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Deep learning training jobs: important workloads in datacenters

* Deep learning is widely used in many applications
« Recommendation
 Machine Translation
» Voice Assistant

* Deep learning models are often trained in shared GPU clusters

‘ Shared GPU Clusters
- Submit DL training jobs E E




Deep learning training jobs in container clouds
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Low GPU utilization in production

* Microsoft [1]: the average GPU utilization is only 52%
* Alibaba [2]: the median GPU utilization is no more than 10%

 Low GPU utilization is bad

« Container clouds: idle GPUs are a huge waste
» Users: longer queueing delay, longer job completion time

* Root cause: Each GPU is statically assigned to a single container

[1] M. Jeon, et al., “Analysis of large-scale multitenant GPU clusters for DNN training workloads,” in USENIX ATC 2019.
[2] W. Xiao, et al., “Antman: Dynamic scaling on GPU clusters for deep learning,” in USENIX OSDI 2020.



Existing GPU sharing solutions

» Key idea: Share GPUs to improve GPU utilization

* Classify DLT jobs into two classes
* Production job: Run without performance degradation
* Opportunistic job: Utilize spare GPU resources to execute

« SOTA solutions:
« Application-layer solution: AntMan [OSDI’ 20]

» OS-layer solution: NVIDIA MPS, NVIDIA MIG



Application-layer solution: AntMan

* Custom DL framework
* Modify TensorFlow (~4000 LoC) or PyTorch (~2000 LoC)

« Support GPU compute sharing and GPU memory oversubscription

 Limitations: Lack of Transparency

» Limited use cases: restricts users to use particular frameworks
 Huge operation overhead: need to maintain custom frameworks



OS-layer solution: NVIDIA MPS

* A software solution for GPU sharing provided by NVIDIA

 Limitations:
* Low GPU utilization
e Does not support GPU memory oversubscription
* Requires application knowledge to properly set the resource limit
« Weak fault isolation
* When a job fails, other jobs may be affected and even fails



OS-layer solution: NVIDIA MIG

* Arecent hardware solution for GPU sharing provided by NVIDIA
 Limitations:
» Performance isolation
« Cannot arbitrarily partition a GPU
« Cannot dynamically change GPU resources
« Compatibility
* Only available on a few high-end GPUs
* Does not support GPU sharing for the multi-GPU instance



A more practical solution: TGS

Transparency
High utilization v v
Performance v v v v
Isolation

Fault isolation v v v



TGS architecture
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Sharing GPU compute resources

« Strawman solution: priority scheduling
« Control the opportunistic job based on the GPU kernel queues

* Low GPU utilization:
* The state of queues do not reflect the remaining GPU resources



Adaptive rate control of TGS
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Sharing GPU memory resources

« Weak Fault isolation: total GPU memory consumption may exceed GPU
memory capacity and cause OOM

* Low GPU utilization: some jobs always claim all GPU memory

 Application-layer technique cannot be used in the OS layer

« Cannot directly ask DL framework to release unused GPU memory
« Cannot directly change pointer address from GPU memory to host memory



Transparent unified memory of TGS

» Key ideas: leverage CUDA unified memory to transparently
unify GPU memory and host memory

» High GPU utilization: The actual physical GPU memory is
allocated when jobs first access to them

* Fault isolation: When GPU memory is oversubscribed, TGS
changes virtual memory mapping to evict GPU memory of
opportunistic job to host memory



Evaluation setup

* Implementation: ~3000 LoC C++ & Python

* Integration with Docker and Kubernetes

» Testbed: NVIDIA A100 GPUs and NVIDIA V100 GPUS
 Trace: Philly Trace from Microsoft [Jeon et al. 2019]

 Models

 CV: ResNet, ShuffleNet, MobileNet
» Graph: GCN
 NLP: Bert, GPT-2

« Recommendation: DLRM



Evaluation baselines

* TGS: our work

- AntMan: the state-of-the-art application-layer solution
 MPS: manually set appropriate limit

« MIG: manually set best configuration

 Exclusive: give exclusive access to a GPU

« Co-execution: share a GPU without any control



Mixed workload job stream

« A job stream contains 50 production jobs and 50 opportunistic jobs
« Opportunistic jobs: 52% JCT reduction compared to Exclusive
* Production jobs: 21% JCT reduction compared to Co-execution
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Comparison with AntMan

« Achieve comparable performance in different contention scenarios
* Provide transparency without sacrificing performance
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Adaptive rate control of TGS

« TGS protects productions job with little overhead, while providing
remaining GPU resources to opportunistic jobs
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Transparent unified memory of TGS

« TGS protects production jobs under GPU memory oversubscription

* 15 Xthroughput improvement compared to MPS
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More experiments in our paper

« System overhead

» Convergence of TGS in different scenarios

« Convergence of the rate control under dynamic job arrival
« Convergence of the rate control under dynamic resource usage

« Supporting different DL frameworks
» GPU sharing for large model training



Conclusion

* TGS provides transparent GPU sharing to DL training in
container clouds with four important properties:
* Transparency
* Performance isolation
» High GPU utilization
* Fault isolation

* TGS improves the throughput of the opportunistic job by up to
15X compared to the existing OS-layer solution MPS

Q‘ bingyangwu@pku.edu.cn



