs with equivalent storage capacity in results.

Unless otherwise specified, we assume each scheduler ele-
ment includes a 16-bit rank value (P=216) and 32-bit metadata
(for flow ID, packet ID, etc.), sufficient for most PIFO-based
scheduling algorithms [51, 62]. For a fair comparison, we fo-
cus on scenarios with one logical PIFO (M=1), as ClubHeap
better supports logical partitioning than BMW-Tree and BBQ.

6.2 Effects of Different K Values
We first evaluate the clock frequency and resource consump-
tion of ClubHeap with different K values. As shown in
Fig. 10(a), when N=212 and N=213, clock frequencies are
approximately 250MHz regardless of K. As N increases, the
clock frequency decreases, and differences in clock frequency
begin to emerge for different K. Experiment results indicate
that for the same N value, a larger K generally corresponds to
a higher clock frequency. At N=217, the frequency for K=32 is

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1429

212 213 214 215 216 217

200

250

300

350

400

450

500

F
re

q
u

e
n

c
y
 (

M
H

z
)

N

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(a) Clock frequency.

212 213 214 215 216 217

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

N

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(b) Throughput.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

212 213 214 215 216 217
0

2

4

L
U

T
 (

%
)

N

(c) LUT.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

212 213 214 215 216 217
0.0

0.5

1.0

N

F
F

 (
%

)

(d) FF.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

212 213 214 215 216 217
0

5

10

15

20

25

30

B
R

A
M

 (
%

)

N

(e) BRAM.

Figure 11: Frequency, throughput and resource consumption for ClubHeap, BBQ and BMW-Tree at different N.

216 220 224 228 232

200

300

400

500

F
re

q
u

e
n

c
y
 (

M
H

z
)

P

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(a) Clock frequency.

216 220 224 228 232

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

P

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(b) Throughput.

216 220 224 228 232

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
U

T
 (

%
)

P

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(c) LUT.

216 220 224 228 232
0.0

0.2

0.4

0.6

0.8

F
F

 (
%

)

P

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(d) FF.

216 220 224 228 232

1

10

100

B
R

A
M

 (
%

)

P

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(e) BRAM.

Figure 12: Frequency, throughput, and resource consumption for ClubHeap, BBQ, and BMW-Tree at different P.

207.25MHz, which is approximately 10% higher than that for
K=2 (189.57MHz). This is because a larger K results in fewer
levels in ClubHeap, reducing the place and route complexity.

However, a larger K requires more resources on the FPGA,
as shown in Fig. 10(b), 10(c), and 10(d). At N=217, a Club-
Heap with K=32 requires relatively 6.2% LUTs and 1.6%
FFs, which are approximately 6x those for K=2. Additionally,
the growth rate of LUT and FF overhead with increasing N is
also higher for a larger K. Comparing N=212 and N=217, for
a 32x increase in N, ClubHeap with K=2 experiences a 33%
increase in LUTs and a 68% increase in FFs, while ClubHeap
with K=32 experiences an 80% increase in LUTs and a 71%
increase in FFs. Overall, ClubHeap’s demand for LUTs and
FFs is approximately O(logN), ensuring its good scalability.

For BRAM, although the same number of elements requires
the same space, a larger K implies more wasted space and
thus requires more BRAMs. Since sibling nodes are stored at
the same address, there are only 2L−2 addresses for the 2L−1

nodes on the L-th level. When L is small, only a small portion
of a BRAM block is utilized, leaving the unused space wasted.
At N=212, the number of BRAM blocks required by ClubHeap
with K=32 is 8.6x that for K=2. At deeper levels, a BRAM
block can be fully utilized, and the number of BRAM blocks
is mainly determined by the number of storage bits. A smaller
K indicates each node stores fewer elements, leading to more
nodes and a greater demand for the difference field and the
pointer for dynamic memory allocation. Therefore for a larger
N, a smaller K results in more space requirements, reducing
the relative savings compared to a larger K. At N=217, the
BRAM consumption for K=32 is only 1.63x that for K=2.

In summary, the analysis indicates that for the same N,

ClubHeap with a larger K exhibits a higher clock frequency
but also demands more resources. When applying ClubHeap
in practice, K can be selected based on the specific require-
ments as a tradeoff between performance and resource con-
sumption. A proper K value could be 2, 4, 8, or 16.

6.3 Comparison with BMW-Tree and BBQ
We compare ClubHeap with K=2 and K=16 to RPU-BMW,
which is the scalable version of BMW-Tree [62], and BBQ [4].
The comparison focuses on three parameters: the number of
elements (N), the number of priority levels (P) and the number
of logical PIFOs (M).

Evaluation on N. In Fig. 11 we fix P=216 and M=1 to
evaluate the scalability of the implementations on N. We
observe that for all three PQ implementations, the critical path
affecting clock frequency is the combinational logic when N
is small, whereas it shifts to SRAM access when N is large,
because they all access SRAM in one clock cycle as part of
the pipeline design. ClubHeap and BMW-Tree have similar
comparator-dominated combinational logic latency; thus, they
have similar frequencies. ClubHeap achieves a throughput
3x higher than BMW-Tree with CPR= 3. On the other hand,
BBQ’s HFFS uses the least combinational logic and has the
highest frequency for small N, but the frequency drops rapidly
as N increases due to the memory access constraints. As
shown in Fig. 11(a), when N=217, BBQ’s clock frequency
is comparable to ClubHeap and BMW-Tree, making CPR a
more decisive factor for throughput. Fig. 11(b) indicates that
ClubHeap’s throughput is approximately equal to BBQ for
small N, but 63% (K=2) or 72% (K=16) higher when N=217,

1430 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

20 24 28

200

300

400

500

F
re

q
u

e
n

c
y
 (

M
H

z
)

M

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

(a) Clock frequency.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

20 24 28

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

M

(b) Throughput.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

20 24 28
0.0

0.5

1.0

1.5

2.0

L
U

T
 (

%
)

M

(c) LUT.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

20 24 28
0.0

0.2

0.4

0.6

0.8

F
F

 (
%

)

M

(d) FF.

 ClubHeap (K = 2)

 ClubHeap (K = 16)

 BBQ

 BMW-Tree

20 24 28

1

10

100

B
R

A
M

 (
%

)

M

(e) BRAM.

Figure 13: Frequency, throughput, and resource consumption for ClubHeap, BBQ, and BMW-Tree at different M.

showing better scalability for N than BBQ.
As shown in Fig. 11(c) and 11(d), ClubHeap processors at

each level require more LUT and FF resources than BMW-
Tree and BBQ. As shown in Fig. 11(e), ClubHeap consumes
the similar BRAMs as BMW-Tree, but much fewer than BBQ.
At N=217, ClubHeap consumes 33% (K=2) or 39% (K=16)
fewer BRAMs than BBQ. Note that the proportion of LUTs
and FFs used by these structures to the total FPGA resources
is significantly less than that of BRAMs. Therefore, it is worth-
while for ClubHeap to consume more LUTs and FFs to save
BRAMs compared to BBQ.

The 45nm ASIC analysis in Sec. 5 supports the same con-
clusion. For N=217, P=216, and M=1, the clock frequency bot-
tleneck for both ClubHeap and BBQ is SRAM access. BBQ
requires larger SRAM which causes higher access latency,
while ClubHeap’s memory is distributed across levels which
has lower access latency. Additionally, ClubHeap consumes
less chip area than BBQ. The following evaluations indicate
that ClubHeap’s advantages become more pronounced as P
and M increase. We believe that ClubHeap will remain a
better choice at more advanced process nodes.

Evaluation on P. We evaluate the implementations for
different P with N=212 and M=1 in Fig. 12 (for BMW-Tree,
we select the nearest N=5,460). When the range of ranks is
2x wider, the only changes needed in ClubHeap are an ad-
ditional bit for the rank field and an additional 1-bit width
of the comparators.When P increases from 216 to 220, the
clock frequency of ClubHeap only drops less than 3%. As a
heap-based PQ implementation, BMW-Tree exhibits similar
scalability for P. However, BBQ needs to expand the number
of buckets to support a larger range of P, resulting in poorer
scalability. As shown in Fig. 12(a), the large number of buck-
ets poses challenges in routing, causing its clock frequency
to drop lower than that of ClubHeap when P=219. Consid-
ering CPR, ClubHeap achieves a throughput 3.28x higher
than BBQ when P=220 as shown in Fig. 12(b). BBQ with a
larger P fails to be synthesized on our FPGA because of the
exhausted BRAMs, while ClubHeap can scale up to P=232

with a cost of only 5.5% frequency reduction.
As shown in Fig. 12(c), 12(d), and 12(e), with the increase

of P, BBQ requires more levels or a larger bitmap width for
HFFS, resulting in higher consumption of LUTs, FFs, and

BRAMs following an O(M) trend. Among them, BRAM con-
sumption grows the fastest, reaching 70x more than ClubHeap
(K=2) when P=220. In contrast, the LUT and FF consumption
for ClubHeap grows slowly. When P increases from 216 to
220, ClubHeap consumes only about 10% additional LUTs
and FFs, and the BRAM consumption remains constant when
the additional bits do not cause the node size to exceed the
width provided by BRAMs at P=216.

Evaluation on M. Support for logical partitioning is an
advantage of ClubHeap over BMW-Tree, so BMW-Tree is
represented by only one point (M=1) in Fig. 13. BBQ supports
logical partitioning, but it requires evenly dividing buckets
among various logical PIFOs. With a constant N and P, M
logical PIFOs in BBQ use M times more buckets, which is
equivalent to a M times larger P. Fig. 13 shows the frequency,
throughput, and resource consumption when a physical queue
with N=212 and P=216 is divided into M logical PIFOs. We
draw a similar conclusion as for Fig. 12. The frequency of
ClubHeap with K=2 decreases by only 16.7% when M scales
to 28, while at K=16 there is no frequency reduction.

As shown in Fig. 13(c) and 13(d), the LUT and FF con-
sumption decreases when M gets larger, because more mem-
ory is synthesized as BRAMs rather than LUTMEMs. It is
worth mentioning that the memory space required for Club-
Heap has an upper limit independent of M, bounded by B1.

In summary, although BBQ achieves a high throughput for
small N, it lacks scalability on P and M. BMW-Tree, on the
other hand, offers scalability on both N and P, but has lower
throughput and does not support logical partitioning.

6.4 Binary Heap vs Multi-way Heap

We compare ClubHeap with clustered ternary and 4-way
heaps to explain the rationale for choosing a binary heap
rather than a multi-way one. As shown in Fig. 14(a), the fre-
quency of a clustered multi-way heap is always lower than
that of ClubHeap. The frequency degradation is because the
clustered ternary heap requires more comparisons and selec-
tions during the process of selecting new_min, resulting in a
longer critical path. Meanwhile, as shown in Fig. 14(b), 14(c),
and 14(d), the clustered multi-way heap does not reduce the
resource consumption as well.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1431

211 212 213 214 215 216

200

250

300

F
re

q
u

e
n

c
y
 (

M
H

z
)

N

 binary (K = 2) binary (K = 16)

 ternary (K = 2) ternary (K = 16)

 4-way (K = 2) 4-way (K = 16)

(a) Clock frequency.

 binary (K = 2) binary (K = 16)

 ternary (K = 2) ternary (K = 16)

 4-way (K = 2) 4-way (K = 16)

211 212 213 214 215 216
0

2

4

L
U

T
 (

%
)

N

(b) LUT.

 binary (K = 2) binary (K = 16)

 ternary (K = 2) ternary (K = 16)

 4-way (K = 2) 4-way (K = 16)

211 212 213 214 215 216
0.0

0.5

1.0

F
F

 (
%

)

N

(c) FF.

 binary (K = 2) binary (K = 16)

 ternary (K = 2) ternary (K = 16)

 4-way (K = 2) 4-way (K = 16)

211 212 213 214 215 216
0

5

10

B
R

A
M

 (
%

)

N

(d) BRAM.

Figure 14: Frequency and resource consumption comparison
of ClubHeap and a clustered ternary / 4-way heap.

7 Related Works

PIFO [51] is a classical programmable packet scheduling ab-
straction that can express a wide range of algorithms, but it
faces two limitations. (1) PIFO’s programmability is achieved
through a mesh composed of multiple PQs, but its original
implementation , SR-PIFO [51], encounters significant chal-
lenges in terms of throughput and scalability. (2) PIFO as-
sumes that the rank of a packet is already calculated when it
enters the scheduler and is unchanged thereafter. The assump-
tion makes the abstraction unable to express algorithms with
dynamic ranks, e.g. pFabric [3], which introduces a starvation
avoidance mechanism to SRPT [46].

Optimization of PIFO. Replacing SR-PIFO with other
PQs can help improve the throughput and scalability of PIFO.
OPQ and APQ [5] introduce the Single-Instruction-Multiple-
Data (SIMD) technique on systolic arrays to enhance through-
put, but they lack scalability on the number of elements. Cal-
endar Queues [11], CPI [58], and BBQ [4] implement PQs
using buckets, but the number of buckets limits the number of
priorities. P-Heap [8], Pipelined Heap [28], H-PQ [26], and
BMW-Tree [62, 68] distribute the storage and computation
of a PQ across levels using heaps, achieving good scalabil-
ity. However, the inter-operational data dependency problem
discussed in Sec. 2.3 restricts their performance. ClubHeap,
proposed in this paper, is the first high-speed and scalable
PIFO queue implementation, which can help PIFO overcome
the first limitation.

Approximation of PIFO. Another direction to overcome

the first limitation is to approximate PIFO by eliminating the
need for using a mesh of PQs. UPS [36] employs LSTF as
an approximate universal packet scheduling algorithm, en-
abling programmable packet scheduling with a single PQ.
SP-PIFO [1] utilizes a group of FIFOs, clustering flows with
similar ranks into the same FIFO to achieve scheduling ap-
proximation. FDPA [12], AFQ [47], PCQ [48], PUPD [56],
GearBox [20], QCluster [61], and PR-AQM [32] also use mul-
tiple FIFOs for approximate scheduling. AIFO [64], on the
other hand, only uses a single FIFO, which limits its ability
to approximate scheduling order but ensures approximation
for whether a packet is admitted or dropped. FAIFO [69]
extends AIFO by considering information freshness to bet-
ter support time-sensitive applications. RIFO [39] improves
AIFO’s admission control using min-max linear normaliza-
tion. PACKS [2] is a hybrid structure of SP-PIFO and AIFO,
which achieves approximation of PIFO in terms of both
scheduling and admission.

Extension of PIFO. New abstractions are proposed to
overcome the second limitation. PIEO [49] allows the PQs
to pop elements from any location rather than the head only,
enabling scheduling with eligibility predicates. PIPO [66] im-
plements an approximated PIEO with multiple PIFO queues
for bounded-delay scheduling algorithms. PCSQ [27] extends
PIPO to large-scale deterministic networks with long-distance
links. CIPO [24] proposes an approximation of PIEO with
two-dimensional predicates. DR-PIFO [16] combines a PIFO
queue with a group of FIFOs to support dynamic ranks. Eif-
fel [44] introduces a queue structure based on Circular FFS to
provide on-dequeue scheduling. ClubHeap does not support
these extended abstractions, but it can be incorporated as a
PIFO queue in their implementations.

8 Conclusion

ClubHeap is a novel heap-based PIFO queue implementation.
It overcomes the performance and scalability challenges of
PIFO’s implementations to achieve line-rate scheduling for a
large number of flows with a wide range of priority levels. It
is beneficial to any programmable schedulers implemented
with the PIFO abstraction on switches or SmartNICs based
on either FPGA or ASIC.
Acknowledgement. We thank the anonymous reviewers and
the paper shepherd Stefan Schmid for their insightful com-
ments and suggestions, which help improve this paper. We
thank Chuwen Zhang (Tsinghua University), Yongzheng
Zhang (ShanghaiTech University), Yinuo Jia (Wuhan Uni-
versity), and Haodong Wang (Northwestern Polytechnical
University) for helping in conducting experiments. This work
is supported by National Key Research and Development
Program of China (2024YFE0203900), NSFC (62032013,
62272258, 62172108), NSFC-RGC (62061160489). The cor-
responding author is Bin Liu (lmyujie@gmail.com).

1432 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-Out
behaviors using Strict-Priority queues. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 59–76, Santa Clara, CA,
2020. USENIX Association.

[2] Albert Gran Alcoz, Balazs Vass, Pooria Namyar, Behnaz
Arzani, Gabor Retvari, and Laurent Vanbever. Every-
thing matters in programmable packet scheduling. In
NSDI. USENIX, 2025.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: minimal near-optimal data-
center transport. SIGCOMM Comput. Commun. Rev.,
43(4):435–446, 2013.

[4] Nirav Atre, Hugo Sadok, and Justine Sherry. BBQ: A
fast and scalable integer priority queue for hardware
packet scheduling. In 21st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 24),
pages 455–475, Santa Clara, CA, 2024. USENIX Asso-
ciation.

[5] Imad Benacer, François-Raymond Boyer, and Yvon
Savaria. A fast, single-instruction–multiple-data, scal-
able priority queue. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(10):1939–1952,
2018.

[6] Jon C. R. Bennett and Hui Zhang. Hierarchical packet
fair queueing algorithms. SIGCOMM Comput. Commun.
Rev., 26(4):143–156, 1996.

[7] Jon C. R. Bennett and Hui Zhang. WF2Q: worst-case
fair weighted fair queueing. In Proceedings of the Fif-
teenth Annual Joint Conference of the IEEE Computer
and Communications Societies Conference on The Con-
ference on Computer Communications (INFOCOM) -
Volume 1, INFOCOM’96, page 120–128, USA, 1996.
IEEE Computer Society.

[8] Ranjita Bhagwan and Bill Lin. Fast and scalable prior-
ity queue architecture for high-speed network switches.
In Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies, volume 2, pages 538–547, 2000.

[9] Gedare Bloom, Gabriel Parmer, Bhagirath Narahari, and
Rahul Simha. Shared hardware data structures for hard
real-time systems. In Proceedings of the Tenth ACM
International Conference on Embedded Software, EM-
SOFT ’12, page 133–142, New York, NY, USA, 2012.
Association for Computing Machinery.

[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: fast
programmable match-action processing in hardware for
sdn. SIGCOMM Comput. Commun. Rev., 43(4):99–110,
2013.

[11] Randy Brown. Calendar queues: a fast 0(1) priority
queue implementation for the simulation event set prob-
lem. Communications of the ACM, 31(10):1220–1227,
1988.

[12] Carmelo Cascone, Nicola Bonelli, Luca Bianchi, Anto-
nio Capone, and Brunilde Sansò. Towards approximate
fair bandwidth sharing via dynamic priority queuing.
In 2017 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN), pages 1–6,
2017.

[13] Ravikesh Chandra and Oliver Sinnen. Improving ap-
plication performance with hardware data structures.
In 2010 IEEE International Symposium on Parallel
and Distributed Processing, Workshops and Phd Forum
(IPDPSW), pages 1–4, 2010.

[14] ChipsAlliance. Chisel. https://www.chisel-lang.
org/, 2024.

[15] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and simulation of a fair queueing algorithm.
SIGCOMM Comput. Commun. Rev., 19(4):1–12, 1989.

[16] Mostafa Elbediwy, Bill Pontikakis, Alireza Ghaffari,
Jean-Pierre David, and Yvon Savaria. DR-PIFO: A
dynamic ranking packet scheduler using a push-in-first-
out queue. IEEE Transactions on Network and Service
Management, 21(1):355–371, 2024.

[17] Hewlett Packard Enterprise. CACTI. https://github.
com/HewlettPackard/cacti, 2017.

[18] Daniel Firestone. VFP: A virtual switch platform for
host SDN in the public cloud. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 315–328, Boston, MA, 2017. USENIX
Association.

[19] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1433

https://www.chisel-lang.org/
https://www.chisel-lang.org/
https://github.com/HewlettPackard/cacti
https://github.com/HewlettPackard/cacti

Azure accelerated networking: SmartNICs in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, 2018. USENIX Association.

[20] Peixuan Gao, Anthony Dalleggio, Yang Xu, and
H. Jonathan Chao. Gearbox: A hierarchical packet
scheduler for approximate weighted fair queuing. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 551–565, Renton,
WA, 2022. USENIX Association.

[21] S. Jamaloddin Golestani. A stop-and-go queueing frame-
work for congestion management. SIGCOMM Comput.
Commun. Rev., 20(4):8–18, 1990.

[22] Pawan Goyal, Harrick M. Vin, and Haichen Cheng.
Start-time fair queueing: a scheduling algorithm for inte-
grated services packet switching networks. IEEE/ACM
Transactions on Networking, 5(5):690–704, 1997.

[23] Bespoke Silicon Group. BSG Block-box
SRAM Generator. https://github.com/
bespoke-silicon-group/bsg_fakeram, 2022.

[24] Feng Guo, Shidong Sun, Junjie Hu, Ning Zhang, and
Zhiqiang Lv. CIPO: Efficient, lightweight and pro-
grammable packet scheduling. Computer Networks,
245(C), 2024.

[25] Mohammad Hedayati, Kai Shen, Michael L. Scott, and
Mike Marty. Multi-Queue fair queuing. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 301–314, Renton, WA, 2019. USENIX Asso-
ciation.

[26] Muhuan Huang, Kevin Lim, and Jason Cong. A scalable,
high-performance customized priority queue. In 2014
24th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–4, 2014.

[27] Yudong Huang, Shuo Wang, Shiyin Zhu, Guoyu Peng,
Xinyuan Zhang, Tian Pan, Tao Huang, Lei Zhou, Zuopin
Cheng, Daorong Guo, Hui Lin, Lianqing Zhang, Juyan
Lei, Liangzhang Xu, Wei Wang, Xinmin Liu, Xuejun
You, and Yunjie Liu. Poster: Programmable cycle-
specified queue for deterministic networking. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 1132–1134, New York, NY,
USA, 2023. Association for Computing Machinery.

[28] Aggelos Ioannou and Manolis G. H. Katevenis.
Pipelined heap (priority queue) management for ad-
vanced scheduling in high-speed networks. IEEE/ACM
Transactions on Networking, 15(2):450–461, 2007.

[29] C.R. Kalmanek, H. Kanakia, and S. Keshav. Rate con-
trolled servers for very high-speed networks. In [Pro-
ceedings] GLOBECOM ’90: IEEE Global Telecommu-
nications Conference and Exhibition, pages 12–20 vol.1,
1990.

[30] Pierre Lavoie, David Haccoun, and Yvon Savaria. A
systolic architecture for fast stack sequential decoders.
IEEE Transactions on Communications, 42(234):324–
335, 1994.

[31] Joseph Y. T. Leung. A new algorithm for scheduling
periodic, real-time tasks. Algorithmica, 4(1–4):209–219,
1989.

[32] Ziyong Li, Yuxiang Hu, Le Tian, and Zhao Lv. Packet
rank-aware active queue management for programmable
flow scheduling. Computer Networks, 225:109632,
2023.

[33] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 243–
259. USENIX Association, 2020.

[34] C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[35] Paul E. McKenney. Stochastic fairness queueing. In
Proceedings. IEEE INFOCOM ’90: Ninth Annual Joint
Conference of the IEEE Computer and Communications,
pages 733–740 vol.2, 1990.

[36] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Universal packet scheduling. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 501–521, Santa Clara,
CA, 2016. USENIX Association.

[37] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias
Kappé, and Dexter Kozen. Formal abstractions for
packet scheduling. Proc. ACM Program. Lang., 7(OOP-
SLA2), October 2023.

[38] Sung-Whan Moon, Kang G. Shin, and Jennifer Rexford.
Scalable hardware priority queue architectures for high-
speed packet switches. In Proceedings Third IEEE Real-
Time Technology and Applications Symposium (RTTAS),
pages 203–212, 1997.

[39] Habib Mostafaei, Maciej Pacut, and Stefan Schmid.
RIFO: Pushing the efficiency of programmable packet
schedulers, 2024.

1434 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/bespoke-silicon-group/bsg_fakeram
https://github.com/bespoke-silicon-group/bsg_fakeram

[40] Naveen Muralimanohar, Rajeev Balasubramonian, and
Norm Jouppi. Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0. In 40th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO 2007), pages 3–14, 2007.

[41] NVIDIA. NVIDIA Spectrum SN5000 Series Switches.
https://www.nvidia.com/en-us/networking/
ethernet-switching/, 2023.

[42] Dan Picker and Ronald D. Fellman. A VLSI priority
packet queue with inheritance and overwrite. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 3(2):245–253, 1995.

[43] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In Pro-
ceedings of the Conference of the ACM Special Inter-
est Group on Data Communication (SIGCOMM), SIG-
COMM ’17, page 404–417, New York, NY, USA, 2017.
Association for Computing Machinery.

[44] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen
Zegura, Mostafa Ammar, Khaled Harras, and Amin
Vahdat. Eiffel: Efficient and flexible software packet
scheduling. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
17–32, Boston, MA, 2019. USENIX Association.

[45] Hanrijanto Sariowan, Rene L. Cruz, and George C. Poly-
zos. SCED: a generalized scheduling policy for guaran-
teeing quality-of-service. IEEE/ACM Transactions on
Networking, 7(5):669–684, 1999.

[46] Linus E. Schrage and Louis W. Miller. The queue M/G/1
with the shortest remaining processing time discipline.
Operations Research, 14(4):670–684, 1966.

[47] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In Proceedings of the
15th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’18, page 1–16, USA,
2018. USENIX Association.

[48] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krishna-
murthy, and Anirudh Sivaraman. Programmable calen-
dar queues for high-speed packet scheduling. In Pro-
ceedings of the 17th Usenix Conference on Networked
Systems Design and Implementation, NSDI’20, page
685–700, USA, 2020. USENIX Association.

[49] Vishal Shrivastav. Fast, scalable, and programmable
packet scheduler in hardware. In Proceedings of the
ACM Special Interest Group on Data Communication,

SIGCOMM ’19, page 367–379, New York, NY, USA,
2019. Association for Computing Machinery.

[50] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 15–28,
New York, NY, USA, 2016. Association for Computing
Machinery.

[51] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 44–57, New York,
NY, USA, 2016. Association for Computing Machinery.

[52] Brent Stephens, Aditya Akella, and Michael Swift.
Loom: Flexible and efficient NIC packet scheduling. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 33–46, Boston,
MA, 2019. USENIX Association.

[53] Synopsys. Synopsys Design Compiler. https://www.
synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html, 2023.

[54] Kenji Toda, Kenji Nishida, Eiichi Takahashi, Nick
Michell, and Yoshinori Yamaguchi. Implementation of
a priority forwarding router chip for real-time intercon-
nection networks. In Second Workshop on Parallel and
Distributed Real-Time Systems, pages 166–175, 1994.

[55] NC State University. NCSU FreePDK45. https://
eda.ncsu.edu/freepdk/freepdk45/, 2023.

[56] Balázs Vass, Csaba Sarkadi, and Gábor Rétvári. Pro-
grammable packet scheduling with sp-pifo: Theory, al-
gorithms and evaluation. In IEEE INFOCOM 2022 -
IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pages 1–6, 2022.

[57] D.C. Verma, H. Zhang, and D. Ferrari. Delay jitter con-
trol for real-time communication in a packet switching
network. In Proceedings of TRICOMM ‘91: IEEE Con-
ference on Communications Software: Communications
for Distributed Applications and Systems, pages 35–43,
1991.

[58] Hao Wang and Bill Lin. Per-flow queue management
with succinct priority indexing structures for high speed
packet scheduling. IEEE Transactions on Parallel and
Distributed Systems, 24(7):1380–1389, 2013.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation 1435

https://www.nvidia.com/en-us/networking/ethernet-switching/
https://www.nvidia.com/en-us/networking/ethernet-switching/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://eda.ncsu.edu/freepdk/freepdk45/
https://eda.ncsu.edu/freepdk/freepdk45/

[59] Shien-Yang Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y.
Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita,
C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor,
K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin,
C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen,
C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai,
K.S. Chen, Y. Ku, and S. M. Jang. A 7nm cmos platform
technology featuring 4th generation finfet transistors
with a 0.027um2 high density 6-t sram cell for mobile
soc applications. In 2016 IEEE International Electron
Devices Meeting (IEDM), pages 2.6.1–2.6.4, 2016.

[60] Xilinx. Alveo U280 Data Center Accelerator. https:
//www.avnet.com/opasdata/d120001/medias/
docus/196/XLX-A-U280-A32G-DEV-G-Datasheet.
pdf, 2019.

[61] Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao
Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang.
Qcluster: Clustering packets for flow scheduling. In
Proceedings of the ACM Web Conference 2022, WWW
’22, page 1752–1763, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[62] Ruyi Yao, Zhiyu Zhang, Gaojian Fang, Peixuan Gao,
Sen Liu, Yibo Fan, Yang Xu, and H. Jonathan Chao.
BMW tree: Large-scale, high-throughput and modular
PIFO implementation using balanced multi-way sort-
ing tree. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 208–219, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[63] Xin Yu, Wei Chen, and Ye Tian. OWFQ: Reducing
packet drops for approximate weighted fair queueing
with calendar queues. In 2023 9th International Confer-
ence on Computer and Communications (ICCC), pages
540–544, 2023.

[64] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable packet scheduling
with a single queue. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page
179–193, New York, NY, USA, 2021. Association for
Computing Machinery.

[65] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion
Stoica, and Xin Jin. Twenty years after: Hierarchical
Core-Stateless fair queueing. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 29–45. USENIX Association, 2021.

[66] Chuwen Zhang, Zhikang Chen, Haoyu Song, Ruyi Yao,
Yang Xu, Yi Wang, Ji Miao, and Bin Liu. PIPO: Efficient
programmable scheduling for time sensitive networking.

In 2021 IEEE 29th International Conference on Network
Protocols (ICNP), pages 1–11, 2021.

[67] Hui Zhang and Domenico Ferrari. Rate-controlled ser-
vice disciplines. J. High Speed Netw., 3(4):389–412,
October 1994.

[68] Zhiyu Zhang, Shili Chen, Ruyi Yao, Ruoshi Sun, Hao
Mei, Hao Wang, Zixuan Chen, Gaojian Fang, Yibo Fan,
Wanxin Shi, Sen Liu, and Yang Xu. vpifo: Virtualized
packet scheduler for programmable hierarchical schedul-
ing in high-speed networks. In Proceedings of the ACM
SIGCOMM 2024 Conference, ACM SIGCOMM ’24,
page 983–999, New York, NY, USA, 2024. Association
for Computing Machinery.

[69] Meng-yuan Zhu, Ke-fan Chen, Zhuo Chen, and Na Lv.
FAIFO: UAV-assisted IoT programmable packet
scheduling considering freshness. Ad Hoc Networks,
134(C), 2022.

1436 22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.avnet.com/opasdata/d120001/medias/docus/196/XLX-A-U280-A32G-DEV-G-Datasheet.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/196/XLX-A-U280-A32G-DEV-G-Datasheet.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/196/XLX-A-U280-A32G-DEV-G-Datasheet.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/196/XLX-A-U280-A32G-DEV-G-Datasheet.pdf

	Introduction
	Background
	Requirements for PIFO Implementations
	Existing Implementations
	Inter-Operational Data Dependency

	ClubHeap
	Definition and Corollaries
	Operations

	Architectural Design
	Pipeline Overview
	Node Data Structure
	ClubHeap Processor
	ClubHeap Memory Organization

	Implementation
	Evaluation
	Methodology
	Effects of Different K Values
	Comparison with BMW-Tree and BBQ
	Binary Heap vs Multi-way Heap

	Related Works
	Conclusion

