Transparent GPU Sharing in Container Clouds
for Deep Learning Workloads

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, Xin Jin

ANEL 7.5 JOHNS HOPKINS

PEKING UNIVERSITY UNIVERSITY




Deep learning training jobs: important workloads in datacenters

* Deep learning is widely used in many applications
« Recommendation
 Machine Translation
» Voice Assistant

* Deep learning models are often trained in shared GPU clusters

‘ Shared GPU Clusters
- Submit DL training jobs E E




Deep learning training jobs in container clouds

Container 1 Container 2
ResNet Job Inception Job
1 TensorFlow O PyTorch

Host Operating System




Low GPU utilization in production

* Microsoft [1]: the average GPU utilization is only 52%
* Alibaba [2]: the median GPU utilization is no more than 10%

 Low GPU utilization is bad

« Container clouds: idle GPUs are a huge waste
» Users: longer queueing delay, longer job completion time

* Root cause: Each GPU is statically assigned to a single container

[1] M. Jeon, et al., “Analysis of large-scale multitenant GPU clusters for DNN training workloads,” in USENIX ATC 2019.
[2] W. Xiao, et al., “Antman: Dynamic scaling on GPU clusters for deep learning,” in USENIX OSDI 2020.



Existing GPU sharing solutions

» Key idea: Share GPUs to improve GPU utilization

* Classify DLT jobs into two classes
* Production job: Run without performance degradation
* Opportunistic job: Utilize spare GPU resources to execute

« SOTA solutions:
« Application-layer solution: AntMan [OSDI’ 20]

» OS-layer solution: NVIDIA MPS, NVIDIA MIG



Application-layer solution: AntMan

* Custom DL framework
* Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)

« Support GPU compute sharing and GPU memory oversubscription

 Limitations: Lack of Transparency

» Limited use cases: restricts users to use particular frameworks
 Huge operation overhead: need to maintain custom frameworks



OS-layer solution: NVIDIA MPS

* A software solution for GPU sharing provided by NVIDIA

 Limitations:
* Low GPU utilization
e Does not support GPU memory oversubscription
* Requires application knowledge to properly set the resource limit
« Weak fault isolation
* When a job fails, other jobs may be affected and even fails



OS-layer solution: NVIDIA MIG

* Arecent hardware solution for GPU sharing provided by NVIDIA
 Limitations:
» Performance isolation
« Cannot arbitrarily partition a GPU
« Cannot dynamically change GPU resources
« Compatibility
* Only available on a few high-end GPUs
* Does not support GPU sharing for the multi-GPU instance



A more practical solution: TGS

Transparency
High utilization v v
Performance v v v v
Isolation

Fault isolation v v v



TGS architecture

Container 1 Container 2
ResNet Job Inception Job
TensorFlow O PyTorch
Rate Rate Unified
Monitor Control Memory
TGS

Host Operating System

Hardware




Sharing GPU compute resources

« Strawman solution: priority scheduling
« Control the opportunistic job based on the GPU kernel queues

* Low GPU utilization:
* The state of queues do not reflect the remaining GPU resources



Adaptive rate control of TGS

GPU kernels from GPU kernels from
production jobs opportunistic jobs

l din l ,Bin

Monitor __Report %in__ Queue kernels
i And adapt S,

Tout —Nm Bin
GPU ‘IE%




Sharing GPU memory resources

« Weak Fault isolation: total GPU memory consumption may exceed GPU
memory capacity and cause OOM

* Low GPU utilization: some jobs always claim all GPU memory

 Application-layer technique cannot be used in the OS layer

« Cannot directly ask DL framework to release unused GPU memory
« Cannot directly change pointer address from GPU memory to host memory



Transparent unified memory of TGS

» Key ideas: leverage CUDA unified memory to transparently
unify GPU memory and host memory

» High GPU utilization: The actual physical GPU memory is
allocated when jobs first access to them

* Fault isolation: When GPU memory is oversubscribed, TGS
changes virtual memory mapping to evict GPU memory of
opportunistic job to host memory



Evaluation setup

* Implementation: ~3000 LoC C++ & Python

* Integration with Docker and Kubernetes

» Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
 Trace: Philly Trace from Microsoft [Jeon et al. 2019]

 Models

 CV: ResNet, ShuffleNet, MobileNet
» Graph: GCN
 NLP: Bert, GPT-2

« Recommendation: DLRM



Evaluation baselines

* TGS: our work

- AntMan: the state-of-the-art application-layer solution
 MPS: manually set appropriate limit

« MIG: manually set best configuration

 Exclusive: give exclusive access to a GPU

« Co-execution: share a GPU without any control



Mixed workload job stream

« A job stream contains 50 production jobs and 50 opportunistic jobs
« Opportunistic jobs: 52% JCT reduction compared to Exclusive
* Production jobs: 21% JCT reduction compared to Co-execution

_ _ 100 S 100
BB TGS B8 Exclusive I Co-execution = TGS [ o* |
— 80(== = Exclusive | 80 [
0 1.25 === Co-execution | [
o= L 60 ! w 60 [
o 1.0 a a ¢
© o ) I O I
= N0.75 40 | 40 — TGS :
© .
Zg 05 20 1K 20 . — = Exclusive I
§ 0.25 [ - === Co-execution |
0 : | 0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0
Production Opportunistic Normalized JCT Normalized JCT

(a) Average JCT. (b) CDF of production jobs. (c) CDF of opportunistic jobs.



Comparison with AntMan

« Achieve comparable performance in different contention scenarios
* Provide transparency without sacrificing performance

B TGS B AntMan E= Exclusive @ TGS B AntMan E= Exclusive

Throughput
Normalized
Throughput

Normalized

ShuffleNet MobileNet ResNet-50 ShuffleNet
(Production, (Opportunistic, (Production, (Opportunistic,
TensorFlow) TensorFlow) TensorFlow) TensorFlow)

(a). Low-contention scenario (b).High-contention scenario



Adaptive rate control of TGS

« TGS protects productions job with little overhead, while providing
remaining GPU resources to opportunistic jobs

ESS Co-execution EEEE MIG @ TGS BN Co-execution EEE MIG
BE= Exclusive Il MPS

@ TGS
BE= Exclusive Il MPS

83 10
S£075
£3 05
2&0.23'
0 ShuffleNet MobileNet ResNet-50 ShuftleNet
(Production, (Opportunistic, (PEO?_UCt'ﬁn' (OpF|)oo_|[tunr|\st|c,
PyTorch) PyTorch) yTorch) yTorch)

(a). Low-contention scenario (b).High-contention scenario



Transparent unified memory of TGS

« TGS protects production jobs under GPU memory oversubscription

* 15 Xthroughput improvement compared to MPS

i TGS

d
put

Normaliz

0

0.25]

ResNet-50
(Production,
PyTorch)

BN Co-execution @@ MIG
BE= Exclusive Il MPS

o 5 1.0;
0.75|

C
S
3 0.5
| -
e
|_

(Opportunistic,

PyTorch)

(a). Low-contention scenario

@ TGS
BE= Exclusive Il MPS

o
O .
Ut

Normalized
Throughput

< -
Ul o

i
N
o ul

MW Co-execution EE MIG

Bert-Base
(Production, (Opportunistic,
PyTorch) PyTorch)

(b).High-contention scenario




More experiments in our paper

« System overhead

» Convergence of TGS in different scenarios

« Convergence of the rate control under dynamic job arrival
« Convergence of the rate control under dynamic resource usage

« Supporting different DL frameworks
» GPU sharing for large model training



Conclusion

* TGS provides transparent GPU sharing to DL training in
container clouds with four important properties:
* Transparency
* Performance isolation
» High GPU utilization
* Fault isolation

* TGS improves the throughput of the opportunistic job by up to
15X compared to the existing OS-layer solution MPS

Q‘ bingyangwu@pku.edu.cn



