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Abstract
Wide-area scaling trends require new approaches to

Internet Protocol (IP) lookup, enabled by modern networking
chips such as Intel Tofino [35], AMD Pensando [2], and
Nvidia BlueField [55], which provide substantial ternary
content-addressable memory (TCAM) and static random-
access memory (SRAM). However, designing and evaluating
scalable algorithms for these chips is challenging due to
hardware-level constraints. To address this, we introduce the
CRAM (CAM+RAM) lens, a framework that combines a
formal model for evaluating algorithms on modern network
processors with a set of optimization idioms. We demonstrate
the effectiveness of CRAM by designing and evaluating three
new IP lookup schemes: RESAIL, BSIC, and MASHUP. RE-
SAIL enables Tofino-2 to scale to 2.25 million IPv4 prefixes—
likely sufficient for the next decade—while a pure TCAM
approach supports only 250k prefixes, just 27% of the current
global IPv4 routing table. Similarly, BSIC scales to 390k IPv6
prefixes on Tofino-2, supporting 3.2 times as many prefixes
as a pure TCAM implementation. In contrast, existing state-
of-the-art algorithms, SAIL [83] for IPv4 and HI-BST [65]
for IPv6, scale to considerably smaller sizes on Tofino-2.

1 Introduction

For many, Internet Protocol (IP) lookup is considered a chal-
lenge of the past. With over 40 years of research and hundreds
of papers (e.g., [7, 19, 21, 22, 29, 45, 65, 83, 89]) focused on
supporting IP lookup at scale, numerous schemes have been
developed—some of which have been in practical use for
two decades. However, these classical approaches are single-
resource solutions,designed for conventional switch chip archi-
tectures that provided either specialized hardware like ternary
content-addressable memory (TCAM) or commodity random-
access memory (RAM), such as on-chip static RAM (SRAM)
coupled with off-chip dynamic RAM (DRAM), but not both.
TCAM enables parallel searches across wildcarded entries in
a single clock cycle but requires three times more transistors
per bit than SRAM and consumes hundreds of watts [5].
RAM-based approaches are cheaper but require additional
complexity and memory compared to pure TCAM solutions.
Thus far, commercial switch chip vendors have scaled these
single-resource solutions by increasing hardware resources.

In this paper, we contend that it is important to reconsider
IP lookup due to the continued growth of lookup tables and
a recent inflection point in network hardware. A slew of new
application-specific integrated circuits (ASICs), such as Intel
Tofino [35], AMD Pensando [2], and Nvidia BlueField [55],
have transformed the networking chip market [58]. These chips
are built on two modern packet processing architectures—
Reconfigurable Match-Action Tables (RMT) [9] and
disaggregated RMT (dRMT) [15]—which consist of match-
action processors with access to large amounts of both TCAM
and SRAM. We review these architectures at the start of §2.
This leads us to our central question: How can we leverage
modern networking chips, utilizing both TCAM and SRAM,
to develop new IP lookup algorithms that scale to larger
databases than classical single-resource solutions?

Two main challenges make designing scalable algorithms
for RMT and dRMT chips difficult: (1) Lack of an abstract
model for evaluating and comparing algorithms. Chip-specific
arcana such as memory allocation, metadata storage, and
action bits must be carefully considered. (2) Large but
finite resources. While TCAM, SRAM, and pipeline stages
are available in substantial amounts, they require careful
algorithm design to scale effectively.

Solution: We introduce the CRAM (CAM+RAM) lens,
an abstract model of modern packet processing architectures,
such as RMT and dRMT, paired with a set of optimization
idioms. The CRAM model enables us to estimate algorithm
scalability using higher-order space and time metrics, without
requiring simulation of ASIC-specific details such as TCAM
block sizes, SRAM page sizes, and per-stage memory. The
CRAM model goes beyond classical models such as random-
access machine (RAM) [23] and parallel RAM (PRAM) [41]
by adding TCAM operations and using match-action depen-
dencies to measure time complexity. The optimization idioms
provide eight strategies for designing scalable algorithms.

CRAM can be generalized to other hardware architectures,
such as smart network interface cards (SmartNICs) [2, 32, 55]
and field-programmable gate arrays (FPGAs) [3, 34],
and applied to broader network applications like packet
classification [30, 44, 74] and in-network machine learn-
ing (ML) [73, 91, 93]. However, this is not the focus of our
paper. For completeness, we briefly discuss these extensions
in §2.4 and §2.5. Instead, we concentrate on applying CRAM
to IP lookup because of the following observations:

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation    127



03 05 07 09 11 13 15 17 19 21 23
1

2

3

4

5

6

7

8

9

10

Year (2003-2023)

A
ct

iv
e

IP
v4

E
nt

ri
es

(1
x1

05 ) AS65000 (IPv4)
AS131072 (IPv6)

0
2
4
6
8
10
12
14
16
18
20 A

ctive
IPv6

E
ntries(1x10

4)

Figure 1: BGP routing table size over the past two decades

O1. Continued IPv4 growth: Over the past two decades, the
global IPv4 routing table has grown linearly [26,27], doubling
in size every decade (Figure 1). If this trend continues, the IPv4
table could reach two million entries by 2033.

O2. Rapid IPv6 deployment: In the same period, the global
IPv6 routing table has grown exponentially [25, 28], doubling
every three years (Figure 1). Even if growth slows to a linear
rate, the IPv6 table could still reach half a million entries by
2033. IPv6 prefixes are also four times wider, though typically,
only the first 64 bits are used for global routing.

O3. Virtual private networks (VPNs): Some routers main-
tain hundreds of VPN routing tables. On such devices, publicly
available routing tables account for only a fraction of the total
capacity required.

O4. Other tasks: Routers need table memory for additional
tasks such as network address translation (NAT) and firewalls.
Minimizing the memory used for forwarding allows more
features to fit on a chip.

CRAM enables us to rethink pre-existing IP lookup
schemes, such as SAIL [83], DXR [89], and multibit tries, to
develop new algorithms that scale to larger databases. We start
with the best-of-breed algorithms from three classic IP lookup
approaches—search on prefix lengths, search on prefix ranges,
and trie-based search. We derive new algorithms using the
optimization idioms (§2.2) and predict their scalability with
the CRAM model (§2.1). Each new algorithm—rethinking
SAIL (RESAIL), Binary Search with Initial CAM (BSIC),
and MASHUP—offers unique strengths for different settings.

We chose Intel Tofino-2, an RMT switch chip, for our exper-
iments because we had access to its development environment.
While Intel recently announced it will not develop new Tofino
models, it remains committed to supporting Tofino and Tofino-
2 [53]. We expect our results to hold for dRMT, as RMT is a
stricter version of dRMT with additional access restrictions.

This paper makes the following contributions:
1. IP Lookup Algorithms: Three new scalable IP lookup

algorithms—RESAIL, BSIC, and MASHUP.
2. CRAM Model: An abstract model for quickly estimating

the scalability of packet processing algorithms before detailed

implementation.
3. Optimization Idioms: Eight design strategies for

minimizing TCAM, SRAM, and pipeline stages.
4. Evaluation: Simulations and Tofino-2 implementations

achieve 9X (IPv4) and 3X (IPv6) improvements over pure
TCAM solutions, enabling scalability for the next decade.

The remainder of this paper is organized as follows. §2 in-
troduces the CRAM model and optimization idioms, followed
by an overview of the idioms in action. It also briefly explores
other hardware architectures, broader network applications,
and algorithmic requirements. We design three new IP lookup
algorithms in § 3, § 4, and § 5. § 6 presents simulation and
implementation results, followed by scalability experiments in
§7. §8 evaluates the predictive accuracy of the CRAM model,
and §9 surveys related work. We conclude in §10.

2 The CRAM Lens

We now formally introduce the CRAM model, list eight
optimization idioms, and preview the idioms in action. Ad-
ditionally, we briefly discuss how CRAM can be generalized
to other hardware architectures, applied to broader network
applications, and adapted to algorithmic requirements.

The CRAM model abstracts two modern packet processing
architectures, RMT [9] and dRMT [15]. Figures depicting
both can be found in Appendix A.1. A list of known RMT and
dRMT implementations is provided in Appendix A.2.

RMT: RMT is a sequential pipeline architecture of match-
action stages. TCAM and SRAM are partitioned among stages
such that a stage cannot access the memory of other stages.

dRMT: In contrast, dRMT features programmable proces-
sors that execute match-action operations in any order. It dis-
aggregates memory from processors by relocating TCAM and
SRAM into a shared external pool.

2.1 The CRAM Model
The CRAM model adds two extensions to the RAM
model [23]: first, the ability to perform an SRAM or TCAM
table lookup; second, an explicit dependency structure
between steps (as in RMT compilers [37]) that models the
ability to execute multiple steps in parallel. Our goal is for the
memory and run time measures of a CRAM model program
to be within a small constant factor of the measures for actual
hardware implementations.

Thus, a CRAM model program is parameterized by:

• A register size w, and a set R of (w-bit) registers. Let C
denote the set of w-bit integers in the range [0,2w−1].

• Sets of unary (Uops) and binary (Bops) operators on
w-bit values, e.g., Uops = {+,−,∼, !} and Bops =
{+,−,<<,>>,==,!=,<,≤,>,≥,&, |,̂ ,&&, ||}, with
behavior as defined in languages like Java and P4 [58].
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A CRAM model program consists of a parser P, a deparser
D, and a directed acyclic graph G comprised of steps. A state S
is a function from R to C. P is a function from all bit sequences
representing packets to an initial state. D is a function from
a final state back to all bit sequences representing packets.

A step may optionally begin with a single table lookup
operation. A table t consists of a match kind (exact or ternary),
a key selector function Kt , a maximum number of entries nt ,
and a default value Zt . Kt ’s result is a sequence of kt bits, each
representing a chosen bit position within one register of R. An
entry e contains a key and associated data, with the dt bits of
associated data stored in a set of w-bit registers At .

For an exact match table, the key is a kt -bit integer. A special
case arises for exact match tables with nt = 2kt , in which the
key does not need to be explicitly stored, as it can be used to
directly index into the table. For a ternary match table, the key
is a pair of kt-bit integers, a value ve and a mask me, plus an
integer priority pe. All keys in the same table must be distinct.

A step consists of an optional table t followed by a sequence
of statements in the form i f (cond) : dest = expr. Here,
dest is an element of R, expr contains a single unary or
binary operator with operands from R∪At∪C, and cond is a
potentially nested expression with operands from R∪At∪C.
No data dependencies are allowed within this sequence, i.e.,
for any statement in the sequence that assigns a value to r∈R,
r may not appear in cond or expr of any later statements. This
enables all statements within a step to be executed in parallel.

A step reads register r if any bit of r appears in the output
of its key selector function Kt , or as part of cond or expr in any
of its statements. A step writes register r if r appears as dest
in any of its statements.

For all steps u and v in G, if u writes r and v reads or writes r,
then there must be a directed path (u,v) or (v,u). This prevents
u and v from being executed in parallel. This condition must
hold for all registers. A directed path (u,v) indicates that step
u must be executed before step v. If there is no directed path
between two steps, they may be executed in parallel.

The CRAM model introduces a set of higher-order space
and time metrics. The memory footprint of a CRAM model
program is evaluated by calculating the total TCAM and
SRAM bits across all tables t in G. In a ternary (exact) match
table, the memory used for the keys is ntkt TCAM (SRAM) bits.
For ternary match tables, we only count the ve component of
the key, as these are the logical bits involved in the match. For
both types of tables, the memory used for the associated data
is ntdt SRAM bits. To compute the overall TCAM and SRAM
totals, simply sum the bits used across all tables. The latency
of a CRAM model program is evaluated by determining the
number of steps (nodes) in the longest directed path in G.

2.2 Optimization Idioms
The following idioms can be applied together in various
combinations to achieve different space-time trade-offs:

I1. Compress with TCAM: Entries containing wildcards
must be expanded to fit into SRAM. For example, the prefix
1** would be stored as 100, 101, 110, and 111. However, by
utilizing TCAM, these four SRAM entries can be compressed
into a single TCAM entry (1**), thus saving nine bits.

I2. Expand to SRAM: In the dual of I1, replace a TCAM
block with SRAM if the expanded forms of its prefixes are less
than a small constant factor c of the original TCAM entries.
We choose c = 3 because TCAM requires three times more
transistors per bit than SRAM [82].

I3. Compress with SRAM: Despite their high memory cost,
directly indexed data structures such as next hop arrays are used
because they avoid the extra instructions needed for hashing.
However, since most RMT and dRMT ASICs are designed
with the cost of performing SRAM-based lookups—whether
by hashing or direct indexing—being exactly the same, it is
often more advantageous to use compressed forms of SRAM
storage such as hash tables instead.

I4. Strategic Cutting: If several entries at a given node share
a common prefix, we can save memory by strategically cutting
at the bit position where the shared prefix ends, storing only one
copy of the repeated bits. While this is how multibit tries [70]
work, we extend the concept to TCAM nodes.

I5. Table Coalescing: To reduce memory waste, minimally
populated logical tables can be coalesced in shared physical
TCAM blocks or SRAM pages. They can be differentiated with
tag bits [66]. Although tagging increases the lookup key width,
it minimizes physical TCAM and SRAM fragmentation.

I6. Look-aside TCAM: IP lookup schemes are often opti-
mized around common cases such as 24-bit IPv4 prefixes. As
a result, uncommon entries (e.g., extremely short or long pre-
fixes) tend to require undue computational or storage costs.
We address this by moving the special prefixes into a separate
look-aside TCAM that can be trivially searched in parallel.

I7. Step Reduction: A program’s number of steps can be
reduced by leveraging match-action unit (MAU) parallelism
to consolidate data-independent lookups into a single stage.

I8. Memory Fan-out: In traditional RAM model architec-
tures, a lookup table can be accessed multiple times per packet.
However, many RMT and dRMT chips restrict each table to
one memory access per packet. To address this limitation, we
split the original table by fanning out its contents and storing
entries accessed by different lookups in separate tables.

2.3 Idioms in Action
We briefly preview the idioms in action for three fundamental
classes of IP lookup: search on prefix lengths, search on prefix
ranges, and trie-based search.

From SAIL to RESAIL: Search on prefix
lengths [10, 21, 40, 77, 83] splits IP lookup into two
sub-problems: finding the length of the longest match and
retrieving the next hop. SAIL [83], the best performing IPv4
lookup scheme in hardware settings with fast on-chip SRAM
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Figure 2: From SAIL to RESAIL via CRAM idioms

Figure 3: From DXR to BSIC via CRAM idioms

Figure 4: From multibit tries to MASHUP via CRAM idioms

and cheap off-chip DRAM, uses a bitmap of length 2L to
determine whether there is a matching prefix of length L. This
works well for prefixes of up to length 24 (the vast majority);
for prefixes longer than 24 bits, SAIL uses a complex scheme
called pivot pushing that requires excessive prefix expan-
sion [70]. In Figure 2, to obtain RESAIL (rethinking SAIL),
we: I6) Move the small number of prefixes longer than 24 bits
into a separate look-aside TCAM. I3) Compress all the next
hop arrays into a single hash table using a standard encoding
trick [76]. I7) Use MAU (stage) parallelism to reduce the
number of steps by performing the bitmap lookups in parallel.

From DXR to BSIC: Search on prefix
ranges [29,45,72,85,89] represents prefixes as range endpoint
pairs (e.g., 0**→[000, 011]). Finding the longest matching
prefix becomes equivalent to finding the smallest range that en-
compasses the lookup key. DXR [89], the fastest IPv4 software
implementation of range-based searches, uses an initial lookup
table to split the search space into multiple smaller binary
search tables. In Figure 3, to obtain BSIC (Binary Search

with Initial CAM), we: I1) Replace the SRAM-based initial
lookup table, which supports up to 20-bit prefixes due to direct
indexing, with a TCAM-based table that can store prefixes of
up to 44 bits (Tofino-2 TCAM block width). I8) Replace each
binary search table with a binary search tree that can be fanned
out across stages. I4) Strategically cut the initial lookup table
to balance TCAM required against binary search depth.

From multibit tries to MASHUP: For trie-based
search [7,8,19,22,31,54,70], we specifically focus on multibit
tries—tries that examine multiple bits, known as a stride, per
lookup. We do not consider state-of-the-art compressed trie
schemes like Poptrie [7] and Tree Bitmap [22], because in the
CRAM model, one can directly compress with TCAM without
the extra computational and storage costs of bitmap compres-
sion. Figure 4 shows a standard multibit trie for the prefixes
P1 = 000*, P2 = 100*, P3 = 110*, and P4 = 111*, with a 2-bit
stride at the root and a 1-bit stride at the next level—chosen by
strategic cutting (I4) to minimize the number of downstream
pointers. In Figure 4, to obtain MASHUP (mashup of CAM
and RAM nodes), we: I1) Replace the SRAM root node with a
TCAM node to eliminate the empty 01 entry, and do the same
for the two upper-right nodes. I2) Leave the bottom-right node
as SRAM, as it has no wasted space. I5) Coalesce the two
upper-right TCAM nodes using tag bits (not shown). While
the improvement is minimal in this simple example, § 5.1
demonstrates significant gains for large databases.

Although the CRAM versions of these classical schemes
may seem simple, they require new algorithms to determine,
for example, where to make strategic cuts and which nodes
to coalesce. We elaborate on these details when describing
RESAIL, BSIC, and MASHUP in §3, §4, and §5, respectively.

2.4 CRAM for other Hardware Architectures
CRAM can be generalized to hardware architectures beyond
RMT and dRMT as follows: the space and time metrics of
an algorithm specified in the CRAM model serve as lower
bounds on the corresponding costs in any implementation,
whether in programmable switch ASICs [16, 35, 52, 56],
SmartNICs [2, 32, 55], FPGAs [3, 34], or purpose-built fixed-
function ASICs designed solely to execute that algorithm. A
faithful implementation of a CRAM algorithm achieves a
minimum latency equal to that of the longest (critical) path in
its directed acyclic graph. While an implementation may have
a longer latency, it cannot be shorter. Similarly, the number
of bits required may match or exceed the amount specified by
the CRAM model, but it cannot be less.

2.5 CRAM for broader Network Applications
Although this paper focuses on IP lookup, we believe CRAM
applies to other memory-intensive network applications.
These include packet classification (with Access Control
Lists (ACLs) and Quality of Service (QoS) as specific
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instances), measurement algorithms (such as sketching),
regular expression matching, and in-network ML.

In packet classification [30, 44, 74], packet headers are
matched against a classifier, where the highest-priority
match determines whether to allow or deny traffic, enforce
a QoS policy, or apply a custom action. Measurement
algorithms [17, 42, 68, 87], by contrast, dynamically build and
update a stateful database that tracks network statistics such
as per-flow counters, traffic volume, or frequency estimates.
Regular expression matching [43, 50, 78] compares unstruc-
tured data streams against a database of predefined patterns,
often represented as finite automata [14], to detect keywords,
signatures, and anomalies. Lastly, in-network ML [73, 91, 93]
performs inference by matching a feature vector against a
classification model database, which contains decision rules
mapping extracted feature values to inference labels.

In practice, these applications often rely on combinations
of common data structures, such as decision trees, Bloom
filters [11], tries, hash tables, and bitmaps, many of which we
demonstrate how to optimize with CRAM. Consequently, our
optimization idioms naturally extend beyond IP lookup. For
example, the careful balancing of TCAM compression (I1)
and SRAM expansion (I2) used in MASHUP to create a hybrid
trie, can similarly be applied to packet classification [47, 67]
and in-network ML [39, 79] algorithms that rely on decision
trees. Likewise, the look-aside TCAM (I6) in RESAIL, which
captures longer prefixes, can serve a similar role in offloading
other specialized cases, such as multi-field wildcard classi-
fication rules [30], heavy-hitter flows with rare protocols [68],
multi-line attack patterns [78], and fast-patch updates for
classification models [92]. A more in-depth exploration of
CRAM’s broader applicability is left for future work.

2.6 Other Algorithmic Requirements

Certain algorithmic requirements introduce additional
considerations. We briefly examine how CRAM applies to
algorithms that require atomic memory updates, stateful data
plane operations, and pseudo-random keys.

Atomic memory updates: CRAM neither facilitates
nor hinders an algorithm’s ability to support atomic up-
dates [14, 46, 61]. The CRAM model provides an abstraction
to estimate performance, not an execution model to predict
implementation feasibility. If an algorithm requiring atomic
updates can be implemented, the CRAM model should
accurately predict latency and memory.

Stateful data plane operations: P4 register arrays are the
primary mechanism for stateful operations in the data plane, as
used in [6,13, 68]. Stateful operations can be incorporated into
the CRAM model by introducing a new SRAM-based register
match table, and counting these memory bits separately
alongside regular TCAM and SRAM bits.

Pseudo-random keys: For algorithms with pseudo-random
keys [12, 36, 86], the efficacy of some CRAM optimization

(a) CRAM model representation of SAIL

(b) CRAM model representation of RESAIL (min_bmp=0)

Figure 5: SAIL vs RESAIL for IPv4 prefixes in AS65000

idioms is clearly reduced, as uniformly distributed random
bytes are difficult, if not impossible, to compress. In contrast,
other idioms are unaffected by key distribution. Specifically,
table coalescing (I5), look-aside TCAM (I6), step reduction
(I7), and memory fan-out (I8) can still be applied. Nevertheless,
the benefits of the CRAM model are likely to be significantly
diminished, as lack of compression eliminates a major source
of optimization.

3 RESAIL

By applying the optimization idioms to SAIL [83], we create
a new IPv4 CRAM lookup algorithm called RESAIL. Refer
to Figure 2 for the intuition to which we now add details.

SAIL Review: SAIL designates 24 as a pivot level and
divides the forwarding information base (FIB) into short pre-
fixes (≤24) and long prefixes (>24). SAIL determines whether
there is a length-i match for i≤24 by consulting a bitmap Bi of
size 2i in which bit p is set if and only if p is a length-i prefix
in the FIB. Since the total memory footprint of the bitmaps is 4
MB, they are stored in on-chip SRAM. If a match is found in
Bi, the next hop is retrieved by directly indexing into a next hop
array Ni of size 2i located in off-chip DRAM. SAIL handles
prefixes of length i > 24 by using a complex scheme called
pivot pushing that expands [70] them to 32-bit entries in N32.

3.1 Applying the Optimization Idioms

We show the CRAM derivation of RESAIL using the IPv4
AS65000 BGP routing table (Sep 2023). Start with the
CRAM model representation of SAIL in Figure 5a. To obtain
RESAIL in Figure 5b, use the idioms as follows:
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Entry Prefix (Ternary) Output Port

1 010100** A
2 011***** B
3 100100** C
4 100101** D
5 10010100 A
6 10011010 B
7 10011011 C
8 10100011 A

Table 1: Example routing table

Index Key Value

0 1001001 C
1 0101001 A
2 0111000 B
3 - -
4 1001011 D

Table 2: Hash table for Table 1 (pivot level = 6)

1. Observe a large number (26) of data dependencies be-
tween the bitmaps and next hop arrays. This makes sense in
the RAM model as it enables early exits which reduce average
execution time. However, these are false dependencies because
their lookup keys can be computed in parallel. Therefore, we
apply step reduction (I7) to reduce all the bitmap and next
hop array lookups into a single step. The next hop can then be
determined by taking the highest priority result.

2. SAIL relies on a significant amount of DRAM (32 MB)
for its directly indexed next hop arrays. Since DRAM is not
available in CRAM, we replace the next hop arrays with a more
compact data structure by either compressing with TCAM (I1)
or compressing with SRAM (I3). Since the 25% memory
penalty of d-left hashing [10] is less expensive than TCAM’s
3X higher area cost, we compress with SRAM by replacing
the next hop arrays with a single SRAM-based hash table.

3. SAIL uses a special next hop array N32 for prefixes of
length >24, which are very uncommon. Its entries are prefix
expanded to 32 bits. In the worst case, a single prefix may be
expanded into 28 duplicate next hops. We address this memory
inefficiency by replacing N32 with a look-aside TCAM (I6) that
can store prefixes of length >24 without additional expansion.

4. The number of bitmaps serves as a trade-off between the
amount of parallelism required and the hash table’s memory
footprint. For RESAIL, we introduce a parameter min_bmp
that represents the smallest bitmap available. In Figure 5b,
min_bmp is 0 which means there are a total of 25 bitmaps from
B24 down to B0. Increasing min_bmp reduces the number of
parallel lookups at the cost of increased SRAM usage.

3.2 Building the Data Structures

Look-aside TCAM: Given a routing database, add all prefixes
longer than 24 bits to the look-aside TCAM. Since there are
very few IPv4 prefixes of length >24, little TCAM is used.

Bitmaps: For i = 24 down to i = min_bmp, construct a
bitmap (Bi) of length 2i such that every prefix of length i in
the routing database is marked as a 1 at the corresponding
index. If min_bmp is not equal to 0, use prefix expansion [70]
to combine B0 to Bmin_bmp−1 into Bmin_bmp. Start with length
min_bmp−1 prefixes and work down linearly to length 0. A
bit in Bmin_bmp is flipped from 0 to 1 only if the bit is already a
0. This prevents incorrectly overwriting longer prefixes.

Hash Table: We use d-left [10] for the hash table because
it has a low probability of collision even when the ratio of en-
tries to memory is as high as 80%. Hashing the matched prefix
directly would require a separate hash table for each length
from min_bmp to 24, greatly fragmenting memory. Instead,
RESAIL uses a standard trick [76] we call bit marking that en-
ables us to generate hash keys of a fixed length. When an entry
is added to bitmap Bi, its unique 25-bit hash key is produced
by appending a 1 and left shifting by 24−i bits. Each hash key
is paired with its next hop and inserted into the hash table. The
boundary of each prefix can be determined by scanning from
the right for the first 1. In effect, bit marking removes the need
for multiple hash tables.

Table 2 shows a hash table using 7-bit hash keys for Table 1.
For simplicity, this example assumes a pivot level of 6 and a
maximum prefix length of 8. Since entries 5-8 from Table 1
are longer than the pivot length, they are not placed into the
hash table (they are in the look-aside TCAM instead). The
hash table has a size of 5 due to d-left’s 25% memory penalty.
011, a 3-bit entry, is appended with a 1 and left shifted 3 times,
thus resulting in the hash key 0111000.

3.3 Performing Lookups

Start by performing two sets of lookups in parallel: (1) In
the look-aside TCAM, perform a longest prefix match with
the full 32-bit IPv4 address. (2) From B24 (i = 24) down to
Bmin_bmp, perform exact match lookups using the first i bits
of the destination address to directly index into Bi.

If a match is found in the look-aside TCAM, return its
associated next hop. Otherwise, take the longest match across
all bitmaps and generate its 25-bit hash key by bit marking.

At this step, either the next hop for a prefix match greater
than 24 bits has been found or the final hash key has been
created. In the latter case, use the hash key to perform an exact
match lookup into the hash table to retrieve the next hop.

Algorithm 1 in Appendix A.5 contains pseudocode for
RESAIL lookups. Appendix A.3.1 describes incremental
updates, deletions, and insertions in RESAIL.
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(a) CRAM model representation of DXR (k=16)

(b) CRAM model representation of BSIC (k=16)

Figure 6: DXR vs BSIC for IPv4 prefixes in AS65000

4 BSIC

By applying the optimization idioms to DXR [89], we create
a new CRAM lookup algorithm called BSIC, capable of
supporting both IPv4 and IPv6. Refer to Figure 3 for the
intuition to which we now add details.

DXR Review: Inspired by [29] and [45], DXR performs
binary search on range endpoints using a range table (binary
search table). To reduce the depth of binary search, DXR uses
an initial lookup table directly indexed by the first k bits of the
address. The lookup table returns a pointer to the subsection
of the range table in which binary search will be performed.
DXR adds two optimizations: (1) Merging neighboring ranges
that point to the same next hop. (2) Discarding right endpoints.

4.1 Applying the Optimization Idioms
We show the CRAM derivation of BSIC using the IPv4
AS65000 BGP routing table (Sep 2023). Start with the CRAM
model representation of DXR in Figure 6a. As recommended
by [89], set k=16 (D16R) for the best IPv4 results. To obtain
BSIC in Figure 6b, use the idioms as follows:

1. Since DXR’s initial lookup table relies on direct indexing,
leaving many entries unused, we compress with TCAM (I1).
Replacing the SRAM-based initial lookup table with a TCAM-
based one reduces its memory consumption by over 3X, from
0.25 MB of SRAM to 0.07 MB of TCAM.

2. In DXR, the range table is repeatedly accessed during
binary search. Since lookup tables are limited to a single access
per packet in the CRAM model, the range table must be split
up. We do so through memory fan-out (I8). By converting
the range table into multiple binary search trees (BSTs) and
distributing search levels across separate tables accessed at
different steps, we ensure each table is visited at most once per
packet. However, this greatly increases the amount of memory
needed because every internal node has to store up to two
pointers. In Figure 6, DXR’s range table uses only 2.97 MB of
SRAM while BSIC’s BST levels use 8.64 MB of SRAM—a

Key Value BST Entries (for reference)

0101 Pointer to BST 1 00**
011* Next Hop B -
1001 Pointer to BST 2 00**, 01**, 0100, 1010, 1011
1010 Pointer to BST 3 0011

Table 3: Initial lookup table for Table 1 (k=4)

2.9X increase. Although costly, memory fan-out is essential
because duplicating the entire range table for each search level
would require an infeasible amount of SRAM (26.73 MB).

3. The parameter k is a strategic cut (I4) that balances mem-
ory usage in the initial lookup table against the number of re-
quired BST levels. Due to the high memory cost of direct index-
ing, DXR’s SRAM-based lookup table is limited to k<=20.
For example, if k=24, DXR’s initial lookup table would con-
sume 64 MB of SRAM. To effectively support IPv6, which
has longer prefixes, a larger k value is required. Since TCAM
can store wildcard entries without prefix expansion, BSIC’s
TCAM-based initial lookup table can use much larger k values,
up to the underlying TCAM block width (k=44 for Tofino-2).

4.2 Building the Data Structures
Initial Lookup Table: Given a routing database and a slice
size k, populate the initial lookup table by storing all prefixes
as unique k-length slices. Duplicate slices are condensed into
one entry. Three cases arise when adding a prefix p of length l:

1. If l < k, pad p with k−l wildcard (*) bits. Its associated
table value is p’s next hop.

2. If l == k, do not modify p. If there are longer prefixes that
share the same k-length slice as p, its associated table
value is a pointer to the corresponding BST’s root node.
Otherwise, its associated table value is p’s next hop.

3. If l > k, trim p down to k bits. Its associated table value
is a pointer to the corresponding BST’s root node.

Table 3 shows an initial lookup table with k=4 created using
Table 1. The maximum prefix length is 8. The Key column
contains all the k-length slices while the Value column stores
the associated pointers and next hops. The BST Entries column
shows the prefix segments that are pointed to by the slices.
Since entries 3-7 in Table 1 share the same k-length slice, they
are condensed into a single key 1001 that points to BST 2.

Binary Search Trees (BSTs): To create a BST for a given
lookup table entry, identify all prefixes in the database that
match the entry up to the kth bit. For all such prefixes, store the
remaining bits and next hops as tuples in a list. Take the list
of tuples and perform the range expansion and optimizations
described in [89]. We defer these details to Appendix A.4.

Use the resulting list of left endpoints to construct a BST in
which every node contains four fields: pointers to the left and
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(a) CRAM model representation of multibit trie (16-4-4-8)

(b) CRAM model representation of MASHUP (16-4-4-8)

Figure 7: Multibit trie vs MASHUP for IPv4 prefixes in
AS65000

right child, the next hop, and the left endpoint itself. Repeat
this process for all lookup table entries containing pointers.

4.3 Performing Lookups

Start in the initial lookup table by performing a longest prefix
match using the first k bits of the destination address. If either
a next hop is returned or a miss occurs, search terminates.
If a pointer to a BST is returned, follow the pointer to the
corresponding root node and form the next search key by
extracting the remaining bits of the destination address. Once
at a node, perform standard binary search using the search key.

Algorithm 2 in Appendix A.5 contains pseudocode for
BSIC lookups. Appendix A.3.2 describes incremental
updates, deletions, and insertions in BSIC.

5 MASHUP

By applying the optimization idioms to multibit tries [70],
we create a new CRAM lookup algorithm called MASHUP,
capable of supporting both IPv4 and IPv6. Refer to Figure 4
for the intuition to which we now add details.

Multibit Trie Review: Multibit tries are search tries that
examine multiple bits per lookup, known as a stride. Reduc-
ing the number of strides decreases the number of worst-case
memory accesses, but increases prefix expansion and memory
usage. We assume each tree level has exactly one stride.

5.1 Applying the Optimization Idioms
We show the CRAM derivation of MASHUP using the IPv4
AS65000 BGP routing table (Sep 2023). Start with the CRAM
model representation of a multibit trie in Figure 7a. We find
strides 16-4-4-8 yield the best IPv4 results (§6.3). To obtain
MASHUP in Figure 7b, use the idioms as follows:

1. For each trie node, we consider both compressing with
TCAM (I1) and expanding to SRAM (I2). If the increase in
memory due to prefix expansion [70] is less than 3X, we use
SRAM. Otherwise, we use TCAM. This results in a hybrid trie
with both TCAM and SRAM nodes, as seen in Figure 7b.

2. Once the trie is hybridized, apply table coalescing (I5)
by merging partially filled nodes1 of the same memory type
into super-tables, compactly mapping them onto contiguous
TCAM blocks or SRAM pages with minimal fragmentation.
This requires prepending entries with a tag [66] to distinguish
between logical tables. A tag of width x can coalesce 2x logical
tables into one super-table. The combination of node hybridiza-
tion and table coalescing reduces SRAM usage from 12.04
MB to 5.92 MB at the cost of 0.31 MB of TCAM (Figure 7).

3. The set of strides is a parameter that serves as a strategic
cut (I4). For a given set of strides, the trie’s memory overhead
is directly proportional to the number of internal pointers. A
simple method for choosing strides, explained in §6.3, is to
analyze the database’s prefix length distribution.

We omit standard algorithms for building the MASHUP trie,
as the process is identical to constructing a multibit trie, which
has been extensively studied in prior work [70, 76].

5.2 Performing Lookups
Let Si represent the i-th stride. Start in the root node by
performing a lookup with the first S0 bits of the destination
address. If the current node is TCAM, perform a longest prefix
match. Otherwise, perform an exact match. If a miss occurs,
terminate the search. If a hit occurs, three values may be
returned: a next hop, a pointer to the next node, and a unique
tag. If a next hop is returned, save it. Form the lookup key for
level i by extracting the next Si bits of the destination address
and prepending the current tag. Repeat the lookup process
until either a leaf node is reached or a miss occurs. Upon
termination, return the saved next hop.

Algorithm 3 in Appendix A.5 contains pseudocode for
MASHUP lookups. Appendix A.3.3 describes incremental
updates, deletions, and insertions in MASHUP.

6 Results

In this section, we introduce the databases, target imple-
mentations, and parameter values that we selected for our
experiments. We use the CRAM metrics to determine the

1For MASHUP in §6.4, we greedily fill the largest tables with the smallest
ones. This approach is easy to implement, but possibly suboptimal.
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Figure 8: IPv4 and IPv6 prefix length distributions in AS65000
and AS131072, respectively, for September 2023

best IPv4 (RESAIL) and IPv6 (BSIC) algorithms before
implementation. We then compare the resource utilizations
of the best CRAM algorithms with those of state-of-the-art
IP lookup schemes after implementation.

6.1 Databases

For IPv4, we used the AS65000 BGP routing table (Sep.
2023) [27] which has close to 930k IPv4 prefixes. For IPv6,
we used the AS131072 BGP routing table (Sep. 2023) [28]
which has close to 190k IPv6 prefixes. Figure 8 shows their
prefix length distributions. We identify three key patterns:

P1. Prefix distributions have major and minor spikes. For
IPv4, there is a major spike at length 24 and minor spikes at
lengths 16, 20, and 22. For IPv6, there is a major spike at length
48 and minor spikes at lengths 28, 32, 36, 40, and 44.

P2. The majority of IPv4 prefixes are longer than 12 bits.
P3. The majority of IPv6 prefixes are longer than 28 bits.

6.2 Target Implementations

We obtained results for two different targets: an ideal RMT
chip and Intel Tofino-2 (also RMT). Since RMT is a stricter
variant of dRMT with additional access restrictions, we expect
our RMT results to be reproducible on a dRMT chip.

Ideal RMT Chip (Simulation): We define an ideal RMT
chip to be an RMT chip with Tofino-2 specifications (same
memory, number of stages, etc.) [57] that can achieve 100%
SRAM utilization and perform at least two dependent ALU
operations per stage. The resource utilization for an ideal RMT
chip is obtained through simulation by using Tofino-2 SRAM
page (128x1024b) and TCAM block (44x512b) sizes. If the
number of TCAM blocks or SRAM pages used by a table
exceeds the amount available in a MAU (stage), the table is
simply partitioned across multiple MAUs. Since Tofino-2 has
20 MAUs, results that require over 20 are considered infeasible.

Intel Tofino-2 (Implementation): The resource utilization
for Tofino-2 is obtained through implementation. We imple-
ment the best CRAM algorithms using P4 and compile them
with the Intel P4 compiler. P4 Insight [33] then outputs detailed
resource mappings and visualizations specific to Tofino-2.

Scheme TCAM Bits SRAM Bits Steps

MASHUP (16-4-4-8) 0.31 MB 5.92 MB 4
BSIC (k=16) 0.07 MB 8.64 MB 10
RESAIL (min_bmp=13) 3.13 KB 8.58 MB 2

Table 4: CRAM metrics for IPv4 prefixes in AS65000

Scheme TCAM Bits SRAM Bits Steps

MASHUP (20-12-16-16) 0.32 MB 0.77 MB 4
BSIC (k=24) 0.02 MB 3.18 MB 14

Table 5: CRAM metrics for IPv6 prefixes in AS131072

6.3 Parameter Values

We choose parameter values based on observations from §6.1.
RESAIL’s key parameter is min_bmp, the smallest bitmap

available. We choose min_bmp=13 because there are so few
IPv4 prefixes shorter than 13 bits (P2), thus minimizing the
amount of prefix expansion needed.

BSIC’s key parameter is k, the initial slice size. As recom-
mended by [89], for IPv4, we choose k = 16. For IPv6, we
choose k=24 because most IPv6 prefixes are longer than 28
bits (P3). Therefore, a k value that is close to but smaller than
28 can compress over 190k prefixes into just 7k TCAM entries.
We briefly explore other choices of k for IPv6 and examine
potential latency-memory trade-offs in Appendix A.6.

MASHUP’s key parameter is its set of strides. Intuitively, we
want to select strides that mirror the distribution spikes (P1)
seen in Figure 8 because they will minimize prefix expansion.
For IPv4, we choose 16-4-4-8 (spikes at 16, 20, 24). For IPv6,
we choose 20-12-16-16 (spikes at 32, 48). We do not select
32 as the first stride because it is too wide—especially for
the root node which may contain many entries. Therefore, we
decompose 32 into separate strides of 20 and 12.

6.4 Comparisons before Implementation

Recall that CRAM metrics enable quick estimation of
algorithm scalability before implementation.

We present IPv4 and IPv6 CRAM metrics in Table 4 and
Table 5, derived from the optimization steps in §3.1, §4.1, and
§5.1, for the IPv4 and IPv6 BGP tables, respectively.

For IPv4, RESAIL outperforms BSIC in all three CRAM
metrics. Between RESAIL and MASHUP, RESAIL wins
in TCAM and steps but loses in SRAM. However, MASHUP
requires 100X more TCAM than RESAIL, whereas RESAIL
requires only 1.4X more SRAM than MASHUP. Therefore,
we determine RESAIL to be the best CRAM IPv4 algorithm.

For IPv6, we choose between BSIC and MASHUP. BSIC
wins in TCAM but loses in SRAM and steps. MASHUP
requires 16X more TCAM than BSIC, while BSIC requires
roughly 4X more SRAM and steps than MASHUP. As before,
we prioritize TCAM because it is more expensive and limited
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Scheme TCAM Blocks SRAM Pages Stages

MASHUP (16-4-4-8) 235 216 10
BSIC (k=16) 74 558 16
RESAIL (min_bmp=13) 2 556 9

Table 6: Ideal RMT mapping for IPv4 prefixes in AS65000

Scheme TCAM Blocks SRAM Pages Stages

MASHUP (20-12-16-16) 178 47 8
BSIC (k=24) 15 211 14

Table 7: Ideal RMT mapping for IPv6 prefixes in AS131072

than SRAM—for example, Tofino-2 contains 19X more
SRAM than TCAM. Although BSIC uses more steps than
MASHUP, this is due to BSIC’s use of BSTs, which have a
high initial step cost. Therefore, we determine BSIC to be the
best CRAM IPv6 algorithm for Tofino-2. However, for more
stage-constrained ASICs, MASHUP is likely better.

To verify the validity of the CRAM metrics, we explicitly
map each CRAM algorithm to an ideal RMT chip and present
its resource utilization in Table 6 and Table 7. This mapping,
which accounts for Tofino-2 TCAM block sizes, SRAM page
sizes, and per-stage memory, is precisely the complicated
process that the CRAM model seeks to relieve algorithm
designers of. Comparing Table 4 with Table 6 and Table 5 with
Table 7, observe that the CRAM metrics accurately predict a
target algorithm’s resource utilization and potential scalability.

6.5 Comparisons after Implementation
The previous subsection compared our three new algorithms
before implementation using CRAM metrics. Here, we
compare the best CRAM algorithms after implementation on
Tofino-2 against the best pre-existing IPv4 and IPv6 schemes.

6.5.1 Baseline Selection

We select four single-resource baselines: SRAM-only for IPv4
and IPv6, and TCAM-only for IPv4 and IPv6.

SRAM-only for IPv4: We choose SAIL [83] as our SRAM-
only IPv4 baseline due to its on-chip memory bound for short
prefixes, which enables it to scale very well. Although IPv4
schemes like Poptrie [7] and DXR [89] use less memory, they
require too many memory accesses and stages.

SRAM-only for IPv6: We choose HI-BST [65] as our
SRAM-only IPv6 baseline because it is the most memory-
efficient IPv6 lookup algorithm to date [90]. It uses a treap data
structure that maps each prefix to a unique node.

TCAM-only for IPv4 and IPv6: We choose a logical
TCAM as our TCAM-only IPv4 and IPv6 baseline because,
although TCAM-oriented schemes exist for reducing power
consumption [48] or merging multiple FIBs [51], none focus
on scaling IP lookup for a single database.

Scheme TCAM
Blocks

SRAM
Pages Stages Target Chip

RESAIL (min_bmp=13) 17 750 16 Tofino-2
RESAIL (min_bmp=13) 2 556 9 Ideal RMT
SAIL - 2313 33 Ideal RMT
Logical TCAM 1822 - 76 Ideal RMT
Tofino-2 Pipe Limit 480 1600 20 -

Table 8: Baseline comparison for IPv4 prefixes in AS65000

Scheme TCAM
Blocks

SRAM
Pages Stages Target Chip

BSIC (k=24) 15 416 30 Tofino-2
BSIC (k=24) 15 211 14 Ideal RMT
HI-BST - 219 18 Ideal RMT
Logical TCAM 762 - 32 Ideal RMT
Tofino-2 Pipe Limit 480 1600 20 -

Table 9: Baseline comparison for IPv6 prefixes in AS131072

6.5.2 IPv4 Comparison

Table 8 compares the ideal RMT resource utilization of RE-
SAIL with the IPv4 baselines. RESAIL requires 911X fewer
TCAM blocks than the logical TCAM and approximately 4X
fewer SRAM pages and stages than SAIL. Although SAIL’s
memory scales efficiently, its high upfront cost makes it im-
practical for RMT-like chips. RESAIL outperforms the logical
TCAM, which only supports IPv4 databases of up to 245,760
entries—about 3.8X smaller than the current IPv4 BGP table.

Table 8 also compares RESAIL on an ideal RMT chip and
on Tofino-2. While RESAIL fits on Tofino-2 for AS65000,
it requires nearly 1.4X more SRAM pages and 2X more stages
than on an ideal RMT chip. This is because Tofino-2 reserves
bits in each SRAM word for identifying actions, limiting the
maximum SRAM utilization to 50%. The increase in TCAM is
due to extra ternary bitmask tables needed for extracting bits.

6.5.3 IPv6 Comparison

Table 9 compares the ideal RMT resource utilization of BSIC
with the IPv6 baselines. BSIC uses less SRAM and fewer
stages than HI-BST, at the cost of 15 TCAM blocks. Both
BSIC and HI-BST support the current IPv6 BGP table,
whereas the logical TCAM only supports up to 122,880
entries—about 1.6X smaller than the current IPv6 BGP table.

Table 9 also compares BSIC on an ideal RMT chip and
on Tofino-2. Our ideal RMT chip assumes each stage can
perform at least two dependent ALU operations. However,
in practice, a Tofino-2 stage can execute only one level of
ALU logic. Consequently, each BST level requires two stages:
one for comparing the search key and another for performing
the P4 action. This creates a repeating pattern where an
SRAM-intensive stage is followed by a stage with minimal
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Figure 9: RESAIL vs SAIL scaling (IPv4)

SRAM usage. Although BSIC on Tofino-2 requires 30 stages
(ten over the Tofino-2 pipe limit), we successfully fit BSIC
for AS131072 by recirculating each packet. However, this
effectively halves the number of available switch ports.

7 Scalability

While §6 presents results for current BGP tables, this section
presents scalability analysis for RESAIL and BSIC on larger
synthetic routing databases. We omit scalability analysis for
MASHUP because it requires too much TCAM (for Tofino-2).

7.1 IPv4 Scaling

Figure 9 shows IPv4 scalability results for RESAIL and
our SRAM-only IPv4 baseline, SAIL. We did not generate
synthetic prefixes because the resource utilization of RESAIL
and SAIL depends on the distribution of prefix lengths rather
than the distribution of the prefixes themselves. From the
perspective of memory usage, RESAIL and SAIL do not
distinguish between prefixes of identical length. Therefore, we
use a simple scaling model that applies a constant scaling factor
to all prefix lengths. For the ideal RMT results of RESAIL and
SAIL, we use the steps described in §6.2 to calculate their new
utilization. For the Tofino-2 results of RESAIL, we update
the corresponding P4 table sizes to reflect the larger databases.

For ideal RMT, SAIL is infeasible because its SRAM cost
far exceeds the Tofino-2 SRAM limit. At any given database
size, RESAIL for Tofino-2 uses more SRAM than RESAIL
for ideal RMT. This is expected since Tofino-2 does not allow
100% SRAM utilization. Notably, RESAIL on an ideal RMT
chip scales to around 3.8 million prefixes, 4X larger than
the current IPv4 BGP table. RESAIL on Tofino-2 scales to
around 2.25 million prefixes, 2.3X larger than the current
routing database and significantly beyond SAIL’s capacity.
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Figure 10: BSIC vs HI-BST scaling (IPv6)

7.2 IPv6 Scaling

Figure 10 shows IPv6 scalability results for BSIC and our
SRAM-only IPv6 baseline, HI-BST. For BSIC, we generated
synthetic prefixes because its resource utilization depends on
the distribution of prefixes and sub-prefixes. To obtain worst-
case scalability results, observe that the first three bits of IPv6
prefixes in AS131072 are 000—forming an IPv6 universe. We
use different combinations of these bits to generate signifi-
cantly larger synthetic databases from AS131072, an approach
we call multiverse scaling. Multiverse scaling assumes that the
distribution of all prefix lengths scales uniformly. In practice,
customer scaling causes some prefixes (e.g., /48s) to scale more
rapidly than others (e.g., /24s). However, this stresses only
the BSTs and not the initial TCAM, unlike multiverse scaling
which models worst-case results for TCAM,SRAM,and stages.
For HI-BST, we use the memory calculation provided in [65].

As seen in Figure 10, both instances of BSIC are able to
out-scale HI-BST. For an ideal RMT chip, HI-BST only
scales to around 340k prefixes, 1.8X larger than the current
IPv6 BGP Table. Even though HI-BST is the most memory
efficient IPv6 lookup scheme, it requires too many stages.
Comparing the two instances of BSIC, we see that BSIC for
ideal RMT scales to around 630k prefixes, 3.3X larger than
the current routing database. Since BSIC for Tofino-2 uses
over 2X more stages, it scales to around 390k prefixes—2X
the size of the current IPv6 BGP table.

8 CRAM Model Evaluation

How predictive was the CRAM model? §6.4 showed that the
CRAM model accurately predicted RESAIL and BSIC as
the best algorithms for IPv4 and IPv6, respectively. We now
examine the CRAM metrics in more detail.

Table 10 and Table 11 show results for RESAIL and BSIC
on three models: the CRAM model, an ideal RMT model, and
a Tofino-2 implementation. The three models form a hierarchy
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Scheme TCAM
Blocks

SRAM
Pages

Steps
(Stages) Model

RESAIL (min_bmp=13) 1.14 549.12 2 CRAM
RESAIL (min_bmp=13) 2 556 9 Ideal RMT
RESAIL (min_bmp=13) 17 750 16 Tofino-2

Table 10: Predictive accuracy of CRAM for RESAIL (IPv4)

Scheme TCAM
Blocks

SRAM
Pages

Steps
(Stages) Model

BSIC (k=24) 7.45 203.52 14 CRAM
BSIC (k=24) 15 211 14 Ideal RMT
BSIC (k=24) 15 416 30 Tofino-2

Table 11: Predictive accuracy of CRAM for BSIC (IPv6)

of abstractions with increasing detail. We scale the CRAM
metrics found in Table 4 and Table 5 from raw bits to TCAM
blocks and SRAM pages to allow for uniform comparisons.
The three models can be understood as follows:

CRAM model: Using the CRAM metrics (raw bits and
dependent steps), an algorithm designer can quickly predict
scalability without seeing the product data sheet.

Ideal RMT model: This model allows for more precise
predictions but requires a basic understanding of the data sheet,
specifically the general organization of memory and stages.

Tofino-2 implementation: This is the most accurate model
but also the most complex to develop. It accounts for low-level
details that are hard to glean from data sheets, such as action
bits and ALU operations per stage. This often requires an
expert with intimate knowledge of the product.

Consider the predictive accuracy for RESAIL in Table 10 as
we move from CRAM to ideal RMT. The TCAM and SRAM
measures reflect small rounding errors due to unit conversion.
However, the latency increases significantly from 2 steps to 9
stages because, unlike dRMT, RMT stages provide both mem-
ory and processing—to support 556 RAM pages, more stages
are required even when no additional processing is needed.

Next, consider the predictive accuracy for RESAIL in
Table 10 as we move from ideal RMT to Tofino-2. There is
a small additive increase in TCAM blocks due to extra ternary
tables required for implementing RESAIL in P4. Additionally,
SRAM pages increase by a factor of 1.35, and stages increase
by a factor of 1.78. As discussed earlier in § 6.5.2, this is
because the maximum achievable SRAM utilization on
Tofino-2 is 50%, necessitating more SRAM pages and stages.

The predictive accuracy for BSIC in Table 11 can be
interpreted similarly. The key difference is that the ∼2X
increase in SRAM pages and stages from ideal RMT to
Tofino-2 is due to the fact that implementing 3-way branching
on Tofino-2 requires two stages for each BST level.

Based on our limited experience, the CRAM model provides
a useful, easily computed initial model for estimating algorithm
scalability. Although its measures of space and time are off by

small constant factors, this is no different from Big O notation.

9 Related Work

Models of Computation: Abstract models like RAM [23],
PRAM [41], and Turing machines [62] are widely used to
analyze algorithms. The RAM model abstracts sequential com-
puters, while the PRAM model abstracts shared memory mul-
tiprocessors. Our CRAM model abstracts network processors
with two types of memory, parallelism, and programmability.

Combinations of CAM and RAM: Earlier CAM and RAM
combinations optimize different metrics. CoolCAM [88],
cooler TCAM [49], and EaseCAM [60] all reduce power
consumption. Liu [48] compacts routing tables to reduce cost,
power consumption, and thermal dissipation. Luo [51] merges
FIBs in virtual routers to reduce TCAM usage. Compaction
and merging are orthogonal to our ideas. Other hybrid
approaches [38, 69, 75, 84] target tasks such as packet classifi-
cation. In summary, no existing solution optimizes scalability
for IP lookup by leveraging both TCAM and SRAM.

10 Conclusion

Our paper introduces new algorithms for IP lookup made
possible by strategically leveraging both CAM and RAM.
These algorithms address the scaling challenges of global rout-
ing tables and are well-suited to the architectures of modern
network processors. For these processors, the CRAM lens
provided a fresh perspective on algorithm design. Much like
the RAM [23] and PRAM [41] models, CRAM offers metrics
for quickly evaluating algorithm feasibility before implemen-
tation. Using the CRAM model, we developed three new IP
lookup algorithms: RESAIL, BSIC, and MASHUP. RESAIL
and BSIC scale to much larger databases than the best existing
IPv4 and IPv6 lookup schemes, respectively, while MASHUP
excels in stage-constrained hardware environments.

We aim to establish CRAM’s generality by applying it
to other hardware architectures (§ 2.4) and network appli-
cations (§2.5)—helping to “cram” more packet processing
power into each unit of chip area. Ultimately, our findings
underscore a simple insight for networking chip vendors: a
little TCAM goes a long way. Adding small amounts of TCAM
to supplement SRAM can significantly improve scalability.
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A Appendix

A.1 Packet Processing Architectures

(a) RMT architecture

(b) dRMT architecture

Figure 11: RMT vs dRMT

A.2 RMT and dRMT Implementations

Product Architecture Type Sources

Intel Tofino-2 RMT switch ASIC [4, 18, 35]
Intel Mount Evans (E2000) RMT SmartNIC [32, 71]
AMD Pensando DSC-100 RMT SmartNIC [2, 24, 63]
Fungible F1/S1 RMT SmartNIC [1]
FlowBlaze RMT FPGA [59]
FlexCore dRMT switch ASIC [80]
Nvidia BlueField-3 dRMT SmartNIC [20, 55, 81]

Table 12: Summary of known implementations

While we cannot verify all details in some cases, it is evident
that TCAM, SRAM, parallelism, and programmability are
present in the sources for the products listed in Table 12.

A.3 Updates, Deletions, and Insertions
A.3.1 RESAIL

Incremental updates, deletions, and insertions for RESAIL are
efficient, following the same process as lookups but with mod-
ifications to the target entry. For prefixes of length min_bmp or
greater, only two memory accesses are required (bitmap and
hash table). For prefixes shorter than min_bmp, the operations
are more costly because of prefix expansion. Update operations
for prefixes longer than 24 bits are much simpler in RESAIL
than in SAIL because we have eliminated pivot pushing.

A.3.2 BSIC

For BSIC, incremental updates, deletions, and insertions are
costly and complex due to inherent dependencies between

binary search tree levels. A separate database with additional
prefix information is needed for rebuilding data structures [89].
If fast update operations are important, RESAIL and
MASHUP are better choices.

A.3.3 MASHUP

Incremental updates, deletions, and insertions for MASHUP are
nearly identical to lookups, except they modify the target entry.
These are standard algorithms [76] for multibit tries that have
been well studied. Maintaining a sorted TCAM table under
these changes is non-trivial, but effective algorithms exist [64].

A.4 Range Expansion and Optimizations

Range Next Hop

0000 - 0011 C
0100 - 0100 A
0101 - 0111 D
1000 - 1001 -
1010 - 1010 B
1011 - 1011 C
1100 - 1111 -

Table 13: Range expansion for slice 1001 (Table 3)
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Figure 12: BST for slice 1001 (Table 3)

As in DXR [89], convert all the prefix substrings into ranges
by generating their endpoint pairs. Use the endpoint pairs to
create sorted, contiguous, and non-overlapping intervals that
cover all possible bitstrings of the maximum length. Intervals
that are added to complete the full range will "inherit" the next
hop of the current lookup table entry’s longest prefix match.
This is necessary because it is possible for a destination address
to be incorrectly directed by the initial lookup table to a BST
that does not contain a legitimate match. Therefore, in the case
of such a mistake, the search key will land in an interval contain-
ing the correct next hop. A simple example of range expansion
for slice 1001 from Table 3 is shown in Table 13. Note that the
intervals 1000-1001 and 1100-1111 were added to complete
the full range. Since there are no valid longest prefix matches
for slice 1001, its intervals are assigned a default value of -.
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After the full range is created, merge neighboring intervals
with the same next hop to reduce the number of nodes required.
Discard the right endpoints as they can be inferred from the
left ones. Use the remaining left endpoints to create the BST.
Figure 12 shows a sample BST for slice 1001.

A.5 Pseudocode

Algorithm 1: RESAIL Lookup (addr, min_bmp)
Input :addr, IPv4 address
Input :min_bmp, smallest bitmap available
Output :hop, next hop

1 hop← lookup_table.match(addr)
2 if hop ̸= None then
3 return hop
4 for i← 24 ; i≥min_bmp ; i-- do
5 if Bi.match(addr≫ (32-i)) == 1 then
6 key← (addr≫ (32-i))≪ (25-i)
7 key← key + (1≪ (24-i))
8 hop← hash_table.match(key)
9 break

10 return hop

Algorithm 2: BSIC Lookup (addr, k)
Input :addr, IPv4 or IPv6 address
Input :k, initial slice size
Output :hopbest , next hop

1 level← 0
2 len← 32 if IPv4, 64 if IPv6
3 hopbest ,index
← lookup_table.match(addr≫ (len−k))

4 if hopbest ̸= None then
5 return hopbest
6 while index ̸= None
7 hop, le f t, right, pre f ix← bstlevel .match(index)
8 if pre f ix == ((addr≪ k)≫ k) then
9 return hop

10 else if pre f ix < ((addr≪ k)≫ k) then
11 index← right
12 hopbest ← hop
13 else
14 index← le f t
15 level← level + 1
16 return hopbest

A.6 Latency-memory trade-offs
A natural question is: are there latency-memory trade-offs
for CRAM algorithms that we can exploit to free up pipeline
stages for other processing tasks? Examining the basic

Algorithm 3: MASHUP Lookup (addr, strides)
Input :addr, IPv4 or IPv6 address
Input :strides, set of strides
Output :hopbest , next hop

1 hopbest ← de f ault
2 table← root
3 tag←None
4 index← 0
5 level← 0
6 while table ̸= None
7 key← addr[index:index+strides[level]]
8 hop, next_table, tag← table.match(tag, key)
9 if table.hit() then

10 if hop ̸= None then
11 hopbest ← hop
12 index← index + strides[level]
13 level← level + 1
14 table← next_table
15 else
16 break
17 return hopbest

CRAM model, there appears to be a clear trade-off: reducing
dependency steps at the expense of increased memory or
computation can lead to lower latency.

Unfortunately, on real platforms like Tofino-2, steps
cannot be conflated with stages because, in RMT, stages
provide a fixed amount of both memory and computation.
Therefore, large lookup tables require multiple stages. While
a latency-memory trade-off exists for steps versus memory in
our three CRAM algorithms, no corresponding trade-off exists
for stages versus memory. Instead, there is an optimal number
of stages, beyond which both memory and latency increase.

To see this, consider Figure 13 for BSIC (IPv6), in which
the only tuning parameter is k—the width of the initial TCAM
table. While a latency-memory curve exists, decreasing
latency by increasing k actually increases the number of
stages required. As k grows, the number of stages needed for
the initial TCAM table rises significantly, outweighing the
reduction in stages gained from decreasing BST depth. In
contrast, the basic CRAM model predicts reduced latency as
k increases. Unfortunately, this larger TCAM table requires
more stages but not steps.

As shown in Figure 13, the optimal value of k is 24, with
both smaller and larger values yielding worse results. Thus,
no trade-off exists between stages and memory. This is also
the reason we use k=24 in our experiments for IPv6.

Similarly, with MASHUP, the strides are the primary tuning
parameter. Again, we did not find a useful memory-latency
trade-off when considering stages. Finally, RESAIL consis-
tently requires only two steps, with no latency-memory trade-
off whatsoever in either the CRAM or ideal RMT models.
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While there is no useful latency-memory trade-off for
a fixed database size in our three algorithms, an obvious
trade-off emerges as the database size increases: the number
of stages (latency) must increase, at least to provide more
memory. This is implicit in the linear trade-off curves shown
in Figure 9 and Figure 10. Notably, the y-axes in these figures
represent SRAM pages. However, since more SRAM requires
proportionally more stages, Figure 9 and Figure 10 can
be rescaled to (instead) depict stages versus database size,
maintaining exactly the same curve shapes.
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Figure 13: BSIC IPv6 latency-memory trade-off on an ideal
RMT chip for AS131072 (Sep 2023)
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