DChannel: Accelerating Mobile Applications With Parallel High-bandwidth and Low-latency Channels

William Sentosa (UIUC)

Balakrishnan Chandrasekaran (VU Amsterdam)

Brighten Godfrey (UIUC and VMware)

Haitham Hassanieh (EPFL) Bruce Maggs (Duke university and Emerald Innovations)

Low latency is critical

Interactive mobile apps

Web browsing

"Additional 100ms of latency can result in as much as 1% of revenue loss (Amazon)" [1] Virtual reality

Cloud gaming

"Require < 20ms latency to avoid simulator sickness" [2] "For the best gaming experience, **network latency should be < 10ms**" [3]

What does current 5G latency look like?

End-to-end network RTT* when driving in downtown Chicago with Verizon 5G mmWave *measured by sending a single 1400 bytes packet to echo server in every 15ms.

Channels (services) tradeoff: Latency vs. Throughput

- Enhanced Mobile Broadband (eMBB)
 - Up to 2Gbps throughput
 - High and inconsistent latency
- Ultra Reliable and Low Latency Communication (URLLC)
 - ✤ 0.4Mbps 16Mbps per user [6]
 - ✤ 2-10ms end-to-end RTT [6]

Channels (services) tradeoff: Latency vs. Throughput

Can we break the latency throughput tradeoff?

Breaking through the tradeoff barrier

DChannel: Leveraging multiple channels in 5G

- Steering traffic in the network layer (IP packets)
- Steer traffic transparently without app input

DChannel architecture for 5G

DChannel design decision

Granularity of the traffic steering

Steering heuristic

Steering granularity

• In which granularity should we steer the traffic?

Option 1: Application-level (web objects, e.g., HTML, images, CSS)

Steering granularity

Problems:

- 1. Misses opportunity to accelerate DNS, TCP/SSL/TLS handshake, HTTP request, acks, etc.
- 2. Requires app-level information

Steering granularity (Network-level)

Option 2: Network-level (IP Packets)

Key idea: only offloads small Solution: **Cost-rewards** analysis portion of traffic to LLC. Also, it should give most benefit **URLLC** (Latency **LOW**, Bandwidth **LOW**) Traffic Reordering $\boldsymbol{P_n}$ Internet steering Buffer •• Send P_n to **URLLC** or **eMBB** (Latency **HIGH**, Bandwidth **HIGH**) eMBB?

Steering granularity (Network-level)

Send P_n to **URLLC** if its Rewards (**R**)

outweighs its Cost (C)

Option 2: Network-level (IP Packets)

Key idea: only offloads small portion of traffic to LLC. Also, it should give most benefit. URLLC (Latency LOW, Bandwidth LOW) $P_n + Traffic$ steering URLLC (Latency LOW, Bandwidth LOW) URLLC (Latency LOW, Bandwidth LOW) URLLC (Latency LOW, Bandwidth LOW)

4/19/23

65

eMBB (Latency **HIGH**, Bandwidth **HIGH**)

Cost and rewards analysis

Estimating Rewards

Estimating Rewards

Estimating Cost

More in the paper

- Picking a good α
- Estimating the network latency and queue depth
- Performance under wrong latency estimates
- Details on the reordering buffer

Implications of cost-rewards heuristics

- 1. Small packets and short packet sequences tend to be steered to URLLC (Rewards=high, Cost=low)
- 2. Long back-to-back packet sequences tend to be steered to **eMBB** (**Rewards=low**, **Cost=high**)

The implications suit well with the idea of accelerating control packets (such as TCP SYN and ACK) and small messages (such as HTTP request)

Evaluation

- How does 5G eMBB+URLLC (DChannel and existing schemes) improve application performance compared to eMBB-only?
- Existing schemes:
 - MPTCP [8]
 - ASAP [9]
- Tested apps:
 - Web browsing
 - Web-based mobile apps (e.g., Reddit, eBay)
 - Bulk download

[8] Multipath TCP in the Linux Kernel v0.94. http://www. multipath-tcp.org, March 2018.

[9] Se Gi Hong and Chi-Jiun Su. ASAP: fast, controllable, and deployable multiple networking system for satellite networks. In IEEE Global Communications Conference (GLOBECOM), 2015.

Experimental setup: network emulation

<u>5G eMBB</u>

Record-and-replay emulation

5G mmWave 5G l

5G low band

Conditions: Stationary, walking, and driving

Live network

5G mmWave

5G low band

Conditions: Stationary

5G URLLC

Emulated: 5ms RTT 2 Mbps

Evaluation results (DChannel)

DChannel improves web browsing by ~20 – ~40% compared to eMBB-only

URLLC is at 2Mbps + 5ms RTT

Evaluation results (MPTCP)

• MPTCP performs worse than eMBB-only because the paths are asymmetrical

URLLC is at 2Mbps + 5ms RTT

Evaluation results (ASAP)

• ASAP [9] accelerates connection handshake and HTTP request traffic to low latency path but leaves HTTP responses to high bandwidth path.

URLLC is at 2Mbps + 5ms RTT

Microbenchmark: Effect of transfer size

This experiment used the mmwave-driving trace

Microbenchmark: Effect of transfer size

This experiment used the mmwave-driving trace

Microbenchmark: Effect of transfer size

This experiment used the mmwave-driving trace

More evaluation results in the paper

Live-5G eMBB experiment confirms DChannel performance gains

DChannel lowers mobile apps (e.g., reddit) response time by 21%

Reordering buffer (ROB) helps Dchannel

DChannel still give a good improvement even when URLLC latency fluctuates

DChannel still works with an incorrect latency estimates

Conclusions and future directions

Key takeaway:

Using URLLC+eMBB can give applications "illusion" of having a single channel that is both high bandwidth and low latency.

Future directions:

Supporting specialized apps that requires both high-bandwidth and low-latency in mobile environment

- Extended reality (VR/AR)
- Cloud gaming
- Remote driving

Thank you! Contact: sentosa2@Illinois.edu