The Benefit of Hindsight:

Tracing Edge-Cases in Distributed Systems

Lei Zhang, Zhigiang Xie, Vaastav Anand, Ymir Vigfusson,
Jonathan Mace

% EMORY ~&_~ MAX PLANCK INSTITUTE

UNIVERSITY = FORSOFTWARE SYSTEMS

Distributed Applications

DeathStar Social Network

followUser readPost;
A

blockedUsers

——— »
PR ——

recommender

readTimeline Kl[memcached]
mongoDB

userinfo J.<[:[nemcached}
mongoDB|

| postsStora@(Lmemcached]

mongoDB«+—

—4 composePost =+ writeTimeline)f\v‘[memcached]
index,

Twitter

“urlShorten

video

image

text

userTag
favorite . writeGraph](lﬂmemcachﬁd
mongoDB
search index,
index,

Amcazon Social Network

Distributed Applications

Hard to understanding system behaviors

e End-to-end behavior can be affected
by any component

Even hard when troubleshooting

« Symptoms and root causes can be far
apart

Troubleshooting Edge-Cases

Symptoms of a problem:
Erroneous responses
Tail latency
Uncommon request attributes

Infrequent 'rare’ requests

Why did we see these symptoms?
What was the root cause?

Troubleshooting requires execution details

4

Distributed Iracing

Recording of executions across all components

Trace events: timing, operations, messages, attributes

End-to-end requests show where the request went, and what it did

tracelD

....... > Google: debug-level logging

Facebook: up to 10MB for home-timeline trace

Trace Collector Backends

Too much overhead:

 application

&
&
&
&
&
&
&
&
&
&

(8 () (o) (o) (o) (o) () (o) () (o

(8 () (o) () (o) (o) () (o) () (o
(8 () (o) () (o) (Cq) () (o) ()
QIAIATIAIAIAIAIAIAI

e network

e backend

sampled
am.pled.=false
=false

sam.pled.S

sampled __ .14 el

Head =true =false
Sampling

— —— —

Trace Collector Backends

&
&
&
&
&
&
&
&
&
&

OpenTelemetry: 1%
Production System: <1/100000

Trace Collector Backends

sampled

sampled
sampled sampled P < sampled =false

=false
=true =false =false

&
&
&
&
&
&
&
&
&
&

(8 () (o) (o) (o) (o) () (o) () (o

(8 () (o) () (o) (o) () (o) () (o
(8 () (o) () (o) (Cq) () (o) ()
QIAIATIAIAIAIAIAIAI

Tail
Sampling

Sampling vs. Edge-Cases

Edge-case

 Edge-cases are rare
coverage

 We don’t know edge-cases

before they happen farl

Sampling
n

« But we need to trace events
before the symptoms

Head
Sampling
®

Efficiency
Today, edge-case trace data availability relies on luck

10

Observations

1. Data generation is cheap
2. Edge-case trace data is a small set

3. Symptoms can be programmatically detected

11

Retroactive Sampling

e @ [race every request, leave data in memory, ingest later

@@@@@@@@@@ E

 Trace data of a request is scattered across machines

12

Retroactive Sampling

o/‘ Each component detects symptoms, and fires triggers

* Any time during or shortly after request

13

@

Retroactive Sampling

e

e Requests propagate and deposit breadcrumbs

* Inform all relevant machines of a triggered trace

14

Retroactive Sampling

d}/ e Collect triggered request in time

* |f not triggered, old data is overwritten with new data

15

Hindsight

 Hindsight is designed to trace 100% requests V

» Split control and data plane to manage large data volume V

16

8 () (o) (q) (o) (o) (o) (@ (9 (g

shm
bufferpool

17

 Hindsight pre-allocates
buffers in memory
 Traces are append-only

sequences of buffers

shm
bufferpool

 Agent only indexes

. b A A A A A A

0 tracelD
1

T~ =26
\

trace metadata
O0x52

0x99

-~ A e e e e L e L Lo

h 2

8 () (o) (q) (o) (o) (o) (@ (9 (g

18

lllllllll
llll
“““
|
at
a®
lllllllll

<OxLel, 7>

Async
metadata
queues

19

Async metadata queues
Client acquire and
release buffers

Agent manages buffers
like LRU cache
Lightweight: efficient for
up to 15 GB/s data

Rate-limiting on agent

Evaluation

e Benchmarks: DeathStarBench, HDFS, MicroBricks
* A configurable RPC benchmark with 93 service applications
 Baseline: OpenTelemetry (with Jaeger), with no-tracing, or head/tail sampling
» Evaluation:
v Overhead
% Scalability

% Real-world use cases

20

Overhead with 100% Requests

. . L1 . 1000 - ;
 Hindsight’s data generation adds ; j
. L 2 100 S -
minimum end-to-end application & " —~ Hindsight
2 10 = o i No Tracing
Overheads § ,” / —e- aegocer
2 Jaeg
— 1 = /,/
® . . — O ' | ' ' ' | ' ' ' | ' : ;
lail sampling has 10-100x 0 20000 40000 60000 80000
latency with 50% reduced peak Throughput (requests/s)
throughput (Nanoseconds)
API Call T=1 T=4 T=8 API Call T=1 T=4 T=38
e Nanosecond-|level tracing APls begin 72.7 194.8 2379 tracepoint 79 84 R6
end 70.7 205.8 216.6

Category(.01) 45.8 449 46.7 tracepoint 8B 5.9 5.4.8: 4.8
Percentile(99) 275.3 293.5 306.9 tracepoint 128B 11.5 13.5 13.0
Percentile(99.9) 407.1 441.9 512.2 tracepoint 512B 37.7 43.1 40.9
Percentile(99.99) 629.4 875.8 1134.0 tracepoint 2kB 160.2 192.9 174.7
TriggerSet(10) 01 a4 >2.7

21

Overhead vs. Edge-Cases

e 93 application

microservices S
gg 107 Hindsight ——
. . R = Jaeger Tail —
* Hindsight: <3.5% peak R Jaeger Head
- 2 ,100% ——— - No Tracine —
throughput reduction than 55 \\\ o Tracing
D) g 00
no-tracing St

* Hindsight captures almost

a” edge—cases, Wlth IOW 0 2600 4600 6600 8600 10600 12600 14000
tracing bandwidth Throughput (req/s)

Bandwidth Ed
(MB/s)
2

22

Today's tracing systems rely on luck

for edge-cases

Hindsight: lightweight always-
on tracing system

Conclusion

Solution: Retroactive Sampling

Trace every request, ingest later

Programmatically detect symptoms and fire triggers

Requests propagate and deporit breadcrumbs

Collect triggered request in time

Hindsight: https://qgitlab.mpi-sws.org/cld/tracing/hindsight

Microbricks: https://qgitlab.mpi-sws.org/cld/tracing/hindsight-grpc

https://gitlab.mpi-sws.org/cld/tracing/hindsight
https://gitlab.mpi-sws.org/cld/tracing/hindsight-grpc

