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Abstract
Operators can deploy any scheduler they desire on existing
switches through programmable packet schedulers: they tag
packets with ranks (which indicate their priority) and sched-
ule them in the order of these ranks. The ideal programmable
scheduler is the Push-In First-Out (PIFO) queue, which sched-
ules packets in a perfectly sorted order by “pushing” packets
into any position of the queue based on their ranks. However,
it is hard to implement PIFO queues in hardware due to their
need to sort packets at line rate (based on their ranks).

Recent proposals approximate PIFO behaviors on existing
data-planes. While promising, they fail to simultaneously
capture both of the necessary behaviors of PIFO queues: their
scheduling behavior and admission control. We introduce
PACKS, an approximate PIFO scheduler that addresses this
problem. PACKS runs on top of a set of priority queues and
uses packet-rank information and queue-occupancy levels
during enqueue to determine whether to admit each incoming
packet and to which queue it should be mapped.

We fully implement PACKS in P4 and evaluate it on real
workloads. We show that PACKS better-approximates PIFO
than state-of-the-art approaches. Specifically, PACKS reduces
the rank inversions by up to 7× and 15× with respect to SP-
PIFO and AIFO, and the number of packet drops by up to 60%
compared to SP-PIFO. Under pFabric ranks, PACKS reduces
the mean FCT across small flows by up to 33% and 2.6×,
compared to SP-PIFO and AIFO. We also show that PACKS
runs at line rate on existing hardware (Intel Tofino).

1 Introduction

Packet scheduling is a classical problem in networking — it
defines the time and order at which a buffer drains packets
to optimize a given performance metric. Researchers have
proposed many scheduling algorithms but most of them have
never been deployed in production, due to the cost and time
required to implement them on new ASIC designs [4].

Programmable schedulers solve this limitation: they build
an abstraction that can represent all possible scheduling al-
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Figure 1: PACKS navigates the space between SP-PIFO [6]
and AIFO [37], optimizing for both rank ordering and drops.

gorithms [22, 31–33]. The idea is that, if we find such an
abstraction and we can implement it in hardware, then we can
run any algorithm on top without need for new ASICs.

The first attempt is the “PIFO” abstraction, which relies on
the observation that we can split most scheduling functions
in: a ranking algorithm that indicates the priority with which
each packet should be scheduled, and a queuing structure that
can schedule packets in the order of these ranks. Push-In First
Out (PIFO) queues serve as a natural candidate since they sort
arbitrary packet sequences based on the packets’ ranks at line
rate — hence the name of the abstraction [32].

PIFO queues “push” packets into arbitrary positions in
the queue based on their ranks and serve them from their
head. This behavior allows them to satisfy the requirements
for programmable packet scheduling: (i) they always admit
packets with the lowest ranks; and (ii) they schedule packets
in perfect order of rank. For example, PIFO queues can “push”
incoming low-rank packets before higher-rank packets that are
already in the queue, even dropping the higher-rank packets
(if needed) to accommodate the newly arrived low-rank ones.

However, it is hard to implement PIFO queues in hard-
ware because they need to sort packets at line rate (even
after they have been enqueued); and they may have to drop
high-rank packets after they have been enqueued (e.g., if a
low-rank packet arrives). Recent works approximate PIFO’s
behaviors to provide implementations that can run on existing
programmable data planes [6, 16, 28, 35, 37]. But these works
only approximate one of the two key PIFO behaviors (Fig. 1).

For example, SP-PIFO [6], QCluster [35], AFQ [27],
PCQ [28], and Gearbox [16], only approximate PIFO’s
scheduling behavior. They map incoming packets to priority
queues to minimize the rank inversions at the output. How-
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ever, they do not actively control packet drops, which they
leave as a byproduct effect of the schedulers’ design. As such,
even though these schedulers can support a broad variety of
scheduling algorithms, their behavior can have a negative
impact for loss-sensitive applications (cf. §2).

AIFO [37] only approximates PIFO’s admission behavior:
it executes a rank-aware admission-control policy on top of
a FIFO queue that drops incoming packets imitating a PIFO
queue. But because it runs on a single FIFO queue, AIFO
cannot prioritize packets based on their ranks, which limits
the scheduling algorithms that it can accurately approximate.

Our work We propose PACKS, a programmable PACKet
Scheduler that approximates both the admission and schedul-
ing behaviors of a PIFO queue on programmable hardware.
PACKS runs on top of a set of strict-priority queues and com-
bines an admission-control mechanism with a queue-mapping
mechanism. Since priority queues cannot drop nor modify the
order of enqueued packets, PACKS emulates the behaviors
that a PIFO queue follows and executes them at enqueue.

Key insights PACKS derives its admission and queuing deci-
sions from two key sources: the rank distribution of the last
packets received (monitored via a sliding window) and the
real-time buffer occupancy of each queue. PACKS integrates
this data into a quantile-based admission and queue-mapping
process that prioritizes packets with lowest expected ranks.

PACKS’s rank-aware approach allows it to minimize rank
inversions and outperforms existing queue-mappers that as-
sume no prior rank knowledge and rely on per-packet heuris-
tics. PACKS’s queue-occupancy-aware approach ensures effi-
cient resource utilization and reduces packet drops.

Evaluation We implement PACKS in P4 and evaluate it on
real workloads and in hardware. Our results under mixed flow
scenarios across various loads show that, PACKS consistently
outperforms in approximating PIFO’s admission behavior
and reduces the rank inversions by up to 7× and 15× with
respect to SP-PIFO, and AIFO, and the number of packet
drops with respect to SP-PIFO by up to 60%. Under pFabric
ranks, PACKS reduces the average FCT across small flows by
up to 33% and 2.6× with respect to SP-PIFO and AIFO.

Contributions Our main contributions are:

• PACKS, a programmable scheduler that emulates PIFO
queues on top of a set of strict-priority queues (§3).

• An admission-control algorithm and a queue-mapping
technique that approximate all PIFO behaviors (§4).

• A performance analysis of PACKS on MetaOpt [24] to
study its performance gaps and adversarial inputs (§4.5).

• An implementation1 of PACKS in Java and P4 (§5).

• An evaluation showing PACKS’s effectiveness in approx-
imating PIFO using simulations and hardware (§6).

1Available at https://github.com/nsg-ethz/packs

2 Background

We first describe SP-PIFO [6] (§2.1) and AIFO [37] (§2.2),
two programmable packet schedulers that represent how prior
works approximate PIFO’s scheduling and admission con-
trol behavior, respectively (Fig. 1). We then motivate PACKS
based on where these schedulers fall short (§2.3).

2.1 SP-PIFO

SP-PIFO [6] approximates PIFO’s scheduling behavior (i.e.,
forwarding the earliest-arrived lowest-rank packet first) on a
set of strict-priority queues. It adapts the mapping between
packet ranks and priority queues dynamically to minimize
the number of rank inversions (i.e., the number of times a
higher-rank packet is scheduled before a lower-rank one).

Mapping SP-PIFO maps incoming packets to queues based
on the queue bounds, which define the lowest rank that the
scheduler can admit into each queue. Whenever SP-PIFO
receives a packet, it scans the queue bounds from lowest to
highest priority, and maps the packet to the first queue with a
bound lower or equal to the packet rank.

Adaptation SP-PIFO uses two mechanisms to adapt queue
bounds dynamically: a push-up stage where it pushes future
low-rank (i.e., high-priority) packets to higher-priority queues;
and a push-down stage where it pushes future high-rank (i.e.,
low-priority) packets to lower-priority queues. The push-up
stage occurs whenever a packet is admitted into a queue. Then,
SP-PIFO updates the queue’s bound to the rank of the new
packet. In the push-down stage, SP-PIFO decreases the queue
bounds of all queues when it detects a rank inversion in the
highest priority queue. With these two mechanisms, SP-PIFO
spreads packet ranks across queues, reduces rank inversions,
and approximates PIFO’s scheduling behavior.

2.2 AIFO

AIFO [37] approximates PIFO’s admission behavior (i.e.,
only admitting the earliest-arrived lowest-rank packets) on a
FIFO queue. It maintains a sliding window of the most recent
ranks and it decides whether to admit each incoming packet
based on the packet’s rank and the buffer-occupancy level.

Admission AIFO uses the distance of the packet rank to
the rank of the packets already in the queue and the time-
discrepancy between the incoming and outgoing rate of the
FIFO queue to admit packets. It increases the probability of
dropping a packet as the distance between it’s rank and that of
the recently-admitted packets increases; and it increases the
probability of dropping packets as the space available in the
FIFO queue decreases (the reduction of space in the queue
indicates the incoming rate is higher than the outgoing rate).
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Figure 2: SP-PIFO and AIFO cannot fully approximate PIFO.

2.3 Limitations

We analyze the limitations of existing schedulers and motivate
the need for PACKS with an example and a simple experiment.

Example Fig. 2 shows how PIFO, SP-PIFO and AIFO serve
the packet sequence 145212 (first packet on the right).
All schedulers have capacity for 4 packets. SP-PIFO has two
priority queues of two packets each, and fixed bounds with
values of 1 and 2 for the highest- (resp. lowest-) priority queue.
AIFO has a fixed admission control that admits ranks r < 3.

PIFO “pushes” the first four packets into the queue accord-
ing to their rank order: 1245 . When the fifth packet arrives
( 1 ), PIFO “pushes” it into the queue between packets with
ranks 1 and 2 and drops the highest-rank packet in the queue
( 5 ). When the last packet arrives ( 2 ), PIFO “pushes” it be-
tween packets of rank 2 and 4 and drops packet 4 . PIFO’s
outgoing sequence is therefore 1122 .

SP-PIFO maps packets 11 to the highest-priority queue,
and packets 4522 to the lowest-priority queue (c.f., §2.1).
Since the lowest-priority queue only has room for two packets,
it drops the last packets to arrive ( 22 ). The output sequence
is 1145 , which has sorted ranks (it approximates PIFO’s
scheduling), but does not contain the packets with rank 2 that
PIFO accepted (it fails to approximate PIFO’s admission).

AIFO admits the packets with rank r < 3, same as PIFO.
However, since it runs on top of a FIFO queue, it does not
prioritize any packet, which results in an output sequence not
sorted by rank (i.e., 1212 instead of 1122 ).

PACKS preemptively drops packets 4 and 5 , anticipating
the arrival of packets with rank 2 . It then sorts admitted pack-
ets across queues, achieving the optimal output (cf. Fig. 5).

Experiment These limitations generalize across ranks. We
implement SP-PIFO, AIFO, PACKS and FIFO in Netbench [2,
19], and schedule a stream of packets over a bottleneck link
where the ranks are distributed uniformly across [0,100] (de-
tails in §6). We measure the priority inversions generated by
each rank and the number of packet drops per rank.

PIFO never causes inversions and schedules packets in
perfect order (Fig. 3a). SP-PIFO approximates this behavior,
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Figure 3: Scheduling performance, uniform rank distribution.

especially for lower-rank packets: it maps packets with lower
ranks to higher-priority queues. AIFO and FIFO generate a
high number of inversions across most ranks because they run
on a single queue and cannot prioritize lower-rank packets.

PIFO only drops packets with the highest ranks and has the
best performance (Fig. 3b) since it prioritizes low-rank pack-
ets. AIFO closely approximates PIFO’s behavior 2 by proac-
tively dropping the highest-rank packets. SP-PIFO leaves
drops as a by-product effect of its design (it just drops higher-
rank packets more often because they are mapped to lower-
priority queues that drain less frequently) and performs poorly.
FIFO drops packets across all ranks, due to its tail-drop policy
(which is rank agnostic) and has the worst performance.

PACKS’s behavior is the closest to PIFO in both scheduling
inversions and packet drops because it combines the best of
both worlds: an admission-control scheme, similar to AIFO,
and a queue-mapping scheme, similar to SP-PIFO.

The inefficiencies of existing works in approximating PIFO
behaviors ultimately lead to performance degradation. Not
exempting low-priority packets from occupying buffer space
when high-priority ones are present, or not sorting packets
by rank, results in increased latency, reduced bandwidth for
priority applications, and longer flow completion times (§6.2).

3 Overview

We now provide an overview of how PACKS approximates the
behavior of a PIFO queue on existing hardware. PACKS runs
on top of a set of strict-priority queues, and incorporates: (i)
an admission-control mechanism that decides which packets
to admit, and (ii) a queue mapper that decides how to map
admitted packets to the different priority queues (see Fig. 4).

PACKS uses this setup to approximate two PIFO behaviors:
it admits packets with the lowest ranks; and schedules packets
in order of their rank. What enables PIFO to achieve these
behaviors is that it can map packets to any position in the
queue, and it can drop packets (based on their ranks) even
after it has admitted them into the queue. Unfortunately, we do
not have this functionality (by default) on existing hardware.

2Note that the curve for AIFO and PACKS significantly overlap.
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Figure 4: Overview of PACKS data-plane pipeline.

PACKS approximates these behaviors by estimating the dis-
tribution of packets expected to arrive during a given schedul-
ing interval. It then uses this information to compute the
admission and scheduling decisions that a PIFO queue would
follow and it executes them as each packet arrives. Based on
the estimated rank distribution, PACKS identifies the set of
lowest-ranked packets that fit into the available buffer space
and proactively drops any arriving packets with a higher rank.
PACKS also uses the estimated distribution to compute how
to best map admitted packets into each priority queue in order
to approximate the correct rank order at the output.

Rank-distribution estimation: PACKS uses a sliding win-
dow to dynamically monitor the distribution of the ranks of
recently arrived packets — it considers this estimate of the
rank distribution to be the best possible up-to-date estimate.

Admission control PACKS uses the distribution it estimates
(see above) to decide which packets it should admit into the
queue. Intuitively, PACKS should only admit the packets with
the lowest ranks that can fit in the available buffer space (to
mimic PIFO). Whenever a packet arrives, PACKS measures
the available buffer space (as a percentage of the total buffer
space) and computes a rank rdrop that represents a threshold
such that all packets with rank r ≥ rdrop should be dropped.
This rank is the lowest rank for which the quantile of the rank
distribution exceeds the percentage of the remaining buffer
space. This policy ensures that PACKS only admits the lowest-
rank packets that it expects to arrive and fit in the available
buffer space, which emulates PIFO’s admission behavior.

Queue mapping PACKS then uses its estimate of the rank
distribution to find the best mapping of expected packets to
priority queues, to maximize the rank order at the output of
the scheduler. Intuitively, the best mapping assigns packets
with lower-ranks to the higher-priority queues (to prioritize
low-rank packets) and minimizes the number of different-rank
packets assigned to the same queue (to reduce the probabil-
ity of higher-rank packets arriving before lower-rank ones,
thereby generating a rank inversion in the output sequence).

PACKS

1 1

2 2

Incoming packets

sliding window (|W |= 6)

2 1 2 5 4 1. . . . . . 1122
1

2
r < 3

r1 r2 r3 r4 r5
0

1/6

2/6

Packet rank distribution

[q1 = 1,q2 = 2]

(set bounds)

[rdrop = 3]

(admission)

Figure 5: PACKS closely approximates PIFO’s behavior.

PACKS defines a set of rank values qqq = (q1, ...,qn) that
drive how it maps packets to priority queues (in the same way
that rdrop drives admission control). The queue bound qi for
each queue describes the highest rank that the scheduler can
admit to the queue such that these packets (i.e. those with
rank r < qi) are the lowest rank packets that fit in the available
queue space. PACKS scans queue bounds top-down (i.e. from
highest- to lowest-priority) and maps each incoming packet to
the first queue where the packet rank is lower or equal to the
queue bound — in this way it maps the low-rank packets to
the high-priority queues: PACKS prioritizes expected packets
of low rank over higher-rank ones (similar to PIFO).

Example Fig. 5 shows how PACKS schedules the sequence
145212 . We assume the sequence repeats, and configure

PACKS with two priority queues of two packets each and
a sliding window of size |W | = 6. After receiving the 6-th
packet, PACKS has estimated the rank distribution, where the
probability of receiving a packet of ranks 1 to 5 are p(1) =
2/6, p(2) = 2/6, p(3) = 0, p(4) = 1/6, p(5) = 1/6. Given
the available buffer space (i.e., 4 packets), and based on the
monitored rank distribution, PACKS sets rdrop to 3, since the
expected 4 packets with lowest rank are those with rank 1 and
2. Then, PACKS sets qi based on the available buffer space at
each queue (i.e., 2 packets each). As such, it sets q1 = 1 to
map the two expected packets with lowest rank to the highest-
priority queue, and q2 = 2, to map the two expected admitted
packets with highest rank to the lowest-priority queue. As a
result, the output sequence of PACKS is 1122 , the exact
same one as in the PIFO queue (see Fig. 2).

4 PACKS design

We now describe the theoretical basis supporting the design
of PACKS. First, we frame the problem and introduce the
design space (§4.1). Second, we provide the high-level intu-
ition behind PACKS’s design by studying the case in which it
schedules a batch of packets (§4.2). Third, we generalize the
algorithm to the online setup (§4.3). Finally, we formalize the
PACKS’s algorithm (§4.4), and analyze it both theoretically
and with MetaOpt [24], an heuristic analyzer (§4.5).
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4.1 Design space
Let us consider the scheduling design space in Fig. 6, which
represents the available resources in existing data planes [1,3].
Packets arriving at the scheduler are already tagged with ranks,
either specified by the end hosts or at prior stages of the switch.
The scheduler is composed by a set of strict-priority queues
of fixed sizes, an admission-control mechanism that decides
which packets to admit, and a queue mapper that decides
how to map admitted packets to the priority queues. 3 After a
packet is mapped to a queue, it is enqueued only if the queue
has sufficient buffer space; otherwise, the packet is dropped.
The scheduler continuously drains queues in decreasing order
of priority, scheduling packets from low-priority queues only
when higher-priority queues are empty, and schedules packets
within each priority queue in a first-in first-out fashion.

Problem How can we best approximate the behavior of a
PIFO queue on top of the PACKS abstraction in Fig. 6?
The PACKS abstraction only allows for two design decisions:
an admission-control and a queue-mapping algorithm. Our
objective is to design such two mechanisms in a way that
their overall behavior approximates the one of a PIFO queue.
This is, an admission-control mechanism that (ideally) admits
the earliest-arrived lowest-rank packets, and a queue-mapping
algorithm that (ideally) prioritizes packets with lower rank.

4.2 High-level intuition
We introduce the high-level intuition behind PACKS’s design
by analyzing the case in which a PIFO queue schedules a
batch of A packets. We assume, for now, that all packets have
the same size, and that the PIFO queue has a capacity of B
packets. For each incoming packet, the PIFO queue decides
whether to admit or drop the packet. Only after processing all
the packets, the PIFO queue schedules the admitted packets.

Approximating PIFO’s admission In this setup, the PIFO
queue admits the B (earliest-arrived) lowest-rank packets to
the buffer, dropping the rest. Considering the rank distribution
of the packets in the batch, W , the admitted packets are the
first B packets that we find when reading the distribution from
left to right (see Fig. 7). As such, we can define a rank rdrop,

3Some devices allow extra functionalities such as flexible priority-queue
configuration, round-robin scheduling, or buffer management. We use Fig. 6’s
abstraction for generality and to guarantee line-rate processing for all packets.

Packets

Ranks

Arrived packets (A)

Buffered packets (B) Dropped packets (D)

0 1 2 3 4 5

1

2

3

4

rdrop R

Figure 7: Admission control for a rank distribution, W .

such that all packets with rank equal or higher than rdrop are
dropped by PIFO. Formally, computing rdrop is finding the
highest rank in the distribution, for which the quantile of the
distribution is below the fraction of the available buffer, B/A:

maximize rdrop, where 0 ≤ rdrop ≤ R,

s.t., W .quantile(rdrop−1)≤ B/A
(1)

Once we know rdrop, approximating PIFO’s admission on
top of the PACKS abstraction is straightforward: we just have
to configure PACKS’s admission-control to drop all incoming
packets from the batch with ranks higher or equal than rdrop.

So far, our model assumes that PIFO treats all packets with
the same rank equally (i.e., either admitting or dropping them).
In practice, however, since the PIFO queue has limited size,
PIFO may only admit the earliest-arrived subset of them. To
support this behavior, we extend the model by defining a
time, tdrop, above which PIFO drops all the packets of the
highest-admitted rank (i.e., rdrop−1). We can approximate
this behavior on the PACKS abstraction by configuring its
admission-control mechanism to drop packets based on both,
rdrop and tdrop. Specifically, PACKS should drop packets if
r ≥ rdrop or if {r = rdrop−1 and t ≥ tdrop}.
Approximating PIFO’s scheduling Once PIFO has decided
whether to admit or drop each packet, it schedules the B
buffered packets in a earliest-arrived, lowest-rank-first fashion.
This requires packet sorting at line rate. We can approximate
this behavior in the PACKS abstraction using priority queues.

For each priority queue, i, we define a rank, qi, such that we
only admit to the queue packets with rank lower or equal than
qi (c.f., Fig. 8). We call these ranks queue bounds. Formally,
we let qqq = (q1, . . . ,qn) ∈ Zn be the set of bounds for queues
1 to n. We define a mapping strategy that uses queue bounds
to map packets to their highest-possible priority queue, based
on their rank. For each incoming packet with rank r, we scan
queues top-down (i.e., from highest- to lowest-priority) and
map the packet to the first queue, i, that satisfies r≤ qi.4 With
this definition, we convert the problem of sorting packets
at line rate based on their ranks to the problem of finding
the optimal queue bounds that maximize rank order at the
output of the scheduler. We define a loss function US : Rn×

4Note that PACKS scans queues top-down, while SP-PIFO bottom-up [6].
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R≥0→R≥0, which stands for scheduling unpifoness, such that
US (qqq,r) quantifies the approximation error of scheduling a
packet with rank r based on queue bounds qqq compared to
an ideal PIFO queue. Intuitively, it estimates the probability
that a packet with rank r is scheduled after a packet with
higher rank, r′. In the PIFO queue, US = 0, since packets are
scheduled in perfect order. Thus, in the PACKS abstraction, a
lower US leads to a better approximation.

Our goal is to find the optimal queue bounds, qqq ∗S , that
minimize US . Let Q be the space of all valid queue-bound
vectors and W the distribution of packet ranks. Then, qqq ∗S are:

qqq ∗S = argmin
qqq∈Q

US (qqq,r) (2)

Given that queue bounds are fixed during the enqueue pro-
cess, scheduling errors cannot occur between ranks mapped
to different priority queues. Thus, we can compute the total
scheduling unpifoness as the sum of the individual losses
at each priority queue. Letting US (qi) be the loss function
corresponding to the queue with bound qi, this is:

US (qqq,r) = ∑
1≤i≤n

US (qi) (3)

Finally, letting pW (r) and pW (r′) be the probability of
ranks r and r′, respectively, both mapped to the queue i, we
can define the scheduling unpifoness of the queue as:

US (qi) = ∑
qi−1<r≤qi

r<r′≤qi

pW (r) · pW (r′) (4)

With this formulation, given that we know the exact rank
distribution, W , we can easily compute the optimal queue
bounds, qqq ∗S . For instance, [34] proposes a modified version of
the Bellman-Ford algorithm that does so in polynomial time.

To provide a high-level intuition about the optimal queue
bounds, we derive an upper-bound of US (qi) by setting
pW (r′) = 1. In doing so, we assume the worst case scenario
in which, for each rank r, there is always a higher-rank packet,
r′ in the queue that can produce a scheduling error. As such:

ÛS (qi) = ∑
qi−1<r≤qi

pW (r)

= W .quantile(qi)−W .quantile(qi−1)

(5)

We can see how the optimal bounds are those that mini-
mize the quantiles of the rank distribution for the set of ranks
mapped to each priority queue. In other words, the optimal
bounds are those that result in the least amount of different-
rank packets mapped to each queue (i.e., those that minimize
the colored area within each priority queue in Fig. 8).

Since we have to map all the admitted ranks, 0≤ r < rdrop,
to some queue, removing a rank from a queue implies adding
it to the adjacent queue. Thus, any reduction of unpifoness
in a queue, increases the unpifoness of the adjacent queue.

Arrived packets (A)

Queue 1 Queue 2 Queue 3 . . . Queue n Dropped packets (D)

Packets

Ranks0 1 2 3 4 5

1

2

3

4

rdrop R

q1 q2 q3 qn

W .quantile(q1)≤ B1/A

W .quantile(q2)−W .quantile(q1) ≤ B2/A
. . .

W .quantile(qn)−W .quantile(qn−1)≤ Bn/A

Figure 8: Queue mapping for a rank distribution, W .

Therefore, we can only perform such an optimization step
as long as there is a queue that can absorb the cost of taking
in more ranks without becoming a new, greater maximum-
cost queue. The optimum is achieved when the estimated
scheduling unpifoness in each priority queue is balanced out.

PACKS’s collateral drops Unlike in PIFO, the admission-
control in the PACKS abstraction (i.e., drop if r≥ rdrop) is not
its only source of packet drops. Indeed, an admitted packet can
still be dropped by the priority-queue’s enqueue mechanism if
the available buffer space in the selected queue is not sufficient
to accommodate the packet. As such, in order for the PACKS
abstraction to fully approximate PIFO’s admission behavior, it
should not only control which packets are admitted; it should
also make sure that the admitted packets are not dropped at
enqueue when they are mapped to the priority queues. This
brings us to the third part of the PIFO-approximation problem:
approximating PIFO’s efficient usage of the buffer space.

In the following, we compute the optimal queue bounds
that minimize the drops that occur when mapping packets to
priority queues, qqq ∗D , and compare them to the optimal bounds
that optimize rank order at the output of the scheduler, qqq ∗S .

Let Bi define the buffer capacity of the i-th priority queue
in the PACKS abstraction. Let BBB = (B1, . . . ,Bn) ∈ Zn de-
scribe the buffer allocation across queues, where the sum
of the buffer space of each queue is the total buffer space:
∑

n
i=1 Bi = B. Let qqq = (q1, ...,qn) ∈ Zn be the set of queue

bounds defining the mapping strategy, where 0≤ q1 ≤ q2 ≤
, . . . ,≤ qn = rdrop−1. With this strategy, we can compute the
number of packets mapped to the i-th priority queue, mi, as:

m1 = [A ·W .quantile(q1)]

m2 = [A ·W .quantile(q2)]−m1

mn = [A ·W .quantile(qn)]−mn−1

(6)

We define a loss function UD : Rn×R≥0 → R≥0, which
stands for dropping unpifoness, such that UD(qqq) measures the
number of packets dropped when mapping packets to queues
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based on queue bounds qqq. In the PIFO queue, UD = 0, since
there is no queue mapping, and drops only occur at admission.
In PACKS, a lower UD(qqq) leads to a better approximation.

Our goal is to find the optimal bounds, qqq ∗D , that minimize
UD(qqq). Let Q be the space of valid queue-bound vectors and
W the distribution of packet ranks, then the bounds qqq ∗D are:

qqq ∗D = argmin
qqq∈Q

UD(qqq) (7)

Since queue bounds are fixed during the enqueue process,
and packets are dropped in each queue independently of the
other queues, we can compute the total unpifoness as the sum
of the individual losses at each queue, UD(qi):

UD(qqq) = ∑
1≤i≤n

UD(qi) (8)

The loss at queue i, UD(qi), is either the difference between
the number of packets mapped to the queue, mi, and the queue
space, Bi, if the number of packets mapped to the queue is
greater than the queue space, or 0, otherwise:

UD(qi) =

{
mi−Bi if mi > Bi

0 otherwise.
(9)

As such, the optimal bounds qqq ∗D are the ones that minimize
the difference between the number of packets mapped to
each queue and the buffer size of the queue. Since all packet
drops contribute equally to the loss function, there may exist
multiple queue-bound vectors, qqq ∗D , that result in an optimal
number of drops. In fact, any set of queue bounds is optimal
as long as the packets mapped to each queue is lower or equal
than the buffer space allocated to that queue (i.e., mi ≤ Bi):

∀i : A · (W .quantile(qi)−W .quantile(qi−1))≤ Bi (10)

Given that PACKS’s admission control already ensures that
the total number of packets admitted can fit within the to-
tal buffer space (i.e., A ·W .quantile(rdrop−1)≤ B), we can
guarantee that there exists at least one set of queue bounds,
qqq ∗D , that leads to zero drops at queue-mapping time. We can
find such optimal bounds by computing the ranks for which
the quantile of the rank distribution stays below the allocated
queue sizes. This is ∀i : maximize qi s.t. the eq. 10 is satisfied.

Same as it happened in the admission-control counterpart,
there may be rank distributions for which the number of pack-
ets of a certain rank exceeds the queue capacity (even when
that rank is the only one mapped to the queue). In that case,
we need finer granularity than the rank-level to perform the
queue mapping. Same as we did for admission control, we
can overcome this limitation by introducing an enqueue-time
value ti, for each priority queue, i, such that packets are only
admitted to the queue if: r ≤ qi−1 or if {r = qi and t ≤ ti}.
Packets not admitted to the queue i are carried over to the next
queue, i+1, which has to account them as part of its quantile.

Sorting vs. dropping Having computed the optimal queue
bounds that best approximate PIFO in optimizing rank order

at the output, qqq ∗S , and in minimizing packet drops at queue-
mapping, qqq ∗D , we can see that they are not always the same.
Indeed, qqq ∗S minimizes the quantiles of the rank distribution for
the ranks mapped to each priority queue, and qqq ∗D minimizes
the difference between these quantiles and their respective
queue sizes. Thus, which queue bounds should we use?

In general, we could pick any of the two options based on
e.g., which of the two behaviors we believe is more important.
However, since our goal is to design a programmable sched-
uler, we select the option that generalizes the most. We realize
that qqq ∗D are not only the best bounds for minimizing packet
drops at queue-mapping time, but also the optimal bounds
for scheduling in case the rank distribution is not known a
priori (see eq.5 and eq.10). Indeed, if the rank distribution
of incoming packets is not known, the optimal queue map-
ping that minimizes rank reordering is the one that distributes
packets across queues proportionally to the queue sizes. Thus,
qqq ∗D can be seen as a worst-case bound for qqq ∗S , leading to a
good performance in both dimensions, as we show in §6. As
a result, we leverage qqq ∗D , as the queue bounds for our design.

4.3 Online adaptation
So far, we have assumed a simplified scenario where packets
arrive to the scheduler in a batch-basis, all packets have the
same size, and we know the complete rank distribution of the
batch at enqueue. In practice, however, packets arrive in a
stream, and the scheduler needs to perform the admission and
enqueue decisions per-packet, at line rate. In the following,
we translate our high-level intuition to an algorithm design
that is practical and which we can deploy to existing hardware.

Sliding window to monitor rank distribution In the online
setup we do not know the rank distribution of incoming pack-
ets, W , in advance. Instead, the best estimation that we can
make is based on the rank distribution of recently-received
packets. As such, same as previous approaches [34, 37], we
monitor this distribution, W , using a sliding window, and use
it to drive the admission and queue-mapping decisions.

Queue occupancy to estimate congestion In the online
case, packets arrive in a continuous stream and not in a
batch basis. Thus, instead of computing the quantiles over
the number of packets arrived in the batch, A, we do so over
the number of packets sharing the buffer in a scheduling
interval, B. At the same time, while in the batch case we
could assume empty queues at start, in the online case we
have to consider dynamic buffers which should absorb the
short-term mismatches between traffic arrival and departure
rates. We do so by measuring the buffer occupancy of the
queues, and using them as an estimate of their congestion
levels. 5 As a result, given b, the buffer-occupancy level at a
certain packet’s enqueue time, we decide to admit the packet if
W.quantile(rdrop−1)≤

[ 1
1−k ·

B−b
B

]
, where k is an optional

5This is a common approach in queue-management [18,25,37]. We could
also have used the sojourn-time of packets, as proposed by CoDel [25].
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parameter to give room for burstiness. Similarly, given bi,
the buffer-occupancy level of queue i, we perform the queue-
mapping process based on queue bounds, qqq, satisfying:

q1 := max
r1∈N

s.t. W.quantile(r1) ≤
1

1− k
·
[
(B1−b1)

B

]
q2 := max

r2∈N
s.t. W.quantile(r2)≤

≤ 1
1− k

·
[
(B1−b1)

B
+

(B2−b2)

B

]
· · ·

qn :=max
rn∈N

s.t. W.quantile(rn)≤
1

1− k

[
∑

n
j=1(B j−b j)

B

]
(11)

Since qn = rdrop−1, the lowest-priority queue’s mapping
policy already implies the admission control at the scheduler,
which simplifies the algorithm implementation (cf. alg. 1).

Minimizing collateral drops Same as in the batch case, pack-
ets of a certain rank may exceed a queue’s capacity. In the
batch case, we relied on ti to map packets to a lower-priority
queue if the higher-priority queues were full. In the online
case, we assess queue occupancy during mapping; if the se-
lected queue for a given packet is full, we direct the packet to
the next queue with available space. This approach addresses
a key limitation of queue-mappers like SP-PIFO, which ex-
cessively drop incoming packets when mapped to the same
queue (e.g., during bursts of packets with the same rank or
with monotonic rank increase). As such, PACKS prevents
drops and ensures an efficient usage of the buffer resources.
Additionally, PACKS’s top-down scanning process ensures
that PACKS preserves the scheduling order of such packet
sequences, despite mapping them to different priority queues.

4.4 PACKS algorithm

Algorithm 1 PACKS

Require: An incoming packet pkt with rank r
1: procedure INGRESS
2: Update sliding window W with r
3: B← buffer.total Bi← buffer(qi).total
4: bi← buffer(qi).used
5: for Queues(i) : i = 1 to n do ▷ Scan top-down

6: if W.quantile(r)≤ 1
1−k ·

[
∑

i
j=1(B j−b j)

B

]
then

7: if bi < Bi then ▷ Queue i not full
8: Queues(i).enqueue(pkt) ▷ Select queue
9: return;

10: Drop(pkt) ▷ Drop packet

We detail the PACKS algorithm in alg 1. For each incoming
packet, PACKS decides whether to admit the packet or drop
it, and how to map admitted packets to priority queues.

Admission control Whenever an incoming packet arrives,
PACKS performs two main operations. First, it updates the
sliding window, W , with the rank of the new packet, r. Then,
it measures the current buffer occupancy, b and uses it to
compute the portion of the buffer space, B, that is still free:
B−b

B . PACKS admits the incoming packet if the quantile of its
rank for the monitored rank distribution is lower than the frac-
tion of available buffer space: W.quantile(r)≤

[ 1
1−k ·

B−b
B

]
.

Note that we weight the admission condition by an optional
parameter, k, to allow for some burstiness. Also, note that
in alg. 1, the admission condition is implicit in the queue-
mapping process. Indeed, the drop action in line 10, executed
when the packet has not been mapped to the lowest-priority
queue, already serves the purpose of admission control.

Queue mapping For the admitted packets, PACKS scans pri-
ority queues top-down (i.e., from highest- to lowest-priority)
and maps the packet to the first queue with available space that

satisfies the condition: W.quantile(r)≤ 1
1−k ·

[
∑

n
j=1(B j−b j)

B

]
.

If a packet is not admitted to any of the queues, because its
rank is too high, or because all queues are full, it is dropped.

4.5 PACKS analysis

Similarly to other networking algorithms [7,18,20,25,34,37],
PACKS uses a window-based approach instead of a per-packet
heuristic. As a result, PACKS outperforms under a stable rank
distribution, if the window size is large enough to capture it.

While the window-based approach generally makes PACKS
less vulnerable to adversarial packet workloads (PACKS’s
bounds are updated more smoothly, making them harder to
disrupt, cf. Fig. 15), it also represents PACKS’s Achilles’ heel.

We evaluated PACKS on MetaOpt [24]–a recent heuristic
analysis tool–, to understand its performance gap relative to
SP-PIFO, AIFO and PIFO, and to identify adversarial inputs
(cf. Appendix B). We found that PACKS is robust against
adversarial sequences that make SP-PIFO drop more than
60% of high-priority packets, or make AIFO delay highest-
priority packets by more than 60% of the total queue size.

We also found that PACKS’s adversarial inputs consist of
bursts of either very high or very low rank packets, which
“pollute” the monitored distribution and prevent the well func-
tioning of the algorithm (cf. B.3). In §6.1 we study the impact
of such behaviors in depth and show how PACKS can react
faster to such distribution changes by using smaller window
sizes and higher burstiness allowances. In these cases, PACKS
relaxes its admission criteria and its behavior converges to the
one of per-packet heuristics such as SP-PIFO (cf. Fig 10).

In Appendix A, we study PACKS’s optimality theoretically.
We prove that, for certain window and buffer-size conditions,
the departure rate for all ranks in PACKS converges to that
of a PIFO queue (cf. Theorem. 1). We also suggest an upper
bound for the number of inversions that PACKS produces for a
generic packet sequence, with respect to PIFO (cf. Claim. 1).
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5 Implementation

We implemented PACKS in P416 for Intel Tofino 2 [1] using
439 lines of code. Our implementation uses 12 stages and
the resources outlined in Table 1. For each incoming packet,
PACKS: (i) monitors the distribution of recent ranks; (ii) com-
putes the quantile of the packet’s rank on this distribution;
(iii) measures queue occupancies; and (iv) uses this data to
decide the packet’s admission, dropping, and queue mapping.

Rank-distribution monitoring We track the rank distribution
of the packets received by implementing a sliding window
over a set of |W | registers. Each register stores the rank of one
packet, and we use a circular packet counter, from 0 to |W |−1,
to track the position of the oldest update. Upon the arrival of
a new packet, we check the counter’s value and update the
register pointed to by the counter with the value of the new
packet’s rank. In our prototype, the sliding window has a size
of 16 (which can be extended by using sampling [37]). It uses
4 stages and accesses 4 registers in parallel at each stage.

Quantile computation We compute the quantile of each in-
coming packet’s rank based on the monitored distribution.
Specifically, we count how many times the packet’s rank
is lower than a rank in the sliding window and then di-
vide the result by the window size. We perform the count
by accessing each register of the sliding window and com-
paring the packet’s rank with the register’s value using the
register’s stateful ALU. We output the result of each com-
parison into a binary metadata field, out put j, which is set
to 1 if the packet’s rank is smaller than the register value
and 0 otherwise. We aggregate the output values by progres-
sively summing pairs of them at each stage using non-stateful
ALUs, requiring log2 |W | stages. Finally, we divide the sum of
the output values by the window size, |W |: W.quantile(r) =
(∑ j out put j)/|W |. We select the window size to be a power
of 2, and implement the division through bit-shift operations.

Queue-occupancy monitoring We use a ghost thread [5],
available in Tofino 2, to monitor queue occupancy levels
at enqueue. Normally, this information is only available in
the egress pipeline, since packets need to traverse the traf-
fic manager to access it. We address this limitation by set-
ting up a ghost thread that periodically writes the queues’
occupancy levels (from the egress) to a register accessible
from the ingress pipeline. The ghost thread takes two clock
cycles to update the state of each queue and handles one
queue per invocation. This results in 8 clock cycles to up-
date the state of 4 queues. To scale PACKS across a larger
set of queues and ports, we approximate the admission and
queue-mapping conditions by considering the overall buffer
occupancy instead of individual per-queue occupancies (i.e.,
W.quantile(r) ≤ 1

1−k ·
B−b

B ·
i
n ). Alternatively, we could use

traditional packet recirculation to convey queue-occupancy
information to the ingress pipeline (as done in [37]). The first
option sacrifices accuracy, while the second, throughput.

Admission and queue mapping After obtaining the quantile
of the packet’s rank based on the monitored rank distribution,
W.quantile(r), and the available buffer, b, we combine them
to derive the admission and mapping conditions. We rewrite
them as: B · (1− k) ·n ·W.quantile(r)≤ (B−b) · i. We com-
pute the right side of the equation by using the math unit and
bit-shift operations. Simultaneously, we compute the left side
of the equation by picking a k value strategically such that
the operation can be performed by a bit shift on the quantile.
Finally, we compute the comparison between the two terms
using the minimum operation of the math unit, and execute
the corresponding drop or enqueue action based on its result.

6 Evaluation

We evaluate PACKS’s performance in approximating PIFO for
various rank distributions and configuration parameters (§6.1),
its practicality under complex traffic workloads (§6.2), and
its bandwidth allocation when deployed on hardware (§6.3).

6.1 Performance analysis

First, we analyze PACKS’s behavior across different rank
distributions to assess its performance in approximating PIFO.

Methodology We implement PACKS, PIFO, FIFO, SP-PIFO
and AIFO in Netbench [2], a packet-level simulator. We study
the performance of a switch scheduling a constant bit-rate
flow of 11Gbps over a 10Gbps bottleneck link for one second.
We assign each packet a rank within [0-100), drawn from an
exponential, Poisson, convex, or inverse-exponential distribu-
tion. We set up PACKS and SP-PIFO with 8 priority queues of
10 packets, and AIFO and FIFO with a queue of 80 packets.
We set PACKS’s and AIFO’s window size to 1000 packets and
the burstiness allowance, k, to 0. We measure the number of
scheduling inversions produced by each rank (i.e., how often
a packet with the rank is scheduled before a lower-rank packet
in the queue) and the number of dropped packets per rank.

Uniform case In §2.3, we have seen how PACKS outperforms
existing schemes under a uniform rank distribution (cf. Fig.3)
in both the number of scheduling inversions and the drop
distribution across packet ranks. Indeed, PACKS reduces the
number of inversions by more than 3×, 10× and 12× with
respect to SP-PIFO, AIFO and FIFO. While all schemes drop
a similar percentage of packets (within ±0.03%), PACKS
achieves the closest-to-PIFO drop distribution across packet
ranks. PIFO only drops packets with ranks larger than 90.
FIFO deviates furthest from PIFO by dropping packets across
all ranks. It is followed by SP-PIFO, which drops packets
with ranks as low as 20. AIFO and PACKS perform best, only
dropping packets with ranks above 77 and 79, respectively.

Alternative distributions (inversions) We obtain similar re-
sults for non-uniform rank distributions. Fig. 9 shows the
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Figure 9: PIFO approximations for various rank distributions.

scheduling inversions and the packet drops across ranks for
the Poisson and inverse-exponential rank distributions (we
see similar results for the convex and exponential distribu-
tions). In all cases, PACKS outperforms SP-PIFO and AIFO,
and gets closest to PIFO in inversions and packet drops. For
the Poisson distribution, PACKS reduces the number of inver-
sions by 5× and more than 15× and 17× compared to SP-
PIFO, AIFO and FIFO, respectively. Similarly, for the inverse-
exponential distribution, PACKS prevents over 7×, 14× and
15× more inversions than SP-PIFO, AIFO and FIFO, respec-
tively. Notably, PACKS predominantly prevents inversions
among lowest-ranked packets, which have higher priority.

Alternative distributions (drops) Under the Poisson distri-
bution, all schemes drop overall a similar number of packets
(within ±0.04%), being SP-PIFO the one with the highest
drop rate. When considering the distribution of dropped pack-
ets across ranks, PACKS and AIFO are the schemes most
closely approximating PIFO. Specifically, the lowest rank
dropped by PIFO is 59, while PACKS and AIFO drop packets
starting at rank 56 6. Conversely, SP-PIFO and FIFO show no-
tably worse performance, dropping packets with ranks as low
as 36 and 20, respectively. We observe similar results for the
inverse-exponential distribution. In this case, however, while
the total number of packets dropped by PACKS and AIFO is
similar to the one of PIFO (+0.1% and +0.4%, respectively),
SP-PIFO drops 42% more packets than them. This is due to
the highly skewed nature of the distribution, which is hard for
SP-PIFO to manage without admission control (cf. §4.4).

Sensitivity to window size Fig. 10 illustrates the impact
of window size on PACKS’s performance. Given that the
rank distribution ranges from 0 to 100 and the overall buffer
space is of 80 packets, PACKS performs best with window
sizes above |W |= 100, which capture the entire distribution.

6Note that PACKS’s and AIFO’s drop distribution significantly overlap.
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Figure 10: PACKS’s window-size sensitivity (UDP, uniform).
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Figure 11: Rank-distribution sensitivity (TCP uniform).

Since the rank distribution is stable, a higher window size
consistently leads to more stable queue bounds and better
performance, as indicated by the bumps in the distribution
reflecting the behavior of priority queues. For example, with
|W |= 1000, PACKS performs very close to optimal, reducing
inversions by 22% compared to |W | = 100 and increasing
the lowest-dropped rank from 69 to 78. Further increasing
the window to |W |= 10000 doesn’t improve performance so
significantly, only reducing inversions by 1% and raising the
lowest-dropped rank from 78 to 80, compared to |W |= 1000.

Window sizes below |W |= 100 lead to worse performance
since the window cannot capture the entire distribution. In-
terestingly, as we reduce the window size, PACKS’s behavior
approaches that of SP-PIFO. Nevertheless, even with very
small window sizes, PACKS still outperforms. For instance,
with |W |= 15, which barely captures a 15% of the distribu-
tion, PACKS still produces 30% less inversions compared to
SP-PIFO and starts dropping packets at rank 34 instead of 18.

Sensitivity to distribution shifts PACKS’s design follows
a window-based approach and, thus, relies on a predictable
future packet distribution. Since real-world packet distribu-
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tions are not always predictable, we now assess how PACKS
performs when the monitored rank distribution differs from
that of incoming packets. To do so, we modify PACKS’s algo-
rithm to consistently shift all ranks in the sliding window by
a factor. This approach does not reflect a real-world scenario
since, even under a drastic distribution shift in practice (e.g., a
microburst), packets from the “new distribution” would arrive
in a continuous stream, allowing the sliding window to adapt
gradually as each packet arrives. Still, it helps us understand
PACKS’s performance boundaries. We run TCP flows at 80%
load, with packet ranked uniformly at random from 0 to 100.

Fig. 11a and Fig. 11b show the impact of shifting the ranks
of the sliding window by positive factors. This leads to more
permissive admission and queue-mapping decisions, as if we
increased the priority of incoming packets. When the shift
reaches 100, all arriving packets have higher priority than
the ones in the sliding window, causing PACKS to admit all
packets and behave like a FIFO queue. Despite the extreme
scenarios with shifts ≥75, PACKS exhibits significant robust-
ness to positive distribution shifts. For instance, with a shift
of +25, PACKS vastly outperforms SP-PIFO by reducing in-
versions by 34% and with a lowest-rank dropped of 46, as
opposed to 12 in SP-PIFO. Even with a shift of +50, PACKS
performs comparably to SP-PIFO in terms of total inversions
while dropping 162× fewer packets below the rank of 58.

Fig. 11c and Fig. 11d show the impact of shifting the ranks
of the sliding window by a negative factor. This is equivalent
to decreasing the priority of incoming packets, which has a
more detrimental impact on performance than positive shifts,
and affects packet drops. Indeed, admission control drops a
percentage of packets equal to the magnitude of the shift. With
a -100 shift, PACKS drops all incoming packets. Similarly, a
-75, -50 and -25 shift lead to dropping 75%, 50% and 25% of
packets with the lowest priority, respectively. For the subset of
admitted packets, PACKS maintains ideal behavior in terms of
scheduling inversions. We can counteract the effect of nega-
tive distribution shifts by increasing the burstiness allowance,
k, or decreasing the window size to speed up reaction time.

6.2 Performance in typical use cases

We now study PACKS’s performance under two common
scheduling objectives: minimizing flow completion times and
enforcing fairness [6, 8, 37, 38]. These scenarios are challeng-
ing for PACKS because they involve large and non-stationary
rank distributions, which are difficult to monitor accurately.

Methodology We use a leaf-spine topology with 144 servers
connected through 9 leaf and 4 spine switches, and set the
access and leaf-spine links to 1Gbps and 4Gbps, respectively.
We generate traffic flows following the pFabric web-search
workload [8]. Flow arrivals are Poisson-distributed and we
adapt their starting rates for different loads. We use ECMP
and draw source-destination pairs uniformly at random.
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Figure 12: pFabric: FCT statistics across different flow sizes.

Setup pFabric We run pFabric [8] (without starvation pre-
vention 7) on top of PIFO, AIFO, SP-PIFO and PACKS, and
assess their efficacy in minimizing flow completion times.
pFabric assigns ranks to packets based on their remaining
flow sizes. As suggested in [8], we approximate pFabric’s
rate control using standard TCP with an RTO of 3 RTTs. We
configure PACKS and SP-PIFO with 4 queues×10 packets
and PIFO, AIFO and FIFO with 1 queue×40 packets. For
PACKS and AIFO, we set |W | to 20 packets, and k to 0.1.

Results pFabric Fig. 12 shows the mean and 99th percentile
FCT of small flows, the average FCT across all flows, and the
fraction of completed flows. AIFO produces longer FCTs for
small flows due to the lack of packet sorting. SP-PIFO results
in longer FCTs at high loads due to queue inversions. PACKS
combines the strengths of both, performing best overall.

In terms of average FCTs for small flows, PACKS achieves
FCTs just 5% to 9% longer than PIFO, which is remarkable
given its use of just 4 queues. In turn, PACKS outperforms SP-
PIFO by 11% to 33%, AIFO by a factor of 2.25× to 2.6×, and
FIFO by 3.2× to 9.2× (biggest benefits under heavy loads).

At the 99th pctl., PACKS achieves FCTs 8% to 49% longer
than PIFO, but remains better than SP-PIFO (from 2.2% to
12% better), AIFO (1.8× to 3.3×), and FIFO (5× to 10×).

Regarding the mean FCT across all flows, PACKS achieves
on-par performance with PIFO (the mean FCT of PACKS
is even a bit lower–from 2% to 5%–due to long flows not
completing transmission, cf. Fig. 12d). Once again, PACKS
consistently outperforms SP-PIFO across all loads (with im-
provements ranging from 0.2% at the lowest load to 23% at
the highest load), AIFO (9% to 21%) and FIFO (13% to 2×).

7Starvation [8] is a limitation inherent to PIFO, and therefore of all its
approximations. Previous works have already proposed solutions to the
starvation problem (e.g., PDA [35]) which can also run on PACKS.
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Figure 13: Fairness: FCT statistics at different loads.

Finally, PACKS’s fraction of completed flows closely
matches that of PIFO (± 0.01% to 0.2%). Moreover, PACKS
achieves higher completion rates than SP-PIFO, with improve-
ments from 0.06% to 0.2%, and AIFO (resp. 0.3% to 1.2%).

Setup fair queuing We run the Start-Time Fair Queueing
rank design [17] on top of the schedulers and evaluate their
performance at enforcing fairness across flows. We compare
to FIFO and AFQ [27] for reference. We set the bytes-per-
round of AFQ to 80 packets. We use 32 queues×10 packets
in SP-schemes and 1 queue×320 packets for single-queue
schemes. Same as [6,37], we generate traffic from the pFabric
web-search distribution, and assess fairness by measuring the
flow completion time of short flows. For PACKS and AIFO,
we set the window size to 10 and the burstiness margin to 0.2.

Results fair queuing Fig. 13a depicts the average flow com-
pletion time for small flows across loads from 20% to 80%.
PACKS stays within 10–24% of the ideal PIFO, and consis-
tently outperforms FIFO, AIFO and AFQ across all loads.
Specifically, PACKS reduces the average FCTs for short flows
by 2.5–5.5×, 1.12×–2.4×, 9–27% with respect to FIFO,
AIFO and AFQ, respectively. PACKS performs similarly to
SP-PIFO (within ±6%), underperforming at lower loads, but
outperforming by 6% at the highest load (80% utilization).

Fig. 13b illustrates the average and 99th percentile flow
completion times across flow sizes at 70% utilization.
PACKS’s performance consistently stays within 17–26% of
the ideal PIFO in terms of average FCT and within 15–54%
for the 99th percentile across all flow sizes. It shows com-
parable performance to SP-PIFO (within ±10% for average
FCTs and ±20% for the 99th percentile) and AFQ for aver-
age FCTs (within ±15%). However, AFQ outperforms at the
99th percentile, by up to 31%. For the smallest flows, PACKS
achieves the lowest average FCT, closely trailing AFQ by 5%.

6.3 Hardware testbed

We show that PACKS performs at line rate on actual hardware
by running it on the Edgecore Networks DCS810 (AS9516-
32D) Intel Tofino2 Switch [1]. Same as previous works [6,
37, 38], we measure the bandwidth that PACKS allocates to
different priority flows over a bottleneck link. We generate
traffic between two servers, connected by a Tofino2 switch,
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Figure 14: Bandwidth allocation for increasing-priority flows.

using interfaces of 100 Gbps (sender→switch) and 10 Gbps
(switch→receiver). We run four UDP flows of 20 Gbps each
using MoonGen [13, 14]. We start flows sequentially (one
flow at a time), in increasing order of priority with a time gap
of 10 seconds between starts. We stop them sequentially in
decreasing order of priority, with 10 seconds between stops.

Fig. 14 depicts the flows’ bandwidth and how PACKS man-
ages to effectively prioritize traffic from lower ranks. While
the FIFO queue distributes the bandwidth uniformly across
flows (failing at prioritizing traffic), PACKS successfully allo-
cates the available bandwidth to the highest-priority flow.

7 Related work

Packet scheduling has been extensively studied for decades [8,
10–12, 17, 21, 22, 26, 27, 29]. The concept of programmable
scheduling was introduced by [31, 32], which proposed the
PIFO queue as an enabling abstraction. While promising,
implementing PIFO queues in hardware proved challenging.
Hence, a subset of follow-up works have suggested new hard-
ware designs such as PIEO [30], BMW-Tree [36], BBQ [9],
and Sifter [15]. Other works have focused on approximating
PIFO behaviors on existing programmable data planes: SP-
PIFO [6], QCluster [35], PCQ [28], AIFO [37], Spring [34],
and Gearbox [16]. PACKS falls into the latter category.

8 Conclusions

We present PACKS, the first programmable packet scheduler
that emulates PIFO queues on existing data planes in both
rank ordering and packet drops. PACKS runs on top of a set of
priority queues and leverages packet-priority information and
queue-occupancy levels during enqueue, to schedule packets
in order of priority. We show that PACKS is practical, achieves
close-to-PIFO behavior, and outperforms the state-of-the-art.

Acknowledgments

We are grateful to the reviewers and our shepherd, Hyojoon
Kim, for their comments. This work was partly supported by
the OTKA #135606 and #135074 projects of the National
Research, Development and Innovation Fund of Hungary.

1478    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References

[1] The Edgecore Networks DCS810 Switch with Tofino2.
https://www.edge-core.com/productsInfo.php?
cls=1&cls2=349&cls3=577&id=916, 2017.

[2] Netbench. http://github.com/ndal-eth/
netbench, 2018.

[3] Broadcom StrataXGS Switch Solutions.
https://www.broadcom.com/products/
ethernet-connectivity/switching, 2023.

[4] Network Programmability: The Road Ahead. https:
//www.youtube.com/watch?v=CtxfmES4T7E, 2023.

[5] Anurag Agrawal and Changhoon Kim. Intel Tofino2: A
12.9 Tbps P4-Programmable Ethernet Switch. In IEEE
Hot Chips Symposium (HCS 32), 2020.

[6] Albert Gran Alcoz, Alexander Dietmüller, and Laurent
Vanbever. SP-PIFO: Approximating Push-In First-Out
Behaviors using Strict-Priority Queues . In USENIX
NSDI, Santa Clara, CA, USA, 2020.

[7] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). In ACM SIGCOMM, New Delhi, India,
2011.

[8] Mohammad Alizadeh, Shuang Yang, Milad Sharif,
Sachin Katti, Nick McKeown, Balaji Prabhakar, and
Scott Shenker. pFabric: Minimal Near-optimal Datacen-
ter Transport. In ACM SIGCOMM, Hong Kong, China,
2013.

[9] Nirav Atre, Hugo Sadok, and Justine Sherry. BBQ: A
Fast and Scalable Integer Priority Queue for Hardware
Packet Scheduling. In USENIX NSDI, Santa Clara, CA,
USA, 2024.

[10] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-Agnostic Flow Schedul-
ing for Commodity Data Centers. In USENIX NSDI,
Oakland, CA, USA, 2015.

[11] David D. Clark, Scott Shenker, and Lixia Zhang. Sup-
porting Real-time Applications in an Integrated Services
Packet Network: Architecture and Mechanism. In ACM
SIGCOMM, Baltimore, MD, USA, 1992.

[12] Alan Demers, Srinivasan Keshav, and Scott Shenker.
Analysis and Simulation of a Fair Queuing Algorithm.
In ACM SIGCOMM, New York, NY, USA, 1989.

[13] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A Script-
able High-Speed Packet Generator. In ACM IMC, Tokyo,
Japan, 2015.

[14] Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer,
and Georg Carle. MoonGen: Software Packet Genera-
tion for 10 Gbit and Beyond. In USENIX NSDI, Oakland,
CA, USA, 2015.

[15] Peixuan Gao, Anthony Dalleggio, Jiajin Liu, Chen Peng,
Yang Xu, and H. Jonathan Chao. Sifter: An Inversion-
Free and Large-Capacity Programmable Packet Sched-
uler. In USENIX NSDI, Santa Clara, CA, USA, April
2024.

[16] Peixuan Gao, Anthony Dalleggio, Yang Xu, and
H. Jonathan Chao. Gearbox: A Hierarchical Packet
Scheduler for Approximate Weighted Fair Queuing. In
USENIX NSDI, Renton, WA, USA, 2022.

[17] Pawan Goyal, Harrick M. Vin, and Haichen Chen. Start-
time Fair Queueing: A Scheduling Algorithm for Inte-
grated Services Packet Switching Networks. In ACM
SIGCOMM, Palo Alto, CA, USA, 1996.

[18] V. Jacobson. Congestion Avoidance and Control. In
ACM SIGCOMM ’88, Stanford, California, USA, 1988.

[19] Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael
Schapira, and Ankit Singla. Beyond Fat-trees With-
out Antennae, Mirrors, and Disco-balls. In ACM SIG-
COMM, Los Angeles, CA, USA, 2017.

[20] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan
M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, David Wetherall, and Amin Vahdat. Swift: Delay
is Simple and Effective for Congestion Control in the
Datacenter. In ACM SIGCOMM, Virtual Event, USA,
2020.

[21] Paul E McKenney. Stochastic Fairness Queueing. In
IEEE INFOCOM, 1990.

[22] Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and
Scott Shenker. Universal Packet Scheduling. In USENIX
NSDI, Santa Clara, CA, USA, 2016.

[23] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago
Segarra, Himanshu Raj, and Srikanth Kandula. Minding
The Gap Between Fast Heuristics and Their Optimal
Counterparts. In ACM HotNets, 2022.

[24] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago
Segarra, Himanshu Raj, Umesh Krishnaswamy, Ramesh
Govindan, and Srikanth Kandula. Finding Adversarial
Inputs for Heuristics using Multi-level Optimization. In
USENIX NSDI, Santa Clara, CA, USA, 2024.

USENIX Association 22nd USENIX Symposium on Networked Systems Design and Implementation    1479

https://www.edge-core.com/productsInfo.php?cls=1&cls2=349&cls3=577&id=916
https://www.edge-core.com/productsInfo.php?cls=1&cls2=349&cls3=577&id=916
http://github.com/ndal-eth/netbench
http://github.com/ndal-eth/netbench
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.youtube.com/watch?v=CtxfmES4T7E
https://www.youtube.com/watch?v=CtxfmES4T7E


[25] Kathleen Nichols and Van Jacobson. Controlling Queue
Delay. In ACM Queue, New York, NY, USA, 2012.

[26] Linus E Schrage and Louis W Miller. The Queue M/G/1
with the Shortest Remaining Processing Time Discipline.
1966.

[27] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating Fair Queueing
on Reconfigurable Switches. In USENIX NSDI, Renton,
WA, USA, 2018.

[28] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu,
Pravein G Kannan, Changhoon Kim, Arvind Krishna-
murthy, and Anirudh Sivaraman. Programmable Cal-
endar Queues for High-speed Packet Scheduling. In
USENIX NSDI, Santa Clara, CA, USA, 2020.

[29] M. Shreedhar and George Varghese. Efficient Fair
Queueing Using Deficit Round Robin. In ACM SIG-
COMM, Cambridge, Massachusetts, USA, 1995.

[30] Vishal Shrivastav. Fast, Scalable, and Programmable
Packet Scheduler in Hardware. In SIGCOMM ’19, Bei-
jing, China, 2019.

[31] Anirudh Sivaraman, Suvinay Subramanian, Anurag
Agrawal, Sharad Chole, Shang-Tse Chuang, Tom Edsall,
Mohammad Alizadeh, Sachin Katti, Nick McKeown,
and Hari Balakrishnan. Towards Programmable Packet
Scheduling. In ACM HotNets, Philadelphia, PA, USA,
2015.

[32] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,

and Nick McKeown. Programmable Packet Scheduling
at Line Rate. In ACM SIGCOMM, Florianopolis, Brazil,
2016.

[33] Anirudh Sivaraman, Keith Winstein, Suvinay Subrama-
nian, and Hari Balakrishnan. No Silver Bullet: Extend-
ing SDN to the Data Plane. In ACM HotNets, College
Park, MD, USA, 2013.

[34] Balázs Vass, Csaba Sarkadi, and Gábor Rétvári. Pro-
grammable Packet Scheduling With SP-PIFO: Theory,
Algorithms and Evaluation. In IEEE INFOCOM Work-
shops, 2022.

[35] Tong Yang, Jizhou Li, Yikai Zhao, Kaicheng Yang, Hao
Wang, Jie Jiang, Yinda Zhang, and Nicholas Zhang.
QCluster: Clustering Packets for Flow Scheduling,
2020.

[36] Ruyi Yao, Zhiyu Zhang, Gaojian Fang, Peixuan Gao,
Sen Liu, Yibo Fan, Yang Xu, and H. Jonathan Chao.
BMW Tree: Large-scale, High-throughput and Modular
PIFO Implementation using Balanced Multi-Way Sort-
ing Tree. In ACM SIGCOMM, New York, NY, USA,
2023.

[37] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun,
Vladimir Braverman, Mosharaf Chowdhury, Zhenhua
Liu, and Xin Jin. Programmable Packet Scheduling with
a Single Queue. In ACM SIGCOMM, New York, NY,
USA, 2021.

[38] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion
Stoica, and Xin Jin. Twenty Years After: Hierarchical
Core-Stateless Fair Queueing. In USENIX NSDI, 2021.

1480    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association



A Theoretical analysis of PACKS

Comparison with PIFO In the following, first, we show that,
under certain conditions, the departure rate for all packet ranks
in PACKS is the same as for a PIFO queue. Moreover, under
these conditions, there is only a small difference between the
sets of packets forwarded by PIFO and PACKS.

Let the set of packets forwarded (up to time t) by PIFO
and PACKS be PIFO(t) and PACKS(t), respectively. Then, to
measure the difference in drops between PACKS and PIFO,
we define:

∆(t) =
|PIFO(t)\PACKS(t)|+ |PACKS(t)\PIFO(t)|

|PIFO(t)+PACKS(t)|
.

We have ∆(t)∈ [0,1], where a small value of ∆(t) indicates
a small difference between PACKS and PIFO. In the following,
we denote the the maximal and minimal rank probabilities
with δ+ := maxi p(i) and δ− := mini p(i).

Theorem 1 Assume that the window size |W |, buffer
spaces B1, . . . ,Bn, and the number of arrived packets, T ,
tend to infinity. Furthermore, assume that the maximal
and minimal rank probabilities δ+ and δ− are bounded
between two positive constants. We denote the ratio of the
outgoing and incoming packet rate by v, and suppose v < 1
(otherwise, both PIFO and PACKS behave like a FIFO).
We claim that the difference between the drops of PIFO and
PACKS is at most δ+, i.e., ∆(T )T→∞ ≤ δ+. Moreover, for
each packet rank, the admission rate of PACKS is identical
to the one of PIFO.

Proof: Since the window size, |W |, is considered very
large, the empirical rank distribution in W tends to the real
packet rank distribution. In other words, after waiting a long
time, we can know the rank probabilities with high precision,

that is |p(i)− pW (i)| |W |→∞−−−−→
T≥|W |

0. Thus, empirical quantiles,

W .quantile(i), tend to the quantiles according to the real
distribution, i.e., W .quantile(i)→ ∑

r
i=1 pi.

Intuitively, since the buffer space B is very large, the rel-
ative queue occupancy b/B changes smoothly over time.
More precisely, let b(t) denote the queue occupancy af-
ter the arrival of the t th packet (or, for short, ‘at time t’),
and let qn(t) = 1

1−k
B−b(t)

B denote the highest queue bound
at time t. At time T , we have queue bound qn(T ) as the
admission bound. Let rT be the maximum rank such that
W .quantile(rT )≤ qn(T ). This means that the ratio of the ad-
mitted packets is ∑

rT
i=0 p(i) Thus, after the arrival of the next

packet, E(b(T + 1)− b(T )) = ∑
rT
i=0 p(i)− v (recall that, for

every incoming packet, the number of drained packets is v on
average). This means the following.

1. If ∑
rT
i=0 p(i) > v, the queue occupancy likely increases,

ultimately triggering a drop in qn and in the rate of ad-
mitted packets.

2. If ∑
rT
i=0 p(i)< v, the occupancy likely decreases, trigger-

ing a rise in qn and in the rate of admitted packets.

3. Finally, in the event of ∑
rT
i=0 p(i) = v, the queue oc-

cupancy makes a motion very similar to the one-
dimensional random walk, eventually, after a while likely
triggering qn to either drop or rise for a short time period,
before bouncing back to rT .

We note that, since the buffer spaces are considered to be very
large, and the minimum rank probability δ− is lower bounded
by a positive constant, these events happen with probability
1 based on the law of large numbers. Furthermore, in case 3,
qn(T + t) = rT for any t ≥ 0 with probability 1.

This also means that, in case 3, ∆(T ) T→∞−−−→ 0, since after
a while PIFO and PACKS forward the same packets with
probability 1. In cases 1 and 2, there is a single rank ‘on the
border’ that either gets forwarded or dropped by chance both
in PIFO and PACKS; thus, in these cases, ∆(T )T→∞ ≤ δ+.
Note that the overall forwarding rate of this rank (and thus of
all ranks) is the same for both PIFO and PACKS.

An alternative intuitive reasoning supporting the statement
that the forwarding rates coincide for PIFO and PACKS is the
following. In both cases, there are three classes of ranks: (i)
small ranks that are always forwarded; (ii) large ranks that
are always rejected; and (iii) a borderline rank r∗ that is either
forwarded or rejected by chance. Since draining is continuous
both for PIFO and PACKS, the leftover bandwidth after the
small-ranked packets is given to the borderline rank, r∗, as it
is the only choice, again both for PIFO and PACKS. □

Next, we present an asymptotically tight upper bound for
the number of inversions that PACKS produces for a packet
sequence with respect to PIFO.

Claim 1 On a sequence of S packets, given a buffer size
of B, PACKS cannot cause more than Θ(B ·S) inversions
with respect to PIFO.

Proof: A bad sequence for PACKS: Take a sufficiently large
S, with the packet ranks in the sequence being S,S−1, . . . ,1.
Then, PACKS will enqueue all the packets to the highest prior-
ity queue Queues(1). In this setting, the behavior of PACKS
basically transforms to being a FIFO using Queues(1). We
assume that after a brief period, when the rate of packet ar-
rivals exceeds the departure rate, Queues(1) gets full. Over-
simplified, e.g., while enqueuing the first B1 packets, none
is dequeued. Then, packets are enqueued and dequeued in
an alternate fashion. In this simplified example, the PIFO
output rank sequence will be (first dequeued on the left):
OP = [S−B1,S−B1−1, . . . ,1,S−B1 +1,S−B1 +2, . . . ,S].
In the meantime, the output of PACKS is the same sequence
as the input was: [S, . . . ,1]. We can see that PIFO forwarded
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a number of S−B1 packets B1 time slots faster than PACKS.
If S≫ B1 and B1 ≥ c ·B for some constant c > 0, then the
number of inversions produced by PACKS compared to the
PIFO output is Ω(SB). We can see that the same asymptotic
bound hold in the more realistic scenario when some packets
are dequeued in the initial phase when the queue gets full.

Upper bound if the same packets are admitted as PIFO:
obviously, one packet cannot get ahead more packets than the
buffer size B, hence in the output sequence of PACKS there
could be not more than O(BS) more inversions than in the
output of PIFO. □

We note that, after a short initialization period, an ever-
decreasing sequence of ranks (like in the proof of Claim 1)
makes AIFO and SP-PIFO suffer similarly as PACKS in terms
of the number of rank inversions.

Comparison with AIFO The next theorem states that PACKS
admits the same packets as AIFO. This notable since AIFO
was designed to mimic the admission behavior of PIFO.

Theorem 2 Given the same window size, buffer size, and
burstiness allowance, PACKS drops the same packets as
AIFO.

Proof: Following the notations of the AIFO paper [37],
we denote the total buffer size of AIFO by C, and its queue
occupancy by c. AIFO admits a packet r if W.quantile(r)≤

1
1−k ·

C−c
C . Assume indirectly that there exists an t ∈ N, for

which the t th arriving packet is enqueued in exactly one of
PACKS and AIFO. We choose t as the minimum of such
values. We denote the rank of this packet as rt .

Case 1: PACKS enqueued rt , while AIFO did not. Here we
have the following inequalities explained below, yielding a
contradiction:

W.quantile(rt)
(a)
>

1
1− k

· C− c
C

(b)
=

1
1− k

·
∑

n
j=1 B j−b j

B

(c)
≥

(c)
≥W.quantile(rt).

Here, we get (a) from the fact that AIFO does not enqueue
rx. For (b), we just match the notations of AIFO and PACKS.
Finally, (c) holds because PACKS enqueues rt . Combined, (a),
(b), and (c) clearly yield a contradiction.

Case 2: AIFO enqueued rt , while PACKS did not. Since
AIFO enqueued rt , we have W.quantile(rt) ≤ 1

1−k ·
C−c

C =

1
1−k ·

∑
n
j=1 B j−b j

B . Let i ∈ {1, . . . ,n} be the minimal number

such that W.quantile(rt) ≤ 1
1−k ·

∑
n
j=i B j−b j

B . We know that
such an i exists. Since PACKS did not enqueue rt at all, we
can deduce it did not enqueue rt in the ith queue either. This is
possible only if bi = Bi. If i≥ 2, this contradicts the minimal-

ity of i, since this means W.quantile(rt)≤ 1
1−k ·

∑
n
j=i−1 B j−b j

B .
If i = 1, and n ≥ 2, then PACKS will enqueue rt to the first
queue having free space; note that such a queue exists, since
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(c) PACKS queue mapping
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(d) SP-PIFO queue mapping

Figure 15: Queue-bounds evolution and rank mapping for
PACKS and SP-PIFO under a uniform distribution (8 queues).

before the arrival of rt , AIFO had spare buffer space. Finally,
The case of i = 1, and n = 1 also yields contradiction, since
then, the AIFO would not have enqueued rt either. The proof
follows. □

Finally, we argue that, for the highest priority packets,
PACKS causes no more rank inversions than AIFO.

Theorem 3 For any packet sequence, given the same
window size, total buffer size, and burstiness allowance,
PACKS causes no more priority inversions than AIFO for
the highest priority packets.

Proof: The theorem follows from two statements: (a) AIFO
and PACKS admit the same set of packets (under the same
configuration, see Theorem. 2), and (b) The quantile estimate
of the highest priority packet is always the smallest (equalling
0). Let t denote the index of the packet in the input sequence.
Let IPACKS and IAIFO denote the number of higher-ranked
packets that t follows in the output sequence of PACKS and
AIFO, respectively. From (b), we can show that for a given
packet with the highest priority and index t, there is no packet
that arrives after t (having an index greater than t), and is going
to be dequeued before packet t. Rephrased, this means that
IPACKS ≤ IAIFO. This is true for each packet of highest priority.
Thus, PACKS always has at most the same total number of
priority inversions as AIFO for the highest priority packets.
□
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Figure 16: Adversarial input that maximizes the gap between
weighted priority inversion of AIFO compared to PACKS.
AIFO can delay the highest priority packet by more than 60%
of the queue length. (Starting window = [1, 1, 1, 1]).

B PACKS’s analysis with MetaOpt

MetaOpt [23, 24] is a tool to compare the performance of
two competing heuristics or a heuristic and an optimal solu-
tion. It identifies adversarial inputs that cause the maximum
difference between the performance of the two algorithms.

We model PACKS in MetaOpt and compare it to AIFO [37],
SP-PIFO [6], and PIFO [32]. Our goal is to understand when
and under what inputs PACKS performs substantially better
or worse than them. We focus on two performance metrics.
The first metric is the number of packets dropped weighted
by the packet’s priority (where the priority is defined as the
difference between the maximum rank in the distribution and
the packet rank: max. rank - packet rank). The second metric
is the number of priority inversions weighted by the packet’s
priority. These metrics help us identify the adversarial inputs
that cause the heuristics to disrupt the performance of lower-
rank packets (which are most important in the PIFO context).

Experiment setup We let packets take ranks between 1 and
11. We consider all the 15-packet traces possible with these
ranks. We set the buffer size to 12 packets, and assume it
empty at start. We configure PACKS and AIFO with a window
size |W |= 4 and a burstiness allowance k = 0. We configure
SP-PIFO and PACKS with 3 priority queues of 4 packets each.

B.1 Comparison with AIFO

Packet drops We find that PACKS and AIFO always admit
the same set of packets when they use the same configuration.
This is expected, as we prove in Theorem. 2.

Rank inversions Fig. 16 and Fig. 17 illustrate the adversarial
inputs that MetaOpt discovered for AIFO with respect to
PACKS and vice versa. We find that:

AIFO can delay the highest priority packets by more than
60% of the total queue size compared to PACKS.
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Figure 17: Adversarial input that maximizes the gap between
weighted priority inversion of PACKS compared AIFO.
(Starting window = [1, 1, 1, 1]).

AIFO only has an admission policy and suffers when the input
sequence is not sorted. In Fig. 16, we show an input sequence
where AIFO causes 24 priority inversions for lowest-rank
packets, whereas PACKS is able to fully sort the packets.

Adversarial inputs to AIFO consist of lower ranked packets
compared to the adversarial inputs to PACKS.

PACKS underperforms when a distribution shift happens, and
packets in the window are not a good estimate of the newer in-
coming packets. The worst case of PACKS compared to AIFO
is on a packet sequence that is approximately sorted (Fig. 17).
Due to the distribution shift, PACKS ends up mapping higher-
priority packets to lower-priority queues and lower-priority
packets to higher-priority queues.

Note that, in practice, the impact of scheduling such packet
sequence with PACKS would not be significantly detrimental.
Since queues are empty at start, PACKS would start sending
the lower-rank packets while higher rank packets arrive.

This adversarial sequence (Fig. 17) consists of packets
with higher ranks than the adversarial input to AIFO (Fig. 16),
which have lower importance. This indicates that AIFO can
cause higher average delays for important sensitive packets
compared to PACKS. Our results show that PACKS never
causes more priority inversion for the lowest ranked packets
than AIFO (as we also prove theoretically in Theorem. 3).

B.2 Comparison with SP-PIFO

Packet drops Fig. 18 and Fig. 19 show the adversarial inputs
that MetaOpt discovered for SP-PIFO with respect to PACKS
and vice versa. We find that:

SP-PIFO can drop more than 60% of high-priority packets
while leaving 66% of the total queue size empty.

SP-PIFO lacks an admission policy and underperforms when
we have a stream of packets with the highest priority (all
with rank 1). In this case, SP-PIFO maps all the packets to
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Figure 18: Adversarial input that maximizes the gap between
weighted packet drop of SP-PIFO compared to PACKS.
(Starting window = [1, 1, 1, 1]).
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Figure 19: Adversarial input that maximizes the gap between
weighted packet drop of PACKS compared to SP-PIFO.
(Starting window = [1, 2, 1, 1]).

its lowest-priority queue and ends up dropping many of them
while the other queues are empty. PACKS, however, fills the
queues one by one from highest to lowest priority, efficiently
using the buffer resources and preventing packet drops.

PACKS drops at most 3 high-priority packets whereas SP-
PIFO can drop up to 8 high-priority packets (2.33× more).

PACKS underperforms when the input sequence meets two
conditions: (i) the rank of most of the packets increases, and
(ii) a few of the packets in the middle of the trace have a higher
rank than the ones received before or after them. Condition (i)
describes an adversarial case for both SP-PIFO and PACKS,
but condition (ii) helps SP-PIFO mitigate this by moving to a
higher priority queue. Even with this, PACKS drops at most
3 high-priority packets more than SP-PIFO (2.33× less than
the packet drop of SP-PIFO on its adversarial input).

Rank inversions In order to capture only the impact of rank
inversions, we set the queue sizes long enough so that packet
drops do not occur. Fig. 20 and Fig. 21 show the adversarial
inputs that MetaOpt discovered. We see that:

The adversarial input to PACKS is only slightly worse than
the adversarial input to SP-PIFO.

The worst-case input for SP-PIFO with respect to PACKS
causes 20 priority inversions for the highest priority packet,
while the worst-case input for PACKS only causes 24 of them.
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Figure 20: Adversarial input that maximizes the gap between
weighted priority inversion of SP-PIFO compared to PACKS.
(Starting window = [1, 1, 1, 1]).

1011112221111
INCOMING PACKETS

SP-PIFO

1111

222

101111

H

M

L

PACKS

1011112221111 H

M

L

Figure 21: Adversarial input that maximizes the gap between
weighted priority inversion of PACKS compared to SP-PIFO.
(Starting window = [1, 1, 11, 11]).

SP-PIFO performs poorly when the rank of most of the
packets is sorted, but there are a few packets in between
with higher ranks than the ones received before or after them.
These higher ranks cause SP-PIFO to push the rest of packets
to higher-priority queues, leading to priority inversions. This
pattern is the same as the one that causes PACKS to drop
numerous packets compared to SP-PIFO.

PACKS underperforms when we can split the packets into
multiple batches that meet two conditions: (i) the packets in
each batch are in the non-decreasing order of their ranks, and
(ii) all the packets in a given batch have higher rank than the
packets in a subsequent batch. SP-PIFO would put each batch
in one of its queues, achieving perfect sorting, whereas PACKS
does not perform any sorting across batches of packets.

B.3 Comparison with PIFO
Fig. 23 and Fig. 22 show the adversarial inputs that MetaOpt
discovered. We see that:

The worst-case input to PACKS (with respect to PIFO) is
the same as the worst-case input to AIFO (with respect to
PIFO).

Packet drops The worst-case input is an increasing sequence
of packet ranks. PACKS (similar to AIFO) computes the quan-
tile using a sliding window. In this sequence, the quantile
estimate of every packet is large, so PACKS (similar to AIFO)
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Figure 22: Adversarial input that maximizes the gap between
weighted packet drop of PACKS compared to PIFO. (Starting
window = [1, 1, 1, 1]).
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Figure 23: Adversarial input that maximizes the gap between
weighted priority inversion of PACKS compared to PIFO.
(Starting window = [1, 11, 1, 11]).

will drop the packets. The fact that both worst-case inputs
to PACKS and AIFO, with respect to PIFO are the same, is
expected, since PACKS and AIFO drop the same packets, as
proved in Theorem. 2.

Rank inversions The worst-case input is a decreasing se-
quence of packet ranks. In that case, PACKS does not do any
sorting and performs the same as AIFO (putting every packet
in the highest priority queue with available space). This is also
expected (cf. Claim 1 and the quick insight after its proof).

C PACKS’s resource usage

We describe the resource requirements of our implementation
of PACKS on Intel Tofino 2 [1] in Table. 1.

Resource Type Usage (Average per stage)

Exact Match Crossbar 3.4 %
Gateway 3.4 %
Hash Bit 1.3 %
Hash Dist. Unit 4.2 %
Logical Table ID 10.9 %
SRAM 2.4 %
TCAM 0 %
Stateful ALU 23.8 %

Table 1: Resource requirements of PACKS on Intel Tofino 2.
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