μMote: Enabling Passive Chirp De-spreading and μWlevel Long-Range Downlink for backscatter Devices

Yihang Song¹, Li Lu¹, Jiliang Wang², Chong Zhang¹, Hui Zheng¹, Shen Yang¹, Jinsong Han³, and Jian Li¹

¹University of Electronic Science and Technology of China ²Tsinghua University ³Zhejiang University

Tsinghua University

Conventional Backscatter Devices

WISP Platform

Inter-Technology Backscatter

Internet-of-Microchips

IEEE TIM (2008)

SIGCOMM 2016

MobiCom 2020

µW-level low-power communication

Short range (<20 meters)

CSS-based Long-range Backscatter

CSS=Chirp Spread Spectrum

CSS significantly increases the uplink range with μW-level power The downlink range remains limited

CSS-based Long-range Backscatter

Can we achieve CSS on the downlink to extend the receiving range of low-power backscatter devices?

Downlink:	5m	Downlink:	<1m	Downlink:	<1m	

CSS significantly increases the uplink range with μW-level power The downlink range remains limited

CSS communication principle

Basic idea of CSS

De-spreading procedures

Chirp de-spreading and RF signal amplification consumes unaffordable Milliwatts of Power

mWs

Challenge 1:

How to de-spread chirp to combat interference with extremely low power?

Challenge 2:

How to raise the signal amplitude with extremely low power?

Challenge 3

(will be discussed later)

Basic idea: **upload** the power consuming carrier generation function

Solution to Challenge 2 Magnify Signals by Accumulating Energy

LNA principle analysis

Unused βI_{Bias} can waste 99% of power \rightarrow Power Consumption: mW-level

Our Solution: LC resonance circuit

- **①** Energy periodically transitions between **E** and **M** fields, creating resonance
- **2** Signal energy can be accumulated in the form of resonance,
- **③** And Hence the signal amplitude is magnified

Signal characteristics (e.g. frequency, phase, amplitude) are distorted. How can the signal information be preserved during the accumulation?

Solution to Challenge 2

Magnify Signals by Accumulating Energy

Encoding data with the duration of resonance

Challenge 3 How to decode the symbol with low power?

Conventional solution: ADC-based sampling

A symbol to be decoded (Blue dots represent sampling points)

- Sampling rate → obey Nyquist's theorem
- Sapling operation numbers for each symbol: 80-120

Is it possible to decode a symbol with a single integration operation?

- Quantization (using inverse integration)
- Digital Output

Typical power of ADC sampling: 100s of µW

Solution to Challenge 3 Low-power Decoding with a single integration

Basic idea

if Peak voltage in C > V_{ref}: decoding result =1 if Peak voltage in C < V_{ref}:

decoding result =0

A more detailed circuit design

Dynamic signal strength Problem

A more detailed circuit design

Solution to Synchronization Problem

Change the RC value of the circuit in the synchronization period, making the synchronization symbols (which are actually symbol 0) be able to detected

Implementation

- 26mm × 24mm PCB
- Power Consumption
 - "μMote" : 62.07μW
 - "μMote –" : 28.9μW
- Communication rate:

1/2/5kbps

Receiving Sensitivity (Calibrated by Agilent E4418b RF power meter)

LOS Receiving Range

Benchmarks: Saiyan¹, passive-DSSS², and WISP5³ (with battery)

¹Saiyan: Design and implementation of a low-power demodulator for LoRa backscatter systems ² Passive DSSS: Empowering the downlink communication for backscatter systems ³ WISP5: https://github.com/wisp/wisp5-hw

NLOS throughput: signal penetrates one wall

µMote @1kbps, 2kbps and 5kbps

NLOS throughput: signal penetrates one wall

80 62.5 57.0 Mote 1kbps 62.5 62.5-∭ SAIYAN 51.4-60.6-62.5-62.5 61.9 62.5 62.5 Passive-DSSS 62.4 37.6 62.5 56.5 62.5 62.5 WISP5 of packets/s 57.8 55.9 **#**20 0 10 15 20 25 30 **40** 50 5 **Distance(m)**

µMote and benchmarks @1kbps

Receiving Sensitivity (Calibrated by Agilent E4418b RF power meter)

LOS Receiving Range

Interference Resistance

Contributions

We propose the design of μ Mote, a novel μ W-level receiver with hundreds of meters of receiving range which can effectively resist interference and work even under negative SINR.

We address three practical challenges we faced in realizing the receiver, i.e., the passive chirp de-spreading, low-power signal magnification, and low-power decoding.

We prototype μ Mote with COTS components and conduct extensive experiments to verify the feasibility and demonstrate the performance of our design.

Thank You!

