
The Benefit of Hindsight:
Tracing Edge-Cases in Distributed Systems

Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson,
Jonathan Mace

Distributed Applications

2

DeathStar Social Network

Distributed Applications

Hard to understanding system behaviors

• End-to-end behavior can be affected
by any component

Even hard when troubleshooting

• Symptoms and root causes can be far
apart

3

Troubleshooting Edge-Cases

Symptoms of a problem:
Erroneous responses

Tail latency
Uncommon request attributes

Infrequent 'rare' requests

Why did we see these symptoms?
What was the root cause?

Troubleshooting requires execution details

4

Distributed Tracing

5

Recording of executions across all components

Trace events: timing, operations, messages, attributes

End-to-end requests show where the request went, and what it did

traceID

trace data

6

Google: debug-level logging

Facebook: up to 10MB for home-timeline trace

Trace Collector Backendstrace data

7

Too much overhead:

• application

• network

• backend

Trace Collector Backends

sampled
 =true

sampled
 =false

sampled
 =false

sampled
 =falsesampled

 =false

trace data

8

OpenTelemetry: 1%

Production System: <1/100000

Head
Sampling

Trace Collector Backends

sampled
 =true

sampled
 =false

sampled
 =false

sampled
 =falsesampled

 =false

trace data

9

Tail
Sampling

Sampling vs. Edge-Cases

10

Edge-case

coverage

Efficiency

Head
Sampling

• Edge-cases are rare

• We don’t know edge-cases
before they happen

• But we need to trace events
before the symptoms

Tail
Sampling

Today, edge-case trace data availability relies on luck

Observations

11

1. Data generation is cheap

2. Edge-case trace data is a small set

3. Symptoms can be programmatically detected

Retroactive Sampling

• Trace every request, leave data in memory, ingest later

• Trace data of a request is scattered across machines

12

Retroactive Sampling

• Trace every request, leave data in memory, ingest later

• Each component detects symptoms, and fires triggers

• Any time during or shortly after request

13

Retroactive Sampling

• Trace every request, leave data in memory, ingest later

• Programmatically detect symptoms, and fire triggers

• Requests propagate and deposit breadcrumbs

• Inform all relevant machines of a triggered trace

14

Retroactive Sampling

• Trace every request, leave data in memory, ingest later

• Programmatically detect symptoms, and fire triggers

• Requests propagate and deposit breadcrumbs

• Collect triggered request in time

• If not triggered, old data is overwritten with new data

15

Hindsight

16

• Hindsight is designed to trace 100% requests

• Split control and data plane to manage large data volume

• AutoTrigger library to support symptom detection

• Scalable breadcrumb mechanism for triggered traces

17

• Hindsight pre-allocates

buffers in memory

• Traces are append-only

sequences of buffers

shm
bufferpool

Agentshm
bufferpool

0

5

1
2
3
4

6
7

0x26
0x73
0x52
0x99

traceID

18

• Agent only indexes

trace metadata

Agent

0

5

1
2
3
4

6
7

shm
bufferpool

0x26
0x73
0x52
0x99

traceID

<0xLei, 7>
Async

metadata
queues

insert

0xLei

2 6 evict

19

• Async metadata queues

• Client acquire and

release buffers

• Agent manages buffers

like LRU cache

• Lightweight: efficient for

up to 15 GB/s data

• Rate-limiting on agent

Evaluation

20

• Benchmarks: DeathStarBench, HDFS, MicroBricks

• A configurable RPC benchmark with 93 service applications

• Baseline: OpenTelemetry (with Jaeger), with no-tracing, or head/tail sampling

• Evaluation:

• Overhead

• Scalability

• Real-world use cases

Overhead with 100% Requests

21

(Nanoseconds)

• Hindsight’s data generation adds
minimum end-to-end application
overheads

• Tail sampling has 10-100x
latency with 50% reduced peak
throughput

• Nanosecond-level tracing APIs

Overhead vs. Edge-Cases

22

• 93 application
microservices

• Hindsight: <3.5% peak
throughput reduction than
no-tracing

• Hindsight captures almost
all edge-cases, with low
tracing bandwidth

0%

50%

100%

Ed
ge
-c
as
e

Tr
ac
es

10-1
100
101
102

0 2000 4000 6000 8000 10000 12000 14000
B
an
dw
id
th

(M
B
/s
)

101

102

103

Hindsight
Jaeger Tail
Jaeger Head
No Tracing

La
te
nc
y

(m
s)

Throughput (req/s)

Conclusion

23

Today’s tracing systems rely on luck

for edge-cases

Solution: Retroactive Sampling

• Trace every request, ingest later

• Programmatically detect symptoms and fire triggers

• Requests propagate and deporit breadcrumbs

• Collect triggered request in timeHindsight: lightweight always-
on tracing system

Hindsight: https://gitlab.mpi-sws.org/cld/tracing/hindsight

Microbricks: https://gitlab.mpi-sws.org/cld/tracing/hindsight-grpc

Thanks!

https://gitlab.mpi-sws.org/cld/tracing/hindsight
https://gitlab.mpi-sws.org/cld/tracing/hindsight-grpc

