

TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs

Weiyang (Frank) Wang, MIT CSAIL

Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, Anthony Kewitsch

The era of large deep neural networks (DNNs)

Tell me about yourself in two sentences

I am ChatGPT, a highly advanced language model developed by OpenAI. My primary function is to assist users by generating humanlike responses and engaging in conversations on a wide range of topics. FACEBOOK ADS

GPT-4 Large Language Model **Deep Learning Recommendation Model** *Recommendation Model* **DALL.E 2** Image Generation Model

• The growth of large DNN models creates demands efficient distributed DNN training systems

B

State-of-the-art training clusters: Fat-Tree network topology

A Scalable, Commodity Data Center Network Architecture Mohammad Al-Fares et al., SIGCOMM '08

- Fat-Trees provide uniform bandwidth and latency between server pairs
- Ideal when the workload is unpredictable and consists mostly of short transfers
- Fat-Tree networks are not the best network topology for DNN training!

MIT CSAIL

Network is becoming a bottleneck of DNN training

- Fat-Tree based DNN training infrastructures are facing a network bottleneck
 - Network Bottleneck: the amount of time spent on communication only

Previous work on distributed DNN training optimization does not consider physical topology

Reconfiguring physical network topology

Topology A

Topology A

Topology A

Reconfiguring physical network topology

Topology A

Topology B

Topology C

MIT CSAIL

DNNs training traffic has different properties

TopoOpt | NSDI 2023

MIT CSAIL

DNNs training traffic has different properties

- Key observations:
 - 1. Traffic patterns are predictable, and do not change across training iterations

DNNs training traffic has different properties

MIT CSAIL

Slide 10

- Key observations:
 - 1. Traffic patterns are predictable, and do not change across training iterations
 - 2. Traffic patterns are model-dependent

TopoOpt | NSDI 2023

TopoOpt

The first system to leverage reconfigurable network, to co-optimize network topology and parallelization strategy for distributed training

TopoOpt achieves 3.4x faster training time for DNN training

TopoOpt | NSDI 2023

MIT CSAIL

Co-optimization challenge: Huge search space for optimal DNN training

• The configuration space is huge!

Vetwork Topology &

DNN Parallelization Strategy

TopoOpt | NSDI 2023

MIT CSAIL

Alternating optimization framework to co-optimize DNN parallelization strategy and network topology

TopoOpt | NSDI 2023

Alternating optimization framework to co-optimize DNN parallelization strategy and network topology

What algorithm should we use to find the topology in this framework?

Characteristics of DNN training traffic

Challenge: finding a good network topology for both AllReduce and Model-Parallel transfers

• Degree (d) = 3, unidirectional

= One link

Meeting the requirements of both AllReduce and Model-Parallel transfers

• Degree (d) = 3, unidirectional

Transfer Type	Characteristics	Network Requirement
AllReduce Transfers	Large, Sparse	Ample Bandwidth
Model Parallel Transfers	Small, Dense	Low hop-count

Key idea: mutate the traffic matrix

AllReduce transfers are **mutable.** Model-Parallel transfers are not mutable.

Splitting AllReduce traffic

Leverage the mutability of AllReduce transfers to achieve high bandwidth for AllReduce & low hop-count for Model-Parallel!

Key technique: Regular permutations

• n total accelerator, each with degree d

Key technique: Regular permutations

 \bullet *n* total accelerator, each with degree *d*

- The possible set of δ are the positive integers less than n, such that gcd(δ, n) = 1
 -> O(n) search space!
- Among all possible δ distances, choose a set of them within the degree to minimize the cluster diameter
- The technique of permuting labels work for other AllReduce algorithms as well

TopoOpt bounds the cluster diameter to $O(d \cdot \sqrt[d]{n})$

TopoOpt	NSDI 2023
---------	-----------

MIT CSAIL

TopoOpt uses optical switches

TopoOpt uses optical switches

• Fully functional 12-node, degree 4 testbed integrated with NCCL

TopoOpt | NSDI 2023

TopoOpt uses optical switches

• Fully functional 12-node, degree 4 testbed integrated with NCCL

Evaluation

- We evaluate TopoOpt with large scale simulation and a small-scale prototype
- Artifact code can be found at http://TopoOpt.csail.mit.edu

Simulation – tail completion time

 Running several jobs together on a 432 node, d = 8, 100Gbps TopoOpt system, compared to several other options

TopoOpt achieves up to **3.4x** faster 99%-tile latency compared to costequivalent Fat-trees

TopoOpt: the first system to co-optimize DNN training with demand-aware network topology

Leverages the mutability of DNN training traffic to search and construct the best topology

Achieves up to 3.4x faster 99%-ile training iteration time compared to cost equivalent Fat-trees

TopoOpt | NSDI 2023