
Poseidon: Efficient, Robust, and Practical
Datacenter CC via Deployable INT

Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar,
T. S. Eugene Ng, Neal Cardwell, Nandita Dukkipati

A Good Congestion Control Algorithm

Design Principles Motivation Key Idea Design Evaluation

Max-min Fair

Efficient
High utilization
Low latency
Fast convergence
Stable rate after convergence

Practical
Low overhead
Incremental deployment

2

Line rate: 200 Gbps

The fair-share for the victim flow changes when new flows join.
3

Motivation 1: React to Every Congestion -> Not Max-min Fairness

M = 0 N = 2

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Line rate: 200 Gbps

The fair-share for the victim flow changes when new flows join.
4

Motivation 1: React to Every Congestion -> Not Max-min Fairness

M = 2 N = 2

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Line rate: 200 Gbps

The fair-share for the victim flow changes when new flows join.
5

Motivation 1: React to Every Congestion -> Not Max-min Fairness

M = 2 N = 9

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Line rate: 200 Gbps

The fair-share for the victim flow changes when new flows join.
6

Motivation 1: React to Every Congestion -> Not Max-min Fairness

M flows N flows

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Line rate: 200 Gbps

Swift reacts to end-to-end fabric delay, so the victim flow has a much higher fabric delay.
7

Motivation 1: React to Every Congestion -> Not Max-min Fairness

M flows N flows

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Motivation 1: React to Every Congestion -> Not Max-min Fairness

Line rate: 200 Gbps

HPCC & DCTCP react to every congestion, so the victim flow does more MD operations.
8

M flows N flows

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Motivation 2: Decrease rate below fair-share -> slow convergence

Switch 1

Port

4
flows

The flow that haven’t reached fair-share should not decrease rate.

new
flow

9

Design Principles Motivation Key Idea Design Evaluation

Motivation 3: Convergence Speed & Stable Rate Trade-off

AIMD uses fixed AI step, so it cannot achieve both fast convergence and stable rate enforcement.

CWND: 50 -> 100
AI step: 1

CWND: 1
AI step: 1

10

Design Principles Motivation Key Idea Design Evaluation

Not max-min Fairness

11

Decrease before fair-share Convergence & stability trade-off

Design Principles Motivation Key Idea Design Evaluation

In-network Telemetry (INT)

React to bottleneck congestion Quantitative signal

Enable

React to every congestion

root cause

AIMD demands same reaction from all flows

root cause

Binary signal

root cause

Design 1: A Practical Low-overhead Quantitative Signal

• Signal: maximum per-hop delay (MPD)
• Fixed short length: 2 bytes
• Collected along the forwarding path
• Reflected to sender through ACK

12

Design Principles Motivation Key Idea Design Evaluation

3 us 20 us

Why does Existing CC with INT Have the Same Problems?

They still uses same idea as AIMD
Either all flows increase,

or all flows decrease

Poseidon decouples from AIMD
Every flow reacts differently,

Some increase, some decrease.

13

Design Principles Motivation Key Idea Design Evaluation

Design 2: Rate-adaptive Target Enables Different Reactions

14

• Each flow calculates its own max per-hop delay target (MPT)
• MPT = T(rate)
• larger rate -> smaller target

Design Principles Motivation Key Idea Design Evaluation

(Log Scale)

Slow flow has higher target

Fast flow has lower target

Each flow compare its target
with the same observed delay

Design 3: Adaptive MIMD Rate Update

• Each flow updates rate multiplicatively (MIMD)
• update_ratio = U(MPT, MPD)
• new_rate = rate * update_ratio

• MPT < MPD, decrease
• MPT << MPD, decrease more drastic

• MPT > MPD, increase
• MPT >> MPD, increase more drastic

Drastic
increase

Drastic
decrease

15

(Log Scale)

Design Principles Motivation Key Idea Design Evaluation

Convergence to Single-hop Fairness

Flow A rate: a

Flow B rate: b (assume a < b)

16
Flow A Rate

Flow B Rate

(a, b)

Fairness

𝑏
𝑎

𝑎
𝑏

Design Principles Motivation Key Idea Design Evaluation

Convergence to Single-hop Fairness

Flow A rate: a

Flow B rate: b (assume a < b)

Goal: update the rates to be in “more fair” area.

17
Flow A Rate

Flow B Rate

Less fair

𝑏
𝑎

𝑎
𝑏

More fair

Less fair

Design Principles Motivation Key Idea Design Evaluation

Convergence to Single-hop Fairness

Flow A rate: a

Flow B rate: b (assume a < b)

Goal: update the rates to be in “more fair” area.

Given any delay D, the rate updates are:

𝑎! = 𝑎 # 𝑈 𝑇 𝑎 , 𝐷
𝑏! = 𝑏 # 𝑈 𝑇 𝑏 , 𝐷

To guarantee convergence:

𝑎
𝑏
<
𝑏′
𝑎′
<
𝑏
𝑎

18
Flow A Rate

Flow B Rate

Less fair
More fair

Less fair

𝑏
𝑎

𝑎
𝑏

(a’, b’)

Design Principles Motivation Key Idea Design Evaluation

Convergence to Single-hop Fairness

Flow A rate: a

Flow B rate: b (assume a < b)

Goal: update the rates to be in “more fair” area.

Given any delay D, the rate updates are:

𝑎! = 𝑎 # 𝑈 𝑇 𝑎 , 𝐷
𝑏! = 𝑏 # 𝑈 𝑇 𝑏 , 𝐷

To guarantee convergence:

𝑎
𝑏
<
𝑏′
𝑎′
<
𝑏
𝑎

Repeat until converge.

19
Flow A Rate

Flow B Rate

Less fair
More fair

Less fair

𝑏′
𝑎′

𝑎′
𝑏′(a’, b’)

Note: The complete proof with corner cases discussion is in the paper.

Design Principles Motivation Key Idea Design Evaluation

Convergence to Single-hop Fairness

Flow A rate: a

Flow B rate: b (assume a < b)

Goal: update the rates to be in “more fair” area.

Given any delay D, the rate updates are:

𝑎! = 𝑎 # 𝑈 𝑇 𝑎 , 𝐷
𝑏! = 𝑏 # 𝑈 𝑇 𝑏 , 𝐷

To guarantee convergence:

𝑎
𝑏
<
𝑏′
𝑎′
<
𝑏
𝑎

Repeat until converge.

20
Flow A Rate

Flow B Rate

Less fair
More fair

Less fair

𝑏′
𝑎′

𝑎′
𝑏′(a’, b’)

Any update function U() and
target function T()
need to satisfy this inequality.

Note: The complete proof with corner cases discussion is in the paper.

Design Principles Motivation Key Idea Design Evaluation

Convergence to Max-min Fairness in a Network

Red flow’s MPD = max(D1, D2) = D1
The bottleneck always has the largest delay. We proved this leads to max-min fairness.

Switch 2Switch 1

Port

4
flows

2
flows

Port

40 Gbps

20 Gbps

20 Gbps

Line rate: 100 Gbps

Delay D1 = T(20 Gbps) Delay D2 = T(40 Gbps)

21

Design Principles Motivation Key Idea Design Evaluation

Implementation

• Testbed
• Implementation
• 2 lines of core P4 code to obtain INT signal
• Small changes to Swift algorithm in Pony Express

• Topology
• 2 hosts (virtualized into 16 hosts) + 2 Tofino-2 switches

• Simulator
• Customized OMNeT++ packet simulator
• Topology
• Clos network with 64 racks

22

Design Principles Motivation Key Idea Design Evaluation

Evaluation Summary
• Efficiency
• 12x faster convergence
• 24x more stable throughput
• 3x lower RTT
• Full utilization
• 1.78x faster median and 27x faster tail op latency (FCT)

• Robustness - max-min fairness
• Max-min fair in multi-hop congestion
• Max-min fair in reverse-path congestion

• Practical
• Implementation on production networking stack with no NIC changes
• Incremental gain for incremental deployment
• Bounded unfairness during partial deployment

23

Design Principles Motivation Key Idea Design Evaluation

Fast Convergence and Stable Throughput

12x Faster Convergence
Faster multiplicative increase.

Ramp-up without any decrease.

24x More Stable Throughput
Do not need additive increase.

Update U() = 1.0 after converge.
24

Design Principles Motivation Key Idea Design Evaluation

Poseidon Achieves Max-min Fairness

Poseidon achieves max-min fair rate for all flows, including the victim flow.
25

Line rate: 200 Gbps

M flows N flows

Victim flow that travels 2 saturated links

Design Principles Motivation Key Idea Design Evaluation

Performance Gain for Incremental Deployment

Performance improves as more switches support INT feature.
26

4 racks send traffic to each other

• Swift: baseline with Swift CC

• 2-ToR Poseidon: 2 ToR switches support INT

• 4-ToR Poseidon: 4 ToR switches support INT

• Poseidon: all switches support INT

Design Principles Motivation Key Idea Design Evaluation

Conclusion

• Poseidon algorithm uses quantitative per-hop INT:
• Decouples fairness from AIMD

• Gives a cluster of functions that can achieve fairness
• Picks adaptive MIMD algorithm for outstanding performance

• Achieves max-min fairness
• Multi-hop congestion & reverse-path congestion

• Supports incremental deployment
• Performance improves when only ToR switches provide INT

• Poseidon is now open-sourced in ns-3 (developed based on the paper)
• https://github.com/Clark5/Poseidon

27

https://github.com/Clark5/Poseidon

