
Tambur: efficient loss recovery for
videoconferencing via streaming codes

Presented by Michael Rudow at NSDI ’23

Joint work with Francis Y. Yan, Abhishek Kumar, Ganesh
Ananthanarayanan, Martin Ellis, and K.V. Rashmi

1

Sender Receiver

• Streaming applications like videoconferencing (VC)

• Transmit sequence of video frames over a lossy network

• Sending frame 𝑖

Frame sent over

data packet(s)

Motivation: packet loss reduces live-streaming QoE

2

𝐷1

𝐷2

𝑃1

P2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

Parity packet(s)
Low-latency packet loss
recovery is needed!

Sender Receiver

• Streaming applications like videoconferencing (VC)

• Transmit sequence of video frames over a lossy network

• Sending frame 𝑖

Frame sent over

data packet(s)

Motivation: packet loss reduces live-streaming QoE

3

𝐷1

𝐷2

𝑃1

P2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

Parity packet(s)
Low-latency packet loss
recovery is needed!

Sender Receiver

• Streaming applications like videoconferencing (VC)

• Transmit sequence of video frames over a lossy network

• Sending frame 𝑖

Motivation: packet loss reduces live-streaming QoE

4

𝐷1

𝐷2

𝑃1

P2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

Parity packet(s)

Lost

Low-latency packet loss
recovery is needed!

Sender Receiver

• Streaming applications like videoconferencing (VC)

• Transmit sequence of video frames over a lossy network

• Sending frame 𝑖

Recovered

Motivation: packet loss reduces live-streaming QoE

5

𝐷1

𝐷2

𝑃1

P2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

Parity packet(s)
Low-latency packet loss
recovery is needed!

Outline: improve VC QoE via streaming codes

• Problem: conventional loss recovery sub-optimal QoE

• Approach: new streaming codes for low-latency loss recovery

• Outcome: improve key metrics of QoE like video freeze

6

Conventional loss-recovery is ill-suited to VC

• Retransmission has too high latency if high RTT (e.g., over long-distance)

• Replication requires a 100% BW overhead

• FEC in form of block codes widely used (e.g., by Teams)

• Reed-Solomon (RS)

• Traditional erasure codes use sub-optimal BW for VC, as we see next

𝐷1

4 data packets 2 parity packets

𝐷2 𝐷3 𝐷4 𝑃1 𝑃2

7

Any 4 packets recover all lost packetsAny ≤ 2 packets are lost

Conventional loss-recovery is ill-suited to VC

• Retransmission has too high latency if high RTT (e.g., over long-distance)

• Replication requires a 100% BW overhead

• FEC in form of block codes widely used (e.g., by Teams)

• Reed-Solomon (RS)

• Traditional erasure codes use sub-optimal BW for VC, as we see next

𝐷1 𝐷2 𝐷3 𝐷4 𝑃1 𝑃2

8

RS code within each frame wastes parity

9

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

RS block code within frame 0

Over 2 losses: not recoverable

RS code within each frame wastes parity

10

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

RS code within each frame wastes parity

11

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

D2

𝑃1

Frame 1

Drawbacks:

Wasted parity for frame 1

not useful for frame 0

Freeze: frame 1 not

playable without frame 0

No loss: parity not used

RS block code

within frame 1

RS across frames costs latency and spikes BW

Quick fix for wasted parity:

Block code for 4 frames’ data

Parity sent at end of block

D1

𝐷2

𝐷3

𝐷4

S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝐷1

D2

𝐷3

𝐷4

𝐷1

𝐷2

𝑃2

𝑃1

𝑃3

𝑃4

𝑃5

One loss not yet recoverable

Frame 0Frame 1Frame 2Frame 3

12

RS across frames costs latency and spikes BW

Quick fix for wasted parity:

Problems:

Block code for 4 frames’ data

Parity sent at end of block

1. Latency to recover

one loss is 3 frames

2. Spike in BW for

frame 3 may cause loss

D1

𝐷2

𝐷3

𝐷4

S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝐷1

D2

𝐷3

𝐷4

𝐷1

𝐷2

𝑃2

𝑃1

𝑃3

𝑃4

𝑃5

Recover 3 frames later (i.e., ≈ 100ms at 30fps)

Spike in BW may incur loss

Frame 0Frame 1Frame 2Frame 3

13

Streaming codes: bandwidth-efficient loss recovery

• Problem: RS codes sub-optimal for live communication: BW and latency
• Block codes over 2 or 3 frames trades off these metrics

• Our goal: fast recovery for one loss without wasting parity

• Streaming codes designed for following live-communication model
• Latency: recover each frame within 𝜏 extra frames

14

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

P2

𝐷1

D2

𝑃1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

𝐷1

𝐷2

𝑃1

Latency in # of frames to reflect end-to-end latency

15

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

Frame 1Frame 2

𝐷2

Frame 3

R
e
ce

iv
e
r

Suppose the call has

• 30 fps

• 50ms one-way delay

End-to-end latency:

≈ 3 ⋅ 33.3 + 50

= 150𝑚𝑠

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

P2

𝐷1

D2

𝑃1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

𝐷1

𝐷2

𝑃1

Latency in # of frames to reflect end-to-end latency

16

Recover 3 frames later

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

Frame 1Frame 2

𝐷2

Frame 3

R
e
ce

iv
e
r

Streaming codes: bandwidth-efficient loss recovery

• Problem: RS codes sub-optimal for live communication: BW and latency
• Block codes over 2 or 3 frames trades off these metrics

• Our goal: fast recovery for one loss without wasting parity

• Streaming codes designed for following live-communication model
• Latency: recover each frame within 𝜏 extra frames

• Burst: at most 𝑏 consecutive lossy frames, then

• Guard space: at least 𝜏 consecutive frames with no losses

17

Loss model of bursts followed by guard spaces

18

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

P2

Frame 0

S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

D2

𝑃1

Frame 1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 2

𝐷1

𝐷2

𝑃1

Frame 3

𝐷1

𝐷2

𝑃1

Frame 4

Guard space of 𝜏 = 3 frames Burst of 𝑏 = 2 frames

Streaming codes: bandwidth-efficient loss recovery

• Problem: RS codes sub-optimal for live communication: BW and latency
• Block codes over 2 or 3 frames trades off these metrics

• Our goal: fast recovery for one loss without wasting parity

• Streaming codes designed for following live-communication model
• Latency: recover each frame within 𝜏 extra frames

• Burst: at most 𝑏 consecutive lossy frames, then

• Guard space: at least 𝜏 consecutive frames with no losses

• Streaming codes work by
• Sending parity packets within each frame and computed over multiple frames to

• Sequentially recover lost frames of burst each at their deadlines

• As opposed to simultaneously recovering all lost packets (e.g., of a block) 19

Streaming codes: challenges

• Suitability over real-world losses unknown

• Gaps between theory and practice, including

• Drop all packets of a frame

• Never loss in guard space

• Not yet assessed for impact on the QoE

20

Analysis of traces from Teams video calls

• ≈9700 traces from two-week random sample Microsoft Teams 1:1 calls

• Burst losses are characterized by
• Number of consecutive frames with at least one lost packet

• Fraction of packets lost in a burst over multiple frames

• Guard spaces need only exceed 𝜏 to enable loss recovery

• Set 𝜏 = 3 to cap the latency at ≈ 150 ms at 30 fps with a 50 ms one-way delay

21

Losses suited to streaming codes… if address gaps

• Many burst losses of 2 − 4
frames determine parity needed

• No clear worst-case value, 𝑏

Fraction of packets lost in multi-frame burst

• Varies from just over 0 to 1

• Model of all packets lost is pessimistic

Guard spaces are common, but

sometimes losses occur in guard space

22

Tambur: a new communication paradigm for VC

• Design Tambur by combining

• New streaming codes (shown shortly)

• Lightweight binary classifier instead of 𝑏 and 𝜏 set parity size (see paper)

• Match existing system’s parity size or reduce it by 50%

23

Tambur

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

24

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

Data packets for frame

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

25

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

Recover with frames 0,1,2, and 3

Recover with frames 0 and 3

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

26

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

27

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝑃1

Frame 1

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

28

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝑃1

Frame 1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 2

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

29

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝑃1

Frame 1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 2

𝐷1

𝐷2

𝑃1

Frame 3

Recover 3 frames later

R
e
ce

iv
e
r

𝐷1

𝐷2

Tambur recovers with bounded latency

30

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 0
S
e
n

d
e
r

R
e
ce

iv
e
r

𝐷1

𝐷2

𝑃1

Frame 1

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame 2

𝐷1

𝐷2

𝑃1

Frame 3

𝐷1

D2

𝑃1

Fame 4

Recover 3 frames later

Tambur has minimal latency to recover rare losses

• Before: worst-case loss recovery

• Leverage parity in guard space for recovery

• Unlike RS within each frame not recovering (waste parity)

• Now: address occasional losses

• Loss recovery should have minimal latency

• Unlike RS across 4 frames recovering 3 frames later

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

31

Tambur has minimal latency to recover rare losses

• Before: worst-case loss recovery

• Leverage parity in guard space for recovery

• Unlike RS within each frame not recovering (waste parity)

• Now: address occasional losses

• Loss recovery should have minimal latency

• Unlike RS across 4 frames recovering 3 frames later

𝐷1

𝐷2

𝐷3

𝐷4

𝑃1

𝑃2

Frame i

S
e
n

d
e
r

R
e
ce

iv
e
r

Recover any 1 loss immediately

32

Online evaluation methodology

• Implement Tambur in C++ (https://github.com/Thesys-lab/tambur/)

• Integrate with Ringmaster (https://github.com/microsoft/ringmaster/)
• Ringmaster is a VC platform for emulating 1:1 calls

• Compare to two standard baselines with slightly extra parity
• Block-within—RS within each frame

• Block-multi—RS across 4 frames

• Evaluate over 80 10-minute videos of varying bitrates

• Over Mahimahi and emulated networks (details in paper) 33

https://github.com/Thesys-lab/tambur/
https://github.com/microsoft/ringmaster

• Reasons for degrading QoE: not rendering frames or latency

• Fails to render 73% fewer frames than Block-Within at median

• Fails to render 28% fewer frames than Block-Multi at median

• 6.5 ms higher median latency than Block-within

• 18.9 ms lower median latency than Block-Multi

Tambur renders more frames at lower latency

34

Tambur mitigates freeze frequency

• Freeze frequency crucial to mean opinion score (i.e., QoE)

• Freeze frequency reduced by 78% over Block-Within at median

• Freeze frequency reduced by 26% over Block-Multi at median

35

Takeaway: Tambur improves several key metrics of the QoE

New interdisciplinary loss recovery VC

• Challenge: conventional loss-recovery sub-optimal videoconferencing

• Approach: build Tambur by designing new streaming codes + using ML

• Outcome:

36
This work was funded in part by an NSF grant (CCF1910813).

Sender ReceiverSender Receiver Eliminate 26% of freezes and

28% of rendering failures

Before After

	Slide 1: Tambur: efficient loss recovery for videoconferencing via streaming codes
	Slide 2: Motivation: packet loss reduces live-streaming QoE
	Slide 3: Motivation: packet loss reduces live-streaming QoE
	Slide 4: Motivation: packet loss reduces live-streaming QoE
	Slide 5: Motivation: packet loss reduces live-streaming QoE
	Slide 6: Outline: improve VC QoE via streaming codes
	Slide 7: Conventional loss-recovery is ill-suited to VC
	Slide 8: Conventional loss-recovery is ill-suited to VC
	Slide 9: RS code within each frame wastes parity
	Slide 10: RS code within each frame wastes parity
	Slide 11: RS code within each frame wastes parity
	Slide 12: RS across frames costs latency and spikes BW
	Slide 13: RS across frames costs latency and spikes BW
	Slide 14: Streaming codes: bandwidth-efficient loss recovery
	Slide 15: Latency in # of frames to reflect end-to-end latency
	Slide 16: Latency in # of frames to reflect end-to-end latency
	Slide 17: Streaming codes: bandwidth-efficient loss recovery
	Slide 18: Loss model of bursts followed by guard spaces
	Slide 19: Streaming codes: bandwidth-efficient loss recovery
	Slide 20: Streaming codes: challenges
	Slide 21: Analysis of traces from Teams video calls
	Slide 22: Losses suited to streaming codes… if address gaps
	Slide 23: Tambur: a new communication paradigm for VC
	Slide 24: Tambur recovers with bounded latency
	Slide 25: Tambur recovers with bounded latency
	Slide 26: Tambur recovers with bounded latency
	Slide 27: Tambur recovers with bounded latency
	Slide 28: Tambur recovers with bounded latency
	Slide 29: Tambur recovers with bounded latency
	Slide 30: Tambur recovers with bounded latency
	Slide 31: Tambur has minimal latency to recover rare losses
	Slide 32: Tambur has minimal latency to recover rare losses
	Slide 33: Online evaluation methodology
	Slide 34: Tambur renders more frames at lower latency
	Slide 35: Tambur mitigates freeze frequency
	Slide 36: New interdisciplinary loss recovery VC

