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• The growth of large DNN models creates demands efficient distributed DNN training systems

The era of large deep neural networks (DNNs) 
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• Fat-Trees provide uniform bandwidth and 
latency between server pairs

• Ideal when the workload is unpredictable and 
consists mostly of short transfers

• Fat-Tree networks are not the best network 
topology for DNN training!

State-of-the-art training clusters: Fat-Tree network topology

A Scalable, Commodity Data Center Network Architecture
Mohammad Al-Fares et al., SIGCOMM ‘08
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Network is becoming a bottleneck of DNN training 
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• Fat-Tree based DNN training infrastructures are facing a network bottleneck
• Network Bottleneck: the amount of time spent on communication only

Number of GPU servers
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Previous work on distributed DNN training optimization 
does not consider physical topology

Parallelization strategy
FlexFlow [MLSys ’19]  

Hyper parameters
ASHA [MLSys ‘20] 

Schedulers
Themis [NSDI ‘20]

Collective communication
BytePS [OSDI ‘20]

Compression and encoding 
Qsgd [NeurIPS ’17]

Asynchronous transmit
DC-ASGD [PMLR ‘17] 

Network topology
?

Computation
+

Communication
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Reconfiguring physical network topology

Topology A Topology A Topology A
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Reconfiguring physical network topology

Topology A Topology B Topology C

TopoOpt | NSDI 2023 Slide  7MIT CSAIL



DNNs training traffic has different properties 

(a) Vision
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DNNs training traffic has different properties 
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• Key observations:

1. Traffic patterns are predictable, and do not change across training iterations



DNNs training traffic has different properties 

(b) Image processing (c) Object Tracking (d) Speech Recognition
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• Key observations:
1. Traffic patterns are predictable, and do not change across training iterations
2. Traffic patterns are model-dependent
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TopoOpt
The first system to leverage reconfigurable network, to co-optimize 

network topology and parallelization strategy for distributed training

TopoOpt achieves 3.4x faster training time for DNN training
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• The configuration space is huge!

DNN Parallelization Strategy
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Search space 
explodes!

Missing potential solutions!

Co-optimization challenge: Huge search space for 
optimal DNN training 
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Parallelization Strategy Search

Traffic Demand 
Extraction

Topology 
and routing

Parallelization 
strategy

TopologyFinder
Algorithm

Topology Optimization

Strategy Optimization

Alternating optimization framework to co-optimize 
DNN parallelization strategy and network topology
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Traffic Demand 
Extraction

TopologyFinder
Algorithm

Topology Optimization

Alternating optimization framework to co-optimize 
DNN parallelization strategy and network topology

What algorithm should we use to find the topology in this framework? 
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Characteristics of DNN training traffic

Model Parallel 
Transfers

AllReduce Transfers
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8 hops!

Challenge: finding a good network topology for both AllReduce
and Model-Parallel transfers

Model Parallel 
Transfers

AllReduce
Transfers

• Degree (d) = 3, unidirectional
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Meeting the requirements of both AllReduce and Model-Parallel 
transfers

• Degree (d) = 3, unidirectional

Transfer Type Characteristics Network 
Requirement 

Large, Sparse Ample 
Bandwidth

Small, Dense Low hop-count 

AllReduce
Transfers

Model Parallel 
Transfers
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Key idea: mutate the traffic matrix
Slide  18
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AllReduce transfers are mutable. Model-Parallel transfers are not mutable.



Splitting AllReduce traffic
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Leverage the mutability of AllReduce transfers to achieve high bandwidth for 
AllReduce & low hop-count for Model-Parallel!



Key technique: Regular permutations
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Regular permutations – every server connects 
to another one with a fixed distance 𝛿𝛿

Irregular permutations

𝛿𝛿 = 1 𝛿𝛿 = 5

𝐎𝐎(𝒏𝒏!) different permutations

• 𝑛𝑛 total accelerator, each with degree 𝑑𝑑
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Key technique: Regular permutations

• The possible set of 𝛿𝛿 are the positive integers 
less than 𝑛𝑛, such that gcd 𝛿𝛿,𝑛𝑛 = 1

• Among all possible 𝛿𝛿 distances, choose a set 
of them within the degree to minimize the 
cluster diameter

• The technique of permuting labels work for 
other AllReduce algorithms as well
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𝛿𝛿 = 1 𝛿𝛿 = 5

-> 𝑶𝑶 𝒏𝒏 search space!

𝐎𝐎(𝒏𝒏!) different permutationsTopoOpt bounds the cluster diameter to   𝑂𝑂(𝑑𝑑 ⋅ 𝑑𝑑 𝑛𝑛)

• 𝑛𝑛 total accelerator, each with degree 𝑑𝑑
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TopoOpt uses optical switches

Server2 Servern-1 Servern
Server1

Optical Switch1
Optical Switchd
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TopoOpt uses optical switches
• Fully functional 12-node, degree 4 testbed integrated with NCCL 
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TopoOpt uses optical switches
• Fully functional 12-node, degree 4 testbed integrated with NCCL 
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d = 8 
interfaces Server1 Server2 Servern

Optical Switch1 Optical Switch2 Optical Switchd-1 Optical Switchd

Servern-1

n = 432

𝑩𝑩 = 𝟏𝟏𝟏𝟏𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

TopoOpt

𝒅𝒅 × 𝑩𝑩
= 𝟖𝟖𝟏𝟏𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

Ideal Switch

Fat-Tree

Sn-3 Sn-2 Sn-1 SnS1 S2 S3 S4

Costs 3.4x!

Sn-1 SnS2S1

Evaluation

𝟐𝟐𝟏𝟏𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮

• We evaluate TopoOpt with large scale simulation and a small-scale prototype

• Artifact code can be found at http://TopoOpt.csail.mit.edu

Ideal n-port switch
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http://topoopt.csail.mit.edu/
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• Running several jobs together on a 432 node, d = 8, 100Gbps TopoOpt system, compared to 
several other options
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Simulation – tail completion time

Other experiments with varying 
bandwidth, reconfiguration delay and 
testbed results are in the paper!

Demo
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TopoOpt achieves up to 3.4x faster 99%-tile latency compared to cost-
equivalent Fat-trees

http://topoopt.csail.mit.edu/demo


TopoOpt: the first system to co-optimize DNN training with 
demand-aware network topology

Leverages the mutability of DNN training traffic to search and 
construct the best topology

Achieves up to 3.4x faster 99%-ile training iteration time 
compared to cost equivalent Fat-trees
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Summary
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