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Deep learning training jobs: important workloads in datacenters

• Deep learning is widely used in many applications
• Recommendation
• Machine Translation
• Voice Assistant
• ……

• Deep learning models are often trained in shared GPU clusters

Shared GPU Clusters

Submit DL training jobs



Deep learning training jobs in container clouds
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Low GPU utilization in production

• Microsoft [1]: the average GPU utilization is only 52%
• Alibaba [2]: the median GPU utilization is no more than 10%
• Low GPU utilization is bad

• Container clouds: idle GPUs are a huge waste
• Users: longer queueing delay, longer job completion time

• Root cause: Each GPU is statically assigned to a single container

[1] M. Jeon, et al., “Analysis of large-scale multitenant GPU clusters for DNN training workloads,” in USENIX ATC 2019.
[2] W. Xiao, et al., “Antman: Dynamic scaling on GPU clusters for deep learning,” in USENIX OSDI 2020.



Existing GPU sharing solutions

• Key idea: Share GPUs to improve GPU utilization
• Classify DLT jobs into two classes

• Production job: Run without performance degradation
• Opportunistic job: Utilize spare GPU resources to execute

• SOTA solutions:
• Application-layer solution：AntMan [OSDI’ 20]
• OS-layer solution: NVIDIA MPS, NVIDIA MIG



Application-layer solution: AntMan

• Custom DL framework
• Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)

• Support GPU compute sharing and GPU memory oversubscription

• Limitations: Lack of Transparency
• Limited use cases: restricts users to use particular frameworks
• Huge operation overhead: need to maintain custom frameworks



OS-layer solution: NVIDIA MPS

• A software solution for GPU sharing provided by NVIDIA
• Limitations: 

• Low GPU utilization
• Does not support GPU memory oversubscription
• Requires application knowledge to properly set the resource limit

• Weak fault isolation
• When a job fails, other jobs may be affected and even fails



OS-layer solution: NVIDIA MIG

• A recent hardware solution for GPU sharing provided by NVIDIA
• Limitations:

• Performance isolation
• Cannot arbitrarily partition a GPU
• Cannot dynamically change GPU resources

• Compatibility
• Only available on a few high-end GPUs
• Does not support GPU sharing for the multi-GPU instance



A more practical solution: TGS

AntMan MPS MIG TGS

Transparency ü ü ü
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Performance 
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TGS architecture

Rate
Monitor

ResNet Job Inception Job

Hardware

Container 1 Container 2

Rate
Control

Unified 
Memory

TGS

Host Operating System

GPU



Sharing GPU compute resources

• Strawman solution: priority scheduling
• Control the opportunistic job based on the GPU kernel queues

• Low GPU utilization:
• The state of queues do not reflect the remaining GPU resources



Adaptive rate control of TGS
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Sharing GPU memory resources

• Weak Fault isolation: total GPU memory consumption may exceed GPU 
memory capacity and cause OOM

• Low GPU utilization: some jobs always claim all GPU memory

• Application-layer technique cannot be used in the OS layer
• Cannot directly ask DL framework to release unused GPU memory
• Cannot directly change pointer address from GPU memory to host memory



Transparent unified memory of TGS

• Key ideas: leverage CUDA unified memory to transparently
unify GPU memory and host memory

• High GPU utilization: The actual physical GPU memory is 
allocated when jobs first access to them

• Fault isolation: When GPU memory is oversubscribed, TGS
changes virtual memory mapping to evict GPU memory of 
opportunistic job to host memory



Evaluation setup

• Implementation: ~3000 LoC C++ & Python
• Integration with Docker and Kubernetes

• Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS

• Trace: Philly Trace from Microsoft [Jeon et al. 2019]

• Models
• CV: ResNet, ShuffleNet, MobileNet
• Graph: GCN
• NLP: Bert, GPT-2
• Recommendation: DLRM



Evaluation baselines

• TGS: our work
• AntMan: the state-of-the-art application-layer solution
• MPS: manually set appropriate limit
• MIG: manually set best configuration
• Exclusive: give exclusive access to a GPU
• Co-execution: share a GPU without any control



Mixed workload job stream

• A job stream contains 50 production jobs and 50 opportunistic jobs
• Opportunistic jobs: 52% JCT reduction compared to Exclusive
• Production jobs: 21% JCT reduction compared to Co-execution



Comparison with AntMan

• Achieve comparable performance in different contention scenarios 
• Provide transparency without sacrificing performance
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Adaptive rate control of TGS

• TGS protects productions job with little overhead, while providing 
remaining GPU resources to opportunistic jobs
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Transparent unified memory of TGS

• TGS protects production jobs under GPU memory oversubscription
• 15×throughput improvement compared to MPS
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More experiments in our paper

• System overhead
• Convergence of TGS in different scenarios

• Convergence of the rate control under dynamic job arrival
• Convergence of the rate control under dynamic resource usage

• Supporting different DL frameworks
• GPU sharing for large model training



Conclusion

• TGS provides transparent GPU sharing to DL training in 
container clouds with four important properties:

• Transparency
• Performance isolation
• High GPU utilization
• Fault isolation

• TGS improves the throughput of the opportunistic job by up to 
15× compared to the existing OS-layer solution MPS
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