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Goal: Maximize query accuracy, subject
to latency SLAs and resource constraints
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Reduce network overheads /

[

Limited and inelastic resources '
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Edge Workloads in the Wild

Pilot video analytics deployment across 2 major
US cities, targeted at road traffic monitoring

Query: <camera feed, model, task>

Sample Workload

Query #| Camera Feed | Model Architecture Task Description

________________ T 1.8 1. FRCNN-RS0 | Objectdetectionofcars
________________ 2 ool YOLOv3 | Objectdetectionofpeople
________________ S ... .. . Inception | Binary Classification of people, vehicles
________________ 4 1.6 ... BesNetcO | Binary Classification of cars, buses, trucks
________________ S 1.8 .l Tny-YOLOv3 | ObjectDetectionof people .~~~




Executing Edge Workloads

Workload Models

Edge Box




Executing Edge Workloads

Workload Models

Edge Box




Executing Edge Workloads

Workload Models

Edge Box

Edge Box
GPU Memory




Executing Edge Workloads

Workload Models

Edge Box
GPU Memory




Executing Edge Workloads

Workload Models

Edge Box SOOKS
GPU Memory A M

eﬁ“g
Oy
L om

1




Workloads are Outgrowing Edge GPU Memory

30

N
N
o

Workload Memory GPU (GB)
~ -
o1 o1

B 1 Frame/Batch

3 4 5 ©

4 Frame/Batch

111
2 GB —

/ 8 9
Workload #

10 11 12 13 14 15

Typical GPU
Memory Offerings
in Commercial
Edge Boxes



Workloads are Outgrowing Edge GPU Memory

30

N
N
o

Workload Memory GPU (GB)
~ -
o1 o1

B 1 Frame/Batch

3 4 5 ©

4 Frame/Batch

111
2 GB —

/ 8 9
Workload #

10 11 12 13 14 15

Typical GPU
Memory Offerings
in Commercial
Edge Boxes



Time-Sharing of GPU Memory

Workload Models

Edge Box

Edge Box
GPU Memory




Time-Sharing of GPU Memory

Workload Models

Edge Box

Edge Box
GPU Memory




Time-Sharing of GPU Memory

Workload Models

Edge Box

Edge Box
GPU Memory




Time-Sharing of GPU Memory

Workload Models

Edge Box

Edge Box
GPU Memory




Time-Sharing of GPU Memory

Workload Models

Edge Box
GPU Memory




Time-Sharing of GPU Memory

Skipped processing of 19-84% of
frames and accuracy drops up to 43%




Time-Sharing of GPU Memory

Skipped processing of 19-84% of
frames and accuracy drops up to 43%

Model Loading Time (ms) | Run Time (ms) . 0.,
YOLOV3 295 170 Repeatedly loading [
ResNet152 73.3 24.8 : “v'y"

- - models into GPU N
ResNet50 271 8.4 : ey
VGG16 72.2 2 memory Is slow
Tiny YOLOv3 6./ 3.0




Time-Sharing of GPU Memory

Skipped processing of 19-84% of
frames and accuracy drops up to 43%

Model Loading Time (ms) | Run Time (ms) .
YOLOV3 495 17.0 Repeatedly loading
ResNet152 /3.3 24.8 :

ResNetb0 271 8.4 mOdelS Ir,]tO GPU
VGG16 72.2 21 memory is slow
Tiny YOLOv3 6./ 3.0

Implication: cannot keep up with frame rate and
must drop frames due to SLA violations
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How to reduce GPU
memory bottlenecks In
edge video analytics?

Opportunity: reduce memory overheads by
exploiting redundancies across models

Observation: despite workload diversity, models
often share many layer definitions
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Shared Layer Definitions Across Models
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Shared layer definitions appear in...

Models from the Same Architecture Family Models from Different Architecture Families

e.g., VGG16 & VGG19 e.g., VGG16 & AlexNet
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Across 24 different architectures, 43% of all pairs of different models have shared layers
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' Reduce per-workload . o
Beneflts memory usage by 17-86% 6, 6,
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Process 29-61% more frames!
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Model Merging

Jointly Retrain
Models
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Model Merging Challenges

» [ he more layers you merge, the lower the accuracy achieved
during retraining

» Difficult to predict precisely how many layers will be
mergeable before accuracy violations occur

» Each instance of retraining is costly

17
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Observation 1: Presence of "Heavy-Hitter” Layers
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Observation 2: Per-layer merging decisions can be made in isolation

Ability to successfully retrain (i.e., preserve accuracy) when merging these layers...

6)2
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..does not depend on also merging these layers.

Implication: we can try merging layers
iIndependently one at at time
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Model Merging Strategy

Start with heavy-hitter layers
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System Design

Edge Server Cloud Server
Model Inference Model Merging
& Retraining
e
Optimized
Models

Orders models that share the
most layers next to each other
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Improvement in Query Accuracy

Loading costs are 66%
Loading costs are 15% of computation costs
| | of computation costs /
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Raw Savings % Savings

Memory Savings Achieved

100
_ Gemel reduces per-
>0 workload memory
usage by 18-61%.
O i
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Gemel Evaluation

» Accuracy Improvements

» GPU Memory Savings

» Varying FPS, Accuracy, SLA

» Comparison to Stem-Sharing Approach
» Incremental Memory Savings

» Merging Heuristic Ablation

» Microbenchmarks

» Generalizability

27



» Tackles GPU memory bottlenecks for real-time video analytics at the edge

» Exploits redundancies across models to find unified weights for layers with
shared definitions

» Achieves considerable memory savings and application accuracy
Improvements

Source code available at github.com/artpad6/gemel_nsdi23
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