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Distributed Applications
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Distributed Applications

Hard to understanding system behaviors

e End-to-end behavior can be affected
by any component

Even hard when troubleshooting

« Symptoms and root causes can be far
apart




Troubleshooting Edge-Cases

Symptoms of a problem:
Erroneous responses
Tail latency
Uncommon request attributes

Infrequent 'rare’ requests

Why did we see these symptoms?
What was the root cause?

Troubleshooting requires execution details
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Distributed Iracing

Recording of executions across all components

Trace events: timing, operations, messages, attributes

End-to-end requests show where the request went, and what it did




tracelD

....... > Google: debug-level logging

Facebook: up to 10MB for home-timeline trace



Trace Collector Backends

Too much overhead:

 application
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OpenTelemetry: 1%
Production System: <1/100000




Trace Collector Backends
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Sampling vs. Edge-Cases

Edge-case

 Edge-cases are rare
coverage

 We don’t know edge-cases

before they happen farl

Sampling
n

« But we need to trace events
before the symptoms

Head
Sampling
®

Efficiency
Today, edge-case trace data availability relies on luck
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Observations

1. Data generation is cheap
2. Edge-case trace data is a small set

3. Symptoms can be programmatically detected
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Retroactive Sampling

e @ [race every request, leave data in memory, ingest later

@@@@@@@@@@ E

 Trace data of a request is scattered across machines
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Retroactive Sampling

o/‘  Each component detects symptoms, and fires triggers

* Any time during or shortly after request
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Retroactive Sampling

e

e Requests propagate and deposit breadcrumbs

* Inform all relevant machines of a triggered trace
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Retroactive Sampling

d}/ e Collect triggered request in time

* |f not triggered, old data is overwritten with new data
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Hindsight

 Hindsight is designed to trace 100% requests V

» Split control and data plane to manage large data volume V
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 Hindsight pre-allocates
buffers in memory
 Traces are append-only

sequences of buffers
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Async metadata queues
Client acquire and
release buffers

Agent manages buffers
like LRU cache
Lightweight: efficient for
up to 15 GB/s data

Rate-limiting on agent



Evaluation

e Benchmarks: DeathStarBench, HDFS, MicroBricks
* A configurable RPC benchmark with 93 service applications
 Baseline: OpenTelemetry (with Jaeger), with no-tracing, or head/tail sampling
» Evaluation:
v Overhead
% Scalability

% Real-world use cases
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Overhead with 100% Requests
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Overhead vs. Edge-Cases
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Today's tracing systems rely on luck

for edge-cases

Hindsight: lightweight always-
on tracing system

Conclusion

Solution: Retroactive Sampling

Trace every request, ingest later

Programmatically detect symptoms and fire triggers

Requests propagate and deporit breadcrumbs

Collect triggered request in time

Hindsight: https://qgitlab.mpi-sws.org/cld/tracing/hindsight

Microbricks: https://qgitlab.mpi-sws.org/cld/tracing/hindsight-grpc
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