
ExoPlane: An Operating System for
On-Rack Switch Resource Augmentation

Daehyeok Kim Vyas Sekar Srinivasan Seshan
Microsoft and UT Austin Carnegie Mellon University

Two trends in in-network computing

Increasing number of applications: Academia & industry
proposes many innovative applications [1]

Increasing workload size: Number of concurrent flows and traffic
volume keep increasing (e.g., millions of concurrent flows) [2]

2

Is in-network computing ready for its prime time?

[1] Kfoury et al., An Exhaustive Survey on P4 Programmable Data Plane Switches: Taxonomy, applications, challenges, and future trends. IEEE Access, 2021.
[2] Cisco. Cisco Global Cloud Index: Forecast and Methodology 2016–2021, White Paper, 2018.

0.1

1

10

100

1.00E+04 1.00E+05 1.00E+06 1.00E+07

N
or

m
al

ize
d

SR
AM

 re
q.

Number of concurrent flows
104 105 106 107

Problem: Serving concurrent stateful apps on a switch
Example scenario in a datacenter:
Four apps (VPN gateway, NAT, ACL, Monitor) on a switch

Root cause: Limited switch resources
E.g., 10s MB of SRAM ≪ Million flow entries

0

1

2

3

1 2 3 4

N
or

m
al

ize
d

SR
AM

 re
q.

Number of apps in an ensemble

Infeasible Infeasible

3

Possible solutions and limitations

More switches A beefier switch

Expensive
Hard to extend

Optimizing
applications

Resource-efficient design
(e.g., using sketches)

Not generally
applicable

4

Case for on-rack switch resource augmentation

Cost efficient
Easy to extend

– Programmable
– Larger resources

 E.g., a few GB of DRAM

On-rack resource augmentation:
A switch + resource on external devices

5

What do we need for realizing it?

Providing abstractions of resources

Managing shared resource between apps

Facilitating the sharing of resources at runtime

We need an OS [AD’12]!

[AD’12] Anderson and Dahlin, Operating Systems: Principles and Practice, Recursive Books, 2012. 6

What should an “operating model” be?

A single place to process
P P P

P P P

P P P

P P P

Where to process?

7

Strawman model 1: App pinning
Pin an app to one device and process packets on that device

+ Low performance overhead
+ Low resource overhead

- Resource underutilization

Flow 1
Flow 2

Switch data plane

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

8

External device data plane

Packet drops due to
insufficient memory

Strawman model 2: Full disaggregation
An app running on multi-devices and processing a packet on multi-devices

- High resource overhead

Flow 1
Flow 2
Flow 3

Switch data plane

Key: SrcIP
Pkt Counter

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: 5-tuple
Stateful FW

+ High resource utilization - High performance overhead

External device data plane

Key: dstIP
Forward

Key: dstIP
Forward

9

Candidate model: Packet pinning
An app running on multi-devices and processing a packet on a single device

Flow 1
Flow 2

Switch data plane

External device data plane

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: 5-tuple
Stateful FW

Key: dstIP
Forward

How to ensure that all necessary state is available
on a device?

10

Our approach:
Packet pinning + Union key-based flow management

Flow 1
Flow 2
Flow 3

Switch data plane

External device data plane

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: dstIP
Forward

Key insight: Skewness of flow key distribution
E.g., 6% of flow keys takes 90% of total traffic

Union key: a union of key types of application objects

Check if a flow is popular

UKey: 5-tuple
Flow manager

Key: 5-tuple
Stateful FW

By placing popular keys on the switch, it can process most of the traffic
while the remaining is processed at an external device 11

12

ExoPlane design overview
ExoPlane planner
Optimal resource allocation

Merged program

ExoPlane runtime environment
“Packet pinning model”

Developer

Switch
programs

Network operator

⎼ Device
information

⎼ Cross-app
requirements

⎼Objective
functions

Infinite resource
abstraction

Challenge 1: Correctness under workload changes

Flow 1
Flow 2
Flow 3

Switch data plane

External device data plane

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

UKey: 5-tuple
Flow manager

Key: dstIP
Forward

1. New flows arrive à Insert entries of the flow
2. Flow popularity changes à Insert (evict) entries of popular (unpopular) flows

13

Challenge 1: Correctness under workload changes

Flow 1
Flow 2
Flow 3

Switch data plane

External device data plane

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

UKey: 5-tuple
Flow manager

Key: dstIP
Forward

Flow 2 becomes
less popular

Flow 1 becomes
popular

14

1. New flows arrive à Insert entries of the flow
2. Flow popularity changes à Insert (evict) entries of popular (unpopular) flows

Problem: Incorrect state eviction

Flow 2

Switch data plane

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

UKey: 5-tuple
Flow manager

Similar issue can happen for insertion!

Switch control plane

6 1 2 3

4 5

Order matters!

Entry deleted
à Packet dropped!

15

Our solution: Two-phase state update

Flow 2 Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

UKey: 5-tuple
Flow manager

2 4 5 6

1 3

Phase 1 Phase 2

waits for 𝑇𝑓𝑙𝑢𝑠ℎ

16

Switch control plane

Switch data plane

Challenge 2: Synchronizing data plane-updatable states

Flow 1
Flow 2
Flow 3

Switch data plane

External device data plane

Key: 5-tuple
Stateful FW

Key: SrcIP
Pkt Counter

Key: SrcIP
Pkt Counter

Key: dstIP
Forward

Key: 5-tuple
Stateful FW

UKey: 5-tuple
Flow manager

Key: dstIP
Forward

Updated at a high rate
à Buffer & sync does not work!

Entries with the same SrcIP
should be synchronized

Multiple copies of an object entry can be updated at different places

17

Bounded inconsistency via periodic synchronization

18

Observations on data plane-updatable state
– Approximate or statistical information
– Mergeable values

Our approach: bounded-inconsistency mode via periodic synchronization

Switch data plane

Key: SrcIP
Pkt Counter

Switch control plane
Tracking remote

changes (δ)

External device data plane

Key: SrcIP
Pkt Counter

External device control plane
② Exchange

<Snapshot, Metadata>

Tracking remote
changes (δ)

③ Merge δ ③ Merge δ

① Snapshot ① Snapshot

Challenge 3: Meeting requirements across apps

How to find an “optimal” resource
allocation that satisfies all requirements?

Developer

Network operator

App-specific requirements
(e.g., affinity to the switch)

⎼ Cross-app requirements
⎼ Objective functions

19

Finding optimal resource allocation using ILP

Developers

Network operator

⎼ Switch program codes
⎼ App-specific requirements

⎼ Device information
⎼ Cross-app requirements
⎼ Objective functions

Profiler
⎼ Resource footprint
⎼ Packet processing

latency
⎼ Compatibility matrix

Optimal resource
allocation

Encode & solve
resource allocation ILP

Objective:
Min. Expected
Latency

Subject to:
⎼ Resource

constraint
⎼ Compatibility

constraint
⎼ Workload

assignment

App merger

APP
CODE

APP
CODE

APP
CODE

APP
CODE

Loaded to the switch
and external devices20

Putting it all together

ExoPlane planner

Merged programs

ExoPlane runtime environment

Developers

Network operator

21

ExoPlane provides an infinite resource
abstraction to applications

Optimal resource
allocation using ILP

⎼ Packet pinning operating model
⎼ Two-phase state management
⎼ Periodic state synchronization

Implementation and evaluation setup

ExoPlane planner

Merged programs

ExoPlane runtime environment

4 x Netronome
Agilio CX

smart NICs

Tofino-based
programmable

switch

Developers

Network operator

⎼ Profiler & merger based on open-source
P4 compiler frontend

⎼ Resource allocator using Gurobi

⎼ Data plane: P4
⎼ Control plane:

Python/C++

Ensemble of four apps
in two scenarios

22

Does packet-pinning model work well?

0

100

200

300

400

500

V… V… V… V…

Ag
gr

eg
at

e
th

ro
ug

hp
ut

 (G
bp

s)

App pinning ExoPlane (Packet pinning)

VPN VPN+NAT VPN+NAT+ACL VPN+NAT+ACL
+Monitor

69.3%

45.3%

43.8%

23

How does ExoPlane work under dynamic workload?

0
20
40
60
80

100
120

0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (G

bp
s)

Time (sec)

VPN NAT ACL UnivMon

0
20
40
60
80

100
120

0 20 40 60

Th
ro

ug
hp

ut
 (G

bp
s)

Time (sec)

VPN NAT ACL UnivMon

Switch + a single external device Switch + 4 x external devices

Throughput drops
due to insufficient
capacity at the NIC

24

Limitations and future work

Supporting non-P4 programmable external devices

Supporting other types of resources on external devices

Enabling rapid runtime resource reallocation

What-if analysis of benefits from resource augmentation

25

Summary

Limited on-chip resources prevent concurrent stateful apps on programmable switches

ExoPlane provides OS abstractions for switch resource augmentation
⎼ Packet pinning operating model
⎼ Two-phase state management
⎼ Periodic state synchronization
⎼ Optimal resource allocation using ILP

Realizes resource augmentation with minimal performance and resource overhead
⎼ Effectiveness of the packet pinning model
⎼ Adapt to workload changes
⎼ Low and predictable per-packet processing latency

26

